JP2011177782A - Laser beam machining method - Google Patents

Laser beam machining method Download PDF

Info

Publication number
JP2011177782A
JP2011177782A JP2010047395A JP2010047395A JP2011177782A JP 2011177782 A JP2011177782 A JP 2011177782A JP 2010047395 A JP2010047395 A JP 2010047395A JP 2010047395 A JP2010047395 A JP 2010047395A JP 2011177782 A JP2011177782 A JP 2011177782A
Authority
JP
Japan
Prior art keywords
laser beam
workpiece
processing
laser
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010047395A
Other languages
Japanese (ja)
Inventor
Masakuni Takahashi
正訓 高橋
Satoru Higano
哲 日向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010047395A priority Critical patent/JP2011177782A/en
Priority to CN2011100355679A priority patent/CN102189344A/en
Publication of JP2011177782A publication Critical patent/JP2011177782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining method for machining without causing any crack or the like by suppressing heat accumulation even when cutting a brittle material having high residual stress. <P>SOLUTION: This invention relates to a method for machining by irradiating a workpiece W with a laser beam, and the method includes a laser beam irradiation step where the laser beam is subjected to pulse oscillation to irradiate the workpiece W with the laser beam on a fixed cyclic frequency, and scanning the workpiece. A resin film 7 is adhered to a machining surface of the workpiece W, a metal film 8 is adhered to an opposing surface to the machining surface of the workpiece, the metal film 8 is tightly adhered to a mounting tool 4 to fix the workpiece W to the mounting tool 4, and the machining surface is irradiated with the laser beam from above the resin film 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば脆性材の切断加工などに好適なレーザ加工方法に関する。   The present invention relates to a laser processing method suitable for cutting a brittle material, for example.

一般に、焼成セラミックスシートなどのような脆性材の切断加工には、砥石による研削など力学的な方法で整形が行われている。しかしながら、焼成セラミックスシートなどは、焼結することにより内部に高い残留応力が発生していることから、特にその基板厚さが薄くなるほど、残留応力が高くなり、加工開始時のクラックの発生等が無いように加工することが困難であった。   In general, cutting of a brittle material such as a fired ceramic sheet is performed by a mechanical method such as grinding with a grindstone. However, since sintered ceramic sheets and the like generate high residual stress inside by sintering, the lower the substrate thickness, the higher the residual stress and the occurrence of cracks at the start of processing. It was difficult to process so that there was no.

また、所望の加工性状を得るために焼成セラミックスシートなどにレーザ光を照射することで、切断等の加工を施す方法も知られている。例えば、従来、特許文献1には、シート保持プレート上にセラミックグリーンシートを載置し、このセラミックグリーンシートにレーザを照射して穴加工または切断加工を行う方法であって、上記シート保持プレートはその表面に載置された物体を吸着保持する真空吸引手段を持ち、上記シート保持プレートとセラミックグリーンシートとの間には補助シートが介装されていると共に、セラミックグリーンシートの裏面にはキャリアフィルムが貼着され、上記レーザによってセラミックグリーンシートと共にキャリアフィルムも加工する方法が提案されている。   In addition, a method of performing processing such as cutting by irradiating a fired ceramic sheet or the like with laser light in order to obtain desired processing properties is also known. For example, conventionally, Patent Document 1 discloses a method of placing a ceramic green sheet on a sheet holding plate and irradiating the ceramic green sheet with a laser to perform drilling or cutting, wherein the sheet holding plate is It has a vacuum suction means for sucking and holding an object placed on its surface, an auxiliary sheet is interposed between the sheet holding plate and the ceramic green sheet, and a carrier film on the back surface of the ceramic green sheet And a method of processing a carrier film together with a ceramic green sheet by the laser has been proposed.

また、特許文献2には、レーザ光を用いた半導体ウェハの切断加工に使用するレーザ加工用粘着シートとして、基材と、この基材の一方の面に設けられた粘着剤層とを有したものが記載されている。
これらレーザ加工では、加工対象物の裏面にフィルムを接着してダイシング時に加工物を支持している。
Moreover, in patent document 2, it had a base material and the adhesive layer provided in one surface of this base material as an adhesive sheet for laser processing used for the cutting process of the semiconductor wafer using a laser beam. Things are listed.
In these laser processing, a film is bonded to the back surface of a workpiece to support the workpiece during dicing.

特許第3858382号公報Japanese Patent No. 3858382 特開2009−297734号公報JP 2009-297734 A

上記従来の技術には、以下の課題が残されている。
すなわち、従来のレーザ光を照射し、繰り返し走査してスクライブ溝を入れて割断する方法を用いた場合でも、加工途中の熱影響や不純物の分散具合により、スクライブ中に予期せぬ方向へとクラックが発生し分割してしまうという問題があった。特に、レーザ光による加工熱が加工対象物に蓄熱してしまい、加工対象物の応力が変化して亀裂やクラック等を発生させてしまう不都合があった。
The following problems remain in the conventional technology.
In other words, even when using the conventional method of irradiating laser light, repeatedly scanning, inserting and scribing scribe grooves, cracks in unexpected directions during scribing due to thermal effects during processing and the dispersion of impurities Has occurred and has been divided. In particular, the processing heat generated by the laser light is stored in the processing object, and the stress of the processing object changes to cause a crack or a crack.

本発明は、前述の課題に鑑みてなされたもので、高い残留応力を持つ脆性材の切断加工においても蓄熱を抑制して亀裂など生じさせることなく加工可能なレーザ加工方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a laser processing method that can be processed without causing cracks by suppressing heat storage even in cutting processing of a brittle material having high residual stress. And

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のレーザ加工方法は、加工対象物にレーザ光を照射して加工する方法であって、レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程を有し、前記加工対象物の加工面に樹脂フィルムを接着すると共に、前記加工対象物の加工面の反対面に金属フィルムを接着し、該金属フィルムを取り付け治具に密着させて該取り付け治具に前記加工対象物を固定し、前記樹脂フィルム上からレーザ光を前記加工面に照射することを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the laser processing method of the present invention is a method of processing by irradiating a processing target with a laser beam, wherein the laser beam oscillates and irradiates the processing target with a constant repetition frequency. An irradiation step, and a resin film is bonded to the processed surface of the processing object, a metal film is bonded to the opposite surface of the processing object, and the metal film is closely attached to a mounting jig The processing object is fixed to an attachment jig, and the processing surface is irradiated with laser light from the resin film.

このレーザ加工方法では、加工対象物の加工面に樹脂フィルムを接着すると共に、加工対象物の加工面の反対面に金属フィルムを接着し、樹脂フィルム上からレーザ光を加工面に照射するので、表面の樹脂フィルムにより入射されるレーザ光の中心以外の余剰なエネルギーが吸収されると共に、熱伝導性の高い裏面の金属フィルムを介して加工時の熱が取り付け治具に放熱されて、脆性材等の加工対象物への蓄熱を防ぐことができる。また、樹脂フィルムおよび金属フィルムによって加工中の加工対象物を両面で力学的に保持することができ、亀裂やクラック等の発生を抑制することができる。   In this laser processing method, a resin film is bonded to the processed surface of the processing object, a metal film is bonded to the opposite surface of the processing object, and the processing surface is irradiated with laser light from the resin film. Excess energy other than the center of the incident laser beam is absorbed by the resin film on the front surface, and heat during processing is dissipated to the mounting jig through the metal film on the back surface with high thermal conductivity, so that the brittle material It is possible to prevent heat storage on the processing object such as. In addition, the object to be processed can be mechanically held on both sides by the resin film and the metal film, and generation of cracks, cracks, and the like can be suppressed.

また、本発明のレーザ加工方法は、前記取り付け治具の内部に冷却液を流通させながら前記照射を行うことを特徴とする。
すなわち、このレーザ加工方法では、取り付け治具の内部に冷却液を流通させながら照射を行うので、流通する冷却液によりレーザ光による加工熱を裏面の金属フィルムから取り付け治具を介して吸熱して、さらに脆性材等の加工対象物への蓄熱を防ぐことができる。
Moreover, the laser processing method of the present invention is characterized in that the irradiation is performed while circulating a coolant in the mounting jig.
That is, in this laser processing method, irradiation is performed while circulating the cooling liquid inside the mounting jig, so that the processing heat by the laser light is absorbed from the metal film on the back via the mounting jig by the circulating cooling liquid. Furthermore, it is possible to prevent heat accumulation on a workpiece such as a brittle material.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るレーザ加工方法によれば、加工対象物の加工面に樹脂フィルムを接着すると共に、加工面の反対面に金属フィルムを接着するので、表面の樹脂フィルムと裏面の金属フィルムとにより、レーザ光の余剰エネルギーの吸収と加工対象物への蓄熱防止とを図ることができると共に、加工対象物を両面で力学的に保持することができ、亀裂やクラック等の発生を抑制することができる。
したがって、高い残留応力を持つ脆性材等の切断加工においても亀裂やクラック等が生じず安定した加工を行うことができる。
The present invention has the following effects.
That is, according to the laser processing method according to the present invention, the resin film is bonded to the processed surface of the object to be processed, and the metal film is bonded to the opposite surface of the processed surface. As a result, it is possible to absorb the excess energy of the laser beam and prevent heat accumulation on the workpiece, and to dynamically hold the workpiece on both sides, thereby suppressing the occurrence of cracks, cracks, etc. Can do.
Therefore, even when cutting a brittle material having a high residual stress, a stable process can be performed without causing cracks or cracks.

本発明に係るレーザ加工方法の一実施形態において、レーザ加工装置を示す簡易的な全体構成図である。In one Embodiment of the laser processing method which concerns on this invention, it is a simple whole block diagram which shows a laser processing apparatus. 本実施形態において、加工対象物および取り付け治具を示す断面図である。In this embodiment, it is sectional drawing which shows a workpiece and an attachment jig. 本実施形態において、レーザ光の走査方法を示す説明図である。In this embodiment, it is explanatory drawing which shows the scanning method of a laser beam.

以下、本発明に係るレーザ加工方法の一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a laser processing method according to the present invention will be described with reference to FIGS. 1 to 3. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のレーザ加工方法に用いるレーザ加工装置1は、図1から図3に示すように、加工対象物Wにレーザ光Lを照射して加工する装置であって、レーザ光Lをパルス発振して加工対象物Wに一定の繰り返し周波数で照射すると共に走査するレーザ光照射機構2と、加工対象物Wを保持して移動可能な移動機構3と、該移動機構3上に設置され加工対象物Wを取り付けて固定する取り付け治具4と、該取り付け治具4の内部に冷却液5aを流通させる冷却機構5と、これらを制御する制御部6と、を備えている。   A laser processing apparatus 1 used in the laser processing method of the present embodiment is an apparatus for processing by irradiating a workpiece W with a laser beam L as shown in FIGS. Then, the laser beam irradiation mechanism 2 that irradiates and scans the workpiece W at a constant repetition frequency, the moving mechanism 3 that can move while holding the workpiece W, and the workpiece to be processed that is installed on the moving mechanism 3 An attachment jig 4 for attaching and fixing the object W, a cooling mechanism 5 for circulating the coolant 5a inside the attachment jig 4, and a control unit 6 for controlling them are provided.

上記加工対象物Wは、例えばセラミックス焼結体の基板などの高い残留応力を持つ脆性材である。
なお、加工時には、図2に示すように、加工対象物Wの加工面(表面)に樹脂フィルム7を接着し、樹脂フィルム7上からレーザ光Lを加工面に照射する。また、加工対象物Wの加工面の反対面(裏面)には、金属フィルム8を接着し、該金属フィルム8を取り付け治具4に密着させて該取り付け治具4に加工対象物Wを固定して照射を行う。
The workpiece W is a brittle material having a high residual stress such as a ceramic sintered substrate.
At the time of processing, as shown in FIG. 2, the resin film 7 is adhered to the processing surface (surface) of the processing target W, and the processing surface is irradiated with the laser light L from the resin film 7. Further, the metal film 8 is bonded to the opposite surface (back surface) of the processing object W, and the metal film 8 is brought into close contact with the mounting jig 4 to fix the processing object W to the mounting jig 4. And then irradiate.

上記樹脂フィルム7としては、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニル等のプラスチックフィルム、ポリオレフィン等の紫外線透過フィルム等が採用可能である。
また、上記金属フィルム8としては、アルミニウム、銅、ステンレス(SUS)等のメタルテープが採用可能である。この金属フィルム8は、加工対象物Wにアクリルゴム、ウレタン樹脂、シリコーン樹脂等を主成分とする粘着剤で接着される。
As the resin film 7, a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, a plastic film such as polyvinyl chloride, an ultraviolet transmissive film such as polyolefin, and the like can be used.
The metal film 8 may be a metal tape such as aluminum, copper, stainless steel (SUS). The metal film 8 is bonded to the workpiece W with an adhesive mainly composed of acrylic rubber, urethane resin, silicone resin or the like.

なお、これらの樹脂フィルム7および金属フィルム8としては、熱膨張係数が加工対象物Wに同じ又は近く、加工時の熱膨張差が生じ難い低熱膨張率のフィルムを採用することが好ましい。例えば、加工対象物Wとして、熱膨張係数が8.8×10−6/Kのアルミナ(Al)や、熱膨張係数が10.8×10−6/Kのランタンガレートを加工する場合、樹脂フィルム7としては、熱膨張係数が6〜10×10−6/Kの低熱膨張率特殊樹脂(例えば、低熱膨張ポリイミド)を採用する。また、この場合、金属フィルム8としては、熱膨張係数が13.6×10−6/KのSUS304が好ましい。 In addition, as these resin film 7 and metal film 8, it is preferable to employ | adopt the film of the low thermal expansion coefficient from which the thermal expansion coefficient is the same as or close to the workpiece W, and the thermal expansion difference at the time of a process does not produce easily. For example, as the workpiece W, alumina (Al 2 O 3 ) having a thermal expansion coefficient of 8.8 × 10 −6 / K or lanthanum gallate having a thermal expansion coefficient of 10.8 × 10 −6 / K is processed. In this case, a low thermal expansion coefficient special resin (for example, low thermal expansion polyimide) having a thermal expansion coefficient of 6 to 10 × 10 −6 / K is employed as the resin film 7. In this case, the metal film 8 is preferably SUS304 having a thermal expansion coefficient of 13.6 × 10 −6 / K.

上記移動機構3は、水平面に平行なX方向に移動可能なX軸ステージ部3xと、該X軸ステージ部3x上に設けられX方向に対して垂直なかつ水平面に平行なY方向に移動方向なY軸ステージ部3yと、該Y軸ステージ部3y上に設けられ取り付け治具4が固定されて加工対象物Wを保持可能であると共に水平面に対して垂直方向に移動可能なZ軸ステージ部3zと、で構成されている。   The moving mechanism 3 includes an X-axis stage portion 3x that can move in the X direction parallel to the horizontal plane, and a moving direction in the Y direction that is provided on the X-axis stage portion 3x and that is perpendicular to the X direction and parallel to the horizontal plane. A Y-axis stage unit 3y and a Z-axis stage unit 3z provided on the Y-axis stage unit 3y and capable of holding the workpiece W by fixing the mounting jig 4 and moving in a direction perpendicular to the horizontal plane And is composed of.

上記レーザ光照射機構2は、Qスイッチのトリガー信号によりレーザ光Lを発振すると共にスポット状に集光させる光学系も有するレーザ光源9と、照射するレーザ光Lを走査させるガルバノスキャナ10と、保持された加工対象物Wの加工位置を確認するために撮像するCCDカメラ11と、を備えている。
上記レーザ光源9は、190〜550nmのいずれかの波長のレーザ光Lを照射できるものが使用可能であり、例えば本実施形態では、波長355nmのレーザ光Lを発振して出射できるものを用いている。
The laser beam irradiation mechanism 2 includes a laser light source 9 having an optical system that oscillates a laser beam L in response to a trigger signal of a Q switch and condenses it in a spot shape, a galvano scanner 10 that scans the irradiated laser beam L, and a holding unit. And a CCD camera 11 that captures an image to confirm the processing position of the processed object W.
As the laser light source 9, one that can irradiate a laser beam L having a wavelength of 190 to 550 nm can be used. For example, in the present embodiment, a laser beam that can oscillate and emit a laser beam L having a wavelength of 355 nm is used. Yes.

上記ガルバノスキャナ10は、移動機構3の直上に配置されている。また、上記CCDカメラ11は、ガルバノスキャナ10に隣接して設置されている。
上記冷却機構5は、取り付け治具4の内部に設けられた流通路5b内に冷却液5aとして例えば冷却水を流通させる構造を有しており、流通路5bには冷却液5aの供給源(図示略)が接続されている。
The galvano scanner 10 is disposed immediately above the moving mechanism 3. The CCD camera 11 is installed adjacent to the galvano scanner 10.
The cooling mechanism 5 has a structure in which, for example, cooling water is circulated as a coolant 5a in a flow passage 5b provided in the mounting jig 4, and a supply source ( (Not shown) are connected.

また、取り付け治具4は、加工対象物Wの取り付け面(上面)に複数の吸着孔4aが形成されており、これら吸着孔4aは治具内部に形成された空洞部4bを介して真空源(図示略)に接続されている。すなわち、取り付け面に載置された加工対象物Wを吸着孔4aにより真空吸着して保持可能になっている。このように、取り付け治具4は、水冷機能と真空吸着機能とを有する水冷吸着治具とされている。   In addition, the attachment jig 4 has a plurality of suction holes 4a formed on the attachment surface (upper surface) of the workpiece W, and these suction holes 4a are supplied from a vacuum source via a cavity 4b formed inside the jig. (Not shown). That is, the workpiece W placed on the mounting surface can be held by vacuum suction through the suction holes 4a. Thus, the attachment jig 4 is a water-cooled adsorption jig having a water-cooling function and a vacuum adsorption function.

上記レーザ光照射機構2は、繰り返し周波数をH、レーザ光Lのビーム径をa、レーザ光Lの同一加工線上への走査回数をn、パルスレーザ光Lの1照射あたりの移動距離Lをn/2×aとしたとき、レーザ光Lの走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光Lの照射開始位置をL1として、走査回数n回目のレーザ光の照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うように設定されている。   The laser beam irradiation mechanism 2 has a repetition frequency of H, a beam diameter of the laser beam L, a, a scanning frequency of the laser beam L on the same processing line, n, and a moving distance L per irradiation of the pulsed laser beam L of n. / 2 × a, the scanning speed S of the laser beam L is set to L / (1 / H), and the irradiation start position of the first laser beam L is set to L1, and the nth laser beam is scanned. The irradiation start position Ln is set to L1 + (L / n) × (n−1) so that irradiation is performed with the irradiation start position shifted for each scan.

なお、このとき、レーザ光一発あたりの時間は1/Hとなる。また、走査回数nは、任意の数で亀裂等が発生しない数であって、走査速度Sが制御可能な範囲に設定される。
また、レーザ光照射機構2は、レーザ出力を加工対象物Wの加工閾値より僅かに高く設定している。
At this time, the time per one laser beam is 1 / H. The number of scans n is an arbitrary number that does not cause cracks and the like, and is set in a range in which the scan speed S can be controlled.
Further, the laser light irradiation mechanism 2 sets the laser output slightly higher than the processing threshold value of the processing object W.

詳述すれば、図3に示すように、走査回数を3回(n=3)とした場合、1回目の走査時に照射開始位置L1から走査を開始し、移動距離Lを空けて加工線上をレーザ光Lが設定した繰り返し周波数Hおよび走査速度Sで照射される。例えば、ビーム径aを20μm、繰り返し周波数Hを10kHzとした場合、走査速度Sは、300mm/secに設定される。この1回目の走査では、加工線上で間隔を空けて加工されているため、加工点の間で加工対象物Wが繋がっている。   More specifically, as shown in FIG. 3, when the number of scans is 3 (n = 3), the scan is started from the irradiation start position L1 at the first scan, and the movement distance L is left on the processing line. Laser light L is irradiated at a set repetition frequency H and scanning speed S. For example, when the beam diameter a is 20 μm and the repetition frequency H is 10 kHz, the scanning speed S is set to 300 mm / sec. In the first scanning, since the machining is performed with an interval on the machining line, the workpiece W is connected between the machining points.

次に、2回目の走査時では、レーザ光Lの照射開始位置をL1+(L/2)に設定して1回目の照射開始位置からずらして1回目と同一の加工線上を走査する。さらに、最後の3回目の走査時では、レーザ光Lの照射開始位置をL1+(L/3)×2に設定して1回目および2回目の照射開始位置からずらして1回目と同一の加工線上で走査を行う。この3回の走査によって、加工対象物Wが加工線上で完全に切断される。   Next, at the time of the second scanning, the irradiation start position of the laser beam L is set to L1 + (L / 2) and is shifted from the first irradiation starting position to scan on the same processing line as the first time. Further, at the time of the last third scanning, the irradiation start position of the laser beam L is set to L1 + (L / 3) × 2 and is shifted from the first and second irradiation start positions on the same processing line as the first time. Scan with. By the three scans, the workpiece W is completely cut on the machining line.

このように本実施形態では、加工対象物Wの加工面に樹脂フィルム7を接着すると共に、加工対象物Wの加工面の反対面に金属フィルム8を接着し、樹脂フィルム7上からレーザ光Lを加工面に照射するので、表面の樹脂フィルム7により入射されるレーザ光Lの中心以外の余剰なエネルギーが吸収されると共に、熱伝導性の高い裏面の金属フィルム8を介して加工時の熱が取り付け治具4に放熱されて、脆性材等の加工対象物Wへの蓄熱を防ぐことができる。また、樹脂フィルム7および金属フィルム8によって加工中の加工対象物Wを両面で力学的に保持することができ、亀裂やクラック等の発生を抑制することができる。   As described above, in the present embodiment, the resin film 7 is bonded to the processed surface of the workpiece W, and the metal film 8 is bonded to the opposite surface of the processed surface of the workpiece W. Is applied to the processed surface, so that excess energy other than the center of the laser beam L incident by the resin film 7 on the front surface is absorbed, and heat during processing through the metal film 8 on the back surface having high thermal conductivity. Can be radiated to the mounting jig 4 to prevent heat accumulation on the workpiece W such as a brittle material. Further, the workpiece W being processed can be mechanically held on both sides by the resin film 7 and the metal film 8, and generation of cracks, cracks, and the like can be suppressed.

また、取り付け治具4の内部に冷却液5aを流通させながら照射を行うので、流通する冷却液5aにより加工熱を裏面の金属フィルム8から取り付け治具4を介して吸熱して、さらに脆性材等の加工対象物Wへの蓄熱を防ぐことができる。   Further, since the irradiation is performed while circulating the cooling liquid 5a inside the mounting jig 4, the processing heat is absorbed from the metal film 8 on the back surface through the mounting jig 4 by the circulating cooling liquid 5a, and further the brittle material It is possible to prevent heat storage on the workpiece W such as.

なお、レーザ光Lの走査速度SをL/(1/H)とすると共に、走査回数1回目のレーザ光Lの照射開始位置をL1として、走査回数n回目のレーザ光Lの照射開始位置Lnを、L1+(L/n)×(n−1)として走査毎に照射開始位置をずらして照射を行うので、加工対象物Wの応力が急激に変化することを抑制して亀裂などが生じることなく加工が可能になる。   Note that the scanning speed S of the laser beam L is L / (1 / H), the irradiation start position of the laser beam L with the first scanning count is L1, and the irradiation start position Ln of the laser beam L with the scanning count of n. , L1 + (L / n) × (n−1) is performed by shifting the irradiation start position for each scan, so that the stress of the workpiece W is prevented from changing suddenly and cracks and the like are generated. Processing becomes possible.

すなわち、加工対象物Wに対してパルスとして照射されたレーザ光Lのスポット間隔である上記移動距離Lを埋めるように、照射開始位置をずらしながら次々に同じ加工線上を走査して加工を重ねるため、1回の走査時においては加工点が間隔を空けて離れているので、走査途中では、加工対象物Wが間隔を空けて繋がった状態であって割れ難くなる。また、従来のようにレーザ光による加工点が連続的に重なるように走査される場合では、繋がった溝が延ばされるようにして切断加工されるために、急激な応力変化が生じてしまうのに対し、本実施形態では、1回の走査時において加工点が連続せず、急激な応力変化を抑制することができる。   That is, in order to overlap the processing by scanning the same processing line one after another while shifting the irradiation start position so as to fill the moving distance L that is the spot interval of the laser light L irradiated as a pulse to the workpiece W. Since the machining points are spaced apart during a single scan, the workpieces W are connected with a gap during the scan, and are difficult to break. In addition, when scanning is performed so that the processing points by the laser beam continuously overlap as in the conventional case, since the connected grooves are cut and extended, a sudden stress change occurs. On the other hand, in the present embodiment, the machining points are not continuous during one scan, and a rapid stress change can be suppressed.

次に、本発明に係るレーザ加工方法により実際に加工された際の実施例について具体的に説明する。
本実施例では、本実施形態のレーザ加工方法を用いて、加工対象物としてセラミックス焼結体(厚さ250μm)を波長355nmのレーザ光にて加工した。その際、セラミックス焼結体の表面に樹脂フィルムとしてポリイミド樹脂フィルム(厚さ0.1mm)をアクリル系接着剤にて接着し、裏面に金属フィルムとしてアルミニウムフィルム(厚さ0.05mm)をシリコーン系接着剤にて接着した。この状態の加工対象物を、取り付け治具上に吸着させた。
Next, an embodiment when actually processed by the laser processing method according to the present invention will be specifically described.
In this example, a ceramic sintered body (thickness: 250 μm) was processed as a processing target with a laser beam having a wavelength of 355 nm using the laser processing method of the present embodiment. At that time, a polyimide resin film (thickness: 0.1 mm) as a resin film was adhered to the surface of the ceramic sintered body with an acrylic adhesive, and an aluminum film (thickness: 0.05 mm) as a metal film was adhered to the back side as a silicone film. Bonded with an adhesive. The workpiece in this state was adsorbed on the mounting jig.

レーザ光の出力を1.3W、繰り返し周波数Hを125kHzに設定し、ビームスポットを測定した結果、ビーム径は20μmであることから、ガルバノスキャナにて走査速度Sを3750mm/secに設定して走査回数3回で加工を行った。
この結果、クラックの無い良好な切断面を得ることができた。
The laser beam output was set to 1.3 W, the repetition frequency H was set to 125 kHz, and the beam spot was measured. As a result, the beam diameter was 20 μm, so the galvano scanner was used to set the scanning speed S to 3750 mm / sec. Processing was performed three times.
As a result, a good cut surface without cracks could be obtained.

本発明のレーザ加工方法は、特に高い残留応力を持つ脆性材の切断加工において好適なものである。   The laser processing method of the present invention is particularly suitable for cutting a brittle material having a high residual stress.

1…レーザ加工装置、2…レーザ光照射機構、4…取り付け治具、5…冷却機構、5a…冷却液、7…樹脂フィルム、8…金属フィルム、L…レーザ光、W…加工対象物   DESCRIPTION OF SYMBOLS 1 ... Laser processing apparatus, 2 ... Laser beam irradiation mechanism, 4 ... Mounting jig, 5 ... Cooling mechanism, 5a ... Cooling liquid, 7 ... Resin film, 8 ... Metal film, L ... Laser beam, W ... Work object

Claims (2)

加工対象物にレーザ光を照射して加工する方法であって、
レーザ光をパルス発振して前記加工対象物に一定の繰り返し周波数で照射すると共に走査するレーザ照射工程を有し、
前記加工対象物の加工面に樹脂フィルムを接着すると共に、前記加工対象物の加工面の反対面に金属フィルムを接着し、
該金属フィルムを取り付け治具に密着させて該取り付け治具に前記加工対象物を固定し、前記樹脂フィルム上からレーザ光を前記加工面に照射することを特徴とするレーザ加工方法。
A method of processing by irradiating a processing object with laser light,
A laser irradiation step of oscillating and irradiating the workpiece with a constant repetition frequency by oscillating a laser beam;
While adhering a resin film to the processed surface of the object to be processed, and adhering a metal film to the opposite surface of the processed surface of the object to be processed,
A laser processing method, wherein the metal film is brought into close contact with a mounting jig, the object to be processed is fixed to the mounting jig, and the processing surface is irradiated with laser light from the resin film.
請求項1に記載のレーザ加工方法において、
前記取り付け治具の内部に冷却液を流通させながら前記照射を行うことを特徴とするレーザ加工方法。
The laser processing method according to claim 1,
A laser processing method, wherein the irradiation is performed while circulating a coolant in the mounting jig.
JP2010047395A 2010-03-04 2010-03-04 Laser beam machining method Pending JP2011177782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010047395A JP2011177782A (en) 2010-03-04 2010-03-04 Laser beam machining method
CN2011100355679A CN102189344A (en) 2010-03-04 2011-01-28 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047395A JP2011177782A (en) 2010-03-04 2010-03-04 Laser beam machining method

Publications (1)

Publication Number Publication Date
JP2011177782A true JP2011177782A (en) 2011-09-15

Family

ID=44598687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047395A Pending JP2011177782A (en) 2010-03-04 2010-03-04 Laser beam machining method

Country Status (2)

Country Link
JP (1) JP2011177782A (en)
CN (1) CN102189344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046375A (en) * 2013-07-31 2015-03-12 ミネベア株式会社 Planar lighting device and manufacturing method of light guide plate
JP2015204367A (en) * 2014-04-14 2015-11-16 株式会社ディスコ Processing method of optical device wafer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500896B (en) * 2011-10-25 2015-01-07 碳元科技股份有限公司 Method and system for thermal cutting of graphene layer
JP5920662B2 (en) * 2012-06-05 2016-05-18 三菱マテリアル株式会社 Laser processing apparatus and laser processing method
CN106769324A (en) * 2017-01-13 2017-05-31 正新橡胶(中国)有限公司 A kind of detection method of tire supporting material nonwoven fabric from filaments
CN110860799A (en) * 2018-08-07 2020-03-06 大族激光科技产业集团股份有限公司 Laser cutting method and laser cutting system
CN114054957A (en) * 2021-07-06 2022-02-18 武汉帝尔激光科技股份有限公司 Laser welding method and system for dissimilar metal films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144058A (en) * 2000-11-14 2002-05-21 Ricoh Microelectronics Co Ltd Method and device for laser beam machining
JP2005279757A (en) * 2004-03-30 2005-10-13 Nitto Denko Corp Production method for laser processed article and laser processing protection sheet
JP2007301631A (en) * 2006-05-15 2007-11-22 Shibaura Mechatronics Corp Cleaving apparatus and cleaving method
JP2008100412A (en) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd Laser cutting method
JP2008114239A (en) * 2006-11-02 2008-05-22 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2008200694A (en) * 2007-02-19 2008-09-04 Disco Abrasive Syst Ltd Method for machining wafer, and laser beam machining apparatus
JP2008229682A (en) * 2007-03-22 2008-10-02 Epson Toyocom Corp Manufacturing method of package component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033242A1 (en) * 2007-07-12 2009-01-15 Jenoptik Automatisierungstechnik Gmbh Method and device for separating a plane plate made of brittle material into several individual plates by means of laser
TWI409122B (en) * 2007-07-13 2013-09-21 Mitsuboshi Diamond Ind Co Ltd A method for processing a brittle material substrate and a crack forming apparatus for the method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144058A (en) * 2000-11-14 2002-05-21 Ricoh Microelectronics Co Ltd Method and device for laser beam machining
JP2005279757A (en) * 2004-03-30 2005-10-13 Nitto Denko Corp Production method for laser processed article and laser processing protection sheet
JP2007301631A (en) * 2006-05-15 2007-11-22 Shibaura Mechatronics Corp Cleaving apparatus and cleaving method
JP2008100412A (en) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd Laser cutting method
JP2008114239A (en) * 2006-11-02 2008-05-22 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2008200694A (en) * 2007-02-19 2008-09-04 Disco Abrasive Syst Ltd Method for machining wafer, and laser beam machining apparatus
JP2008229682A (en) * 2007-03-22 2008-10-02 Epson Toyocom Corp Manufacturing method of package component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046375A (en) * 2013-07-31 2015-03-12 ミネベア株式会社 Planar lighting device and manufacturing method of light guide plate
JP2015204367A (en) * 2014-04-14 2015-11-16 株式会社ディスコ Processing method of optical device wafer

Also Published As

Publication number Publication date
CN102189344A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5510806B2 (en) Laser processing method
JP2011177782A (en) Laser beam machining method
TW201736071A (en) Wafer producing method
KR20160098054A (en) Wafer producing method
JP2013236001A (en) Method for dividing plate-like object
JP2005135964A (en) Dividing method of wafer
JP2010123723A (en) Laser processing method of wafer
TW201321109A (en) Laser dicing method
JP2010158691A (en) Laser beam machining apparatus
JP2009124035A (en) Laser beam machine and laser beam machining method
US10946482B2 (en) Laser processing apparatus
US9174306B2 (en) Laser processing method for nonlinear crystal substrate
JP2019061986A (en) Wafer processing method
JP2013237097A (en) Modified layer forming method
CN114505603A (en) Chuck table and laser processing apparatus
JP5846765B2 (en) Wafer processing method
JP2019036643A (en) Wafer processing method
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof
JP2006294674A (en) Laser beam machining method and laser beam machining apparatus of wafer
JP2012050988A (en) Laser scribing method
JP2006263795A (en) Laser beam machining mechanism
JP2014121718A (en) Laser machining apparatus
TWI590317B (en) Method of dividing plate-like workpieces
JP2013152995A (en) Method for processing wafer
JP2013010124A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140123