JP2011181373A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2011181373A
JP2011181373A JP2010045150A JP2010045150A JP2011181373A JP 2011181373 A JP2011181373 A JP 2011181373A JP 2010045150 A JP2010045150 A JP 2010045150A JP 2010045150 A JP2010045150 A JP 2010045150A JP 2011181373 A JP2011181373 A JP 2011181373A
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
battery
graphite
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045150A
Other languages
Japanese (ja)
Other versions
JP5569039B2 (en
Inventor
Kiyoyasu Tanaka
清泰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010045150A priority Critical patent/JP5569039B2/en
Publication of JP2011181373A publication Critical patent/JP2011181373A/en
Application granted granted Critical
Publication of JP5569039B2 publication Critical patent/JP5569039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery having a superior discharge characteristics. <P>SOLUTION: In the alkaline battery wherein a positive electrode 2 and a negative electrode 3 are housed in a battery case 1 via a separator 4, the positive electrode 2 includes electrolytic manganese dioxide and graphite. An electrical potential of the electrolytic manganese dioxide is set within a range of 290-340 mV to a reference electrode of mercury oxide (Hg/HgO), a filling density of the manganese dioxide in the positive electrode 2 is set within a range of 2.45-2.75 g/cm<SP>3</SP>, and the electrolytic manganese dioxide and the graphite are formed at a mass ratio of 92-96.5:8-3.5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルカリ電池に関し、さらに詳しくは正極に関する。   The present invention relates to an alkaline battery, and more particularly to a positive electrode.

従来から、アルカリ電池の放電性能の向上を目的として、電位の高い電解二酸化マンガンを用い、放電中の電池電圧を高めて相対的に放電持続時間を延ばす検討がなされている。(特許文献1参照)。   Conventionally, for the purpose of improving the discharge performance of alkaline batteries, studies have been made to increase the battery voltage during discharge by using electrolytic manganese dioxide having a high potential to relatively increase the discharge duration. (See Patent Document 1).

また、正極の活物質である二酸化マンガンの充填においても、放電性能の向上を目的として、より高い充填密度に関する検討がなされている。(特許文献2参照)。   In addition, in the filling of manganese dioxide which is an active material of the positive electrode, studies on higher packing density have been made for the purpose of improving discharge performance. (See Patent Document 2).

また、これらの二酸化マンガンに対して導電性を高めることを目的として黒鉛粉末を加えて正極は構成されている。   Moreover, the positive electrode is comprised by adding graphite powder for the purpose of improving electroconductivity with respect to these manganese dioxides.

特開2004−137129号公報JP 2004-137129 A 特許第3462877号公報Japanese Patent No. 3462877

今日、懐中電灯や玩具に多く使用されるアルカリ乾電池の開路電圧の上限は、JIS規格やIEC規格によって1.65Vに定められている。そして、アルカリ乾電池を電源とする機器の多くはこの定格に基づいて設計されている。   Today, the upper limit of the open circuit voltage of alkaline dry batteries often used for flashlights and toys is set to 1.65 V according to JIS standards and IEC standards. Many of the devices that use alkaline batteries as a power source are designed based on this rating.

しかし、前述した特許文献1に係る高電位な電解二酸化マンガンを使用する場合にあっては、アルカリ乾電池の開路電圧が1.65Vを超えてしまうため、少なからず機器へのダメージが避けられなかった。例えば、懐中電灯では豆球のフィラメントが焼き切れてしまったり、玩具では異常発熱を引き起こしたりする場合があった。   However, in the case where the high potential electrolytic manganese dioxide according to Patent Document 1 described above is used, the open circuit voltage of the alkaline dry battery exceeds 1.65V. . For example, in the case of a flashlight, the bean bulb filament may burn out, and in the case of a toy, abnormal heat generation may occur.

また、前述した特許文献2に係る高い充填密度で二酸化マンガンを使用する場合にあっては、機器へのダメージを増大させてしまう恐れがあった。   Moreover, when using manganese dioxide with the high packing density which concerns on the patent document 2 mentioned above, there existed a possibility of increasing the damage to an apparatus.

さらに、複数の電池を直列で使用する場合にあっては、これらの不具合が助長されてしまい、実用性の面からは改善の余地があった。   Furthermore, when a plurality of batteries are used in series, these problems are promoted, and there is room for improvement in terms of practicality.

そこで、本発明は上記問題点を解決するものであり、その上で、従来よりも優れた放電特性を有するアルカリ電池を提供することを目的とする。   Then, this invention solves the said problem, and also aims at providing the alkaline battery which has the discharge characteristic superior to the past.

上記目的を達成するために本発明は、正極及び負極がセパレータを介して電池ケース内に収納されてなるアルカリ電池において、前記正極は電解二酸化マンガンと黒鉛を含み、前記電解二酸化マンガンの電位を酸化水銀(Hg/HgO)の参照電極に対して290〜340mVの範囲とし、前記正極の二酸化マンガンの充填密度を2.45〜2.75g/cmの範囲とし、
前記電解二酸化マンガンと前記黒鉛の範囲の質量比を92〜96.5:8〜3.5とした構成にしている。
To achieve the above object, the present invention provides an alkaline battery in which a positive electrode and a negative electrode are housed in a battery case through a separator, the positive electrode includes electrolytic manganese dioxide and graphite, and oxidizes the potential of the electrolytic manganese dioxide. The mercury (Hg / HgO) reference electrode is in the range of 290 to 340 mV, and the manganese dioxide packing density of the positive electrode is in the range of 2.45 to 2.75 g / cm 3 .
The mass ratio between the electrolytic manganese dioxide and the graphite is 92 to 96.5: 8 to 3.5.

酸化水銀(Hg/HgO)の参照電極に対して290〜340mVの範囲を有する高電位な電解二酸化マンガンを使用することで、電池の開路電圧を高くすることができる。   By using high potential electrolytic manganese dioxide having a range of 290 to 340 mV with respect to a reference electrode of mercury oxide (Hg / HgO), the open circuit voltage of the battery can be increased.

次に、正極の二酸化マンガンの充填密度を2.45〜2.75g/cmとし、正極と電池ケース間および正極を構成する粒子間の密着性を下げて放電初期における内部抵抗を高めることで、開路電圧は高いが、閉路電圧を下げることが出来る。これによって、機器に与えるダメージを緩和することができる。 Next, the packing density of manganese dioxide in the positive electrode is set to 2.45 to 2.75 g / cm 3, and the internal resistance in the initial stage of discharge is increased by lowering the adhesion between the positive electrode and the battery case and between the particles constituting the positive electrode. The open circuit voltage is high, but the closed circuit voltage can be lowered. As a result, damage to the device can be reduced.

しかし、このままでは放電末期まで、閉路電圧が低下した状態が続いてしまい、機器の動作時間は短くなってしまう。これに対し、予め電解二酸化マンガンと黒鉛を92〜96.5:8〜3.5の範囲の質量比で構成し、上記の正極の二酸化マンガンの充填密度の範囲内において、放電後の正極の膨張によって放電末期の正極と電池ケース間および正極を構成する粒子間の密着性の向上させることができる。そして、内部抵抗の上昇を抑えて閉路電圧を高く維持することができ、放電持続時間を伸ばすことが可能となる。   However, in this state, the state in which the closed circuit voltage decreases continues until the end of discharge, and the operation time of the device is shortened. On the other hand, electrolytic manganese dioxide and graphite are preliminarily configured at a mass ratio in the range of 92 to 96.5: 8 to 3.5, and within the range of the packing density of manganese dioxide of the positive electrode, Due to the expansion, the adhesion between the positive electrode at the end of discharge and the battery case and between the particles constituting the positive electrode can be improved. In addition, it is possible to keep the closed circuit voltage high by suppressing an increase in internal resistance, and it is possible to extend the discharge duration.

放電中の正極の膨張は、電池の高さ方向(両極の端子間)が顕著であることが知られているが、比較的充填密度が低い正極中に、潤滑性や離型性を有する黒鉛粉末を一定量存在させることによって、正極が3次元的に膨張するようになると考えられる。   The expansion of the positive electrode during discharge is known to be significant in the height direction of the battery (between the terminals of both electrodes), but the graphite having lubricity and releasability in the positive electrode with a relatively low packing density. The presence of a certain amount of powder is considered to cause the positive electrode to expand three-dimensionally.

すなわち、放電初期で閉路電圧を下げて機器へのダメージを緩和し、放電末期で閉路電圧の低下を抑制して放電性能を向上できるという効果を奏するものである。   In other words, it is possible to reduce the closed circuit voltage at the beginning of the discharge to alleviate damage to the device, and to suppress the decrease of the closed circuit voltage at the end of the discharge, thereby improving the discharge performance.

本発明の一実施の形態としての単3形のアルカリ電池の半断面正面図The half cross-sectional front view of the AA alkaline battery as one embodiment of the present invention 電池3、8、10の3.3Ωの抵抗で1時間当たり4分間の放電を8時間行い16時間休止するサイクルで、閉路電圧が0.9Vに達するまでの放電持続時間とそのときの閉路電圧の関係図Discharge duration until the closed-circuit voltage reaches 0.9 V and closed-circuit voltage at that time in a cycle in which the discharge of 4 minutes per hour is performed for 8 hours with 3.3Ω resistance of the batteries 3, 8, and 10 for 16 hours. Relationship diagram (a)電解二酸化マンガン粒、黒鉛粒をそれぞれ均一な粒径の球状と仮定して最密充填した説明図、(b)同要部の拡大図(A) Explanatory drawing in which electrolytic manganese dioxide grains and graphite grains are close-packed on the assumption that each has a uniform spherical shape, (b) An enlarged view of the main part

本発明によれば、正極及び負極がセパレータを介して電池ケース内に収納されてなるアルカリ電池において、前記正極は電解二酸化マンガンと黒鉛を含み、前記電解二酸化マンガンの電位を酸化水銀(Hg/HgO)の参照電極に対して290〜340mVの範囲とし、前記正極の二酸化マンガンの充填密度を2.45〜2.75g/cmの範囲とし、前記電解二酸化マンガンと前記黒鉛の質量比を92〜96.5:8〜3.5の範囲とした構成することによって、放電初期で閉路電圧を下げて機器へのダメージを緩和し、放電末期で閉路電圧の低下を抑制して放電性能を向上できるという効果を奏するものである。 According to the present invention, in an alkaline battery in which a positive electrode and a negative electrode are housed in a battery case via a separator, the positive electrode includes electrolytic manganese dioxide and graphite, and the potential of the electrolytic manganese dioxide is expressed as mercury oxide (Hg / HgO). ) In the range of 290 to 340 mV, the manganese dioxide packing density of the positive electrode is in the range of 2.45 to 2.75 g / cm 3 , and the mass ratio of the electrolytic manganese dioxide to the graphite is 92 to By configuring in the range of 96.5: 8 to 3.5, it is possible to reduce the closed circuit voltage at the initial stage of the discharge to alleviate damage to the device, and to suppress the decrease of the closed circuit voltage at the end of the discharge to improve the discharge performance. This is an effect.

さらに、前記電解二酸化マンガンの電位を酸化水銀(Hg/HgO)の参照電極に対して300〜340mVの範囲とすることで、例えば、その電池を豆電球で使用した場合、より明るく照らすことができる。   Furthermore, by setting the potential of the electrolytic manganese dioxide within a range of 300 to 340 mV with respect to a mercury oxide (Hg / HgO) reference electrode, for example, when the battery is used in a miniature light bulb, it can be illuminated more brightly. .

また、前記電解二酸化マンガンの平均粒径を前記黒鉛の平均粒径の6.5倍以上にすることで、正極の3次元的な膨張を促し、さらに放電性能を向上できる。   In addition, by making the average particle diameter of the electrolytic manganese dioxide 6.5 times or more than the average particle diameter of the graphite, the three-dimensional expansion of the positive electrode is promoted, and the discharge performance can be further improved.

なお、本発明における正極中で所定の充填密度を有する「二酸化マンガン」は、正極に充填された活物質として機能する二酸化マンガンであり、他の水分や不純物を除外したものである。この二酸化マンガンの充填密度は以下の方法で測定することができる。まず正極の体積の測定については、その電池内部をX線透視カメラで撮影し、正極の外径、内径、高さの寸法を測定して正極の体積を算出する。次に正極中の二酸化マンガンの質量に関して、電池を分解し正極2をすべて取り出し十分に酸溶解させた後、不溶分を濾別して得られる水溶液をICP発光分析法(高周波誘導結合プラズマ発光分光分析法)により、その溶液中に含まれていたマンガンの含有量を調べる。次に、そのマンガン量を二酸化マンガン量に換算して電池の正極に含まれていた二酸化マンガンの質量を求める。この方法にて、正極の体積および正極に充填されている二酸化マンガンの質量を算出することで、正極中の二酸化マンガン充填密度を求めることができる。   In addition, “manganese dioxide” having a predetermined packing density in the positive electrode in the present invention is manganese dioxide that functions as an active material filled in the positive electrode, and excludes other moisture and impurities. The packing density of manganese dioxide can be measured by the following method. First, regarding the measurement of the volume of the positive electrode, the inside of the battery is photographed with an X-ray fluoroscopic camera, and the positive electrode volume is calculated by measuring the outer diameter, inner diameter, and height of the positive electrode. Next, regarding the mass of manganese dioxide in the positive electrode, the battery was disassembled, the positive electrode 2 was completely taken out, sufficiently dissolved in acid, and the aqueous solution obtained by filtering the insoluble matter was analyzed by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry). ) To check the manganese content contained in the solution. Next, the amount of manganese is converted into the amount of manganese dioxide, and the mass of manganese dioxide contained in the positive electrode of the battery is determined. By calculating the volume of the positive electrode and the mass of manganese dioxide filled in the positive electrode by this method, the manganese dioxide filling density in the positive electrode can be obtained.

なお、電池を構成してから、アルカリ電解液が電池の内部全体に行き渡った後に上述の測定を行う必要がある。例えば、電池を構成してから常温で3日間保管した後に測定すればよく、これ以降の正極の体積変化は軽微であって無視できる。   In addition, after constructing the battery, it is necessary to perform the above-described measurement after the alkaline electrolyte has spread throughout the battery. For example, the measurement may be performed after the battery is configured and stored at room temperature for 3 days, and the volume change of the positive electrode thereafter is slight and can be ignored.

また、電解二酸化マンガンの酸化水銀(Hg/HgO)の参照電極に対する電位は以下の方法で測定することができる。まず、電解二酸化マンガンを上皿天秤を用いて20g秤取し、50mlの遠沈管に入れる。次に40質量%の水酸化カリウム水溶液を遠沈管に20ml注ぎ、軽く振りまぜ、遠沈管の口を封入して、20℃で24時間保管した後、遠沈分離機にかけ個液分離を行う。次にφ0.5mmの白金電極を遠沈管底部の固形部に密着するように挿入し、酸化水銀(Hg/HgO)の参照電極の先端を遠沈管の上澄液に浸し、デジタルボルトメータのプラス極側に白金電極を、マイナス極側に酸化水銀(Hg/HgO)の参照電極を接続して電圧を読み取ることで、電解二酸化マンガンの酸化水銀(Hg/HgO)の参照電極に対する電位を測定することができる。   Further, the potential of electrolytic manganese dioxide with respect to the reference electrode of mercury oxide (Hg / HgO) can be measured by the following method. First, 20 g of electrolytic manganese dioxide is weighed using an upper pan balance and put into a 50 ml centrifuge tube. Next, 20 ml of 40 mass% potassium hydroxide aqueous solution is poured into the centrifuge tube, shaken lightly, sealed in the centrifuge tube, and stored at 20 ° C. for 24 hours. Next, a platinum electrode with a diameter of 0.5 mm is inserted so as to be in close contact with the solid part at the bottom of the centrifuge tube, and the tip of the mercury oxide (Hg / HgO) reference electrode is immersed in the supernatant of the centrifuge tube. The potential of electrolytic manganese dioxide with respect to the mercury oxide (Hg / HgO) reference electrode is measured by connecting the platinum electrode to the pole side and connecting the mercury oxide (Hg / HgO) reference electrode to the negative pole side and reading the voltage. be able to.

以下、本発明の一実施の形態を図1を参照しながら説明する。図1は、本発明の一実施の形態として単3形アルカリ乾電池(LR6)の半断面正面図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a half sectional front view of an AA alkaline battery (LR6) as an embodiment of the present invention.

正極端子と正極集電体を兼ねた有底円筒形の電池ケース1には、中空円筒状の正極2が内接するように収納されている。正極2の中空部には有底円筒形のセパレータ4を介して負極3が配置されている。電池ケース1の開口部は、正極2、負極3等の発電要素を収納した後、釘型の負極集電体6と電気的に接続された負極端子板7と樹脂封口体5を一体化した組立封口体9により封口される。電池ケース1の外表面は、外装ラベル8により被覆されている。   A hollow cylindrical positive electrode 2 is accommodated in a bottomed cylindrical battery case 1 that also serves as a positive electrode terminal and a positive electrode current collector. A negative electrode 3 is disposed in a hollow portion of the positive electrode 2 with a bottomed cylindrical separator 4 interposed therebetween. The opening of the battery case 1 accommodates the power generation elements such as the positive electrode 2 and the negative electrode 3, and then integrates the negative electrode terminal plate 7 electrically connected to the nail-type negative electrode current collector 6 and the resin sealing body 5. It is sealed by the assembly sealing body 9. The outer surface of the battery case 1 is covered with an exterior label 8.

前記正極2を構成する前記電解二酸化マンガンは、平均粒径が30〜50μmが好ましい。電解二酸化マンガンの平均粒径を50μm以下にすることで、正極中の電解二酸化マンガンの表面積を大きくすることができ、放電性能を向上させることができる。また、電解二酸化マンガンの平均粒径を30μm以下にすると正極を加圧成型しにくくなり、生産性が悪化するため好ましくない。よって平均粒径を30〜50μmとすることが好ましい。   The electrolytic manganese dioxide constituting the positive electrode 2 preferably has an average particle size of 30 to 50 μm. By setting the average particle size of electrolytic manganese dioxide to 50 μm or less, the surface area of electrolytic manganese dioxide in the positive electrode can be increased, and the discharge performance can be improved. On the other hand, if the average particle size of electrolytic manganese dioxide is 30 μm or less, the positive electrode is difficult to be pressure-molded and productivity is deteriorated, which is not preferable. Therefore, it is preferable that an average particle diameter shall be 30-50 micrometers.

また、正極前記電解二酸化マンガン中のNa量は0.06%以下とすることが好ましい。電解二酸化マンガン中のNaは電池の化学反応を阻害し、そのため放電時の正極2の3次元的な膨張を抑制する。電解二酸化マンガン中のNaを可能な限り少なくすることで、電池の化学反応を促進させ、正極2の3次元的な膨張をより促進させることができ、放電性能を向上させることができる。 前記正極2を構成する前記黒鉛は、平均粒径が6〜10μmであることが好ましい。黒鉛の平均粒径を10μm以下にすることで、正極2中の黒鉛の表面積を大きくすることができ、正極2の導電性を向上させることができ、放電性能を向上させることができる。また、黒鉛の平均粒径を6μm以下にすると正極を加圧成型しにくくなり、生産性が悪化するため好ましくない。よって平均粒径を6〜10μmとすることが好ましい。平均粒径が6〜10μmである黒鉛は、例えば、日本黒鉛(株)製のSP−20Mというグレードの黒鉛を使用すればよい。   The amount of Na in the positive electrode manganese dioxide is preferably 0.06% or less. Na in the electrolytic manganese dioxide inhibits the chemical reaction of the battery, and therefore suppresses the three-dimensional expansion of the positive electrode 2 during discharge. By reducing Na in the electrolytic manganese dioxide as much as possible, the chemical reaction of the battery can be promoted, the three-dimensional expansion of the positive electrode 2 can be further promoted, and the discharge performance can be improved. The graphite constituting the positive electrode 2 preferably has an average particle size of 6 to 10 μm. By setting the average particle size of graphite to 10 μm or less, the surface area of graphite in the positive electrode 2 can be increased, the conductivity of the positive electrode 2 can be improved, and the discharge performance can be improved. Further, if the average particle diameter of graphite is 6 μm or less, it is difficult to press-mold the positive electrode and productivity is deteriorated, which is not preferable. Therefore, the average particle size is preferably 6 to 10 μm. As the graphite having an average particle diameter of 6 to 10 μm, for example, graphite of SP-20M grade manufactured by Nippon Graphite Co., Ltd. may be used.

また、本発明のアルカリ電池は、電池を構成してから常温(約15〜25℃の範囲内)で1週間保管した際の開路電圧を、1.65V以上としてもよい。さらには、1.67以上としてもよい。   In addition, the alkaline battery of the present invention may have an open circuit voltage of 1.65 V or higher when the battery is stored at room temperature (within a range of about 15 to 25 ° C.) for 1 week. Furthermore, it may be 1.67 or more.

以下に本発明の実施例を詳細に説明するが、本発明は以下に示す実施例に限定されない。   Examples of the present invention will be described in detail below, but the present invention is not limited to the examples shown below.

まずは、本発明の課題を電池の作成方法、評価方法を述べながら表1を用いて説明する。上記特許文献2より、二酸化マンガンをより高い密度である2.90g/cmで充填した電池を作成した場合、良好な放電性能は示すが、機器へのダメージが大きくなりすぎ、使用した機器の寿命を短期化してしまう場合がある。 First, the problem of the present invention will be described with reference to Table 1 while describing a battery production method and an evaluation method. From the above-mentioned Patent Document 2, when a battery filled with manganese dioxide at a higher density of 2.90 g / cm 3 is prepared, good discharge performance is shown, but damage to the device becomes too large, The life may be shortened.

表1に示す所定の電位を有する電解二酸化マンガン粉末(以下表中ではEMD電位と表記する)と、平均粒径が9μmを有する黒鉛粉末と、アルカリ電解液として39質量%の水酸化カリウム、および2質量%の酸化亜鉛を含有する水溶液と、オキシ水酸化チタン粉末を準備した。   Electrolytic manganese dioxide powder having a predetermined potential shown in Table 1 (hereinafter referred to as EMD potential in the table), graphite powder having an average particle size of 9 μm, 39% by mass of potassium hydroxide as an alkaline electrolyte, and An aqueous solution containing 2% by mass of zinc oxide and titanium oxyhydroxide powder were prepared.

これらを正極の電解二酸化マンガン粉末と黒鉛粉末の質量の合計を100%として、黒鉛粉末の質量比率が表1に示す2.5%の割合(以下表中では正極中黒鉛質量比と表記する)で混合し、さらに、電解二酸化マンガン粉末と黒鉛粉末の質量の合計を100%として、1.5%の前記アルカリ電解液、0.2%のオキシ水酸化チタンを添加し、充分に攪拌した後、フレーク状に圧縮成形した。ついで、フレーク状の正極を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形してペレット状の正極2を得た。   The total of the mass of the electrolytic manganese dioxide powder and the graphite powder of the positive electrode is 100%, and the mass ratio of the graphite powder is 2.5% shown in Table 1 (hereinafter referred to as the graphite mass ratio in the positive electrode in the table). In addition, with the total mass of the electrolytic manganese dioxide powder and the graphite powder being 100%, 1.5% of the alkaline electrolyte and 0.2% of titanium oxyhydroxide are added and sufficiently stirred. Compressed and molded into flakes. Next, the flaky positive electrode was pulverized into granules, classified by a sieve, and 10-100 mesh was pressed into a hollow cylinder to obtain a pellet-shaped positive electrode 2.

ゲル化剤には増粘剤としてポリアクリル酸の粉末と、吸水性ポリマーとして架橋分岐型ポリアクリル酸ナトリウムの粉末とを併用し、前記アルカリ電解液と、無汞化の亜鉛合金粉末とを0.26:0.54:35.2:64.0の質量比で混合して負極3を得た。なお、亜鉛合金粉末は、0.025質量%のインジウムと、0.005質量%のビスマスと、0.006質量%のアルミニウムとを含有し、体積平均粒子径が130μmを有するものを用いた。   In the gelling agent, polyacrylic acid powder as a thickening agent and cross-linked branched sodium polyacrylate powder as a water-absorbing polymer are used in combination, and the alkaline electrolyte and non-glazed zinc alloy powder are reduced to 0. The negative electrode 3 was obtained by mixing at a mass ratio of .26: 0.54: 35.2: 64.0. The zinc alloy powder used contained 0.025% by mass indium, 0.005% by mass bismuth, and 0.006% by mass aluminum, and had a volume average particle diameter of 130 μm.

樹脂封口体5は、6,12ナイロンを所定の寸法、形状に射出成型して得た。   The resin sealing body 5 was obtained by injection molding 6,12 nylon into a predetermined size and shape.

外部端子板7は、厚さ0.5mmのニッケルメッキ鋼板を所定の寸法、形状にプレス加工して得た。   The external terminal plate 7 was obtained by pressing a nickel-plated steel plate having a thickness of 0.5 mm into a predetermined size and shape.

負極集電体6は、真鍮線条を用いて釘型に全長が37.0mm、胴部の直径がφ1.15となるようにプレス加工し、表面にスズめっきを施した。   The negative electrode current collector 6 was pressed using a brass wire rod so that the entire length was 37.0 mm and the diameter of the body portion was φ1.15, and the surface was plated with tin.

これらについて、まず外部端子板7に負極集電体6を電気溶接した後、樹脂封口体5の中心の貫通孔に圧入して、組立封口体9を作製した。   For these, first, the negative electrode current collector 6 was electrically welded to the external terminal plate 7 and then press-fitted into the central through hole of the resin sealant 5 to produce an assembly sealant 9.

図1に示す構造の単3形のアルカリ電池を下記の手順により作製した。上記で得られた所定の正極2を電池ケース1内に2個挿入し、加圧治具により正極2を加圧して、電池ケース1の内壁に密着させた。電池ケース1の内壁に密着させた正極2の中央に有底円筒形のセパレータ4を配置した。セパレータ4内にアルカリ電解液として33質量%の水酸化カリウム、および2質量%の酸化亜鉛を含有する水溶液を1.55g注入した。所定時間経過した後、上記で得られた負極3をセパレータ4内に6.2g充填した。なお、セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を用いた。電池ケース1の開口端部を、組立封口体9により封口した後、外装ラベル8で電池ケース1の外表面を被覆して、電池にして保存したときの正極2中の二酸化マンガン密度(以下表中では、正極中MnO密度と表記する)が表1に示す充填密度の2.90g/cmとなる電池を得た。 An AA alkaline battery having the structure shown in FIG. 1 was produced according to the following procedure. Two of the predetermined positive electrodes 2 obtained as described above were inserted into the battery case 1, and the positive electrode 2 was pressed with a pressurizing jig to be brought into close contact with the inner wall of the battery case 1. A bottomed cylindrical separator 4 was disposed in the center of the positive electrode 2 in close contact with the inner wall of the battery case 1. 1.55 g of an aqueous solution containing 33% by mass of potassium hydroxide and 2% by mass of zinc oxide was injected into the separator 4 as an alkaline electrolyte. After a predetermined time had passed, 6.2 g of the negative electrode 3 obtained above was filled in the separator 4. In addition, the separator 4 used the nonwoven fabric which mixed and mixed mainly the polyvinyl alcohol fiber and the rayon fiber. After the opening end of the battery case 1 is sealed with the assembly sealing body 9, the outer surface of the battery case 1 is covered with the exterior label 8, and the manganese dioxide density in the positive electrode 2 when stored as a battery (refer to the following table) in medium, expressed as Seikyokuchu MnO 2 density) was obtained battery becomes 2.90 g / cm 3 bulk density shown in Table 1.

次に、これらの電池の放電性能、開路電圧、閉路電圧、豆電球テストの結果を表1に示す。   Next, Table 1 shows the discharge performance, open circuit voltage, closed circuit voltage, and miniature bulb test results of these batteries.

ここで、放電性能とは、3.3Ωの抵抗で1時間当たり4分間の放電を8時間行い、16時間休止するサイクルで閉路電圧が0.9Vに達するまでの放電持続時間(分)である。   Here, the discharge performance is the discharge duration (minutes) until the closed circuit voltage reaches 0.9 V in a cycle in which discharge is performed for 4 minutes per hour for 8 hours with a resistance of 3.3Ω and pauses for 16 hours. .

また、開路電圧は、電池を作製してから常温で1週間保管した後に測定した値である。なお、本発明の電池を含む一般的なアルカリ電池の開路電圧は、経時的に降下していく。例えば、単1形であれば1年あたり0.002〜0.005の範囲で、単2形であれば1年あたり0.004〜0.01の範囲で、単3形であれば1年あたり0.01〜0.015の範囲で、単4形であれば1年あたり0.015〜0.025の範囲で、直線的に降下していく傾向を有する。   The open circuit voltage is a value measured after the battery was produced and stored at room temperature for 1 week. Note that the open circuit voltage of a general alkaline battery including the battery of the present invention decreases with time. For example, in the case of AA type, it is in the range of 0.002 to 0.005 per year, in the case of AA type, it is in the range of 0.004 to 0.01 per year, and in the case of AA type, it is one year. In the range of 0.01 to 0.015 per unit, if it is a single type, it tends to descend linearly in the range of 0.015 to 0.025 per year.

また、閉路電圧とは、電池を作製してから常温で1週間保管した後、3.3Ωの負荷を与えて1秒後の電池電圧である。   The closed circuit voltage is the battery voltage after 1 second after applying a load of 3.3Ω after storing the battery at room temperature for 1 week after it was manufactured.

また、豆電球テストとは、定格1.5V、0.3Aの豆電球を20個用意し、各々に作製した電池1本を用いて点灯させ、電池電圧が低下し豆電球が消灯するまでの間に、20個の豆電球のうち、何個の豆電球でフィラメントが切れるかを確認するテストである。   In addition, the miniature light bulb test is to prepare 20 miniature light bulbs with a rating of 1.5V and 0.3A, and turn them on using one battery prepared for each, until the battery voltage drops and the miniature bulb turns off. In the meantime, it is a test to confirm how many of the 20 miniature light bulbs cut the filament.

表1には豆電球のフィラメントが切れた個数を示す。   Table 1 shows the number of filament bulbs cut.

表1に示すように、電解二酸化マンガンの電位が高くなるに従い放電性能は向上するが、290mV以上の電位を有する電解二酸化マンガンを用いて上記正極二酸化マンガン密度で電池を作成した場合、機器へのダメージが顕著である。   As shown in Table 1, the discharge performance improves as the potential of electrolytic manganese dioxide increases. However, when a battery is produced with the positive manganese dioxide density using electrolytic manganese dioxide having a potential of 290 mV or higher, Damage is remarkable.

Figure 2011181373
Figure 2011181373

ここで、機器へのダメージは閉路電圧が高すぎるためであると考え、閉路電圧を下げるために正極2の二酸化マンガンの充填密度を下げる検討を行った。正極2の二酸化マンガンの充填密度を表2のように変化させた以外は、電池3と同様の電池を作製し、各電池について、放電性能、開路電圧、閉路電圧、豆電球テストの結果を表2に示した。   Here, it was considered that the damage to the device was due to the closed circuit voltage being too high, and in order to reduce the closed circuit voltage, studies were made to reduce the packing density of manganese dioxide in the positive electrode 2. A battery similar to the battery 3 was prepared except that the packing density of manganese dioxide in the positive electrode 2 was changed as shown in Table 2, and the discharge performance, the open circuit voltage, the closed circuit voltage, and the result of the miniature light bulb test were shown for each battery. It was shown in 2.

Figure 2011181373
Figure 2011181373

表2に示すように、正極2の二酸化マンガンの充填密度を2.45〜2.75g/cmにすることで、豆電球テストの結果より、実際に機器へのダメージが低減していることがわかる。 As shown in Table 2, by setting the packing density of manganese dioxide of the positive electrode 2 to 2.45 to 2.75 g / cm 3 , the damage to the device is actually reduced from the result of the miniature light bulb test. I understand.

これは、正極2と電池ケース1間および正極2を構成する粒子間の密着性が下がり、放電初期における内部抵抗を高めることで、開路電圧は高いが、閉路電圧は低下させることができるためと推察される。   This is because the adhesion between the positive electrode 2 and the battery case 1 and between the particles constituting the positive electrode 2 is reduced, and the open circuit voltage is high but the closed circuit voltage can be reduced by increasing the internal resistance in the initial stage of discharge. Inferred.

正極2の二酸化マンガンの充填密度が2.90/cm以上であるときは、正極2と電池ケース1間および正極2を構成する粒子間の密着性が保たれているため、閉路電圧が高くなってしまい、豆電球テストからわかるように、機器へのダメージが大きくなってしまうため、好ましくない。 When the packing density of manganese dioxide in the positive electrode 2 is 2.90 / cm 3 or more, the close circuit voltage is high because the adhesion between the positive electrode 2 and the battery case 1 and between the particles constituting the positive electrode 2 is maintained. Therefore, as can be seen from the miniature light bulb test, the damage to the device increases, which is not preferable.

正極2の二酸化マンガンの充填密度が2.30g/cm以下であるときは内部抵抗が高まりすぎて放電性能が極端に低下してしまうため、好ましくない。 When the packing density of manganese dioxide of the positive electrode 2 is 2.30 g / cm 3 or less, the internal resistance is excessively increased and the discharge performance is extremely lowered, which is not preferable.

しかし、このままでは放電末期まで正極2と電池ケース1間および正極2を構成する粒子間の密着性が低い状態が続いてしまい、内部抵抗が高いままになってしまうため、良好な放電性能を示さない。   However, in this state, the state of low adhesion continues between the positive electrode 2 and the battery case 1 and between the particles constituting the positive electrode 2 until the end of discharge, and the internal resistance remains high. Absent.

これに対し、放電中の正極2の膨張は、電池の高さ方向(両極の端子間)が顕著であることが知られているが、比較的充填密度が低い正極2中で、一定量の潤滑性や離型性を有する黒鉛粉末を存在させることによって、正極2が3次元的に膨張するようになると考え、このように構成すると、上記の正極2の二酸化マンガンの充填密度の範囲内において、放電後の正極2の膨張によって放電末期の正極2と電池ケース1間および正極2を構成する粒子間の密着性の向上させることができると考えた。そして、内部抵抗の上昇を抑えて閉路電圧を高く維持することができ、放電持続時間を伸ばすことが可能になると考えた。   On the other hand, the positive electrode 2 during discharge is known to have a significant expansion in the height direction of the battery (between the terminals of both electrodes). It is considered that the presence of the graphite powder having lubricity and releasability causes the positive electrode 2 to expand three-dimensionally. With this configuration, within the range of the packing density of manganese dioxide of the positive electrode 2 described above. It was considered that the adhesion between the positive electrode 2 at the end of discharge and the battery case 1 and between the particles constituting the positive electrode 2 can be improved by the expansion of the positive electrode 2 after discharge. Then, it was thought that the increase in internal resistance can be suppressed and the closed circuit voltage can be kept high, and the discharge duration can be extended.

すなわち、放電初期で閉路電圧を下げて機器へのダメージを緩和し、放電末期で閉路電圧の低下を抑制して放電性能を向上できるという効果を奏するものであると考えた。   That is, it was considered that the circuit voltage was lowered at the initial stage of discharge to reduce the damage to the device, and the discharge performance was improved by suppressing the decrease of the circuit voltage at the end of the discharge.

そこで、正極2中の黒鉛の質量比を表3のように変化させた以外は、電池6と同様の電池を作製し、各電池について、放電性能、開路電圧、閉路電圧、豆電球テストの結果を表3に示した。   Therefore, a battery similar to the battery 6 was prepared except that the mass ratio of graphite in the positive electrode 2 was changed as shown in Table 3, and the discharge performance, open circuit voltage, closed circuit voltage, and miniature bulb test results for each battery. Are shown in Table 3.

Figure 2011181373
Figure 2011181373

表3に示すように正極2の黒鉛質量比率が3.5%〜8.0%のとき、機器へのダメージは低減したままで、放電性能が向上させることが出来た。   As shown in Table 3, when the graphite mass ratio of the positive electrode 2 was 3.5% to 8.0%, the discharge performance could be improved while the damage to the device was reduced.

正極2の二酸化マンガンの充填密度を2.45〜2.75g/cmの範囲で電池を作製したため、機器へのダメージを低減することが出来た。 Since the battery was manufactured with the packing density of manganese dioxide of the positive electrode 2 in the range of 2.45 to 2.75 g / cm 3 , damage to the equipment could be reduced.

また、放電性能が向上したことは、放電中の正極2の膨張に起因している。放電中の正極2の膨張は、電池の高さ方向(両極の端子間)が顕著であることが知られているが、比較的充填密度が低い正極2中で、一定量の潤滑性や離型性を有する黒鉛粉末を存在させることによって、正極2が3次元的に膨張するようになると考えられる。この3次元的な膨張によって、放電末期の正極2と電池ケース1間および正極2を構成する粒子間の密着性を向上させることができる。そして、放電末期に内部抵抗の上昇を抑えて閉路電圧を高く維持することができ、放電持続時間を向上させることができる。   Further, the improvement in discharge performance is due to the expansion of the positive electrode 2 during discharge. The expansion of the positive electrode 2 during discharge is known to be conspicuous in the height direction of the battery (between the terminals of both electrodes). However, in the positive electrode 2 having a relatively low packing density, a certain amount of lubricity or separation is expected. It is considered that the positive electrode 2 is expanded three-dimensionally by the presence of the graphite powder having moldability. This three-dimensional expansion can improve the adhesion between the positive electrode 2 at the end of discharge and the battery case 1 and between the particles constituting the positive electrode 2. In addition, it is possible to keep the closed circuit voltage high by suppressing the increase in internal resistance at the end of discharge, and to improve the discharge duration.

正極2中の黒鉛質量比率が2.5%以下であるときは、黒鉛の質量比率が少なすぎるため、放電中の膨張が3次元的でなくなり、電池の高さ方向の膨張が顕著になる。そのため、放電末期に正極2と電池ケース1間および正極2を構成する粒子間の密着性が向上せず、内部抵抗の上昇を抑えることができず、放電性能が著しく低下し、好ましくない。   When the graphite mass ratio in the positive electrode 2 is 2.5% or less, since the mass ratio of graphite is too small, expansion during discharge is not three-dimensional, and expansion in the height direction of the battery becomes remarkable. Therefore, the adhesion between the positive electrode 2 and the battery case 1 and between the particles constituting the positive electrode 2 is not improved at the end of discharge, the increase in internal resistance cannot be suppressed, and the discharge performance is remarkably lowered.

また、正極2の黒鉛質量比率が10.0%以上であるときは、豆電球テストからわかるように、正極2中の黒鉛の導電性のため、放電初期の閉路電圧が高くなってしまい、機器へのダメージが大きくなってしまうため、好ましくない。   Further, when the graphite mass ratio of the positive electrode 2 is 10.0% or more, as can be seen from the miniature light bulb test, the closed circuit voltage at the initial stage of discharge becomes high due to the conductivity of the graphite in the positive electrode 2, and the device This is not preferable because the damage to the arm becomes large.

図2に電池3、8、10の3.3Ωの抵抗で1時間当たり4分間の放電を8時間行い16時間休止するサイクルで、閉路電圧が0.9Vに達するまでの放電持続時間とそのときの閉路電圧を示す。   Fig. 2 shows a cycle in which discharge is performed for 4 minutes per hour with 3.3Ω resistance of batteries 3, 8, and 10 for 8 hours, and the discharge duration until the closed-circuit voltage reaches 0.9 V and at that time Indicates the closed circuit voltage.

図2より、正極2の二酸化マンガンの充填密度を下げることで、放電初期における閉路電圧を下げることができ、また正極2の黒鉛質量比率を増加させることで、放電が進行するにつれて正極2と電池ケース1間および正極2を構成する粒子間の密着性を向上させ、放電性能を向上させていることがわかる。   From FIG. 2, it is possible to lower the closed circuit voltage at the initial stage of discharge by lowering the packing density of manganese dioxide in the positive electrode 2 and to increase the graphite mass ratio of the positive electrode 2 to increase the positive electrode 2 and the battery as the discharge proceeds. It can be seen that the adhesion between the cases 1 and between the particles constituting the positive electrode 2 is improved, and the discharge performance is improved.

Figure 2011181373
Figure 2011181373

表4に示すように、正極2中の二酸化マンガン充填密度を2.45〜2.75g/cmの範囲で電池を作製することで、閉路電圧を下げ、機器へのダメージを低減させつつ、また、正極2の黒鉛質量比率3.5〜8.0%とすることで、放電中に正極2を3次元的に膨張させ、放電末期の正極2と電池ケース1間および正極2を構成する粒子間の密着性を向上させることができ、そして、放電末期に内部抵抗の上昇を抑えて閉路電圧を高く維持することができ、放電性能を向上させることができる。 As shown in Table 4, by producing a battery with a manganese dioxide filling density in the positive electrode 2 in the range of 2.45 to 2.75 g / cm 3 , the closed circuit voltage is lowered and damage to the equipment is reduced. In addition, by setting the graphite mass ratio of the positive electrode 2 to 3.5 to 8.0%, the positive electrode 2 is expanded three-dimensionally during discharge, and the positive electrode 2 and the battery case 1 at the end of discharge are formed as well as the positive electrode 2. The adhesion between the particles can be improved, and the increase in internal resistance can be suppressed at the end of discharge to keep the closed circuit voltage high, so that the discharge performance can be improved.

正極2中の二酸化マンガン充填密度と正極2の黒鉛質量比率をそれぞれが効果を発揮しうる範囲の値に適宜組み合わせることによって、高電位な二酸化マンガンを使用する場合(電池を構成して開路電圧が1.65Vを越える場合)であっても、従来、問題であった機器へのダメージを軽減し、しかも、良好な放電性能を示すことができる電池を作製することができた。   When high-potential manganese dioxide is used by appropriately combining the manganese dioxide packing density in the positive electrode 2 and the graphite mass ratio of the positive electrode 2 to values within a range in which each can exert an effect (the open circuit voltage is reduced by configuring the battery). Even in the case of exceeding 1.65 V, it was possible to produce a battery that can reduce damage to the device, which has been a problem in the past, and can exhibit good discharge performance.

従来は電池の放電性能の向上のために電極密度を上げた検討がなされてきたが、本発明により、驚くべきことに、電極密度を下げても、放電初期の反応性を抑制して、放電末期の反応性を向上させることにより、電池の長寿命化を達成することができた。   Conventionally, studies have been made to increase the electrode density in order to improve the discharge performance of the battery, but surprisingly, the present invention suppresses the reactivity at the initial stage of the discharge even if the electrode density is decreased, and discharges. By improving the terminal reactivity, it was possible to extend the battery life.

また、電池21、27、36、37について豆電球の明るさを比較したところ、電池21に比べ、電池27、36、37は豆電球をより明るく発光させることができた。したがって、電解二酸化マンガンの電位を300〜340mVとすることが好ましい。さらに好ましくは320〜340mVの範囲とすればよい。   Moreover, when the brightness of the miniature light bulb was compared with respect to the batteries 21, 27, 36, and 37, compared to the battery 21, the batteries 27, 36, and 37 were able to cause the miniature light bulb to emit light brighter. Therefore, the potential of electrolytic manganese dioxide is preferably 300 to 340 mV. More preferably, it may be in the range of 320 to 340 mV.

ここで、図3(a)に電解二酸化マンガン粒(以下、EMD粒と示す)および黒鉛粒を球状と仮定し、EMD粒が最密充填されており、その隙間に黒鉛粒が充填されている正極モデルを示し、さらに図3(b)に同要部の拡大図を示す。このようにEMD粒が最密充填されている場合、正極2の3次元的な膨張をより促進できると考えた。EMD粒(平均粒径Aとする)が最密充填したときの隙間に黒鉛粒(平均粒径Bとする)が配置するためには、図3より、黒鉛粒の半径B/2がA√3/3−A/2より小さくなればよい。したがって
B/2<A√3/3−A/2
を満たしているときEMD粒が最密充填される。前記式を整理すると次式となる。
Here, in FIG. 3A, it is assumed that the electrolytic manganese dioxide particles (hereinafter referred to as EMD particles) and the graphite particles are spherical, the EMD particles are closely packed, and the gaps are filled with graphite particles. A positive electrode model is shown, and FIG. 3B shows an enlarged view of the main part. Thus, it was thought that the three-dimensional expansion of the positive electrode 2 can be further promoted when the EMD grains are closely packed. In order for the graphite particles (mean particle size B) to be arranged in the gap when the EMD particles (mean particle size A) are closely packed, the radius B / 2 of the graphite particles is A√ from FIG. What is necessary is just to become smaller than 3 / 3-A / 2. Therefore, B / 2 <A√3 / 3−A / 2
When EMD is satisfied, EMD grains are closely packed. When the above formula is arranged, the following formula is obtained.

A>(3/(2√3−3))B
つまりEMD粒径を黒鉛粒径の6.5倍以上とすることが好ましい。
A> (3 / (2√3-3)) B
That is, it is preferable that the EMD particle size is 6.5 times or more of the graphite particle size.

そこで、放電末期における正極の膨張をさらに促すことを目的とし、正極2のEMD平均粒径と黒鉛平均粒径を表5のように変化させた以外は、電池36と同様の電池を作製し、放電性能、開路電圧、閉路電圧、豆電球テストの結果を表5に示した。   Therefore, for the purpose of further promoting the expansion of the positive electrode at the end of discharge, a battery similar to the battery 36 was produced except that the EMD average particle diameter and the graphite average particle diameter of the positive electrode 2 were changed as shown in Table 5, Table 5 shows the results of discharge performance, open circuit voltage, closed circuit voltage, and miniature bulb test.

Figure 2011181373
Figure 2011181373

表5に示すように、EMD平均粒径を黒鉛平均粒径の6.5倍以上にしたときにより良好な放電性能を示した。これは正極2中のEMD平均粒径を黒鉛平均粒径の6.5倍以上のときに3次元的な膨張がより促進されたためである。   As shown in Table 5, better discharge performance was exhibited when the EMD average particle size was 6.5 times or more the graphite average particle size. This is because the three-dimensional expansion was further promoted when the EMD average particle size in the positive electrode 2 was 6.5 times or more the graphite average particle size.

本発明のアルカリ電池は優れた放電特性を有し、乾電池を電源とするあらゆる機器に好適に用いられる。   The alkaline battery of the present invention has excellent discharge characteristics and can be suitably used for any device using a dry battery as a power source.

1 電池ケース
2 正極
3 負極
4 セパレータ
5 樹脂封口体
6 負極集電体
7 負極端子板
8 外装ラベル
9 組立封口体
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode 3 Negative electrode 4 Separator 5 Resin sealing body 6 Negative electrode collector 7 Negative electrode terminal board 8 Exterior label 9 Assembly sealing body

Claims (5)

正極及び負極がセパレータを介して電池ケース内に収納されてなるアルカリ電池であって、
前記正極は電解二酸化マンガンと黒鉛を含み、前記電解二酸化マンガンの電位を酸化水銀(Hg/HgO)の参照電極に対して290〜340mVの範囲とし、前記正極の電解二酸化マンガンの充填密度を2.45〜2.75g/cmの範囲とし、前記電解二酸化マンガンと前記黒鉛を92〜96.5:8〜3.5の範囲の質量比で構成したことを特徴とするアルカリ電池。
An alkaline battery in which a positive electrode and a negative electrode are housed in a battery case via a separator,
The positive electrode includes electrolytic manganese dioxide and graphite, and the potential of the electrolytic manganese dioxide is in a range of 290 to 340 mV with respect to a mercury oxide (Hg / HgO) reference electrode, and the packing density of the electrolytic manganese dioxide of the positive electrode is 2. An alkaline battery having a range of 45 to 2.75 g / cm 3 and comprising the electrolytic manganese dioxide and the graphite in a mass ratio of 92 to 96.5: 8 to 3.5.
前記電解二酸化マンガンの電位を酸化水銀(Hg/HgO)の参照電極に対して300〜340mVの範囲としたことを特徴とする請求項1に記載のアルカリ電池。 2. The alkaline battery according to claim 1, wherein the electrolytic manganese dioxide has a potential of 300 to 340 mV with respect to a mercury oxide (Hg / HgO) reference electrode. 前記電解二酸化マンガンの平均粒径は、前記黒鉛の平均粒径の6.5倍以上としたことを特徴とする請求項1に記載のアルカリ電池。 2. The alkaline battery according to claim 1, wherein an average particle diameter of the electrolytic manganese dioxide is 6.5 times or more of an average particle diameter of the graphite. 電池を構成してから常温で1週間保管した際の開路電圧が、1.65V以上を有する請求項1〜3のいずれか1項に記載のアルカリ電池。 The alkaline battery according to any one of claims 1 to 3, wherein an open circuit voltage when the battery is stored and stored for 1 week at room temperature is 1.65V or more. 電池を構成してから常温で1週間保管した際の開路電圧が、1.67V以上を有する請求項1〜3のいずれか1項に記載のアルカリ電池。 The alkaline battery according to any one of claims 1 to 3, wherein an open circuit voltage when the battery is stored and stored for 1 week at room temperature is 1.67 V or more.
JP2010045150A 2010-03-02 2010-03-02 Alkaline battery Active JP5569039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045150A JP5569039B2 (en) 2010-03-02 2010-03-02 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045150A JP5569039B2 (en) 2010-03-02 2010-03-02 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2011181373A true JP2011181373A (en) 2011-09-15
JP5569039B2 JP5569039B2 (en) 2014-08-13

Family

ID=44692678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045150A Active JP5569039B2 (en) 2010-03-02 2010-03-02 Alkaline battery

Country Status (1)

Country Link
JP (1) JP5569039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160529A (en) * 2012-12-20 2014-11-19 松下电器产业株式会社 Alkaline cell
WO2023058286A1 (en) * 2021-10-06 2023-04-13 パナソニックIpマネジメント株式会社 Alkaline battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137129A (en) * 2002-10-21 2004-05-13 Mitsui Mining & Smelting Co Ltd Manganese oxide, production method for manganese oxide, and battery using the manganese oxide as cathode active substance
JP2004186127A (en) * 2002-10-11 2004-07-02 Mitsui Mining & Smelting Co Ltd Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell
JP2006156309A (en) * 2004-12-01 2006-06-15 Fdk Energy Co Ltd Dry battery-type charger for cellular phone
JP2008066100A (en) * 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd Alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186127A (en) * 2002-10-11 2004-07-02 Mitsui Mining & Smelting Co Ltd Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell
JP2004137129A (en) * 2002-10-21 2004-05-13 Mitsui Mining & Smelting Co Ltd Manganese oxide, production method for manganese oxide, and battery using the manganese oxide as cathode active substance
JP2006156309A (en) * 2004-12-01 2006-06-15 Fdk Energy Co Ltd Dry battery-type charger for cellular phone
JP2008066100A (en) * 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd Alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160529A (en) * 2012-12-20 2014-11-19 松下电器产业株式会社 Alkaline cell
US20140370376A1 (en) * 2012-12-20 2014-12-18 Panasonic Corporation Alkaline battery
US9337485B2 (en) * 2012-12-20 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Alkaline battery
WO2023058286A1 (en) * 2021-10-06 2023-04-13 パナソニックIpマネジメント株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP5569039B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP2007516567A (en) Zinc / air battery with improved negative electrode
CN1171336C (en) Alkaline cell with improved anode
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP4435801B2 (en) Alkaline battery
JP2009259706A (en) Aa alkaline battery
US8728652B2 (en) Cylindrical alkaline battery having specific electrode packing densities and electrode thickness
EP2479824B1 (en) Cylindrical alkaline battery
JP5569039B2 (en) Alkaline battery
JP6259670B2 (en) Alkaline battery
JP5602313B2 (en) Alkaline battery
JP4954891B2 (en) Electrochemical cell
JP2006040887A (en) Alkaline battery
US8206851B2 (en) AA alkaline battery and AAA alkaline battery
JP2009266661A (en) Alkaline dry cell
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP4749333B2 (en) Battery cell having improved power characteristics and method of manufacturing the same
JP2005276698A (en) Alkaline battery
JP2009043547A (en) Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JP2009087872A (en) Alkali battery, and method of manufacturing positive electrode mixture in alkali battery
JP4852875B2 (en) Alkaline battery
JP2002117859A (en) Alkaline battery
JP2008135400A (en) Alkaline dry cell
JP7315380B2 (en) alkaline battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2001068121A (en) Cylindrical alkaline battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5569039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151