JP2011177781A - Laser beam machining apparatus and laser beam machining method - Google Patents

Laser beam machining apparatus and laser beam machining method Download PDF

Info

Publication number
JP2011177781A
JP2011177781A JP2010047394A JP2010047394A JP2011177781A JP 2011177781 A JP2011177781 A JP 2011177781A JP 2010047394 A JP2010047394 A JP 2010047394A JP 2010047394 A JP2010047394 A JP 2010047394A JP 2011177781 A JP2011177781 A JP 2011177781A
Authority
JP
Japan
Prior art keywords
laser beam
laser
processing
irradiation
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010047394A
Other languages
Japanese (ja)
Other versions
JP5510806B2 (en
Inventor
Masakuni Takahashi
正訓 高橋
Satoru Higano
哲 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010047394A priority Critical patent/JP5510806B2/en
Priority to CN2011100355823A priority patent/CN102189345A/en
Publication of JP2011177781A publication Critical patent/JP2011177781A/en
Application granted granted Critical
Publication of JP5510806B2 publication Critical patent/JP5510806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining apparatus and a laser beam machining method, capable of executing the machining without causing any crack or the like even when cutting a brittle material having high residual stress. <P>SOLUTION: This invention relates to an apparatus for machining by irradiating a workpiece with a laser beam, and the apparatus includes a laser beam irradiation mechanism in which the laser beam is subjected to pulse oscillation to irradiate the workpiece with the laser beam at a fixed cyclic frequency, and scans the workpiece. In the laser beam applying mechanism, the laser beam scanning speed S is set to be L/(1/H), wherein H denotes the cyclic frequency H, a denotes the beam diameter of the laser beam, n denotes the scanning number of the laser beam on the same machining line, and the moving distance L of the pulse laser beam for one application which is expressed by n/2×a, and irradiation is performed while the application starting position is deviated for each scanning so that the application starting position Ln of the laser beam for the n-th scanning is set to L1+(L/n)×(n-1), wherein the application starting position of the laser beam for the first scanning is denoted as L1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば脆性材の切断加工などに好適なレーザ加工装置およびレーザ加工方法に関する。   The present invention relates to a laser processing apparatus and a laser processing method suitable for, for example, cutting a brittle material.

一般に、焼成セラミックスシートなどのような脆性材の切断加工には、砥石による研削など力学的な方法で整形が行われている。しかしながら、焼成セラミックスシートなどは、焼結することにより内部に高い残留応力が発生していることから、特にその基板厚さが薄くなるほど、残留応力が高くなり、加工開始時のクラックの発生等が無いように加工することが困難であった。   In general, cutting of a brittle material such as a fired ceramic sheet is performed by a mechanical method such as grinding with a grindstone. However, since sintered ceramic sheets and the like generate high residual stress inside by sintering, the lower the substrate thickness, the higher the residual stress and the occurrence of cracks at the start of processing. It was difficult to process so that there was no.

また、所望の加工性状を得るために焼成セラミックスシートなどにレーザ光を照射し、繰り返し走査することで、切断等の加工を施す方法も知られている。例えば、従来、特許文献1には、亀裂を持つ脆性材料からなる帯板をレーザなどの点熱源で加熱し、加熱点を移動して亀裂を進展させて帯板を割断する脆性材料の割断方法が記載されている。また、特許文献2では、少なくとも一層を含む基板のプログラム制御ダイシングのためにパルスレーザを用いる方法であって、パルスレーザをスキャンして基板をダイシングする方法が記載されている。   Also known is a method of performing processing such as cutting by irradiating a fired ceramic sheet or the like with laser light and repeatedly scanning in order to obtain desired processing properties. For example, conventionally, Patent Document 1 discloses a brittle material cleaving method in which a strip made of a brittle material having a crack is heated by a point heat source such as a laser, and the crack is developed by moving the heating point to break the strip. Is described. Patent Document 2 describes a method of using a pulse laser for program-controlled dicing of a substrate including at least one layer, and a method of dicing the substrate by scanning the pulse laser.

特開平11−240730号公報JP-A-11-240730 特表2005−523583号公報JP 2005-523583 A

上記従来の技術には、以下の課題が残されている。
すなわち、従来のレーザ光を照射し、繰り返し走査してスクライブ溝を入れて割断する方法を用いた場合でも、加工途中の熱影響や不純物の分散具合により、スクライブ中に予期せぬ方向へとクラックが発生し分割してしまうという問題があった。
The following problems remain in the conventional technology.
In other words, even when using the conventional method of irradiating laser light, repeatedly scanning, inserting and scribing scribe grooves, cracks in unexpected directions during scribing due to thermal effects during processing and the dispersion of impurities Has occurred and has been divided.

本発明は、前述の課題に鑑みてなされたもので、高い残留応力を持つ脆性材の切断加工においても亀裂など生じさせることなく加工可能なレーザ加工装置およびレーザ加工方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a laser processing apparatus and a laser processing method capable of processing without causing a crack or the like even when cutting a brittle material having a high residual stress. To do.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のレーザ加工装置は、加工対象物にレーザ光を照射して加工する装置であって、レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ光照射機構を備え、前記レーザ光照射機構が、前記繰り返し周波数をH、レーザ光のビーム径をa、レーザ光の同一加工線上への走査回数をn、パルスレーザ光の1照射あたりの移動距離Lをn/2×aとしたとき、レーザ光の走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして前記照射を行うことを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the laser processing apparatus of the present invention is an apparatus that irradiates a workpiece with a laser beam and processes the laser beam, oscillates the laser beam to irradiate the workpiece with a constant repetition frequency, and scans the laser beam. A laser beam irradiation mechanism, wherein the laser beam irradiation mechanism is H, the beam diameter of the laser beam is a, the number of scans of the laser beam on the same processing line is n, and the moving distance per irradiation of the pulsed laser beam When L is set to n / 2 × a, the laser beam scanning speed S is set to L / (1 / H), and the laser beam irradiation start position at the first scanning frequency is set to L1, and the laser at the nth scanning frequency. The light irradiation start position Ln is L1 + (L / n) × (n−1), and the irradiation is performed by shifting the irradiation start position for each scan.

本発明のレーザ加工方法は、加工対象物にレーザ光を照射して加工する方法であって、レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程を有し、前記レーザ照射工程で、前記繰り返し周波数をH、レーザ光のビーム径をa、レーザ光の同一加工線上への走査回数をn、パルスレーザ光の1照射あたりの移動距離Lをn/2×aとしたとき、レーザ光の走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして前記照射を行うことを特徴とする。   The laser processing method of the present invention is a method of processing by irradiating a processing target with laser light, and irradiating the processing target with laser light at a constant repetition frequency by oscillating the laser light in a pulsed manner. In the laser irradiation step, the repetition frequency is H, the beam diameter of the laser beam is a, the number of scans of the laser beam on the same processing line is n, and the moving distance L per irradiation of the pulsed laser beam is n / 2 × a, the laser beam scanning speed S is set to L / (1 / H), the laser beam irradiation start position at the first scanning frequency is set to L1, and the laser beam irradiation at the nth scanning frequency is performed. The start position Ln is L1 + (L / n) × (n−1), and the irradiation is performed by shifting the irradiation start position for each scan.

これらのレーザ加工装置およびレーザ加工方法では、レーザ光の走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うので、加工対象物の応力が急激に変化することを抑制して亀裂などが生じることなく加工が可能になる。
すなわち、加工対象物に対してパルスとして照射されたレーザ光のスポット間隔である上記移動距離Lを埋めるように、照射開始位置をずらしながら次々に同じ加工線上を走査して加工を重ねるため、1回の走査時においては加工点が間隔を空けて離れているので、走査途中では、加工対象物が間隔を空けて繋がった状態であって割れ難くなる。また、従来のようにレーザ光による加工点が連続的に重なるように走査される場合では、繋がった溝が延ばされるようにして切断加工されるために、急激な応力変化が生じてしまうのに対し、本発明では、1回の走査時において加工点が連続せず、急激な応力変化を抑制することができる。
In these laser processing apparatuses and laser processing methods, the laser beam scanning speed S is set to L / (1 / H), the laser beam irradiation start position at the first scanning frequency is set to L1, and the laser at the scanning frequency n times. Since the irradiation start position Ln is set to L1 + (L / n) × (n−1) and the irradiation start position is shifted for each scan, it is possible to suppress a sudden change in the stress of the workpiece. Processing becomes possible without cracks.
That is, in order to fill up the moving distance L, which is the spot interval of the laser beam irradiated as a pulse to the object to be processed, while scanning the same processing line one after another while shifting the irradiation start position, the processing is repeated. Since the processing points are spaced apart at the time of scanning, the processing object is in a state where the processing objects are connected at an interval during the scanning and are difficult to break. In addition, when scanning is performed so that the processing points by the laser beam continuously overlap as in the conventional case, since the connected grooves are cut and extended, a sudden stress change occurs. On the other hand, in the present invention, the processing points are not continuous during one scan, and a rapid stress change can be suppressed.

また、本発明のレーザ加工装置は、前記加工対象物を取り付けて固定する取り付け治具と、該取り付け治具の内部に冷却液を流通させる冷却機構と、を備えていることを特徴とする。
また、本発明のレーザ加工方法は、前記取り付け治具の内部に冷却液を流通させながら前記照射を行うことを特徴とする。
すなわち、これらのレーザ加工装置およびレーザ加工方法では、取り付け治具の内部に冷却液を流通させるので、流通する冷却液によりレーザ光による加工熱を取り付け治具を介して吸熱して、脆性材等の加工対象物への蓄熱を防ぐことができる。
In addition, the laser processing apparatus of the present invention includes an attachment jig for attaching and fixing the object to be processed, and a cooling mechanism for allowing a coolant to flow inside the attachment jig.
Moreover, the laser processing method of the present invention is characterized in that the irradiation is performed while circulating a coolant in the mounting jig.
That is, in these laser processing apparatuses and laser processing methods, since the coolant is circulated inside the mounting jig, the processing heat generated by the laser light is absorbed by the circulating coolant through the mounting jig, and brittle materials, etc. It is possible to prevent heat accumulation on the workpiece.

また、本発明のレーザ加工方法は、前記加工対象物の加工面に樹脂フィルムを接着し、前記樹脂フィルム上からレーザ光を前記加工面に照射することを特徴とする。
すなわち、このレーザ加工方法では、加工対象物の加工面に樹脂フィルムを接着し、樹脂フィルム上からレーザ光を加工面に照射するので、表面の樹脂フィルムによりレーザ光の中心以外の余剰なエネルギーが吸収され、脆性材等の加工対象物への蓄熱を防ぐことができる。また、樹脂フィルムによって加工中の加工対象物を力学的に保持することができ、亀裂やクラック等の発生を抑制することができる。
Further, the laser processing method of the present invention is characterized in that a resin film is bonded to the processing surface of the processing object, and the processing surface is irradiated with laser light from the resin film.
That is, in this laser processing method, a resin film is bonded to the processing surface of the workpiece, and laser light is irradiated onto the processing surface from above the resin film. Therefore, surplus energy other than the center of the laser light is generated by the resin film on the surface. It is absorbed and heat storage on a workpiece such as a brittle material can be prevented. In addition, the object to be processed can be mechanically held by the resin film, and generation of cracks, cracks, and the like can be suppressed.

また、本発明のレーザ加工方法は、前記加工対象物の加工面の反対面に金属フィルムを接着し、該金属フィルムを取り付け治具に密着させて該取り付け治具に前記加工対象物を固定して前記照射を行うことを特徴とする。
すなわち、このレーザ加工方法では、加工対象物の加工面の反対面に金属フィルムを接着し、該金属フィルムを取り付け治具に密着させて該取り付け治具に加工対象物を固定して照射を行うので、金属フィルムによって加工中の加工対象物を力学的に保持することができると共に、熱伝導性の高い金属フィルムを介して加工時の熱が取り付け治具に放熱されて、脆性材等の加工対象物への蓄熱を防ぐことができる。特に、上記冷却機構が設けられた取り付け治具を採用することで、高い放熱効果を得ることができる。
In the laser processing method of the present invention, a metal film is bonded to the surface opposite to the processing surface of the processing object, and the processing object is fixed to the mounting jig by bringing the metal film into close contact with the mounting jig. And performing the irradiation.
That is, in this laser processing method, a metal film is bonded to the opposite surface of the processing target object, the metal film is brought into close contact with the mounting jig, and the processing target object is fixed to the mounting jig for irradiation. As a result, the workpiece to be processed can be mechanically held by the metal film, and the heat at the time of processing is radiated to the mounting jig through the metal film having high thermal conductivity, so that brittle materials, etc. are processed. Heat storage on the object can be prevented. In particular, by adopting an attachment jig provided with the cooling mechanism, a high heat dissipation effect can be obtained.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るレーザ加工装置およびレーザ加工方法によれば、レーザ光の走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うので、加工対象物の応力が急激に変化することを抑制して亀裂などが生じることなく加工が可能になる。
したがって、高い残留応力を持つ脆性材等の切断加工においても亀裂やクラック等が生じず安定した加工を行うことができる。
The present invention has the following effects.
That is, according to the laser processing apparatus and the laser processing method of the present invention, the laser beam scanning speed S is set to L / (1 / H), and the laser beam irradiation start position for the first scanning is set to L1. Since the irradiation start position Ln of the nth laser beam is set to L1 + (L / n) × (n−1) and the irradiation start position is shifted for each scanning, the stress of the workpiece changes rapidly. It is possible to process without suppressing cracking and the like.
Therefore, even when cutting a brittle material having a high residual stress, a stable process can be performed without causing cracks or cracks.

本発明に係るレーザ加工装置およびレーザ加工方法の一実施形態において、レーザ加工装置を示す簡易的な全体構成図である。1 is a simple overall configuration diagram showing a laser processing apparatus in an embodiment of a laser processing apparatus and a laser processing method according to the present invention. 本実施形態において、加工対象物および取り付け治具を示す断面図である。In this embodiment, it is sectional drawing which shows a workpiece and an attachment jig. 本実施形態において、レーザ光の走査方法を示す説明図である。In this embodiment, it is explanatory drawing which shows the scanning method of a laser beam.

以下、本発明に係るレーザ加工装置およびレーザ加工方法の一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a laser processing apparatus and a laser processing method according to the present invention will be described with reference to FIGS. 1 to 3. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のレーザ加工装置1は、図1から図3に示すように、加工対象物Wにレーザ光Lを照射して加工する装置であって、レーザ光Lをパルス発振して加工対象物Wに一定の繰り返し周波数で照射すると共に走査するレーザ光照射機構2と、加工対象物Wを保持して移動可能な移動機構3と、該移動機構3上に設置され加工対象物Wを取り付けて固定する取り付け治具4と、該取り付け治具4の内部に冷却液5aを流通させる冷却機構5と、これらを制御する制御部6と、を備えている。   As shown in FIGS. 1 to 3, the laser processing apparatus 1 of the present embodiment is an apparatus that processes a workpiece W by irradiating the workpiece W with a laser beam L, and oscillates the laser beam L in a pulsed manner. A laser beam irradiation mechanism 2 that irradiates and scans W at a constant repetition frequency, a moving mechanism 3 that can move while holding the workpiece W, and a workpiece W that is installed on the moving mechanism 3 is attached. An attachment jig 4 to be fixed, a cooling mechanism 5 for circulating a coolant 5a inside the attachment jig 4, and a control unit 6 for controlling them are provided.

上記加工対象物Wは、例えばセラミックス焼結体の基板などの高い残留応力を持つ脆性材である。
なお、加工時には、図2に示すように、加工対象物Wの加工面(表面)に樹脂フィルム7を接着し、樹脂フィルム7上からレーザ光Lを加工面に照射する。また、加工対象物Wの加工面の反対面(裏面)には、金属フィルム8を接着し、該金属フィルム8を取り付け治具4に密着させて該取り付け治具4に加工対象物Wを固定して照射を行う。
The workpiece W is a brittle material having a high residual stress such as a ceramic sintered substrate.
At the time of processing, as shown in FIG. 2, the resin film 7 is adhered to the processing surface (surface) of the processing target W, and the processing surface is irradiated with the laser light L from the resin film 7. Further, the metal film 8 is bonded to the opposite surface (back surface) of the processing object W, and the metal film 8 is brought into close contact with the mounting jig 4 to fix the processing object W to the mounting jig 4. And then irradiate.

上記樹脂フィルム7としては、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニル等のプラスチックフィルム、ポリオレフィン等の紫外線透過フィルム等が採用可能である。
また、上記金属フィルム8としては、アルミニウム、銅、ステンレス(SUS)等のメタルテープが採用可能である。この金属フィルム8は、加工対象物Wにアクリルゴム、ウレタン樹脂、シリコーン樹脂等を主成分とする粘着剤で接着される。
As the resin film 7, a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, a plastic film such as polyvinyl chloride, an ultraviolet transmissive film such as polyolefin, and the like can be used.
The metal film 8 may be a metal tape such as aluminum, copper, stainless steel (SUS). The metal film 8 is bonded to the workpiece W with an adhesive mainly composed of acrylic rubber, urethane resin, silicone resin or the like.

なお、これらの樹脂フィルム7および金属フィルム8としては、熱膨張係数が加工対象物Wに同じ又は近く、加工時の熱膨張差が生じ難い低熱膨張率のフィルムを採用することが好ましい。例えば、加工対象物Wとして、熱膨張係数が8.8×10−6/Kのアルミナ(Al)や、熱膨張係数が10.8×10−6/Kのランタンガレートを加工する場合、樹脂フィルム7としては、熱膨張係数が6〜10×10−6/Kの低熱膨張率特殊樹脂(例えば、低熱膨張ポリイミド)を採用する。また、この場合、金属フィルム8としては、熱膨張係数が13.6×10−6/KのSUS304が好ましい。 In addition, as these resin film 7 and metal film 8, it is preferable to employ | adopt the film of the low thermal expansion coefficient from which the thermal expansion coefficient is the same as or close to the workpiece W, and the thermal expansion difference at the time of a process does not produce easily. For example, as the workpiece W, alumina (Al 2 O 3 ) having a thermal expansion coefficient of 8.8 × 10 −6 / K or lanthanum gallate having a thermal expansion coefficient of 10.8 × 10 −6 / K is processed. In this case, a low thermal expansion coefficient special resin (for example, low thermal expansion polyimide) having a thermal expansion coefficient of 6 to 10 × 10 −6 / K is employed as the resin film 7. In this case, the metal film 8 is preferably SUS304 having a thermal expansion coefficient of 13.6 × 10 −6 / K.

上記移動機構3は、水平面に平行なX方向に移動可能なX軸ステージ部3xと、該X軸ステージ部3x上に設けられX方向に対して垂直なかつ水平面に平行なY方向に移動方向なY軸ステージ部3yと、該Y軸ステージ部3y上に設けられ取り付け治具4が固定されて加工対象物Wを保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部3zと、で構成されている。   The moving mechanism 3 includes an X-axis stage portion 3x that can move in the X direction parallel to the horizontal plane, and a moving direction in the Y direction that is provided on the X-axis stage portion 3x and that is perpendicular to the X direction and parallel to the horizontal plane. A Y-axis stage unit 3y and a Z-axis stage unit 3z provided on the Y-axis stage unit 3y and capable of holding the workpiece W by fixing the mounting jig 4 and moving in a direction perpendicular to the horizontal plane And is composed of.

上記レーザ光照射機構2は、Qスイッチのトリガー信号によりレーザ光Lを発振すると共にスポット状に集光させる光学系も有するレーザ光源9と、照射するレーザ光Lを走査させるガルバノスキャナ10と、保持された加工対象物Wの加工位置を確認するために撮像するCCDカメラ11と、を備えている。
上記レーザ光源9は、190〜550nmのいずれかの波長のレーザ光Lを照射できるものが使用可能であり、例えば本実施形態では、波長355nmのレーザ光Lを発振して出射できるものを用いている。
The laser beam irradiation mechanism 2 includes a laser light source 9 having an optical system that oscillates a laser beam L in response to a trigger signal of a Q switch and condenses it in a spot shape, a galvano scanner 10 that scans the irradiated laser beam L, and a holding unit. And a CCD camera 11 that captures an image to confirm the processing position of the processed object W.
As the laser light source 9, one that can irradiate a laser beam L having a wavelength of 190 to 550 nm can be used. For example, in the present embodiment, a laser beam that can oscillate and emit a laser beam L having a wavelength of 355 nm is used. Yes.

上記ガルバノスキャナ10は、移動機構3の直上に配置されている。また、上記CCDカメラ11は、ガルバノスキャナ10に隣接して設置されている。
上記冷却機構5は、取り付け治具4の内部に設けられた流通路5b内に冷却液5aとして例えば冷却水を流通させる構造を有しており、流通路5bには冷却液5aの供給源(図示略)が接続されている。
The galvano scanner 10 is disposed immediately above the moving mechanism 3. The CCD camera 11 is installed adjacent to the galvano scanner 10.
The cooling mechanism 5 has a structure in which, for example, cooling water is circulated as a coolant 5a in a flow passage 5b provided in the mounting jig 4, and a supply source ( (Not shown) are connected.

また、取り付け治具4は、加工対象物Wの取り付け面に複数の吸着孔4aが形成されており、これら吸着孔4aは治具内部に形成された空洞部4bを介して真空源(図示略)に接続されている。すなわち、取り付け面に載置された加工対象物Wを吸着孔4aにより真空吸着して保持可能になっている。このように、取り付け治具4は、水冷機能と真空吸着機能とを有する水冷吸着治具とされている。   Further, the attachment jig 4 has a plurality of suction holes 4a formed on the attachment surface of the workpiece W, and these suction holes 4a are connected to a vacuum source (not shown) via a cavity 4b formed inside the jig. )It is connected to the. That is, the workpiece W placed on the mounting surface can be held by vacuum suction through the suction holes 4a. Thus, the attachment jig 4 is a water-cooled adsorption jig having a water-cooling function and a vacuum adsorption function.

上記レーザ光照射機構2は、繰り返し周波数をH、レーザ光Lのビーム径をa、レーザ光Lの同一加工線上への走査回数をn、レーザ光Lの1照射あたりの移動距離Lをn/2×aとしたとき、レーザ光Lの走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光Lの照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うように設定されている。   The laser beam irradiation mechanism 2 has a repetition frequency of H, a beam diameter of the laser beam L of a, a scanning frequency of the laser beam L on the same processing line of n, and a moving distance L per irradiation of the laser beam L of n / When 2 × a, the scanning speed S of the laser beam L is set to L / (1 / H), and the irradiation start position of the laser beam L with the first scanning frequency is set to L1, and the laser beam with the scanning frequency of n times is set to L1. The irradiation start position Ln is set to L1 + (L / n) × (n−1), and irradiation is performed by shifting the irradiation start position for each scan.

なお、このとき、パルスレーザ光一発あたりの時間は1/Hとなる。また、走査回数nは、任意の数で亀裂等が発生しない数であって、走査速度Sが制御可能な範囲に設定される。
また、レーザ光照射機構2は、レーザ出力を加工対象物Wの加工閾値より僅かに高く設定している。
At this time, the time per pulse laser beam is 1 / H. The number of scans n is an arbitrary number that does not cause cracks and the like, and is set in a range in which the scan speed S can be controlled.
Further, the laser light irradiation mechanism 2 sets the laser output slightly higher than the processing threshold value of the processing object W.

詳述すれば、図3に示すように、走査回数を3回(n=3)とした場合、1回目の走査時に照射開始位置L1から走査を開始し、移動距離Lを空けて加工線上をレーザ光Lが設定した繰り返し周波数Hおよび走査速度Sで照射される。例えば、ビーム径aを20μm、繰り返し周波数Hを10kHzとした場合、走査速度Sは、300mm/secに設定される。この1回目の走査では、加工線上で間隔を空けて加工されているため、加工点の間で加工対象物Wが繋がっている。   More specifically, as shown in FIG. 3, when the number of scans is 3 (n = 3), the scan is started from the irradiation start position L1 at the first scan, and the movement distance L is left on the processing line. Laser light L is irradiated at a set repetition frequency H and scanning speed S. For example, when the beam diameter a is 20 μm and the repetition frequency H is 10 kHz, the scanning speed S is set to 300 mm / sec. In the first scanning, since the machining is performed with an interval on the machining line, the workpiece W is connected between the machining points.

次に、2回目の走査時では、レーザ光Lの照射開始位置をL1+(L/2)に設定して1回目の照射開始位置からずらして1回目と同一の加工線上を走査する。さらに、最後の3回目の走査時では、レーザ光Lの照射開始位置をL1+(L/3)×2に設定して1回目および2回目の照射開始位置からずらして1回目と同一の加工線上で走査を行う。この3回の走査によって、加工対象物Wが加工線上で完全に切断される。   Next, at the time of the second scanning, the irradiation start position of the laser beam L is set to L1 + (L / 2) and is shifted from the first irradiation starting position to scan on the same processing line as the first time. Further, at the time of the last third scanning, the irradiation start position of the laser beam L is set to L1 + (L / 3) × 2 and is shifted from the first and second irradiation start positions on the same processing line as the first time. Scan with. By the three scans, the workpiece W is completely cut on the machining line.

このように本実施形態では、レーザ光Lの走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光Lの照射開始位置をL1として、走査回数n回目のレーザ光Lの照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うので、加工対象物Wの応力が急激に変化することを抑制して亀裂などが生じることなく加工が可能になる。   As described above, in this embodiment, the scanning speed S of the laser light L is set to L / (1 / H), and the irradiation start position of the laser light L with the first scanning number is set to L1, and the laser light with the nth scanning number is used. Since the irradiation start position Ln of L is L1 + (L / n) × (n−1) and the irradiation start position is shifted for each scan, the stress of the workpiece W is prevented from changing abruptly. This makes it possible to process without cracks.

すなわち、加工対象物Wに対してパルスとして照射されたレーザ光Lのスポット間隔である上記移動距離Lを埋めるように、照射開始位置をずらしながら次々に同じ加工線上を走査して加工を重ねるため、1回の走査時においては加工点が間隔を空けて離れているので、走査途中では、加工対象物Wが間隔を空けて繋がった状態であって割れ難くなる。また、従来のようにレーザ光による加工点が連続的に重なるように走査される場合では、繋がった溝が延ばされるようにして切断加工されるために、急激な応力変化が生じてしまうのに対し、本実施形態では、1回の走査時において加工点が連続せず、急激な応力変化を抑制することができる。   That is, in order to overlap the processing by scanning the same processing line one after another while shifting the irradiation start position so as to fill the moving distance L that is the spot interval of the laser light L irradiated as a pulse to the workpiece W. Since the machining points are spaced apart during a single scan, the workpieces W are connected with a gap during the scan, and are difficult to break. In addition, when scanning is performed so that the processing points by the laser beam continuously overlap as in the conventional case, since the connected grooves are cut and extended, a sudden stress change occurs. On the other hand, in the present embodiment, the machining points are not continuous during one scan, and a rapid stress change can be suppressed.

また、取り付け治具4の内部に冷却液5aを流通させるので、流通する冷却液5aにより加工熱を取り付け治具4を介して吸熱して、脆性材等の加工対象物Wへの蓄熱を防ぐことができる。
さらに、加工対象物Wの加工面に樹脂フィルム7を接着し、樹脂フィルム7上からレーザ光Lを加工面に照射するので、表面の樹脂フィルム7によりレーザ光Lの中心以外の余剰なエネルギーが吸収され、脆性材等の加工対象物Wへの蓄熱を防ぐことができる。
Further, since the coolant 5a is circulated inside the mounting jig 4, the circulating heat 5a absorbs the processing heat through the mounting jig 4 to prevent heat accumulation on the workpiece W such as a brittle material. be able to.
Furthermore, since the resin film 7 is adhered to the processing surface of the processing target W and the processing surface is irradiated with the laser beam L from the resin film 7, surplus energy other than the center of the laser beam L is generated by the resin film 7 on the surface. It is absorbed and heat storage on the workpiece W such as a brittle material can be prevented.

また、樹脂フィルム7によって加工中の加工対象物Wを力学的に保持することができ、亀裂やクラック等の発生を抑制することができる。特に、従来のように加工線上に間隔を空けずに連続させてレーザ光Lを続けて照射する場合では、樹脂フィルム7の加工線周辺が熱で溶けてしまい溝幅が広くなって加工部付近の保持効果が低下してしまうが、本実施形態では、間隔を空けて照射を行うため、樹脂フィルム7への熱の影響も低減させることができ、溝幅を狭く制御することができる。   Further, the workpiece W being processed can be mechanically held by the resin film 7, and the occurrence of cracks, cracks, and the like can be suppressed. In particular, in the case where the laser beam L is continuously irradiated without being spaced apart on the processing line as in the conventional case, the periphery of the processing line of the resin film 7 is melted by heat and the groove width becomes wide, and the vicinity of the processing portion However, in this embodiment, since irradiation is performed at intervals, the influence of heat on the resin film 7 can be reduced, and the groove width can be controlled to be narrow.

また、加工対象物Wの加工面の反対面に金属フィルム8を接着し、該金属フィルム8を取り付け治具4に密着させて該取り付け治具4に加工対象物Wを固定して照射を行うので、金属フィルム8によって加工中の加工対象物Wを力学的に保持することができると共に、熱伝導性の高い金属フィルム8を介して加工時の熱が取り付け治具4に放熱されて、脆性材等の加工対象物Wへの蓄熱を防ぐことができる。   Further, the metal film 8 is bonded to the surface opposite to the processing surface of the processing object W, the metal film 8 is brought into close contact with the mounting jig 4, and the processing object W is fixed to the mounting jig 4 for irradiation. Therefore, the workpiece W being processed can be mechanically held by the metal film 8 and heat at the time of processing is radiated to the mounting jig 4 via the metal film 8 having high thermal conductivity, so that it is brittle. Heat storage on the workpiece W such as a material can be prevented.

次に、本発明に係るレーザ加工装置およびレーザ加工方法により実際に加工された際の実施例について具体的に説明する。
本実施例では、本実施形態のレーザ加工装置を用いて、加工対象物としてセラミックス焼結体(厚さ250μm)を波長355nmのレーザ光にて加工した。その際、セラミックス焼結体の表面に樹脂フィルムとしてポリイミド樹脂フィルム(厚さ0.1mm)をアクリル系接着剤にて接着し、裏面に金属フィルムとしてアルミニウムフィルム(厚さ0.05mm)をシリコーン系接着剤にて接着した。この状態の加工対象物を、取り付け治具上に吸着させた。
Next, an embodiment when actually processed by the laser processing apparatus and the laser processing method according to the present invention will be specifically described.
In this example, a ceramic sintered body (thickness: 250 μm) was processed as a processing target with a laser beam having a wavelength of 355 nm using the laser processing apparatus of the present embodiment. At that time, a polyimide resin film (thickness: 0.1 mm) as a resin film was adhered to the surface of the ceramic sintered body with an acrylic adhesive, and an aluminum film (thickness: 0.05 mm) as a metal film was adhered to the back side as a silicone film. Bonded with an adhesive. The workpiece in this state was adsorbed on the mounting jig.

レーザ光の出力を1.3W、繰り返し周波数Hを125kHzに設定し、ビームスポットを測定した結果、ビーム径は20μmであることから、ガルバノスキャナにて走査速度Sを3750mm/secに設定して走査回数3回で加工を行った。
この結果、クラックの無い良好な切断面を得ることができた。
The laser beam output was set to 1.3 W, the repetition frequency H was set to 125 kHz, and the beam spot was measured. As a result, the beam diameter was 20 μm, so the galvano scanner was used to set the scanning speed S to 3750 mm / sec. Processing was performed three times.
As a result, a good cut surface without cracks could be obtained.

本発明のレーザ加工装置およびレーザ加工方法は、特に高い残留応力を持つ脆性材の切断加工において好適なものである。   The laser processing apparatus and laser processing method of the present invention are particularly suitable for cutting a brittle material having a high residual stress.

1…レーザ加工装置、2…レーザ光照射機構、4…取り付け治具、5…冷却機構、5a…冷却液、7…樹脂フィルム、8…金属フィルム、L…レーザ光、W…加工対象物   DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 2 ... Laser beam irradiation mechanism, 4 ... Mounting jig, 5 ... Cooling mechanism, 5a ... Cooling liquid, 7 ... Resin film, 8 ... Metal film, L ... Laser beam, W ... Work object

Claims (6)

加工対象物にレーザ光を照射して加工する装置であって、
レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ光照射機構を備え、
前記レーザ光照射機構が、前記繰り返し周波数をH、レーザ光のビーム径をa、レーザ光の同一加工線上への走査回数をn、パルスレーザ光の1照射あたりの移動距離Lをn/2×aとしたとき、
レーザ光の走査速度SをL/(1/H)とすると共に、
走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして前記照射を行うことを特徴とするレーザ加工装置。
An apparatus for irradiating a processing object with laser light,
A laser light irradiation mechanism that oscillates and irradiates the workpiece with a constant repetition frequency by oscillating laser light, and scans,
The laser beam irradiation mechanism is configured such that the repetition frequency is H, the beam diameter of the laser beam is a, the number of times the laser beam is scanned on the same processing line is n, and the moving distance L per pulse laser beam is n / 2 ×. When a
The scanning speed S of the laser beam is set to L / (1 / H),
The irradiation start position of the first laser beam is set to L1, and the irradiation start position Ln of the nth laser beam is set to L1 + (L / n) × (n−1). And performing the irradiation.
請求項1に記載のレーザ加工装置において、
前記加工対象物を取り付けて固定する取り付け治具と、
該取り付け治具の内部に冷却液を流通させる冷却機構と、を備えていることを特徴とするレーザ加工装置。
In the laser processing apparatus of Claim 1,
An attachment jig for attaching and fixing the workpiece;
And a cooling mechanism for circulating a coolant in the mounting jig.
加工対象物にレーザ光を照射して加工する方法であって、
レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程を有し、
前記レーザ照射工程で、前記繰り返し周波数をH、レーザ光のビーム径をa、レーザ光の同一加工線上への走査回数をn、パルスレーザ光の1照射あたりの移動距離Lをn/2×aとしたとき、
レーザ光の走査速度SをL/(1/H)とすると共に、
走査回数1回目のレーザ光の照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして前記照射を行うことを特徴とするレーザ加工方法。
A method of processing by irradiating a processing object with laser light,
A laser irradiation step of oscillating and irradiating the workpiece with a constant repetition frequency by oscillating a laser beam;
In the laser irradiation step, the repetition frequency is H, the beam diameter of the laser beam is a, the number of scans of the laser beam on the same processing line is n, and the moving distance L per pulse laser beam irradiation is n / 2 × a. When
The scanning speed S of the laser beam is set to L / (1 / H),
The irradiation start position of the first laser beam is set to L1, and the irradiation start position Ln of the nth laser beam is set to L1 + (L / n) × (n−1). And performing the irradiation.
請求項3に記載のレーザ加工方法において、
前記加工対象物の加工面に樹脂フィルムを接着し、前記樹脂フィルム上からレーザ光を前記加工面に照射することを特徴とするレーザ加工方法。
In the laser processing method of Claim 3,
A laser processing method, comprising: bonding a resin film to a processing surface of the processing object; and irradiating the processing surface with laser light from the resin film.
請求項3または4に記載のレーザ加工方法において、
前記加工対象物の加工面の反対面に金属フィルムを接着し、該金属フィルムを取り付け治具に密着させて該取り付け治具に前記加工対象物を固定して前記照射を行うことを特徴とするレーザ加工方法。
In the laser processing method according to claim 3 or 4,
A metal film is adhered to a surface opposite to a processing surface of the processing object, the metal film is adhered to a mounting jig, and the irradiation is performed with the processing object fixed to the mounting jig. Laser processing method.
請求項5に記載のレーザ加工方法において、
前記取り付け治具の内部に冷却液を流通させながら前記照射を行うことを特徴とするレーザ加工方法。
In the laser processing method of Claim 5,
A laser processing method, wherein the irradiation is performed while circulating a coolant in the mounting jig.
JP2010047394A 2010-03-04 2010-03-04 Laser processing method Active JP5510806B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010047394A JP5510806B2 (en) 2010-03-04 2010-03-04 Laser processing method
CN2011100355823A CN102189345A (en) 2010-03-04 2011-01-28 Laser processing device and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047394A JP5510806B2 (en) 2010-03-04 2010-03-04 Laser processing method

Publications (2)

Publication Number Publication Date
JP2011177781A true JP2011177781A (en) 2011-09-15
JP5510806B2 JP5510806B2 (en) 2014-06-04

Family

ID=44598688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047394A Active JP5510806B2 (en) 2010-03-04 2010-03-04 Laser processing method

Country Status (2)

Country Link
JP (1) JP5510806B2 (en)
CN (1) CN102189345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054945A1 (en) * 2017-09-13 2019-03-21 Genuine Solutions Pte. Ltd. Cutting method for polymer resin mold compound based substrates and system thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769324A (en) * 2017-01-13 2017-05-31 正新橡胶(中国)有限公司 A kind of detection method of tire supporting material nonwoven fabric from filaments
CN106903424B (en) * 2017-02-20 2018-05-29 温州大学激光与光电智能制造研究院 A kind of post-processing approach that optical element mechanical property is improved based on laser blast wave
CN110052722A (en) * 2019-04-12 2019-07-26 武汉先河激光技术有限公司 A kind of laser pulse control method and device
CN110340541B (en) * 2019-06-05 2021-04-20 武汉铱科赛科技有限公司 Wave-push type laser processing method, device and system
CN110340520A (en) * 2019-06-27 2019-10-18 武汉铱科赛科技有限公司 A kind of pulse dislocation laser processing, device and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234685A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JP2005279757A (en) * 2004-03-30 2005-10-13 Nitto Denko Corp Production method for laser processed article and laser processing protection sheet
JP2007301631A (en) * 2006-05-15 2007-11-22 Shibaura Mechatronics Corp Cleaving apparatus and cleaving method
JP2008114239A (en) * 2006-11-02 2008-05-22 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2008200694A (en) * 2007-02-19 2008-09-04 Disco Abrasive Syst Ltd Method for machining wafer, and laser beam machining apparatus
JP2008229682A (en) * 2007-03-22 2008-10-02 Epson Toyocom Corp Manufacturing method of package component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690895B2 (en) * 2005-01-11 2011-06-01 新日本製鐵株式会社 Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method
US8330070B2 (en) * 2006-05-11 2012-12-11 Kabushiki Kaisha Toshiba Laser shock hardening method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234685A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JP2005279757A (en) * 2004-03-30 2005-10-13 Nitto Denko Corp Production method for laser processed article and laser processing protection sheet
JP2007301631A (en) * 2006-05-15 2007-11-22 Shibaura Mechatronics Corp Cleaving apparatus and cleaving method
JP2008114239A (en) * 2006-11-02 2008-05-22 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2008200694A (en) * 2007-02-19 2008-09-04 Disco Abrasive Syst Ltd Method for machining wafer, and laser beam machining apparatus
JP2008229682A (en) * 2007-03-22 2008-10-02 Epson Toyocom Corp Manufacturing method of package component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054945A1 (en) * 2017-09-13 2019-03-21 Genuine Solutions Pte. Ltd. Cutting method for polymer resin mold compound based substrates and system thereof
TWI701097B (en) * 2017-09-13 2020-08-11 新加坡商誠解電子私人有限公司 Cutting method for polymer resin mold compound based substrates and system thereof

Also Published As

Publication number Publication date
CN102189345A (en) 2011-09-21
JP5510806B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP6604891B2 (en) Wafer generation method
JP6395634B2 (en) Wafer generation method
JP5510806B2 (en) Laser processing method
JP6395632B2 (en) Wafer generation method
JP5452247B2 (en) Laser dicing equipment
TWI513529B (en) Laser cutting method
TW202400340A (en) Laser processing apparatus, methods of laser-processing workpieces and related arrangements
JP2011177782A (en) Laser beam machining method
TW201735143A (en) SiC wafer producing method
TW201639016A (en) Wafer producing method
JP6355540B2 (en) Wafer generation method
JP2016111143A (en) Generation method of wafer
JP2016127186A (en) Production method of wafer
KR101376398B1 (en) Laser dicing methods
JP2010123723A (en) Laser processing method of wafer
JP2016111144A (en) Generation method of wafer
KR101505308B1 (en) Laser dicing method
KR20160108148A (en) Method of processing laminated substrate and apparatus for processing laminated substrate with laser light
JP6050002B2 (en) Laser processing method
US20120234809A1 (en) Laser processing method for nonlinear crystal substrate
JP6081218B2 (en) Etching apparatus and etching method
JP5584560B2 (en) Laser scribing method
JP6959073B2 (en) Laser processing equipment
JP2012164740A (en) Laser scribing method
JP2013119106A (en) Laser beam machining device, laser beam machining method, and inkjet head substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5510806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150