JP2011187180A - 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池 Download PDF

Info

Publication number
JP2011187180A
JP2011187180A JP2010048208A JP2010048208A JP2011187180A JP 2011187180 A JP2011187180 A JP 2011187180A JP 2010048208 A JP2010048208 A JP 2010048208A JP 2010048208 A JP2010048208 A JP 2010048208A JP 2011187180 A JP2011187180 A JP 2011187180A
Authority
JP
Japan
Prior art keywords
solid oxide
cell
oxide fuel
single cell
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010048208A
Other languages
English (en)
Other versions
JP5373668B2 (ja
Inventor
Yoshiaki Yoshida
吉晃 吉田
Reiichi Chiba
玲一 千葉
Katsuya Hayashi
克也 林
Masayuki Yokoo
雅之 横尾
So Arai
創 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010048208A priority Critical patent/JP5373668B2/ja
Publication of JP2011187180A publication Critical patent/JP2011187180A/ja
Application granted granted Critical
Publication of JP5373668B2 publication Critical patent/JP5373668B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】単セルの破損を防ぎつつ、出力や効率を向上させることができる固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池を提供する。
【解決手段】LaNixFe1-x3(0<x<1)を含む空気極13上にLaNixFe1-x3(LNF)とLaCoO3(LC)の混合体から構成される集電層14を設ける。これにより、LCが電子伝導性とともに酸素イオン導電性がよく、LNFがガス透過性がよいので、適度な酸化剤ガスの透過性を維持しつつ単セル11とセパレータとの接触抵抗を低減させることができるので、出力や効率を向上させることができる。また、上述した構成を採ることにより、セパレータ等の固体酸化物形燃料電池の構成材料と熱膨張係数が同等となるので、単セルが破損してしまうのを防ぐことができる。
【選択図】図2

Description

本発明は、固体酸化物形燃料電池に関するものである。
近年、規模の大小にかかわらず高い効率が得られることから、次世代のコジェネレーションシステムに用いられる発電手段として燃料電池が注目されている。燃料電池は、酸素などの酸化剤ガスと水素などの燃料ガスとの化学反応を利用した電池であり、空気極と呼ばれる陽極と、燃料極と呼ばれる陰極とで電解質の層を挟んだ単セルを、複数重ね合わせたスタック構造を用いている。一組のセル(単セル)で得られる電気の電圧は、約0.7Vであるが、複数の単セルを重ね合わせて用いることで、所望とする電圧の供給が可能である。
このような燃料電池には、高分子材料を電解質層に用いる固体高分子形や、セラミックスなどの酸化物を電解質層に用いる固体酸化物形がある。
固体高分子形燃料電池では、作動温度が高々90℃であり、自動車用や家庭用コジェネレーションシステムに適用可能とされている。
これに対して、固体酸化物形燃料電池は、作動温度が600℃以上と高温であるが、発電効率が45%以上と高効率である。このため、複数の単セルを組み合わせたスタック構造の固体酸化物形燃料電池は、タービン発電などと組み合わせてより高効率のコジェネレーションシステムを構築できるという利点を有しており、発電所への用途などに期待されている。
ところで、固体酸化物形燃料電池において実用的な出力を得るためには、上述したように、複数の単セルを直列または並列に接続する必要がある。このため、単セルを収容するととともに、各単セルを電気的に接続するセパレータやインターコネクタなどと呼ばれる部材が用いられている。このセパレータやインターコネクタは、各単セルの燃料極と空気極とにそれぞれ燃料ガスと酸化剤ガスとを別々に供給するガス流路が設けられている。したがって、セパレータやインターコネクタには、電気伝導度が高いだけでなく、ガスを透過させない材料が用いられている。
このような固体酸化物形燃料電池において、出力および効率の向上を図るには、電池の内部抵抗を低減する必要がある。この内部抵抗の低減を阻害する要因としては、単セルとセパレータとの接触抵抗や、ガスが十分にセルに供給されない場合などに生じる過電圧、単セル自身の抵抗などがある。
このうち、単セルとセパレータとの接触抵抗は、その接触面に電気導電性の高い材料を用いることにより、低減できるものと考えられている。そこで、空気極については、白金や銀などの貴金属、または、電子伝導性の高い酸化物のペーストを空気極上に塗布することにより、空気極とセパレータとの接触抵抗を低減させる方法が提案されている(例えば、特許文献1、非特許文献1参照。)。
また、単セル自身の抵抗を低減させる目的から、様々な電解質材料や空気極材料が提案されている。
特開2006−190593号公報
Kequin Huamg, et al., "Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells", Solid State Ionics, vol 1, 129, pp.237-250, 2000.
しかしながら、単セルとセパレータとの接触抵抗を低減するために上述したような材料を用いると、この材料が焼き締まり易いために酸化剤ガスの透過性が低下してしまい、出力や効率を向上させることが困難となっていた。
また、単セル自身の抵抗を低減するために、単セルの構成材料を変更すると、セパレータの熱膨張係数との関係が、従来の構成材料とは異なってくる。このため、単セルの熱膨張係数とセパレータの熱膨張係数とが大きく相違すると、単セルが破損してしまう恐れがある。
そこで、本発明では、単セルの破損を防ぎつつ、出力や効率を向上させることができる固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池を提供することを目的とする。
上述したような課題を解決するために、本発明に係る固体酸化物形燃料電池用単セルは、電解質と、この電解質の一方の面に設けられた燃料極と、電解質の他方の面に設けられ、LaNixFe1-x3(0<x<1)を含む空気極と、この空気極の電解質と接触する面と反対側の面に設けられ、LaNixFe1-x3(0<x<1)とLaCoO3の混合体から構成される集電層とを備えたことを特徴とするものである。
上記固体酸化物形燃料電池用単セルにおいて、LaCoO3は、粒子径が0.1μmよりも大きく2.0μmよりも小さいようにしてもよい。
また、上記固体酸化物形燃料電池用単セルにおいて、集電層は、LaNixFe1-x3の重量の50%よりも少ない割合でLaCoO3が混合されるようにしてもよい。
また、上記固体酸化物形燃料電池用単セルにおいて、集電層は、空気極と同等の表面積を有し、30μm〜200μmの厚さを有するようにしてもよい。
また、本発明に係る固体酸化物形燃料電池セルは、単セルと、この単セルを収容しかつ単セルに燃料ガスおよび酸化剤ガスを供給するセパレータとを備えた固体酸化物形燃料電池であって、単セルは、上述した固体酸化物形燃料電池用単セルから構成されることを特徴とするものである。
本発明によれば、LaNixFe1-x3(0<x<1)を含む空気極上にLaNixFe1-x3(LNF)とLaCoO3(LC)の混合体から構成される集電層を設けることにより、LCが電子伝導性とともに酸素イオン導電性がよく、LNFがガス透過性がよいので、適度な酸化剤ガスの透過性を維持しつつ単セルとセパレータとの接触抵抗を低減させることができるので、出力や効率を向上させることができる。また、空気極上にLNFのLCの混合体からなる集電層を設けることにより、セパレータ等の固体酸化物形燃料電池の構成材料と単セルの熱膨張係数が同等となるので、単セルが破損してしまうのを防ぐことができる。
図1は、本発明に係る固体酸化物形燃料電池の構成を模式的に示す断面図である。 図2は、図1の符号aで示す円内の拡大図である。 図3は、本発明に係る固体酸化物形燃料電池用単セルの構成を模式的に示す断面図である。 図4は、単セルに集電層を設けた場合と設けない場合における初期発電特性を示す図である。
以下、図面を参照して、本発明の実施の形態について詳細に説明する。
<固体酸化物形燃料電池の構成>
図1および図2に示すように、本実施の形態に係る固体酸化物形燃料電池は、単セル1と、板状の燃料極セパレータ2と、燃料極セパレータ2上に配設される板状の部材であって、その中央に形成された開口と燃料極セパレータ2の上面とから形成される凹部に単セル1を収容するセルホルダ3と、中央に開口が形成された板状の部材であって、その開口を上記凹部に対応させた状態で単セル1の電解質およびセルホルダ3の上面に配設されたシール部材4と、シール部材4の上面に配設された板状の空気極セパレータ5と、単セル1の燃料極と燃料極セパレータ2との間に配設された集電体6と、単セル1の空気極と空気極セパレータ5との間に配設された接続部材7と、シール部材4と燃料極セパレータ5との間に配設された絶縁部材8とを備え、これらを1組とするセルを単数または複数組重ねて設けた構造を有する。
単セル1は、図3に示すように、平板状の電解質11、この電解質11の一方の面に形成された平板状の燃料極12、および電解質11の他方の面に形成された平板状の空気極13から構成された燃料極支持型の構成を有する。ここで、空気極13の上面には、集電層14が設けられている。
電解質11は、例えば、スカンジア安定化ジルコニア(ScSZ)、イットリア安定化ジルコニア(YSZ)、サマリア安定化ジルコニア(SSZ)、コバルト添加ランタンガレート系酸化物(LSGMC)などから構成される。
燃料極12は、例えば、ニッケル添加イットリア安定化ジルコニア(Ni−YSZ)、ニッケル添加サマリア安定化ジルコニア(Ni−SSZ)、ニッケル添加スカンジア安定化ジルコニア(Ni−ScSZ)などの金属Niと上述した電解質1を構成する材料との混合物などから構成される。
空気極13は、LaNixFe1-x3(0<x<1)(LNF)から構成される。なお、空気極13は、例えば、ランタンマンガネート(LSM)、ランタンストロンチウムコバルタイト(LSC)、ランタンストロンチウムコバルタイトフェライト(LSCF)、ランタンストロンチウムフェライト(LSF)、サマリウムストロンチウムコバルタイト(SSC)などから構成されるようにしてもよい。
空気極13の上面に形成された集電層14は、LaNixFe1-x3(0<x<1)(LNF)とLaCoO3(LC)の混合物から構成される。ここで、LNFとLCの粒子径は、0.1μm〜2.0μmであることが望ましい。また、LNFに対するLCの混合比(重量)は、50%以下であることが望ましい。さらに、集電層14の厚さは、30μm〜200μmとすることが望ましい。
燃料極セパレータ2は、板の形状を有し、上面の中央部に形成され、外部から供給された燃料ガスを集電体6を介して燃料極12に向けて送出したり、単セル1で酸化されなかった(未反応の)燃料ガス(以下、「未反応ガス」という)等を外部に排出したりする燃料流路2aと、この燃料流路2aに外部から供給された燃料を送出したり、燃料流路2aから未反応ガスを外部に導出したりする燃料ガス配管2bとを備えている。このような燃料極セパレータ2は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
セルホルダ3は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
シール部材4は、例えば、ホウ珪酸ガラスなどの軟化点が動作温度付近のガラス材料から構成されている。このようなシール部材4を設けることにより、燃料ガスや排気ガスが固体酸化物形燃料電池の外部に漏れるのを防ぐことができる。
空気極セパレータ5は、板の形状を有し、下面の中央部に形成され、外部から供給された酸化剤ガスを接続部材8を介して空気極13に向けて送出したり、単セル1で未反応の酸化剤ガス等を外部に排出したりする酸化剤流路5aと、この酸化剤流路8aに外部から供給される酸化剤ガスを送出する酸化剤ガス配管5bとを備えている。このような空気極セパレータ5は、例えば、クロムが16〜25%程度含まれているフェライト系の耐熱合金から構成されている。
集電体6は、白金、銀、金、パラジウム、イリジウム、ロジウム等の金属、フェライト系耐熱合金の細線からなるメッシュや不織布、エキスパンドメタル、発泡金属など、電子伝導性が高く、600〜1000℃で化学的に安定な材料から構成される。
接続部材7は、タンランニッケルフェライト(La(Ni,Fe)O3:LNF)、ランタンストロンチウムマンガネート((La,Sr)MnO3:LSM)、ランタンストロンチウムコバルタイト((La,Sr)CoO3:LSC)、サマリウムストロンチウムコバルタイト((Sm,Sr)CoO3:SSC)など、導電性を有する金属酸化物の焼結体から構成される。このような接続部材7は、金属酸化物を有機溶媒からなる分散媒体に分散したペースト材料を加熱することにより形成される。接続部材7を、集電層14と空気極セパレータ5間に配置することにより、集電層14と空気極セパレータ5との電気的接続をよくすることができる。また、上記ペースト材料は、初回動作前に予め集電層14の上に塗布し、その上に空気極セパレータ5を配置することにより、初回動作時の昇温過程でより良好な電気的接続を実現することができる。さらに、各セパレータと単セル1の各電極との間の接触面に圧力をかけることによって、さらに良好な電気的接続を実現することができる。
絶縁部材8は、例えばアルミナなどの高温でも絶縁性のあるセラミックスや、マイカなどの絶縁材料から構成される。このような絶縁部材8を設けることにより、燃料極側セパレータ2と空気極セパレータ5との短絡を防止することができる。
<固体酸化物形燃料電池の組立方法>
固体酸化物形燃料電池の組立方法の一例について説明する。
まず、耐熱合金からなる台座の上に、燃料流路2aおよび燃料ガス配管2bとが形成された燃料極セパレータ2を配設する。この燃料極セパレータ2の燃料流路2aが形成されている面上に、ニッケルの発泡体である発泡ニッケルからなる集電体8を配設した後、この集電体8上に燃料極12が位置するように、単セル1を集電体8上に配設する。
単セル1を配設すると、セルホルダ3を、その内側に単セル1および集電体8が位置するように、燃料極セパレータ2上に配設する。
セルホルダを配設すると、単セル1の電解質11の上面からセルホルダ3の上面にかけて、ガラス粉末と有機溶媒からなるペースト状のシール部材4を配設する。このとき、セルホルダ3と空気極セパレータ5との電気的絶縁を得るために、シール部材4の上に厚さが0.5mmのマイカからなる絶縁部材8を配設する。
絶縁部材8を配設すると、単セル1の集電層14の上に、接続部材7の材料として、例えばランタンストロンチウムコバルタイト(LSC)と有機溶媒からなる導電性ペーストを塗布する。
導電ペーストを塗布すると、酸化剤流路5aおよび酸化剤ガス配管5bが形成された空気極セパレータ5を用意し、接続部材7となる導電性ペーストと空気極セパレータ5とが接触するように、シール部材4上に空気極セパレータ5を配設する。
空気極セパレータ5を配設すると、空気極セパレータ5から燃料極セパレータ2に向けて荷重をかける。これにより、接続部材7となる導電性ペーストが、集電層14および空気極セパレータ5に圧接されるので、集電層14と空気極セパレータ5との電気的接続が良好となる。
荷重をかけた後、例えば発電状態まで加熱すると、単セル1が、集電体6および接続部材7を介して燃料極セパレータ2と空気極セパレータ5との間に保持された1つのセルからなる固体酸化物形燃料電池が完成する。加熱することにより、単セル1の集電層14と空気極セパレータ5との間には、接続部材7が形成される。
なお、このようなセルを複数積層したスタックでは、燃料極セパレータ2と空気極セパレータ5とは、それぞれ上下に隣接するセルの空気極セパレータ2または燃料極セパレータ5に電気的に接続されている。したがって、固体酸化物形燃料電池スタックの上端の空気極セパレータ5と下端の燃料極セパレータ2とを端子として負荷回路に接続することにより、電力を取り出すことができることとなる。
<固体酸化物形燃料電池の発電動作>
次に、上述したような手順で組み立てられる固体酸化物形燃料電池の発電動作は、以下に示す手順で行われる。
まず、ドライ水素等の燃料ガスは、燃料極セパレータ5の燃料ガス配管2bから燃料流路2aを通り、集電体6を経由して、単セル1の燃料極12に供給される。一方、空気等の酸化剤ガスは、空気極セパレータ5の酸化剤ガス配管5bから酸化剤流路5aを通り、接続部材8を経由して、単セル1の接続層14から空気極13に供給される。このように燃料ガスおよび酸化剤ガスが所定の温度下において単セル1に供給されると、燃料極12と空気極13とにおいて電気化学反応が発生する。このような状態で、固体酸化物形燃料電池スタックの上端の空気極セパレータ5と下端の燃料極セパレータ2とを端子として負荷回路に接続すると、電力を取り出すことができる。
<単セル1の製造方法>
次に、単セル1の製造方法の一例について説明する。
まず、燃料極12の材料としてニッケル添加スカンジア安定化ジルコニア(Ni−ScSZ)からなるグリーンシート上に、電解質11の材料としてアルミナ添加スカンジア安定化ジルコニア(SASZ)をドクターブレード法で塗布し、この燃料極材料と電解質材料とから構成されたハーフセルを1000℃以上で焼成する。
次に、十分に冷えたハーフセル上に、空気極13の材料としてランタンニッケルフェライト(LNF)をスクリーン印刷で塗布し、脱脂炉で乾燥させる。
次に、粒子径が0.5〜1.0μmのLNFとLaCoO3(LC)とが重量比で70::30の割合で混合された粉末を有機溶媒に混合したペーストを、空気極13上にスクリーン印刷で塗布して1000℃以上で焼成する。このようにすることにより、空気極13上に集電層14が形成された単セル1を製造することができる。
なお、比較のために、空気極13上に集電層14を設けない単セルも作成した。
このようにして製造した単セル1および集電層14を設けない単セルを、上述した手順で組み立てた固体酸化物形燃料電池に適用し、初期発電特性を測定した。この測定結果を図4に示す。この図4において、縦軸はセル電圧、横軸は電流密度である。
図4からも明らかなように、集電層14を設けた単セル(図4で黒三角印で示す。)の方が、集電層14を設けない単セル(図4で白三角印で示す。)よりも高い出力が得られることがわかる。
LCは、LNFと比較して、電気導電性が高く、焼き締まり易い材料である。したがって、空気極13や集電層14としてLCのみを用いた場合には、電気導電性は良好になるが、焼き締まり過ぎてしまうので、酸化剤ガスが通過しづらくなってしまう。そこで、本実施の形態では、集電層14にLCとLNFの混合体を用いている。これにより、従来よりも良好な電気導電性と適度な焼き締まりを得られるので、適度な酸化剤ガスの透過性を維持しつつ単セルとセパレータとの接触抵抗を低減させることができる。結果として、図4に示すように、高い出力を実現することができる。
このとき、LNFと混合するLCの粒子径が0.1μmから2.0μmであれば、空気極13上に焼き締りやすい、すなわち焼成して同化しやすい集電層14が形成され、電流が流れやすくなり内部抵抗を低減することができる。
また、空気極13の上面にLNFとLCを混合させた集電層14を設けることにより、空気極13全体をLNFとLCの混合物とする場合よりも、セパレータ等の固体酸化物形燃料電池の構成材料と単セルとの熱膨張係数が同等となるので、単セルが破損してしまうのを防ぐことができる。このとき、LNFとLCの混合比を50%以下にすることにより、熱膨張係数がLNFから極端に大きくなることがないので、セルの破損をより効果的に防ぐことができる。
また、集電層14の厚さを、30μm〜200μmとすることにより、空気極セパレータ5と空気極13との対向面内全体に電流が流れるだけのパスを形成することができる。
さらに、集電層14を電解質11上に配置された空気極13上に配置して発電温度よりも高い温度で焼成することにより、発電中の変形を抑制することができるとともに、十分に焼き締めることができ、結果として、上記対向面内に全体的に電流が流れるだけのパスを形成することができる。
以上説明したように、本実施の形態によれば、LaNixFe1-x3(0<x<1)を含む空気極13上にLaNixFe1-x3(LNF)とLaCoO3(LC)の混合体から構成される集電層14を設けることにより、LCが電子伝導性とともに酸素イオン導電性がよく、LNFがガス透過性がよいので、適度な酸化剤ガスの透過性を維持しつつ単セルとセパレータとの接触抵抗を低減させることができるので、出力や効率を向上させることができる。また、上述した構成を採ることにより、セパレータ等の固体酸化物形燃料電池の構成材料と熱膨張係数が同等となるので、単セルが破損してしまうのを防ぐことができる。
なお、本実施の形態では、集電層14に混合する酸化物としてLaCoO3(LC)を用いる場合を例に説明したが、LCに代えて、LaxSr1-xCoO3(LSC)、LaxSr1-xCoyFe1-y3(LSCF)、LaxSr1-xFeO3(LSF)(ただし、0<x<1,0<y<1)を用いるようにしても、LCを用いた場合と同等の効果を得ることができる。
本発明は、固体酸化物形燃料電池の単セルに適用することができる。
1…単セル、2…燃料極セパレータ、2a…燃料流路、2b…燃料ガス配管、3…セルホルダ、4…シール部材、5…空気極セパレータ、5a…酸化剤流路、5b…酸化剤ガス配管、6…集電体、7…接続部材、8…絶縁部材、11…単セル、12…燃料極、13…空気極、14…集電層。

Claims (5)

  1. 電解質と、
    この電解質の一方の面に設けられた燃料極と、
    前記電解質の他方の面に設けられ、LaNixFe1-x3(0<x<1)を含む空気極と、
    この空気極の前記電解質と接触する面と反対側の面に設けられ、LaNixFe1-x3(0<x<1)とLaCoO3の混合体から構成される集電層と
    を備えたことを特徴とする固体酸化物形燃料電池用単セル。
  2. 前記LaCoO3は、粒子径が0.1μmよりも大きく2.0μmよりも小さい
    ことを特徴とする請求項1に記載の固体酸化物形燃料電池用単セル。
  3. 前記集電層は、LaNixFe1-x3の重量の50%よりも少ない割合でLaCoO3が混合される
    ことを特徴とする請求項1または2記載の固体酸化物形燃料電池用単セル。
  4. 前記集電層は、空気極と同等の表面積を有し、30μm〜200μmの厚さを有する
    ことを特徴とする請求項1乃至3の何れか1項に記載の固体酸化物形燃料電池用単セル。
  5. 単セルと、この単セルを収容しかつ前記単セルに燃料ガスおよび酸化剤ガスを供給するセパレータとを備えた固体酸化物形燃料電池であって、
    前記単セルは、請求項1乃至4の何れか1項に記載された固体酸化物形燃料電池用単セルから構成される
    ことを特徴とする固体酸化物形燃料電池。
JP2010048208A 2010-03-04 2010-03-04 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池 Expired - Fee Related JP5373668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048208A JP5373668B2 (ja) 2010-03-04 2010-03-04 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048208A JP5373668B2 (ja) 2010-03-04 2010-03-04 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池

Publications (2)

Publication Number Publication Date
JP2011187180A true JP2011187180A (ja) 2011-09-22
JP5373668B2 JP5373668B2 (ja) 2013-12-18

Family

ID=44793259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048208A Expired - Fee Related JP5373668B2 (ja) 2010-03-04 2010-03-04 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池

Country Status (1)

Country Link
JP (1) JP5373668B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060113A (ja) * 2012-09-19 2014-04-03 Toshiba Corp 電気化学装置
JP2014146537A (ja) * 2013-01-30 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池スタックとその製造方法
JP2019036443A (ja) * 2017-08-10 2019-03-07 日産自動車株式会社 燃料電池スタックのセル構造および燃料電池セルのたわみ規制方法
WO2024134975A1 (ja) * 2022-12-20 2024-06-27 Agc株式会社 Soecまたはsofcの電極用材料、そのような電極用材料を含む粉末、そのような粉末を含むペースト、soecまたはsofcの電極、soec、およびsofc

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061043A1 (ja) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation 固体酸化物形燃料電池
JP2008004521A (ja) * 2005-11-14 2008-01-10 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
JP2008243751A (ja) * 2007-03-29 2008-10-09 Toho Gas Co Ltd 固体酸化物形燃料電池管状単セル、固体酸化物形燃料電池バンドルおよび固体酸化物形燃料電池モジュール
JP2009004297A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> インターコネクタ及び固体酸化物形燃料電池
JP2009259568A (ja) * 2008-04-16 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
JP2009277411A (ja) * 2008-05-13 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池の作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004521A (ja) * 2005-11-14 2008-01-10 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
WO2007061043A1 (ja) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation 固体酸化物形燃料電池
JP2008243751A (ja) * 2007-03-29 2008-10-09 Toho Gas Co Ltd 固体酸化物形燃料電池管状単セル、固体酸化物形燃料電池バンドルおよび固体酸化物形燃料電池モジュール
JP2009004297A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> インターコネクタ及び固体酸化物形燃料電池
JP2009259568A (ja) * 2008-04-16 2009-11-05 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
JP2009277411A (ja) * 2008-05-13 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池の作製方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060113A (ja) * 2012-09-19 2014-04-03 Toshiba Corp 電気化学装置
JP2014146537A (ja) * 2013-01-30 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池スタックとその製造方法
JP2019036443A (ja) * 2017-08-10 2019-03-07 日産自動車株式会社 燃料電池スタックのセル構造および燃料電池セルのたわみ規制方法
WO2024134975A1 (ja) * 2022-12-20 2024-06-27 Agc株式会社 Soecまたはsofcの電極用材料、そのような電極用材料を含む粉末、そのような粉末を含むペースト、soecまたはsofcの電極、soec、およびsofc

Also Published As

Publication number Publication date
JP5373668B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP5242909B2 (ja) 固体酸化物形燃料電池
CN101079495B (zh) 固体氧化物燃料电池
JP5189405B2 (ja) 固体酸化物形燃料電池の作製方法
Wang et al. Fabrication and performance evaluation of planar solid oxide fuel cell with large active reaction area
JP5254588B2 (ja) 固体酸化物形燃料電池モジュール
JP5443325B2 (ja) 固体酸化物形燃料電池および固体酸化物形燃料電池用単セル
JP5373668B2 (ja) 固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
JP2014123544A (ja) 固体酸化物形燃料電池及びインターコネクタの製作方法
JP6389133B2 (ja) 燃料電池スタック
JP2014038823A (ja) 固体酸化物形燃料電池用の集電体及びこれを適用した固体酸化物形燃料電池
US9287575B2 (en) Fuel cell
RU2417488C1 (ru) Планарный элемент электрохимических устройств, батарея и способ изготовления
JP2013257989A (ja) 固体酸化物形燃料電池
JP2014041705A (ja) 固体酸化物形燃料電池とその製造方法
JP6204106B2 (ja) 燃料電池セル及び燃料電池セルスタック
US20110053032A1 (en) Manifold for series connection on fuel cell
JP5117821B2 (ja) 固体酸化物形燃料電池及びその製造方法
KR102198390B1 (ko) 급속 구동 조건에서 안정한 직접 연소형 고체산화물 연료전지
KR20180093087A (ko) 연료 전지 발전 단위 및 연료 전지 스택
JP5345428B2 (ja) 固体酸化物形燃料電池
JP2010277954A (ja) 固体酸化物形燃料電池
JP2013054954A (ja) 固体酸化物形燃料電池スタックおよびインターコネクタ
JP2012253035A (ja) 固体酸化物形燃料電池
JP6539179B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111101

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees