JP4690895B2 - Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method - Google Patents

Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method Download PDF

Info

Publication number
JP4690895B2
JP4690895B2 JP2006001584A JP2006001584A JP4690895B2 JP 4690895 B2 JP4690895 B2 JP 4690895B2 JP 2006001584 A JP2006001584 A JP 2006001584A JP 2006001584 A JP2006001584 A JP 2006001584A JP 4690895 B2 JP4690895 B2 JP 4690895B2
Authority
JP
Japan
Prior art keywords
laser beam
workpiece
stress
compressive stress
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006001584A
Other languages
Japanese (ja)
Other versions
JP2006218541A (en
Inventor
弘二 平野
環輝 鈴木
崇史 藤田
敦史 杉橋
基 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006001584A priority Critical patent/JP4690895B2/en
Publication of JP2006218541A publication Critical patent/JP2006218541A/en
Application granted granted Critical
Publication of JP4690895B2 publication Critical patent/JP4690895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、金属物体の表面にレーザピーニング処理を施すことにより、金属物体の疲労強度を向上させる技術に関する。   The present invention relates to a technique for improving the fatigue strength of a metal object by performing laser peening on the surface of the metal object.

一般に溶接構造物の溶接部やプレス成型部品の塑性変形部位は引っ張り残留応力が生じやすく、繰り返し荷重負荷時の疲労亀裂発生の要因となることが知られている。繰り返し荷重を受ける金属製部品や金属製構造物(まとめて金属物体または構造用部材と呼ぶ)における疲労き裂の発生および進展を抑制する疲労強度向上法としては、繰り返し荷重を受ける部分に圧縮応力を残留させる方法がある。そのような圧縮応力を付与する処理として、ショットピーニング、超音波ピーニング等の方法が知られている。   Generally, it is known that tensile residual stress is likely to occur in a welded part of a welded structure or a plastically deformed part of a press-molded part, which causes fatigue cracks when repeatedly loaded. As a method for improving fatigue strength, which suppresses the generation and propagation of fatigue cracks in metal parts and metal structures (collectively referred to as metal objects or structural members) subjected to repeated loads, compressive stress is applied to the portions subjected to repeated loads. There is a method of leaving As processing for applying such compressive stress, methods such as shot peening and ultrasonic peening are known.

また、近年開発が進められているレーザピーニングは、レーザビームの吸収が少ない水などを介する金属物体の表面へのパルスレーザビームの照射により発生するプラズマの膨張反力を利用して、金属物体の表面近傍に残留圧縮応力を付与する技術であり、例えば特許文献1にその方法が開示されている。   In addition, laser peening, which has been developed in recent years, utilizes the expansion reaction force of plasma generated by irradiation of a pulsed laser beam on the surface of a metal object through water or the like that absorbs less laser beam. This is a technique for applying residual compressive stress in the vicinity of the surface. For example, Patent Document 1 discloses the method.

レーザピーニング処理は、ショットピーニングや超音波ピーニング等の他のピーニング方法と比較して次のような利点を持っている。まず、レーザビームの照射スポットを高精度で制御することが可能なため、例えば直径が1mm程度の穴の周辺部といった、微小領域への選択的な圧縮応力付与に適している。また、加工に伴う表面形状の変化が小さいという利点も持っている。ショットピーニングや超音波ピーニングでは、処理によって加工面が荒れてしまうため、表面形状精度を要求されるような機械部品への適用には、ピーニング加工面に対する再研磨等の後工程が必要になるという問題があった。レーザピーニングでは加工に伴う表面形状の変化が小さいため、このような後工程を省略できることが多い。   Laser peening has the following advantages over other peening methods such as shot peening and ultrasonic peening. First, since the irradiation spot of the laser beam can be controlled with high accuracy, it is suitable for selectively applying a compressive stress to a minute region such as a peripheral portion of a hole having a diameter of about 1 mm. In addition, there is an advantage that the change in the surface shape accompanying processing is small. In shot peening and ultrasonic peening, the processing surface is roughened by the processing, so that it is necessary to perform post-processing such as re-polishing the peening processing surface for application to machine parts that require surface shape accuracy. There was a problem. In laser peening, since the change in the surface shape accompanying processing is small, such a post-process can often be omitted.

レーザピーニング処理において、加工面に圧縮応力を付与するための照射方法に関しては、いくつかの方法が提案されてきた。例えば特許文献2には、パルスレーザビームの照射スポットが互いに重なり合うように処理することによって、被加工面全体に均質に圧縮応力を残留させられることが開示されている。
特許第3373638号公報 特許第3461948号公報
In the laser peening process, several methods have been proposed for the irradiation method for applying a compressive stress to the processed surface. For example, Patent Document 2 discloses that a compressive stress can be uniformly left over the entire surface to be processed by processing so that irradiation spots of a pulse laser beam overlap each other.
Japanese Patent No. 3373638 Japanese Patent No. 3461948

レーザピーニング処理を金属物体(以下では被加工材とも呼ぶ)へ適用するにあたっては、繰り返し荷重が作用することで発生する応力の最大主応力の方向(以下、最大主応力方向)に大きな圧縮応力を付与するほど疲労強度向上の効果は大きくなる。   When applying laser peening to metal objects (hereinafter also referred to as workpieces), a large compressive stress is applied in the direction of the maximum principal stress (hereinafter referred to as the maximum principal stress direction) of the stress generated by repeated loads. The effect of improving fatigue strength increases as it is applied.

特許文献2に開示されたような、レーザビームの照射スポットを、未照射領域を作らないように重ね合わせる方法は、被加工面全体に対しどの方向にもほぼ均一な圧縮応力を付与するため、原子炉内部の構造物の応力腐食割れの防止等の目的には適切な照射方法である。しかしながら、例えば機械部品等の金属物体で一方向または限られた方向への繰り返し荷重が作用するときには、最大主応力方向へ強力な圧縮応力を付与することが疲労強度の向上に効果的である。   The method of superimposing the irradiation spot of the laser beam as disclosed in Patent Document 2 so as not to create an unirradiated region applies a substantially uniform compressive stress in any direction to the entire processing surface. The irradiation method is suitable for the purpose of preventing stress corrosion cracking of the structure inside the reactor. However, for example, when a repeated load in one direction or a limited direction is applied to a metal object such as a machine part, applying a strong compressive stress in the maximum principal stress direction is effective in improving the fatigue strength.

本発明は、金属物体に対して施すレーザピーニング処理方法において、表面の特定方向に大きな圧縮応力を付与する方法を提供することを第1の目的とし、当該圧縮応力によって金属物体の疲労強度を高めることを第2の目的とする。   The first object of the present invention is to provide a method of applying a large compressive stress in a specific direction of a surface in a laser peening treatment method applied to a metal object. The fatigue strength of the metal object is increased by the compressive stress. This is the second purpose.

本発明者らは、上記目的を達成するために、レーザピーニング処理における被加工材表面のパルスレーザビームの照射ビームスポットの走査方法を鋭意検討した結果、被加工材表面の特定方向の残留圧縮応力を選択的に高めることができ、その結果、被加工材の疲労強度を高めることのできる本発明に至った。すなわち、本発明は、以下に示すものである。
(1) 本発明のレーザピーニング処理方法は、被加工材の表面にパルスレーザビームを集光、照射して得るビームスポットで該表面を走査して、該表面に残留圧縮応力を発生させて、該表面に前記パルスレーザビームを重畳照射して、表面の面内の特定方向に残留圧縮応力を付与するレーザピーニング処理方法であって、前記被加工材が構造用部材で使用時に荷重応力が負荷されるものであり、前記特定方向が該被加工材の表面における最大主応力の方向であることを特徴とする。
(2) 本発明のレーザピーニング処理方法は、前記被加工材の表面に前記パルスレーザビームを吸収する材料層を形成して、前記パルスレーザビームの重畳照射を行なうことを特徴とする(1)に記載のレーザピーニング処理方法である。
(3) 本発明のレーザピーニング処理方法は、前記パルスレーザビームの重畳照射が、該被加工材の表面における最大主応力の方向と直交する向きに前記ビームスポットを走査して、且つ該走査を最大主応力の方向に位置をずらしながら複数回行なうものであって、前記表面の同一点における前記パルスレーザビームの照射回数の平均値である平均重畳回数が4回以上であり、且つ平均重畳回数を、被加工材の強度、パルスレーザビームの照射条件、および所望の圧縮応力値に基づいて決定することを特徴とする(1)に記載のレーザピーニング処理方法である。
(4) 本発明のレーザピーニング処理方法は、(3)に記載のレーザピーニング処理方法において、さらに前記パルスレーザビームの重畳照射を行なう前に、前記被加工材の表面に前記パルスレーザビームを吸収する材料層を形成し、且つ前記表面の同一点における前記パルスレーザビームの照射回数の平均値である平均重畳回数が2回以上であり、且つ平均重畳回数を、被加工材の強度、パルスレーザビームの照射条件、および所望の圧縮応力値に基づいて決定することを特徴とする。
(5) 本発明のレーザピーニング処理方法は、前記被加工材は表面に穴を有し応力が負荷されるものであって、該穴の周囲における最大主応力の方向が該穴の周方向であることを特徴とする(1)〜(4)のうちの1つに記載のレーザピーニング処理方法である。
(6) 本発明のレーザピーニング処理方法は、前記被加工材は表面に溝を有し応力が負荷されるものであって、該溝の底部における最大主応力の方向が溝に沿った向きと直角をなす方向であることを特徴とする(1)〜(4)のうちの1つに記載のレーザピーニング処理方法である。
(7) また、本発明の金属物体は、(1)〜(6)の内のいずれか1つに記載のレーザピーニング処理方法で製造した金属物体である。
In order to achieve the above object, the present inventors have intensively studied the scanning method of the irradiation beam spot of the pulse laser beam on the surface of the workpiece in the laser peening process, and as a result, the residual compressive stress in the specific direction of the surface of the workpiece. As a result, the present invention has been achieved in which the fatigue strength of the workpiece can be increased. That is, the present invention is as follows.
(1) The laser peening treatment method of the present invention scans the surface with a beam spot obtained by condensing and irradiating a surface of a workpiece with a pulsed laser beam, and generates residual compressive stress on the surface, A laser peening treatment method for applying residual pulse stress in a specific direction within the surface of the surface by superimposing the pulsed laser beam on the surface, wherein the work material is a structural member and a load stress is applied when used. The specific direction is the direction of the maximum principal stress on the surface of the workpiece.
(2) The laser peening treatment method of the present invention is characterized in that a material layer that absorbs the pulsed laser beam is formed on the surface of the workpiece, and the pulsed laser beam is superimposed and irradiated (1). It is a laser peening processing method as described in above.
(3) In the laser peening processing method of the present invention, the beam spot is scanned in a direction orthogonal to the direction of the maximum principal stress on the surface of the workpiece by the superimposed irradiation of the pulsed laser beam. This is performed a plurality of times while shifting the position in the direction of the maximum principal stress, and the average number of times of superimposition that is the average value of the number of times of irradiation of the pulse laser beam at the same point on the surface is 4 times or more Is determined based on the strength of the workpiece, the irradiation condition of the pulsed laser beam, and a desired compressive stress value, in the laser peening processing method according to (1).
(4) The laser peening treatment method of the present invention is the laser peening treatment method according to (3), wherein the pulse laser beam is absorbed on the surface of the workpiece before the pulse laser beam is superimposed and irradiated. An average number of times of superimposition, which is an average value of the number of times of irradiation of the pulse laser beam at the same point on the surface, and the average number of times of superimposition is determined based on the strength of the workpiece, the pulse laser It is determined based on a beam irradiation condition and a desired compressive stress value.
(5) In the laser peening method according to the present invention, the workpiece has a hole on the surface and stress is applied, and the direction of the maximum principal stress around the hole is the circumferential direction of the hole. The laser peening processing method according to one of (1) to (4), wherein
(6) In the laser peening method according to the present invention, the workpiece has a groove on its surface and stress is applied, and the direction of the maximum principal stress at the bottom of the groove is the direction along the groove. The laser peening method according to one of (1) to (4), wherein the laser peening method is a direction that forms a right angle.
(7) Moreover, the metal object of this invention is a metal object manufactured with the laser peening processing method as described in any one of (1)-(6).

本発明の方法では、金属物体に対するレーザピーニング処理において、レーザビームの照射スポットの位置、順序、および密度を適切に選ぶことによって、最大主応力方向の圧縮応力を選択的に高めることができる。したがって、疲労寿命が長い金属物体を安定して得ることが可能である。   In the method of the present invention, in the laser peening process for a metal object, the compressive stress in the maximum principal stress direction can be selectively increased by appropriately selecting the position, order, and density of the irradiation spot of the laser beam. Therefore, it is possible to stably obtain a metal object having a long fatigue life.

本発明の本旨とするところを詳らかとするため、以下、添付の図面に基づき説明を行なう。   In order to clarify the gist of the present invention, the following description will be given with reference to the accompanying drawings.

図1に金属物体(被加工材)に対してレーザピーニング処理を施すための装置の一例を示す。被加工材7は、レーザビームの透過性が高い水が入った水槽5中に浸漬されている。レーザ光発振装置1から出射されたパルス幅10ns程度のパルスレーザビーム2を集光レンズ3で集光し、水槽5に取り付けた窓4を通して被加工材7の表面に照射する。パルスレーザビーム2の被加工材表面上でのピークパワー密度は1〜100TW/mとする。このパルスレーザビームの照射により、照射スポットからプラズマが発生するが、被加工材表面に接している水の慣性によってプラズマの膨張が抑えられるため、プラズマの圧力が高まり、その反力によってレーザビーム照射スポットの表面近傍に塑性変形を与えることが可能となる。この結果、被加工材の表面に圧縮応力を付与することができる。なお、処理は必ずしも水中で行なう必要は無く、水の噴流を加工面に吹き付ける、被加工材の表面に水膜を形成する、およびアクリル板などのレーザ光を透過させる媒質を用いる等の方法を用いても、プラズマの膨張が抑えられてその圧力を高める効果が得られるため、被加工材への圧縮応力の導入が可能である。また、図1に示すようなレーザビームが水中を透過する距離が比較的長い装置では、レーザビームの波長は水中透過性が良い可視波長等が好ましいが、被加工材の表面に1mm程度以下の水膜を形成して処理を行なう場合は、1μm帯の近赤外波長を持つレーザビームを用いることもできる。ビームスポットの形状は円形や楕円形であることが多いが、矩形等の形状であっても良い。以下では、円形のビームスポットを例として説明する。 FIG. 1 shows an example of an apparatus for performing a laser peening process on a metal object (workpiece). The workpiece 7 is immersed in a water tank 5 containing water having high laser beam permeability. A pulse laser beam 2 having a pulse width of about 10 ns emitted from the laser beam oscillator 1 is collected by a condenser lens 3 and irradiated onto the surface of the workpiece 7 through a window 4 attached to the water tank 5. The peak power density on the workpiece surface of the pulse laser beam 2 is 1 to 100 TW / m 2 . This pulsed laser beam irradiation generates plasma from the irradiation spot. However, since the expansion of the plasma is suppressed by the inertia of water in contact with the workpiece surface, the plasma pressure increases, and the reaction force causes the laser beam irradiation. It becomes possible to give plastic deformation near the surface of the spot. As a result, compressive stress can be applied to the surface of the workpiece. The treatment does not necessarily have to be performed in water, and a method such as spraying a jet of water on the processing surface, forming a water film on the surface of the workpiece, and using a medium that transmits laser light, such as an acrylic plate, etc. Even if it is used, since the effect of increasing the pressure by suppressing the expansion of the plasma can be obtained, it is possible to introduce a compressive stress to the workpiece. Further, in an apparatus in which the laser beam has a relatively long distance to penetrate through water as shown in FIG. 1, the wavelength of the laser beam is preferably a visible wavelength having good underwater permeability, but it is about 1 mm or less on the surface of the workpiece. When processing is performed by forming a water film, a laser beam having a near-infrared wavelength in the 1 μm band can also be used. The shape of the beam spot is often a circle or an ellipse, but may be a rectangle or the like. Hereinafter, a circular beam spot will be described as an example.

また図2に示すように、被加工材7の表面にレーザビーム2を吸収する材料層6を形成して処理を行なってもよい。この吸収材としてはプラスチックテープやブラックペイント等を用いる。この吸収材料層6の形成によって、レーザビームおよびプラズマからの熱入力により照射スポット部の表層近傍が溶融することによって該スポット部の表層近傍の圧縮応力が減少することを防ぐことができる。したがって、より少ないスポット数にて圧縮応力を付与できるという利点がある。   Further, as shown in FIG. 2, processing may be performed by forming a material layer 6 that absorbs the laser beam 2 on the surface of the workpiece 7. As this absorbent material, plastic tape, black paint, or the like is used. By forming this absorbing material layer 6, it is possible to prevent the compressive stress near the surface layer of the spot portion from being reduced by melting the surface layer of the irradiated spot portion due to heat input from the laser beam and plasma. Therefore, there is an advantage that compressive stress can be applied with a smaller number of spots.

図3に、本発明の方法を用いた、面状の被加工材に圧縮応力を付与するためのパルスレーザビームの照射方法を示す。最大主応力方向をY方向とする。図中に示すように、パルスレーザビームの重畳照射は、被加工材表面の最大主応力方向と直交する向きであるX方向をビームスポットの走査方向とし、ビームスポットの走査領域をY方向にずらしながら行なう。同じ走査領域内の隣接するビームスポットは互いに重なりあうように、ビームスポットを走査する。また、隣接する走査領域も互いに重なりあうように、処理を行なう。この走査領域の形成は図3において「L→L→L→…」のように連続的に行なう。ここで、ビームスポットの照射順序は必ずしも図3に示したような一筆書き順序である必要はなく、例えば図に示した「M5→N5」→「N6→M6」の一筆書き順序ではなく、「M5→N5」→「M6→N6」の処理順序で走査してもよい。ビームスポットの面積をSとしてN回のパルスレーザビームの照射によって面積Sの領域を重畳照射したとき、同一点に対するパルスレーザビームの照射回数の平均値を、S×N/Sで定義し、平均重畳回数と呼ぶ。本発明の方法では、平均重畳回数を大きくした条件で処理を行なうことで、被加工材表面の残留圧縮応力に異方性を生じさせ、Y方向の圧縮応力を選択的に強化する。この結果、被加工材の引張強度と同程度の圧縮応力をY方向に付与することが可能であり、疲労強度を大きく高めることができる。以下では、Y方向の選択的強化のメカニズムについて説明する。 FIG. 3 shows a pulse laser beam irradiation method for applying a compressive stress to a planar workpiece using the method of the present invention. The maximum principal stress direction is defined as the Y direction. As shown in the figure, pulsed laser beam superimposition is performed by shifting the X direction, which is the direction orthogonal to the maximum principal stress direction of the workpiece surface, to the beam spot scanning direction and shifting the beam spot scanning area in the Y direction. While doing. The beam spots are scanned so that adjacent beam spots in the same scanning region overlap each other. In addition, processing is performed so that adjacent scanning regions overlap each other. The formation of the scanning region is continuously performed as “L 1 → L 2 → L 3 →...” In FIG. Here, the irradiation order of the beam spots does not necessarily have to be the one-stroke drawing order as shown in FIG. 3. For example, “M5 → N5” → “N6 → M6” shown in FIG. You may scan in the process order of M5-> N5 "->"M6-> N6 ". When the area of the area S 1 is superimposed and irradiated by N times of irradiation with the pulse laser beam with the area of the beam spot as S 0 , the average value of the number of irradiation times of the pulse laser beam with respect to the same point is S 0 × N / S 1 . Define and call it the average number of superpositions. In the method of the present invention, the process is performed under the condition that the average number of superpositions is increased, thereby causing anisotropy in the residual compressive stress on the surface of the work material and selectively strengthening the compressive stress in the Y direction. As a result, a compressive stress equivalent to the tensile strength of the workpiece can be applied in the Y direction, and the fatigue strength can be greatly increased. Below, the mechanism of selective strengthening in the Y direction will be described.

平均重畳回数を大きくした条件では、図3中点Pの応力は、その真上から走査領域が形成される時点、すなわち図3中Lが形成される時点で降伏し、X方向、Y方向の応力は飽和する。この時点では、X方向・Y方向の応力に差はない。その後、図3にL、L、L…で示す複数列の走査領域が形成される。以下で説明するように、これらの走査領域は、点PにおけるY方向の圧縮応力を選択的に強化する作用を及ぼす。 The conditions to increase the average superposition times, stresses FIG midpoint P is surrendered at the time, i.e. 3 in L 4 is formed scanned region from directly above is formed, X direction, Y direction The stress is saturated. At this time, there is no difference in stress in the X direction and the Y direction. Thereafter, a plurality of rows of scanning regions indicated by L 5 , L 6 , L 7 ... In FIG. As will be described below, these scanning regions have an effect of selectively strengthening the compressive stress in the Y direction at the point P.

図5は、図4に示すように、X方向に1本のみ走査領域を形成した際に、その垂直な方向(Y方向)に生じる残留応力の分布をX線残留応力測定装置を用いて測定したものである。試験片は440MPa級炭素鋼を用いて作成した。試験片の表面には、レーザビームを吸収する吸収材料層として厚み200μmのプラスチックテープを設けて処理した。処理は図2に示す装置で行ない、レーザビームは水中透過性の良いNd:YAGレーザの第二高調波(波長532nm)を用いた。パルスレーザビームの時間幅は10nsであった。レーザビームは焦点距離100mmの凸レンズで集光した。図4に示すように、試験片上でのスポットの形は円形であり、スポット直径は0.4mm、隣接するビームスポットの中心間の距離は0.1mmとした。ここでスポット直径は、ビーム全体のパワーの86%が入る直径として定義した(以下でも同じ定義を用いる)。ピークパワー密度は50TW/mとした。図5に示す測定結果において、マイナス符号は残留応力が圧縮応力であることを意味し、その絶対値が大きいほど、圧縮応力が高く、疲労強度に効果的である。ビームスポットの走査領域の外側(Y>0.2mm)にも圧縮応力の影響が及んでおり、その大きさは、X方向の圧縮応力よりも、Y方向の圧縮応力の方が大きくなっている。 FIG. 5 shows the distribution of residual stress generated in the vertical direction (Y direction) when only one scanning region is formed in the X direction, as shown in FIG. 4, using an X-ray residual stress measuring device. It is a thing. The test piece was made using 440 MPa class carbon steel. The surface of the test piece was treated by providing a 200 μm thick plastic tape as an absorbing material layer that absorbs the laser beam. The processing was performed with the apparatus shown in FIG. 2, and the second harmonic (wavelength 532 nm) of an Nd: YAG laser having good underwater permeability was used as the laser beam. The time width of the pulse laser beam was 10 ns. The laser beam was condensed with a convex lens having a focal length of 100 mm. As shown in FIG. 4, the spot shape on the test piece was circular, the spot diameter was 0.4 mm, and the distance between the centers of adjacent beam spots was 0.1 mm. Here, the spot diameter was defined as the diameter at which 86% of the power of the entire beam enters (hereinafter, the same definition is used). Peak power density was 50TW / m 2. In the measurement results shown in FIG. 5, the minus sign means that the residual stress is a compressive stress. The larger the absolute value, the higher the compressive stress and the more effective the fatigue strength. The compressive stress also affects the outside of the beam spot scanning region (Y> 0.2 mm), and the magnitude of the compressive stress in the Y direction is larger than the compressive stress in the X direction. .

この結果を踏まえると、図3にL、L、L…で示す複数列の走査領域は、これらの走査領域の外側にあるP点に対して、X方向の圧縮応力よりもY方向の圧縮応力を強化する作用を及ぼすことが分かる。P点の応力はLが形成された時点で降伏に至り、既に飽和しているため、これらの走査領域の形成によってX方向の圧縮応力は減ってしまうが、その代償として、最大主応力方向であるY方向の圧縮応力はさらに高めることが可能となる。以下では、この効果を実験にて確かめた結果について述べる。 Based on this result, a plurality of rows of scanning regions indicated by L 5 , L 6 , L 7 ... In FIG. 3 have a Y point rather than a compressive stress in the X direction with respect to the point P outside these scanning regions. It turns out that it has the effect | action which strengthens the compressive stress. Since the stress at the point P reaches yield when the L 4 is formed and is already saturated, the compression stress in the X direction is reduced by the formation of these scanning regions, but at the cost of the maximum principal stress direction It is possible to further increase the compressive stress in the Y direction. Below, the result of having confirmed this effect by experiment is described.

実験では、図3に示す一筆書き順序でビームスポットを照射することによって付与される圧縮応力を、平均重畳回数を変えながら調べた。同一走査領域内の隣接するビームスポットの間隔と、隣接する走査領域(例えば図3中のLとL)の中心線間の距離が等しくなるように処理した。試験片は440MPa級炭素鋼を用いて作成した。処理には図1もしくは図2に示す装置を用い、水槽中に浸漬した試験片にレーザビームを照射した。図2はレーザビームを吸収する吸収材料層を設けて処理する場合、図1は試験片の表面にレーザビームを吸収する材料層を形成せずに処理する場合に相当する。レーザビームは水中透過性の良いNd:YAGレーザの第二高調波(波長532nm)を用いた。パルスレーザビームの時間幅は10nsであった。レーザビームは焦点距離100mmの凸レンズで集光した。試験片上でのスポットの形は円形であり、スポット直径は0.4mmであった。ピークパワー密度は50TW/mとした。試験片の残留応力はX線残留応力測定装置を用いて測定した。 In the experiment, the compressive stress applied by irradiating the beam spot in the single stroke order shown in FIG. 3 was examined while changing the average number of times of superimposition. Processing was performed so that the distance between adjacent beam spots in the same scanning region was equal to the distance between the center lines of adjacent scanning regions (for example, L 1 and L 2 in FIG. 3). The test piece was made using 440 MPa class carbon steel. The apparatus shown in FIG. 1 or FIG. 2 was used for the treatment, and a test piece immersed in a water bath was irradiated with a laser beam. FIG. 2 corresponds to a case where an absorption material layer that absorbs a laser beam is provided and processed, and FIG. 1 corresponds to a case where a material layer that absorbs a laser beam is not formed on the surface of a test piece. The laser beam used was a second harmonic (wavelength 532 nm) of an Nd: YAG laser having good underwater permeability. The time width of the pulse laser beam was 10 ns. The laser beam was condensed with a convex lens having a focal length of 100 mm. The spot shape on the test piece was circular and the spot diameter was 0.4 mm. Peak power density was 50TW / m 2. The residual stress of the test piece was measured using an X-ray residual stress measuring device.

図6、図7に、表面の残留応力の平均重畳回数依存性を示す。図6はレーザビームを吸収する吸収材料層として厚み200μmのプラスチックテープを設けて処理した場合の結果、図7は吸収材料層を形成せずに処理した場合の結果である。いずれの場合も、平均重畳回数を増加させるほど圧縮応力が大きくなり、吸収材料層があるときは平均重畳回数を2回以上、また吸収材料層がないときは4回以上とすればY方向の圧縮応力を選択的に高められることが判る。因みに吸収材料層を形成せずに平均重畳回数を14回とした条件ではY方向の圧縮応力は−498MPaであり、鋼材の一軸引張強度(440MPa)の113%と高い値になっている。   6 and 7 show the dependence of the residual stress on the surface on the average number of times of superposition. FIG. 6 shows the result of processing with a 200 μm-thick plastic tape as the absorbing material layer that absorbs the laser beam, and FIG. 7 shows the result of processing without forming the absorbing material layer. In either case, the compressive stress increases as the average number of superpositions increases. If the average number of superpositions is 2 times or more when there is an absorbent material layer, and 4 times or more when there is no absorbent material layer, the Y direction is increased. It can be seen that the compressive stress can be selectively increased. Incidentally, the compressive stress in the Y direction is −498 MPa under the condition where the average number of superpositions is 14 without forming the absorbent material layer and is a high value of 113% of the uniaxial tensile strength (440 MPa) of the steel material.

ところで、Y方向の圧縮応力は、走査方向がX方向と平行である場合に最も大きくなるが、走査方向は必ずしもX方向と完全に一致していなくてもよい。   By the way, the compressive stress in the Y direction becomes the largest when the scanning direction is parallel to the X direction, but the scanning direction does not necessarily coincide with the X direction.

吸収材料層を形成しないで行なう処理は、吸収材の形成という工程を省くことができ、生産性の観点から有利である。ただし前述したが、この方法では、レーザビームおよびプラズマからの熱入力によって、照射スポット部の表層近傍が溶融し、該スポット部の表層近傍の圧縮応力が減少し易いという問題がある。しかしながら図7を見ると判るように、平均重畳回数を4回以上として処理すれば、最表層近傍のY方向の圧縮応力も十分に強化することが可能である。この溶融部の圧縮化は、平均重畳回数の増加とともに、溶融部が生成した後にその周辺部に多数のレーザパルスが照射されることにより圧縮応力が付与される効果、ならびに、溶融部の除去加工が生じることによる圧縮化効果が大きくなるために生じる。ただし、これらの効果は、溶融部が生成した後、その周辺部に多数のレーザパルスが照射されることが必要であるため、一連の処理の最後の方でレーザパルスが照射される部分に対してはこの効果は小さくなる。よって、図3に示すような一筆書き順序で処理した場合に、最後の数本の走査領域に関しては、付与される圧縮応力が小さくなるため、疲労強度向上効果が小さくなる。したがって、図3のような処理を施す領域は、金属物体表面における最大主応力が小さくなる領域まで含むようにとっておくことが効果的である。   The treatment performed without forming the absorbent material layer can omit the step of forming the absorbent material, which is advantageous from the viewpoint of productivity. However, as described above, this method has a problem that near the surface layer of the irradiated spot portion is melted by heat input from the laser beam and plasma, and the compressive stress near the surface layer of the spot portion is likely to be reduced. However, as can be seen from FIG. 7, if the average number of superpositions is set to 4 or more, the compressive stress in the Y direction near the outermost layer can be sufficiently strengthened. The compression of the melted part is the effect of applying compressive stress by irradiating a lot of laser pulses to the peripheral part after the melted part has been generated, as well as the average number of superpositions, and the removal process of the melted part This occurs because the compression effect due to the occurrence of the problem increases. However, these effects require that a laser beam is irradiated at the end of a series of processing because it is necessary to irradiate the peripheral part with a large number of laser pulses after the melted part is generated. As a result, this effect is reduced. Therefore, when processing is performed in a single stroke order as shown in FIG. 3, since the applied compressive stress is reduced for the last several scanning regions, the effect of improving fatigue strength is reduced. Therefore, it is effective to include the region where the treatment as shown in FIG. 3 is performed up to the region where the maximum principal stress on the surface of the metal object is small.

吸収材料層を形成して行なう処理では、上記のような最表層の溶融が生じないため、平均重畳回数を2回以上とすることにより、Y方向に十分な圧縮応力を最表層より付与できる。平均重畳回数が大きい条件では、処理中に吸収材料層が蒸発してしまわないよう、レーザビーム吸収材料として金属製の箔等を用いることが望ましい。   In the treatment performed by forming the absorbent material layer, the outermost layer does not melt as described above. Therefore, by setting the average number of times of superposition twice or more, sufficient compressive stress can be applied from the outermost layer in the Y direction. Under conditions where the average number of superpositions is large, it is desirable to use a metal foil or the like as the laser beam absorbing material so that the absorbing material layer does not evaporate during processing.

鋼材等の被加工材について、一軸引張強度の異なる被加工材においてパルスレーザビームの照射条件や平均重畳回数を変えて、付与される圧縮応力の大きさを詳細に検討した。その結果、吸収材料層の有無にかかわらず、平均重畳回数の増加とともにY方向の圧縮応力を強化する効果は大きくなっていくが、この効果は飽和する。この効果を飽和させるために必要な平均重畳回数は、被加工材の一軸引張強度とパルスレーザビームの照射条件に依存して決まる。この平均重畳回数は、被加工材の一軸引張強度が大きくなるほど増加し、またパルスレーザビームのピークパワー密度が増加するほど減少する。被加工材の強度が大きく、パルスレーザビームのピークパワー密度が十分に得られない場合は、必要な平均重畳回数が100回を超えることがある。このような場合に、効果を飽和させるまで平均重畳回数を大きくして処理することは、コストの観点から望ましくない可能性がある。したがってそのような場合には、予定される使用条件で決まる所望の疲労強度から、最大主応力方向に必要な圧縮応力を見積もり、その圧縮応力を付与するために必要な平均重畳回数の下限値付近の条件で処理してもよい。   For workpieces such as steel, we examined in detail the amount of compressive stress applied to workpieces with different uniaxial tensile strengths by changing the pulse laser beam irradiation conditions and the average number of superpositions. As a result, the effect of strengthening the compressive stress in the Y direction increases as the average number of superpositions increases regardless of the presence or absence of the absorbing material layer, but this effect is saturated. The average number of times of superimposition necessary to saturate this effect is determined depending on the uniaxial tensile strength of the workpiece and the irradiation condition of the pulse laser beam. This average number of superpositions increases as the uniaxial tensile strength of the workpiece increases, and decreases as the peak power density of the pulse laser beam increases. When the strength of the workpiece is high and the peak power density of the pulse laser beam cannot be sufficiently obtained, the required average number of superpositions may exceed 100. In such a case, it may be undesirable from the viewpoint of cost to increase the average number of times of superimposition until the effect is saturated. Therefore, in such a case, the compressive stress required in the direction of the maximum principal stress is estimated from the desired fatigue strength determined by the intended use conditions, and is near the lower limit of the average number of times of superimposition necessary for applying the compressive stress. You may process on condition of this.

次に、穴を有する被加工材に圧縮応力を付与するための方法について説明する。ここでは、穴の周方向に負荷される応力によって疲労強度が問題となる被加工材に対する処理を示す。図8に本発明の照射方法を示す。図中に示すように、走査方向は常に周方向と直角をなす向きにとり、穴8の全周にわたり重畳照射する。上述したように、平均重畳回数を大きくした条件で処理すれば、穴8の全周にわたり、周方向の圧縮応力を選択的に高めることが可能となる。なお、疲労強度が問題になる領域が周の一部分に限られているような場合は、パルスレーザビームを穴の全周にわたり重畳照射する必要はなく、疲労強度が問題となる部分を含む領域にのみ重畳照射すればよい。例えば、穴8の両端部の2点において、穴8の周の接線方向が最大主応力方向となり、この方向の強化が必要となる場合は、図9に示すように照射することが効果的である。図中に示すように、レーザビームのスポットを、疲労強度が問題となるA点およびB点における最大主応力方向(図9中Y方向)と直角をなす方向(図9中X方向)に走査する。このような処理によって、A点およびB点における最大主応力方向の圧縮応力を選択的に高めることができる。   Next, a method for applying compressive stress to a workpiece having holes will be described. Here, the process with respect to the to-be-processed material in which fatigue strength becomes a problem by the stress applied to the circumferential direction of a hole is shown. FIG. 8 shows the irradiation method of the present invention. As shown in the figure, the scanning direction is always in a direction perpendicular to the circumferential direction, and the entire periphery of the hole 8 is overlaid. As described above, if the process is performed under the condition that the average number of superpositions is increased, the circumferential compressive stress can be selectively increased over the entire circumference of the hole 8. When the region where fatigue strength is a problem is limited to a part of the circumference, it is not necessary to irradiate the pulse laser beam over the entire circumference of the hole, and the region including the part where the fatigue strength is a problem is not necessary. Only superimposing irradiation is necessary. For example, when the tangential direction of the circumference of the hole 8 is the maximum principal stress direction at two points on both ends of the hole 8, and it is necessary to strengthen this direction, it is effective to irradiate as shown in FIG. is there. As shown in the figure, the laser beam spot is scanned in a direction (X direction in FIG. 9) perpendicular to the maximum principal stress direction (Y direction in FIG. 9) at points A and B where fatigue strength is a problem. To do. By such a process, the compressive stress in the maximum principal stress direction at the points A and B can be selectively increased.

次に、溝等の切り欠きを有する被加工材に圧縮応力を付与するための方法について説明する。ここでは図10に示すように、半径Rの半円形状を持つ溝の底部において、溝に沿った向きと直角をなす方向(Y方向)が最大主応力方向となるために疲労強度が問題となる被加工材を考える。図10の平面図に示すように、溝部へのパルスレーザビームの重畳照射は、溝に沿った向きを走査方向にとって行なう。溝の底部におけるY方向の圧縮応力を選択的に強化するために、図10中にLで示す走査領域を溝底部中心付近に形成した後に、溝底部の中心線よりも右側の領域にもLで示すような走査領域を形成する。Lのように、溝底部の中心線から離れた部分への照射では、Y方向に対して処理面が傾斜しているため、断面図中l方向からレーザビームを入射させる場合には、溝底部中心線上へ照射する場合(L)よりもピークパワー密度が下がることになる。ここで所定のピークパワー密度(1〜100TW/m)に満たない場合は、lで示すように、レーザ入射方向をZ方向から傾けることが望ましい。なお、ここでは半円形状を持つ溝を有する被加工材への処理例を示したが、上記方法は、例えば楕円形状等、任意の曲率を持った断面形状に対して適用可能である。 Next, a method for applying compressive stress to a workpiece having notches such as grooves will be described. Here, as shown in FIG. 10, at the bottom of the groove having a semicircular shape with a radius R, the direction (Y direction) perpendicular to the direction along the groove is the maximum principal stress direction, so that the fatigue strength is a problem. Consider the workpiece. As shown in the plan view of FIG. 10, the pulsed laser beam is superimposedly irradiated on the groove with the direction along the groove set in the scanning direction. To enhance the Y-direction compressive stress at the bottom of the groove selectively, after forming the scanning area indicated by L 2 in the vicinity of the groove bottom center in FIG. 10, in right region of the center line of the groove bottom forming the scan region as shown by L 3. When irradiating a portion away from the center line of the groove bottom as in L 3, the treatment surface is inclined with respect to the Y direction. Therefore, when a laser beam is incident from the l 1 direction in the cross-sectional view, The peak power density is lower than when irradiating on the groove bottom center line (L 2 ). Here, when the predetermined peak power density (1 to 100 TW / m 2 ) is not reached, it is desirable to tilt the laser incident direction from the Z direction as indicated by l 2 . In addition, although the example of a process to the workpiece which has a groove | channel with a semicircle shape was shown here, the said method is applicable with respect to cross-sectional shapes with arbitrary curvatures, such as an ellipse shape, for example.

以下、本発明の実施例として、被加工材である試験片に対して、種々のパルスレーザビームの照射条件でレーザピーニング処理した後、疲労試験を実施した結果を説明する。レーザピーニング処理は図1もしくは図2に示す装置を用いて行なった。図1は試験片の表面にレーザビームを吸収する材料層を形成せずに処理する場合、図2は吸収材料層を形成して処理する場合にそれぞれ対応する。試験片は水槽中に浸漬し、パルスレーザビームを水槽に取り付けられた窓を通して試験片の表面に照射した。レーザビームは水中透過性の良いNd:YAGレーザの第二高調波(波長532nm)を用いた。パルスレーザビームの時間幅は10nsであった。レーザビームは焦点距離100mmの凸レンズで集光した。試験片上でのスポットの形は円形であり、スポット直径は0.3mmであった。ピークパワー密度は50TW/mとした。以下で説明する第1〜第3の実施例におけるレーザ処理では、図3に示す一筆書き順序でビームスポットを形成したが、同一走査領域内の隣接するビームスポットの間隔と、隣接する走査領域の中心線間の距離が等しくなるように処理を行なった。 Hereinafter, as an example of the present invention, a result of performing a fatigue test after subjecting a test piece, which is a workpiece, to laser peening treatment under various pulse laser beam irradiation conditions will be described. The laser peening process was performed using the apparatus shown in FIG. 1 or FIG. FIG. 1 corresponds to the case of processing without forming a material layer that absorbs a laser beam on the surface of the test piece, and FIG. 2 corresponds to the case of processing by forming an absorbing material layer. The test piece was immersed in a water bath, and the surface of the test piece was irradiated with a pulse laser beam through a window attached to the water bath. The laser beam used was a second harmonic (wavelength 532 nm) of an Nd: YAG laser having good underwater permeability. The time width of the pulse laser beam was 10 ns. The laser beam was condensed with a convex lens having a focal length of 100 mm. The spot shape on the test piece was circular, and the spot diameter was 0.3 mm. Peak power density was 50TW / m 2. In the laser processing in the first to third embodiments described below, the beam spots are formed in the single stroke order shown in FIG. 3, but the interval between adjacent beam spots in the same scanning region and the adjacent scanning region are changed. Processing was performed so that the distances between the center lines were equal.

(第1の実施例)
本発明の第1の実施例として、面状の被加工材に圧縮応力を付与し、平面曲げ疲労試験を実施した結果を示す。440MPa級炭素鋼を用いて作成した試験片の形状を図11に示す。荷重作用方向は長手方向(図11中Y方向)とし、荷重条件は両振りとした。図中に示すように、試験片の荷重方向と直交する向き(図11中X方向)を走査方向とする一筆書き順序にて、パルスレーザビームを照射した。処理は荷重方向の20mm幅にわたり行ない、また、両面に施した。各種処理条件に対する疲労試験結果を表1に示す。表1には、処理領域中心部である図11中P点の表面の残留応力を、X線残留応力測定装置を用いて測定した結果も示す。疲労強度としては、破断寿命が200万回になる応力範囲を用いた。条件1は比較例で、レーザ処理を施さなかった試験片に対する結果である。条件2〜5は試験片の表面にレーザビームを吸収する材料層を設けずにレーザ処理を施した場合である。条件2は、平均重畳回数が1.7回の比較例であるが、X方向とY方向の残留応力は共に引張であり、疲労強度の向上は見られなかった。平均重畳回数を3.5回とした条件3(比較例)では、Y方向の圧縮応力が小さいために疲労強度向上効果が小さかったが、平均重畳回数を6.9回とした条件4(本発明例)では、疲労強度が約25%向上した。さらに、平均重畳回数を14回とした条件5(本発明例)では、鋼材の引張強度である440MPaと同程度の大きさの圧縮応力(−451MPa)をY方向に付与することができ、約40%の疲労強度の向上が得られた。このように、平均重畳回数を増加させるほど荷重方向であるY方向の圧縮応力が選択的に高められ、疲労強度が向上することが判った。条件6〜9では、試験片の表面にレーザビームを吸収する吸収材料層として厚み200μmのプラスチックテープを設けて処理した。この場合も、平均重畳回数を増加させるほど、Y方向の圧縮応力を選択的に高めることができ、疲労強度を向上させられることが判った。平均重畳回数を3.5回とした条件8(本発明例)で、約25%の疲労強度向上が得られた。条件6、7は、平均重畳回数が2回未満の比較例であるが、X方向とY方向の残留応力にほとんど差がなく、得られる疲労強度の向上は15%以下であった。

Figure 0004690895
(First embodiment)
As a first embodiment of the present invention, the results of applying a plane bending fatigue test by applying a compressive stress to a planar workpiece are shown. The shape of the test piece created using 440 MPa class carbon steel is shown in FIG. The load acting direction was the longitudinal direction (Y direction in FIG. 11), and the load condition was double swing. As shown in the figure, the pulse laser beam was irradiated in a one-stroke writing order in which the direction perpendicular to the load direction of the test piece (the X direction in FIG. 11) was the scanning direction. The treatment was performed over a width of 20 mm in the load direction, and was performed on both sides. Table 1 shows the fatigue test results for various processing conditions. Table 1 also shows the result of measuring the residual stress on the surface of point P in FIG. 11 which is the center of the processing region, using an X-ray residual stress measuring apparatus. As the fatigue strength, a stress range in which the fracture life was 2 million times was used. Condition 1 is a comparative example, and is a result for a test piece not subjected to laser treatment. Conditions 2 to 5 are cases where laser treatment was performed without providing a material layer that absorbs the laser beam on the surface of the test piece. Condition 2 is a comparative example with an average number of superpositions of 1.7, but the residual stresses in the X direction and Y direction were both tensile, and fatigue strength was not improved. In condition 3 (comparative example) in which the average number of superpositions was 3.5, the fatigue strength improvement effect was small because the compressive stress in the Y direction was small, but in condition 4 (in this case, the average number of superpositions was 6.9) In Invention Example, the fatigue strength was improved by about 25%. Furthermore, in condition 5 (example of the present invention) where the average number of times of superposition is 14 times, a compressive stress (−451 MPa) of the same magnitude as 440 MPa, which is the tensile strength of the steel material, can be applied in the Y direction. A 40% improvement in fatigue strength was obtained. Thus, it was found that the compressive stress in the Y direction, which is the load direction, was selectively increased as the average number of superpositions was increased, and the fatigue strength was improved. Under conditions 6 to 9, a 200 μm-thick plastic tape was provided as the absorbing material layer for absorbing the laser beam on the surface of the test piece. Also in this case, it was found that the compressive stress in the Y direction can be selectively increased and the fatigue strength can be improved as the average number of superpositions is increased. Under condition 8 (invention example) where the average number of times of superposition was 3.5, an improvement in fatigue strength of about 25% was obtained. Conditions 6 and 7 are comparative examples in which the average number of times of superposition was less than 2, but there was almost no difference in residual stress in the X direction and Y direction, and the obtained improvement in fatigue strength was 15% or less.
Figure 0004690895

(第2の実施例)
本発明の第2の実施例として、穴を有する金属物体に対して、穴周囲における疲労強度向上効果を検証するために行なった疲労試験の結果を示す。図12に示すような、直径6mmのくびれた部分の中央に直径1mmの貫通穴が開いた試験片を用いて小野式回転曲げ疲労試験を実施した。試験片は440MPa級炭素鋼を用いて作成した。試験片の貫通穴付近に応力集中が生じ、図中A点およびB点において応力は最大となり、その最大主応力方向はY方向となる。この方向の圧縮応力を高めるために、図12に示すようにX方向を走査方向とする一筆書き順序にて重畳照射を行なった。この照射は、穴の中心を中心とする4mm×4mmの矩形領域(図12中斜線部)内の貫通穴を除いた部分に対して行なった。表2に疲労試験結果を示す。表には、A点におけるY方向の残留応力を測定した結果も示す。条件10は比較例で、レーザ処理を施さなかった試験片に対する結果である。条件11、12は、試験片の表面にレーザビームを吸収する材料層を形成しなかった場合であり、条件13、14は吸収材料層として厚み200μmのプラスチックテープを設けた場合である。いずれの場合についても、比較例よりも平均重畳回数を大きくした条件で処理した本発明の例の方が大きな疲労強度向上が見られた。本発明の例である条件12、14では、比較例に対して60%を超える疲労強度の向上が得られた。

Figure 0004690895
(Second embodiment)
As a second embodiment of the present invention, the results of a fatigue test performed to verify the effect of improving fatigue strength around a hole on a metal object having a hole are shown. As shown in FIG. 12, an Ono type rotating bending fatigue test was conducted using a test piece having a through hole with a diameter of 1 mm in the center of a constricted portion with a diameter of 6 mm. The test piece was made using 440 MPa class carbon steel. Stress concentration occurs in the vicinity of the through hole of the test piece, the stress is maximum at points A and B in the figure, and the maximum principal stress direction is the Y direction. In order to increase the compressive stress in this direction, as shown in FIG. 12, superimposed irradiation was performed in a single stroke order with the X direction as the scanning direction. This irradiation was performed on a portion excluding a through hole in a 4 mm × 4 mm rectangular region (shaded portion in FIG. 12) centering on the center of the hole. Table 2 shows the fatigue test results. The table also shows the result of measuring the residual stress in the Y direction at point A. Condition 10 is a comparative example, and is a result for a test piece not subjected to laser treatment. Conditions 11 and 12 are when the material layer that absorbs the laser beam is not formed on the surface of the test piece, and Conditions 13 and 14 are when the plastic tape having a thickness of 200 μm is provided as the absorbing material layer. In any case, the fatigue strength of the example of the present invention processed under the condition that the average number of superpositions was larger than that of the comparative example was found to be larger. Under conditions 12 and 14 which are examples of the present invention, an improvement in fatigue strength exceeding 60% was obtained with respect to the comparative example.
Figure 0004690895

(第3の実施例)
本発明の第3の実施例として、溝を有する金属物体に対して、溝の底部における疲労強度向上効果を検証するために行なった疲労試験の結果を示す。図13に示すような、直径6mmのくびれた部分の中央部の全周にわたりR=0.5mmの溝をつけた試験片を用いて小野式回転曲げ疲労試験を実施した。試験片は440MPa級炭素鋼を用いて作成した。最大主応力が発生するのはY方向であり、この方向の圧縮応力を高めるために、試験片の周方向を走査方向としながら溝部周りに螺旋状に重畳照射を行なった。処理は、溝の曲率のついた部分全体(図13中斜線部)に対して行なった。表3に疲労試験結果を示す。表には、溝底部におけるY方向の残留応力を測定した結果も示す。条件15は比較例で、レーザ処理を施さなかった試験片に対する結果である。条件17に示すように、試験片の表面にレーザビームを吸収する材料層を形成せず、平均重畳回数14回で処理したところ、50%を超える疲労強度向上効果が得られた。条件16は平均重畳回数を1.7回とした比較例であるが、疲労強度の向上はほとんど得られなかった。

Figure 0004690895
(Third embodiment)
As a third embodiment of the present invention, the results of a fatigue test performed to verify the fatigue strength improvement effect at the bottom of the groove on a metal object having a groove are shown. As shown in FIG. 13, an Ono type rotating bending fatigue test was performed using a test piece having a groove of R = 0.5 mm over the entire circumference of the center portion of the constricted portion having a diameter of 6 mm. The test piece was made using 440 MPa class carbon steel. The maximum principal stress is generated in the Y direction, and in order to increase the compressive stress in this direction, the overlapping irradiation was performed spirally around the groove portion while the circumferential direction of the test piece was set as the scanning direction. The treatment was performed on the entire grooved portion (shaded area in FIG. 13). Table 3 shows the fatigue test results. The table also shows the result of measuring the residual stress in the Y direction at the groove bottom. Condition 15 is a comparative example, and is a result for a test piece not subjected to laser treatment. As shown in Condition 17, when the material layer that absorbs the laser beam was not formed on the surface of the test piece and the treatment was performed with an average number of superpositions of 14 times, an effect of improving fatigue strength exceeding 50% was obtained. Condition 16 is a comparative example in which the average number of superpositions was 1.7, but almost no improvement in fatigue strength was obtained.
Figure 0004690895

レーザビーム照射装置を示す平面図である。It is a top view which shows a laser beam irradiation apparatus. レーザビーム照射装置を示す平面図である。It is a top view which shows a laser beam irradiation apparatus. 本発明のレーザビーム照射方法を示す平面図である。It is a top view which shows the laser beam irradiation method of this invention. レーザビーム照射方法を示す平面図である。It is a top view which shows the laser beam irradiation method. レーザビームのスポット走査領域周辺の圧縮応力分布を示すグラフである。It is a graph which shows the compressive-stress distribution around the spot scanning area | region of a laser beam. レーザピーニング処理したサンプルの応力を示すグラフである。It is a graph which shows the stress of the sample which carried out the laser peening process. レーザピーニング処理したサンプルの応力を示すグラフである。It is a graph which shows the stress of the sample which carried out the laser peening process. 穴周辺へのレーザビーム照射方法を示す平面図である。It is a top view which shows the laser beam irradiation method to a hole periphery. 穴周辺へのレーザビーム照射方法を示す平面図である。It is a top view which shows the laser beam irradiation method to a hole periphery. 溝部へのレーザビーム照射方法を示す図である。It is a figure which shows the laser beam irradiation method to a groove part. 本発明の実施例で用いた試験片を示す平面図である。It is a top view which shows the test piece used in the Example of this invention. 本発明の実施例で用いた試験片を示す平面図である。It is a top view which shows the test piece used in the Example of this invention. 本発明の実施例で用いた試験片を示す平面図である。It is a top view which shows the test piece used in the Example of this invention.

符号の説明Explanation of symbols

1…レーザ光発振装置
2…レーザビーム
3…集光レンズ
4…光学窓
5…水槽
6…レーザビームを吸収する材料層
7…被加工材
8…穴
DESCRIPTION OF SYMBOLS 1 ... Laser beam oscillator 2 ... Laser beam 3 ... Condensing lens 4 ... Optical window 5 ... Water tank 6 ... Material layer 7 which absorbs a laser beam ... Work material 8 ... Hole

Claims (7)

被加工材の表面にパルスレーザビームを集光、照射して得るビームスポットで該表面を走査して、該表面に残留圧縮応力を発生させて、該表面に前記パルスレーザビームを重畳照射して、表面の面内の特定方向に残留圧縮応力を付与するレーザピーニング処理方法であって、
前記被加工材が構造用部材で使用時に荷重応力が負荷されるものであり、前記特定方向が該被加工材の表面における最大主応力の方向であることを特徴とするレーザピーニング処理方法。
Scanning the surface with a beam spot obtained by focusing and irradiating the surface of the workpiece with a pulsed laser beam, generating residual compressive stress on the surface, and superimposing the pulsed laser beam on the surface , A laser peening treatment method for applying a residual compressive stress in a specific direction within the surface,
A laser peening treatment method, wherein a load stress is applied when the workpiece is a structural member, and the specific direction is a direction of a maximum principal stress on a surface of the workpiece.
前記被加工材の表面に前記パルスレーザビームを吸収する材料層を形成して、前記パルスレーザビームの重畳照射を行なうことを特徴とする請求項1に記載のレーザピーニング処理方法。   2. The laser peening method according to claim 1, wherein a material layer that absorbs the pulse laser beam is formed on a surface of the workpiece, and the pulse laser beam is superimposed and irradiated. 前記パルスレーザビームの重畳照射が、該被加工材の表面における最大主応力の方向と直交する向きに前記ビームスポットを走査して、且つ該走査を最大主応力の方向に位置をずらしながら複数回行なうものであって、前記表面の同一点における前記パルスレーザビームの照射回数の平均値である平均重畳回数が4回以上であり、且つ平均重畳回数を、被加工材の強度、パルスレーザビームの照射条件、および所望の圧縮応力値に基づいて決定することを特徴とする請求項1に記載のレーザピーニング処理方法。 The superimposed irradiation of the pulse laser beam scans the beam spot in a direction orthogonal to the direction of the maximum principal stress on the surface of the workpiece, and the scanning is performed a plurality of times while shifting the position in the direction of the maximum principal stress. The average number of times of superimposition, which is an average value of the number of times of irradiation of the pulse laser beam at the same point on the surface, is 4 times or more, and the average number of times of superimposition depends on the strength of the workpiece, the pulse laser beam 2. The laser peening processing method according to claim 1, wherein the laser peening processing method is determined based on irradiation conditions and a desired compressive stress value. 請求項3に記載のレーザピーニング処理方法において、
さらに前記パルスレーザビームの重畳照射を行なう前に、前記被加工材の表面に前記パルスレーザビームを吸収する材料層を形成し、且つ前記表面の同一点における前記パルスレーザビームの照射回数の平均値である平均重畳回数が2回以上であり、且つ平均重畳回数を、被加工材の強度、パルスレーザビームの照射条件、および所望の圧縮応力値に基づいて決定することを特徴とするレーザピーニング処理方法。
In the laser peening processing method according to claim 3,
Furthermore, before performing the superimposed irradiation of the pulse laser beam, a material layer that absorbs the pulse laser beam is formed on the surface of the workpiece, and an average value of the number of irradiation times of the pulse laser beam at the same point on the surface And the average number of times of superposition is determined based on the strength of the workpiece, the irradiation condition of the pulse laser beam, and a desired compressive stress value. Method.
前記被加工材は表面に穴を有し、使用時に応力が負荷されるものであって、該穴の周囲における最大主応力の方向が該穴の周方向であることを特徴とする請求項1〜4の内の1項に記載のレーザピーニング処理方法。   2. The workpiece has a hole on its surface and is stressed during use, and the direction of the maximum principal stress around the hole is the circumferential direction of the hole. The laser peening processing method according to one of items 1 to 4. 前記被加工材は表面に溝を有し使用時に応力が負荷されるものであって、該溝の底部における最大主応力の方向が溝に沿った向きと直角をなす方向であることを特徴とする請求項1〜4の内の1項に記載のレーザピーニング処理方法。   The workpiece has a groove on its surface and is stressed during use, and the direction of the maximum principal stress at the bottom of the groove is a direction perpendicular to the direction along the groove. The laser peening processing method according to claim 1. 請求項1〜6の内のいずれか1項に記載のレーザピーニング処理方法で製造した金属物体。
The metal object manufactured with the laser peening processing method of any one of Claims 1-6.
JP2006001584A 2005-01-11 2006-01-06 Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method Expired - Fee Related JP4690895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001584A JP4690895B2 (en) 2005-01-11 2006-01-06 Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005003450 2005-01-11
JP2005003450 2005-01-11
JP2006001584A JP4690895B2 (en) 2005-01-11 2006-01-06 Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method

Publications (2)

Publication Number Publication Date
JP2006218541A JP2006218541A (en) 2006-08-24
JP4690895B2 true JP4690895B2 (en) 2011-06-01

Family

ID=36981192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001584A Expired - Fee Related JP4690895B2 (en) 2005-01-11 2006-01-06 Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method

Country Status (1)

Country Link
JP (1) JP4690895B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767595B2 (en) 2006-10-26 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
PL2211050T3 (en) 2007-11-12 2019-01-31 Nippon Steel & Sumitomo Metal Corporation Process for production of common rails and partially strengthened common rails
JP5654219B2 (en) * 2009-07-14 2015-01-14 富士重工業株式会社 Rotating tool for friction stir welding
JP5510806B2 (en) * 2010-03-04 2014-06-04 三菱マテリアル株式会社 Laser processing method
JP5813381B2 (en) * 2011-06-06 2015-11-17 株式会社東芝 Laser peening method
CN103112255A (en) * 2013-01-15 2013-05-22 安徽康蓝光电股份有限公司 Distributed type laser marking method of sapphire substrate
JP6208164B2 (en) * 2015-03-03 2017-10-04 三菱電機株式会社 Semiconductor module and manufacturing method thereof
CN104923606B (en) * 2015-04-23 2017-03-01 上海交通大学 A kind of light path device for large-scale workpiece laser shot forming and method
CN115052700A (en) * 2020-02-05 2022-09-13 三菱综合材料株式会社 Method for manufacturing cutting tool
JP7494077B2 (en) 2020-09-24 2024-06-03 浜松ホトニクス株式会社 Laser processing method and laser processing device
JP7096405B1 (en) * 2021-06-10 2022-07-05 株式会社ソディック Laminated modeling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JPH08206869A (en) * 1995-02-06 1996-08-13 Toshiba Corp Underwater laser beam processing method and device therefor
JPH08326502A (en) * 1995-03-06 1996-12-10 General Electric Co <Ge> Part for gas turbine engine
JPH11254156A (en) * 1997-12-18 1999-09-21 General Electric Co <Ge> Laser shock peening method using low energy laser beam
JP2003504212A (en) * 1999-07-19 2003-02-04 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Metal contouring by laser peening
JP2005248326A (en) * 2004-03-02 2005-09-15 General Electric Co <Ge> Low fluence boundary oblique laser shock peening

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246483A (en) * 1994-03-09 1995-09-26 Toshiba Corp Laser peening method
JPH08206869A (en) * 1995-02-06 1996-08-13 Toshiba Corp Underwater laser beam processing method and device therefor
JPH08326502A (en) * 1995-03-06 1996-12-10 General Electric Co <Ge> Part for gas turbine engine
JPH11254156A (en) * 1997-12-18 1999-09-21 General Electric Co <Ge> Laser shock peening method using low energy laser beam
JP2003504212A (en) * 1999-07-19 2003-02-04 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Metal contouring by laser peening
JP2005248326A (en) * 2004-03-02 2005-09-15 General Electric Co <Ge> Low fluence boundary oblique laser shock peening

Also Published As

Publication number Publication date
JP2006218541A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4690895B2 (en) Laser peening treatment method of metal object and metal object manufactured by laser peening treatment method
JP4392405B2 (en) Common rail and manufacturing method thereof
US6993948B2 (en) Methods for altering residual stresses using mechanically induced liquid cavitation
JP2008178888A (en) Laser peening method of metallic object
KR100956026B1 (en) Laser welding method for galvanized steel sheet
KR101625948B1 (en) Ultrasonic vibration and laser-induced backside wet etching drilling apparatus
CN1708593A (en) Method of increasing toughness of heat-affected part of steel product welded joint
CN110607432B (en) Laser shock peening boundary effect control method
CN103817439A (en) Prefabricated welding material laser welding method capable of obviously improving joint tissue and stress state
Nüsser et al. Pulsed laser micro polishing of metals using dual-beam technology
Nakano et al. Femtosecond and nanosecond laser peening of stainless steel
JP2015217427A (en) Laser cleaning method
JP4764786B2 (en) Laser welding method
JP4977234B2 (en) Laser shock hardening method and apparatus
CN112941300A (en) Nanosecond-femtosecond laser composite impact strengthening system and method
Tsuyama et al. Effects of laser peening parameters on plastic deformation in stainless steel
KR100676333B1 (en) Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
JP2006122969A (en) Welded joint of metallic material and metallic clad material, and laser peening of casting material
JP4645853B2 (en) Method of deforming cross section of coated metal plate by laser beam and painted metal plate having this kind of cross section deformation
JP3899007B2 (en) Method for improving fatigue strength of lap fillet welded joints
KR101720087B1 (en) Welded joint having excellent fatigue property and method of manufacturing the same
JP5360253B2 (en) Laser peening processing method
JP4344221B2 (en) Lap laser welding method of galvanized steel sheet and welded joint of lap welded galvanized steel sheet
JP2007237192A (en) Laser peening method of metallic object and metallic object treated thereby
JP2009034696A (en) Butt welded joint excellent in fatigue characteristics, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110218

R151 Written notification of patent or utility model registration

Ref document number: 4690895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees