JP2008100412A - Laser cutting method - Google Patents

Laser cutting method Download PDF

Info

Publication number
JP2008100412A
JP2008100412A JP2006283903A JP2006283903A JP2008100412A JP 2008100412 A JP2008100412 A JP 2008100412A JP 2006283903 A JP2006283903 A JP 2006283903A JP 2006283903 A JP2006283903 A JP 2006283903A JP 2008100412 A JP2008100412 A JP 2008100412A
Authority
JP
Japan
Prior art keywords
laser
substrate
processed
groove
cleaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283903A
Other languages
Japanese (ja)
Inventor
Noriyasu Kawamuki
徳康 川向
Shozo Odera
昭三 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006283903A priority Critical patent/JP2008100412A/en
Publication of JP2008100412A publication Critical patent/JP2008100412A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser cutting method which is suitably used for surely cutting a substrate to be machined with a cutting size as short as several millimeters, while minimizing the damage of the substrate. <P>SOLUTION: Laser beams generated by a laser oscillator 5 are reflected toward the side of the substrate 1a to be machined by a total reflection mirror 6 and made to converge by a cylindrical lens 7. The position of a laser irradiation region LB is set/fixed at/to the end of a groove 2 formed in the surface of the substrate 1a by an image processing apparatus 4 and irradiated. A generated crack is developed along the groove 2, and cutting in the short side direction of the substrate 1a is completed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、ガラス、セラミックあるいは半導体材料などの脆性材料からなる被加工基板にレーザを照射させることにより生じる亀裂で被加工基板を割断するレーザ割断方法に関する。   The present invention relates to a laser cleaving method for cleaving a substrate to be processed by a crack generated by irradiating the substrate to be processed made of a brittle material such as glass, ceramic, or semiconductor material with a laser.

セラミック等の脆性材料からなる被加工基板を切断する方法として、一般に、円板状の回転刃による切断やレーザによる溶断が知られている。   As a method of cutting a workpiece substrate made of a brittle material such as ceramic, generally, cutting with a disk-shaped rotary blade or fusing with a laser is known.

しかしながら、これらの方法では、回転刃による切断やレーザによる溶断等で切断しているため、被加工基板にはこれらの加工で削除される切り代を必要とするものであり、それだけ材料コストがかかるという問題があった。また、切断のための部分を完全に削除するためには時間がかかるため、加工コストがかかるという問題もあった。さらに、機械的歪みの不均一や熱応力の不均一により、切断予定部分以外の部分で割れや欠けが生じるという恐れもあった。   However, in these methods, since cutting is performed by cutting with a rotary blade, fusing with laser, etc., the substrate to be processed requires a cutting allowance to be deleted by these processes, and the material cost is increased accordingly. There was a problem. Moreover, since it takes time to completely delete the portion for cutting, there is a problem that the processing cost is high. Furthermore, there is a fear that cracks and chips may occur in portions other than the portion to be cut due to non-uniform mechanical strain and non-uniform thermal stress.

そこで、このような問題を解決するために、レーザ照射による熱応力を利用して脆性材料からなる被加工基板を割断するレーザ割断方法が提案されている。このようなレーザ割断方法には、例えば上述したレーザによる溶断に比べると、加工に必要なエネルギーが小さくて済み、材料の削除も少ないため、材料コストや加工コストを少なくすることができるという利点がある。   Therefore, in order to solve such a problem, a laser cleaving method for cleaving a substrate to be processed made of a brittle material using thermal stress caused by laser irradiation has been proposed. Such a laser cleaving method has the advantage that, compared with the above-described fusing by laser, for example, less energy is required for processing and less material is deleted, so that material costs and processing costs can be reduced. is there.

このレーザ割断方法の一つとして、特許文献1には、脆性材料からなる被加工基板表面の割断予定部分に機械的切削工具を用いて溝を形成し、次に溝の一方の端部付近にレーザを照射して亀裂を生じさせ、溝に沿ってレーザの照射位置を移動させることにより亀裂を進展させて被加工基板を割断するという方法が記載されている。   As one of the laser cleaving methods, Patent Document 1 discloses that a groove is formed by using a mechanical cutting tool on a cleaved portion of a surface of a substrate made of a brittle material, and then near one end of the groove. A method is described in which a crack is generated by irradiating a laser, and the substrate is cut by advancing the crack by moving the laser irradiation position along the groove.

この特許文献1のレーザ割断方法によれば、亀裂を進展させる際に予め溝を形成しているので機械的歪みが生じており、この状態にレーザで熱応力による歪みを加えることになるため、亀裂の進展時にずれが生じにくく、高精度に加工できるという効果を奏する。   According to the laser cleaving method of Patent Document 1, since a groove is formed in advance when a crack is propagated, mechanical distortion occurs, and distortion due to thermal stress is applied to the state by a laser. There is an effect that it is difficult to cause a shift when the crack progresses and that it can be processed with high accuracy.

また、レーザ割断方法の他の方法として、特許文献2には、脆性材料からなる被加工基板の割断予定部分を挟むようにレーザを複数ポイントに照射して亀裂を発生させ、割断予定部分に沿って複数ポイントのレーザの照射位置を移動させることにより亀裂を進展させて被加工基板を割断するという方法が記載されている。   As another method of laser cleaving, Patent Document 2 discloses that a laser is irradiated to a plurality of points so as to sandwich a portion to be cut of a substrate to be processed made of a brittle material, and a crack is generated. In other words, a method is described in which cracks are developed by moving the irradiation positions of a plurality of points of lasers to cleave the substrate to be processed.

この特許文献2のレーザ割断方法によれば、レーザの照射が1ポイントの場合に比べて引っ張り応力が大きくなり、亀裂を発生させやすく、亀裂の進展時にずれが生じにくいため、高精度に加工できるという効果を奏する。
特開昭54−106524号公報 特開平 7 −328781号公報
According to the laser cleaving method of Patent Document 2, the tensile stress becomes larger than that in the case where the laser irradiation is 1 point, and it is easy to generate a crack. There is an effect.
JP-A-54-106524 Japanese Patent Laid-Open No. 7-328781

ところで、一般に、セラミック基板等を母基板から所望の大きさのチップサイズに割断する場合、図9(A)に示すように被加工母基板1を破線Xで示された割断予定部分で割断して短冊状の被加工基板1aを得る一次割断工程の後、図9(B)に示すように短冊状の被加工基板1aを短辺方向に割断してチップサイズのセラミック基板1bを得る二次割断工程を行うという手順で行う。   By the way, in general, when a ceramic substrate or the like is cleaved from a mother substrate into a chip size of a desired size, the substrate 1 to be processed is cleaved at a planned cleaving portion indicated by a broken line X as shown in FIG. After the primary cleaving step for obtaining the strip-shaped workpiece substrate 1a, the strip-shaped workpiece substrate 1a is cleaved in the short side direction to obtain the chip-sized ceramic substrate 1b as shown in FIG. 9B. The procedure is to perform the cleaving process.

しかしながら、上述の特許文献1および2のようなレーザ割段方法を用いた場合、二次割断において、短冊状の被加工基板1aの短辺方向では距離が短いために、割断に必要な温度差を発生させることができず、完全に割断されないものが生じるという問題があった。   However, when the laser splitting method as described in Patent Documents 1 and 2 described above is used, the temperature difference necessary for the splitting is short because the distance in the short side direction of the strip-shaped substrate 1a is short in the secondary splitting. There has been a problem that some cannot be generated and some are not completely cleaved.

そのため、完全に割断されなかったものについては、機械的に圧力を加えて割断するなど別の割断手法で割断していたが、割断精度が悪いという問題があった。   Therefore, what was not completely cleaved was cleaved by another cleaving method such as mechanically applying pressure to cleave, but there was a problem that cleaving accuracy was poor.

本願発明はこのような問題点に鑑みてなされたものであって、短冊状の被加工基板のように割断距離が数mm程度の短いものにおいても、確実に割断でき、加工精度の高いレーザ割断方法を提供するものである。   The present invention has been made in view of such problems, and even when the cleaving distance is as short as a few millimeters, such as a strip-shaped substrate, the cleaving can be reliably performed and the laser cleaving with high processing accuracy can be achieved. A method is provided.

すなわち、本願発明の請求項1に係るレーザ割断方法は、表面に溝が形成された脆性材料からなる被加工基板の溝の一端部にレーザを照射することにより局部的に加熱し、その加熱により発生した熱応力によって前記被加工基板に亀裂を生じさせるとともに、前記被加工基板に対するレーザ照射領域の位置を固定して、前記溝に沿って前記亀裂を進展させて前記被加工基板を割断することを特徴とするものである。   That is, in the laser cleaving method according to claim 1 of the present invention, by locally irradiating a laser to one end of a groove of a substrate to be processed made of a brittle material having a groove formed on the surface, A crack is generated in the substrate to be processed by the generated thermal stress, and a position of a laser irradiation region with respect to the substrate to be processed is fixed, and the crack is propagated along the groove to cleave the substrate to be processed. It is characterized by.

また、本願発明の請求項2に係るレーザ割断方法は、前記レーザのビーム形状を長軸と短軸を有する異方形状とし、前記ビーム形状の長軸が前記溝の伸張方向と略垂直となるように前記被加工基板の溝の端部にレーザを照射することを特徴とするものである。   In the laser cleaving method according to claim 2 of the present invention, the beam shape of the laser is an anisotropic shape having a major axis and a minor axis, and the major axis of the beam shape is substantially perpendicular to the extending direction of the groove. Thus, the laser is irradiated to the end of the groove of the substrate to be processed.

また、本願発明の請求項3に係るレーザ割断方法は、前記被加工基板の溝の端部に照射するレーザのビーム形状を複数のスポット形状とし、前記スポット形状の配列長手方向が前記溝の伸張方向と略垂直となるように前記被加工基板の溝の端部にレーザを照射することを特徴とするものである。   Further, in the laser cleaving method according to claim 3 of the present invention, the beam shape of the laser irradiated to the end portion of the groove of the substrate to be processed is a plurality of spot shapes, and the arrangement longitudinal direction of the spot shape is the extension of the groove. The laser is applied to the end of the groove of the substrate to be processed so as to be substantially perpendicular to the direction.

そして、本願発明の請求項4に係るレーザ割断方法は、前記レーザの照射を前記被加工基板の溝の両端から行うことを特徴とするものである。   A laser cutting method according to claim 4 of the present invention is characterized in that the laser irradiation is performed from both ends of the groove of the substrate to be processed.

本願発明のレーザ割断方法によれば、被加工基板に対するレーザ照射領域の位置を固定することによって、レーザ照射領域とそれ以外の部分の温度差を大きくして熱応力による歪みを偏在させつづけ、溝に沿って亀裂を進展させることができるので、数mm程度の割断距離の被加工基板を完全に割断することができる。   According to the laser cleaving method of the present invention, by fixing the position of the laser irradiation region with respect to the substrate to be processed, the temperature difference between the laser irradiation region and the other portion is increased, and the strain due to thermal stress is kept unevenly distributed. Since the crack can be propagated along the substrate, the substrate to be processed having a cleaving distance of about several mm can be cleaved completely.

また、本願発明のレーザ割断方法によれば、割断されないものが生じないので、従来のように割断精度の低い別の割断手法による再度の割断を必要としないため、割れ欠け等の問題も生じない。   In addition, according to the laser cleaving method of the present invention, since there is no occurrence of cleaving, there is no need for re-cleaving by another cleaving method with a low cleaving accuracy as in the prior art, so that there is no problem of cracking or the like. .

さらに、本願発明のレーザ割断方法によれば、レーザの照射位置は被加工基板の溝の端部だけなので、各割段予定部分の溝の端部に順次照射していけばよく、従来のような割断方向へのレーザ照射位置の移動がなく、熱応力による歪みを偏在させることにより亀裂の進展速度が速いため、加工時間を短縮することができ、加工コストも低減できる。   Furthermore, according to the laser cleaving method of the present invention, the laser irradiation position is only at the end of the groove of the substrate to be processed. Since the laser irradiation position does not move in the cleaving direction and the strain due to thermal stress is unevenly distributed, the crack propagation speed is high, so that the processing time can be shortened and the processing cost can be reduced.

また、本願発明の請求項2に係るレーザ割断方法によれば、レーザのビーム形状を長軸と短軸を有する異方形状として、ビーム形状の長軸を溝の伸張方向と略垂直となるように被加工基板の溝の端部にレーザを照射している。これにより、熱応力の偏在が大きくなり亀裂が発生しやすく、かつ亀裂が進展しやすくなる。そのため、より加工時間を短縮することができる。また、被加工基板の短辺方向に対してレーザの短軸を合わせているため、レーザの固定照射による溶融を被加工基板の短辺方向に対して最小限に抑えることができる。   According to the laser cleaving method of the present invention, the laser beam shape is an anisotropic shape having a major axis and a minor axis, and the major axis of the beam shape is substantially perpendicular to the extending direction of the groove. The laser is irradiated to the end of the groove of the substrate to be processed. As a result, the uneven distribution of thermal stress increases, cracks tend to occur, and cracks tend to progress. Therefore, the processing time can be further shortened. In addition, since the short axis of the laser is aligned with the short side direction of the substrate to be processed, melting due to the fixed irradiation of the laser can be minimized to the short side direction of the substrate to be processed.

また、本願発明の請求項3に係るレーザ割断方法によれば、レーザのビーム形状を複数のスポット形状としてスポット形状の配列長手方向が溝の伸張方向と略垂直となるようにレーザを照射している。これにより、温度差に伴う熱応力の偏在を特に大きくすることができ、亀裂の発生、進展を容易に行うことが可能となる。その結果、よりレーザ割断に伴う加工時間を短縮することができる。   According to the laser cleaving method of the present invention, the laser beam shape is set to a plurality of spot shapes, and the laser is irradiated so that the array longitudinal direction of the spot shape is substantially perpendicular to the groove extending direction. Yes. Thereby, the uneven distribution of the thermal stress accompanying the temperature difference can be particularly increased, and cracks can be easily generated and propagated. As a result, the processing time associated with laser cutting can be further shortened.

また、本願発明の請求項4に係るレーザ割断方法によれば、レーザの照射を被加工基板の溝の両端から行っている。これにより、溝の両端から亀裂が進展するので、より割断を確実に行うことができ、さらに加工時間を短縮することが可能となる。   According to the laser cutting method of the present invention, laser irradiation is performed from both ends of the groove of the substrate to be processed. Thereby, since a crack progresses from the both ends of a groove | channel, it can cut more reliably and it becomes possible to shorten processing time further.

以下、本願発明の実施の形態を図面に基づいて説明する。図1は短冊状の被加工基板1aの溝2を形成する工程を示す概略説明図、図2は本願発明の第1の実施の形態に係るレーザ割断装置の概略説明図、図3は図2においてレーザ割断装置で加工されている短冊状の被加工基板1aを示す図であり、(A)は平面図、(B)は正面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory view showing a process of forming a groove 2 of a strip-shaped substrate 1a, FIG. 2 is a schematic explanatory view of a laser cleaving apparatus according to a first embodiment of the present invention, and FIG. 2A and 2B are diagrams showing a strip-shaped substrate 1a processed by a laser cleaving apparatus, in which FIG. 1A is a plan view and FIG. 1B is a front view.

図1において、セラミック等の脆性材料からなる短冊状の被加工基板1aは、図示しない被加工母基板から予め一次割断されたものである。なお、被加工母基板から短冊状の被加工基板への一次割断工程については、従来と同様のレーザ割断方法を用いている。   In FIG. 1, a strip-shaped workpiece 1a made of a brittle material such as ceramic is preliminarily cleaved from a workpiece mother substrate (not shown). For the primary cleaving process from the processed mother substrate to the strip-shaped processed substrate, a laser cleaving method similar to the conventional one is used.

図1に示すように、被加工基板1a表面に機械的切削工具3を用いて短辺方向に溝2を形成している。この溝2が割断予定部分であり、所望の大きさのチップの長さ毎に形成している。なお、溝は針で傷をつけてできるけがき線やレーザスクライブでできる連続孔でもよく亀裂のきっかけとなるマイクロクラックを発生させるものであれば、溝の形状は問わない。また、本実施の形態では形成していないが、脆性材料からなる被加工基板に対してレーザビームを照射する加工開始点に予め切り欠き等を形成して亀裂が生じやすいようにしても良い。   As shown in FIG. 1, the groove | channel 2 is formed in the short side direction using the mechanical cutting tool 3 on the to-be-processed substrate 1a surface. This groove 2 is a part to be cleaved, and is formed for each length of a chip having a desired size. Note that the groove may have any shape as long as it can be a scratched line formed by scratching with a needle or a continuous hole formed by laser scribing and can generate microcracks that trigger cracks. Although not formed in this embodiment mode, a notch or the like may be formed in advance at a processing start point at which a laser beam is irradiated on a workpiece substrate made of a brittle material so that a crack is likely to occur.

次に、図2に示すように、レーザ発振器5から発振されるレーザビームを全反射ミラー6により被加工基板1a側に向けて反射させ、シリンドリカルレンズ7によりレーザビームを集光して被加工基板1a表面に形成された溝2の端部に照射する。LBはレーザビームの照射領域を示す。なお、レーザビームは被加工基板1aの脆性材料に対して吸収率の高い波長の物を選んでいる。また、レーザ照射領域LBの溝2に対する位置調整は、画像処理装置4を用いて行った。   Next, as shown in FIG. 2, the laser beam oscillated from the laser oscillator 5 is reflected toward the substrate 1a to be processed by the total reflection mirror 6, and the laser beam is condensed by the cylindrical lens 7 to be processed. Irradiate the end of the groove 2 formed on the surface 1a. LB indicates a laser beam irradiation area. As the laser beam, an object having a wavelength that has a high absorption rate with respect to the brittle material of the substrate 1a to be processed is selected. Moreover, the position adjustment with respect to the groove | channel 2 of the laser irradiation area | region LB was performed using the image processing apparatus 4. FIG.

図3(A)に示すように、被加工基板1a表面に形成された溝2の端部にレーザを照射することで亀裂8を形成し、そのまま同位置で照射して亀裂8を溝2に沿って進展させ、被加工基板1aの短辺方向への割断を完了させている。これは、溝2の端部にレーザを照射することで被加工基板1aの表面温度が裏面に比べて上昇することにより、被加工基板1aに熱膨張の違いによる曲げ応力が発生し、溝2にこの応力が集中することで割断されるメカニズムを利用している。なお、亀裂8の進展は瞬時に生じるものであるため、レーザ照射領域LBを同位置で照射する時間としては0.1秒程度であり、その程度の時間で短辺方向の割断が完了する。   As shown in FIG. 3A, a crack 8 is formed by irradiating the end of the groove 2 formed on the surface of the substrate to be processed 1a with a laser, and irradiating the same position as it is to form the crack 8 in the groove 2. And the cleaving of the substrate 1a to be processed in the short side direction is completed. This is because the end surface of the groove 2 is irradiated with a laser so that the surface temperature of the substrate 1a to be processed is higher than that of the back surface, so that a bending stress due to the difference in thermal expansion occurs in the substrate 1a. It uses a mechanism that breaks when this stress is concentrated. Since the progress of the crack 8 occurs instantaneously, the time for irradiating the laser irradiation region LB at the same position is about 0.1 seconds, and the cleaving in the short side direction is completed in that time.

また、第1の実施形態においては、図3(A)に示すように、レーザ照射領域であるLBの形状をシリンドリカルレンズ7により長円形にしており、長円の長軸の長さ方向が、溝2の伸張方向に対して略垂直になるように配置している。そのため、図3(B)に示すように基板表面の熱膨張領域が溝を横切って左右に大きく分布し、矢印Fの向きに力が働き、より割断されやすくなる。この時、長円の長軸の中心が溝2に相当するようにすることで、溝2の両側に対して均等にレーザビームが照射されることになるので、熱応力による歪みが、溝2の両側において均等になり、亀裂8は溝2に沿ってそのまま進展しやすくなる。なお、レーザ照射領域LBの形状は長円に限らず、楕円や長方形等長軸と短軸を有する異方形状であればどのような形状を用いても良いが、アスペクト比が大きい方がより好ましい。また、このレーザ照射領域LBの形状の変形は、シリンドリカルレンズに限るものではなく、マスク等で変形させても同様の効果が得られる。   In the first embodiment, as shown in FIG. 3A, the shape of the LB, which is the laser irradiation region, is made oval by the cylindrical lens 7, and the length direction of the major axis of the ellipse is The grooves 2 are arranged so as to be substantially perpendicular to the extending direction of the grooves 2. For this reason, as shown in FIG. 3B, the thermal expansion region of the substrate surface is largely distributed to the left and right across the groove, and a force acts in the direction of the arrow F, so that the substrate is more easily cleaved. At this time, since the center of the major axis of the ellipse corresponds to the groove 2, the laser beam is evenly applied to both sides of the groove 2. The cracks 8 are easy to propagate along the grooves 2 as they are. The shape of the laser irradiation region LB is not limited to an ellipse, and any shape may be used as long as it is an anisotropic shape having a major axis and a minor axis such as an ellipse or a rectangle. preferable. Further, the deformation of the shape of the laser irradiation region LB is not limited to the cylindrical lens, and the same effect can be obtained even if it is deformed with a mask or the like.

さらに、第1の実施形態においては、図3(A)に示すように、レーザ照射領域であるLBの位置を被加工基板1aの側面端から所定距離離れた位置に設定している。レーザー照射領域LBには圧縮応力が加わるので、このレーザ照射領域LBに近接する部分に最も引張り応力がかかることになる。したがって、レーザ照射領域を図3の位置に設定することにより、亀裂8が発生させやすくなる。また、一旦、亀裂8が発生すれば、亀裂8はレーザ照射領域LBを越えて形成されるので、その後の亀裂8の進展についても問題は生じない。   Furthermore, in the first embodiment, as shown in FIG. 3A, the position of the LB that is the laser irradiation region is set to a position that is separated from the side surface end of the substrate 1a to be processed by a predetermined distance. Since compressive stress is applied to the laser irradiation region LB, the tensile stress is most applied to a portion adjacent to the laser irradiation region LB. Therefore, the crack 8 can be easily generated by setting the laser irradiation region at the position shown in FIG. In addition, once the crack 8 is generated, the crack 8 is formed beyond the laser irradiation region LB, so that there is no problem with the subsequent progress of the crack 8.

以下、本願発明のレーザ割断方法の実施例について説明する。   Examples of the laser cleaving method of the present invention will be described below.

[実施例]
図1〜3に示した被加工基板1aとして、短辺方向2.5mm、厚み0.9mmのBa−Al23−SiO2からなるセラミック基板を用意した。また、幅30μm、深さは100μm程度の溝2を被加工基板1aの短辺方向に4mm間隔で形成した。次に、パルス幅50μs、周波数1kHz、レーザ出力27Wのレーザビームを被加工基板1aに照射した。また、レーザ照射領域LBの形状は長径7mm、短径1mmの長円形であり、長径が溝2に対してほぼ垂直となるように設定されている。また、レーザ照射領域LBの縁と被加工基板1aの側面端とは、0.2mmの間隔が開くように所定距離離れた位置に設定している。さらにレーザ照射領域はこの位置において0.1秒固定して照射した。その結果、対象の被加工基板1aにおいては、完全に割断が完了した。なお、レーザ照射領域LBにおいては、若干の溶融が生じていたが、被加工基板1aの特性に影響のない部分であり、問題は無い。また、他の部分に溶融等はないため、本実施例の固定照射を用いたかどうかの判別が可能である。
[Example]
A ceramic substrate made of Ba—Al 2 O 3 —SiO 2 having a short side direction of 2.5 mm and a thickness of 0.9 mm was prepared as the workpiece substrate 1a shown in FIGS. Further, grooves 2 having a width of 30 μm and a depth of about 100 μm were formed at intervals of 4 mm in the short side direction of the substrate 1a. Next, the substrate to be processed 1a was irradiated with a laser beam having a pulse width of 50 μs, a frequency of 1 kHz, and a laser output of 27 W. The shape of the laser irradiation region LB is an ellipse having a major axis of 7 mm and a minor axis of 1 mm, and the major axis is set to be substantially perpendicular to the groove 2. Further, the edge of the laser irradiation region LB and the side surface end of the substrate 1a to be processed are set at a position separated by a predetermined distance so as to have an interval of 0.2 mm. Further, the laser irradiation region was irradiated for 0.1 seconds at this position. As a result, the cleaving was completely completed in the target substrate 1a. In the laser irradiation region LB, a slight melting occurred, but there is no problem because it is a portion that does not affect the characteristics of the substrate 1a. In addition, since there is no melting or the like in other portions, it is possible to determine whether or not the fixed irradiation of this embodiment is used.

[比較例]
被加工基板1aについては上述の実施例1と同じものを用いた。実施例1との変更点は、LBの形状について直径2mmの円形にし、レーザビームの照射領域を固定せずに、溝2に沿って一定の走査速度で照射した点で異なる。走査速度は1mm/秒、3mm/秒、5mm/秒のそれぞれで行った。その結果、すべての場合において割断が完全になされなかった。また、走査速度の遅い1mm/秒、3mm/秒の場合はレーザ照射領域全域において被加工基板1aが溶融しており、走査速度5mm/秒の場合はレーザ照射領域全域において被加工基板1a表面が変色していた。
[Comparative example]
About the to-be-processed substrate 1a, the same thing as the above-mentioned Example 1 was used. The difference from Example 1 is that the shape of the LB is a circle having a diameter of 2 mm, and irradiation is performed along the groove 2 at a constant scanning speed without fixing the irradiation region of the laser beam. The scanning speed was 1 mm / second, 3 mm / second, and 5 mm / second, respectively. As a result, the cleaving was not completely done in all cases. In addition, when the scanning speed is 1 mm / second or 3 mm / second, the processed substrate 1a is melted in the entire laser irradiation region, and when the scanning speed is 5 mm / second, the surface of the processed substrate 1a is spread over the entire laser irradiation region. It was discolored.

次に、従来のレーザ割段方法と第1の実施形態に係るレーザ割断方法との相違による作用効果について、図4,5を用いて説明する。図4,5は被加工基板1aの部分拡大平面図であり、図4は従来のレーザ割断方法を用いた場合の被加工基板1aの状態、図5は本願発明の第1の実施形態に係るレーザ割段方法を用いた被加工基板1aの状態を示している。   Next, the effect by the difference between the conventional laser splitting method and the laser splitting method according to the first embodiment will be described with reference to FIGS. 4 and 5 are partially enlarged plan views of the substrate 1a to be processed, FIG. 4 is a state of the substrate 1a to be processed when the conventional laser cleaving method is used, and FIG. 5 is according to the first embodiment of the present invention. The state of the to-be-processed substrate 1a using the laser splitting method is shown.

図4(A)(B)に示すように、従来のレーザ割断方法の場合、被加工基板1aの短辺方向に沿って一方の側面端から他方の側面端まで走査しており、レーザ照射領域LBは黒矢印の方向に移動する。図4(A)(B)の一点鎖線がレーザ照射領域LBの軌跡である。   As shown in FIGS. 4A and 4B, in the case of the conventional laser cleaving method, scanning is performed from one side end to the other side end along the short side direction of the substrate 1a to be processed. LB moves in the direction of the black arrow. 4A and 4B is a locus of the laser irradiation region LB.

上述したように、通常、被加工基板1aに対するレーザ照射開始時は、レーザー照射領域LBには圧縮応力が加わり、このレーザ照射領域LBに近接する部分に最も引張り応力が加わることになる。この圧縮応力と引張り応力は被加工基板における1aにおける温度差により生じており、レーザ照射領域LBの温度が高く、レーザ照射領域LBに近接する部分の温度がこれに比べて低い程、亀裂8が生じやすく、進展しやすい。しかしながら、図4(A)から図4(B)のようにレーザ照射領域LBを走査した場合、被加工基板の1aの短辺方向であるので、距離が短くレーザ照射による温度差を生じさせにくい。そのため、引張り応力が生じにくい。例えば、図4(B)において、レーザ照射領域LBに対して最も温度差が大きい領域9は最初にレーザ照射された領域の近接領域になるが、レーザ照射領域LBと領域9との間では徐々に温度が変化することになる。したがって、これらの領域において、大きな温度差が生じにくく、その分引張り応力も小さくなるので、亀裂8が生じても進展しにくくなる。その結果、上述の比較例において被加工基板1aが完全に割断しなかったと考えられる。これは、レーザ割断の対象である被加工基板1aの割断方向の短辺寸法が数mm程度と小さい場合に、レーザ照射領域LBとその周辺の領域との間に温度差が生じにくくなるため、より顕著に表れる。   As described above, normally, at the start of laser irradiation on the workpiece substrate 1a, a compressive stress is applied to the laser irradiation region LB, and the tensile stress is most applied to a portion adjacent to the laser irradiation region LB. This compressive stress and tensile stress are caused by a temperature difference at 1a in the substrate to be processed. The higher the temperature of the laser irradiation region LB and the lower the temperature of the portion adjacent to the laser irradiation region LB, the more the crack 8 becomes. It is likely to occur and progress easily. However, when the laser irradiation region LB is scanned as shown in FIGS. 4A to 4B, the distance is short and the temperature difference due to the laser irradiation is unlikely to occur because it is in the short side direction of the substrate 1a. . Therefore, tensile stress is difficult to occur. For example, in FIG. 4B, the region 9 having the largest temperature difference with respect to the laser irradiation region LB becomes a region close to the region irradiated with the laser first, but gradually between the laser irradiation region LB and the region 9. The temperature will change. Therefore, in these regions, a large temperature difference is unlikely to occur, and the tensile stress is reduced accordingly, so that even if a crack 8 occurs, it is difficult to progress. As a result, it is considered that the substrate 1a to be processed was not completely cleaved in the above comparative example. This is because when the short side dimension in the cleaving direction of the substrate 1a to be processed that is the target of laser cleaving is as small as several millimeters, a temperature difference is unlikely to occur between the laser irradiation region LB and the surrounding region. It appears more prominently.

一方、図5に示す第1の実施形態に係るレーザ割断方法の場合、前述したように、亀裂8はレーザ照射領域LBを越えて形成され、その後、レーザ照射領域LBによる熱伝導とレーザ照射されていない領域10との温度差により、亀裂8が溝2に沿って進展していき、割断に至る。なお、実施例のように2.5mm程度の短辺の被加工基板1aであれば、0.1秒の固定照射で割断は完了する。   On the other hand, in the case of the laser cleaving method according to the first embodiment shown in FIG. 5, as described above, the crack 8 is formed beyond the laser irradiation region LB, and then heat conduction and laser irradiation are performed by the laser irradiation region LB. Due to the temperature difference with the region 10 that is not, the crack 8 propagates along the groove 2 and breaks. In the case of the substrate 1a having a short side of about 2.5 mm as in the embodiment, the cleaving is completed with a fixed irradiation of 0.1 seconds.

以上のように、本発明の第1の実施形態に係るレーザ割断方法によれば、固定照射を行っているため、被加工基板1aに対して部分的に溶融を生じさせるだけで、特性に大きな影響を与えることなく、しかも、割断寸法が短いものに対して確実にレーザ割断を行うことが可能である。   As described above, according to the laser cleaving method according to the first embodiment of the present invention, since the fixed irradiation is performed, only partial melting occurs in the substrate 1a to be processed, and the characteristics are large. It is possible to reliably perform laser cleaving with respect to those having a short cleaving dimension without influencing.

次に、本願発明の第2の実施形態に係るレーザ割断方法について図6を用いて説明する。図6は、本願発明の第2の実施の形態に係るレーザ割断方法で加工されている短冊状の被加工基板1aの平面図である。   Next, a laser cleaving method according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a plan view of a strip-shaped substrate 1a processed by the laser cleaving method according to the second embodiment of the present invention.

図6に示すように、第2の実施形態では、上述の第1の実施形態とはレーザ照射領域LBの形状が異なり、円形状にしている。この円形は、図2におけるレーザ割断装置において、レーザ発振器5から発振されたレーザの形状であり、図2のシリンドリカルレンズ7によるビーム形状の変形を行っていないものである。また、円形のレーザ照射領域LBの中心を通る直径の線を引いた時、溝2とほぼ重なるようにレーザ照射領域LBの位置が設定されている。   As shown in FIG. 6, in the second embodiment, the shape of the laser irradiation region LB is different from that of the first embodiment described above, and is circular. This circle is the shape of the laser oscillated from the laser oscillator 5 in the laser cleaving apparatus in FIG. 2, and the beam shape is not deformed by the cylindrical lens 7 in FIG. Further, the position of the laser irradiation region LB is set so as to substantially overlap the groove 2 when a line having a diameter passing through the center of the circular laser irradiation region LB is drawn.

本実施形態では、第1の実施形態と比較すると、被加工基板1aの側面端から所定距離おいて照射することが困難であるため、亀裂8の発生については第1の実施形態よりも若干劣るが、発生後の亀裂8の進展については第1の実施形態と同様に生じるので、被加工基板1aの割断を確実に行うことができる。また、本実施形態によればビーム形状の変形を行っていないので、ビーム形状変形のための構造が不要であり、レーザ割断装置を単純化することができる。   In the present embodiment, compared to the first embodiment, it is difficult to irradiate at a predetermined distance from the side surface end of the substrate 1a to be processed, so that the generation of the crack 8 is slightly inferior to the first embodiment. However, since the development of the crack 8 after the occurrence occurs in the same manner as in the first embodiment, the substrate 1a to be processed can be reliably cut. Further, according to the present embodiment, since the beam shape is not deformed, a structure for deforming the beam shape is unnecessary, and the laser cleaving apparatus can be simplified.

次に、本願発明の第3の実施形態に係るレーザ割断方法について図7を用いて説明する。図7は、本願発明の第3の実施の形態に係るレーザ割断方法で加工されている短冊状の被加工基板1aの平面図である。   Next, a laser cleaving method according to a third embodiment of the present invention will be described with reference to FIG. FIG. 7 is a plan view of a strip-shaped substrate 1a processed by the laser cleaving method according to the third embodiment of the present invention.

図7に示すように、第3の実施形態では、上述の各実施形態とはレーザ照射領域LBの形状が異なり、複数のスポット形状にしている。このスポット形状は溝2を挟んで両側に同数配置されている。このビーム形状は、図2におけるレーザ割断装置において、レーザ発振器5から発振されたレーザを、図2のシリンドリカルレンズ7をマスク等に換えることよりビーム形状の変形を行っている。   As shown in FIG. 7, in the third embodiment, the shape of the laser irradiation region LB is different from the above-described embodiments, and a plurality of spot shapes are formed. The same number of spot shapes are arranged on both sides of the groove 2. The beam shape is deformed by replacing the laser oscillated from the laser oscillator 5 with the mask or the like of the cylindrical lens 7 in FIG. 2 in the laser cleaving apparatus in FIG.

本実施形態では、上述の実施形態と比較すると、第1の実施形態と同様に、被加工基板1aの側面端から所定距離おいて照射することが可能であり、亀裂を発生させやすい。さらに、溝2の亀裂8を発生させる部分にはレーザが当たっておらず、この部分に温度差による引張り応力が特に集中しやすいので、より亀裂8の発生が生じやすい。また、亀裂8発生後の亀裂8の進展についても、上述の各実施形態と同様に生じるので、被加工基板1aの割断を確実に行うことができる。   In the present embodiment, as compared with the above-described embodiment, similarly to the first embodiment, irradiation can be performed at a predetermined distance from the side surface end of the substrate 1a to be processed, and cracks are easily generated. Further, the laser is not applied to the portion of the groove 2 where the crack 8 is generated, and the tensile stress due to the temperature difference is particularly likely to be concentrated on this portion, so the generation of the crack 8 is more likely to occur. Further, the progress of the crack 8 after the generation of the crack 8 occurs in the same manner as in each of the above-described embodiments, so that the substrate 1a to be processed can be cut reliably.

次に、本願発明の第4の実施形態に係るレーザ割断方法について図8を用いて説明する。図8は、本願発明の第4の実施の形態に係るレーザ割断方法で加工されている短冊状の被加工基板1aの平面図である。   Next, a laser cleaving method according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a plan view of a strip-shaped substrate 1a processed by the laser cleaving method according to the fourth embodiment of the present invention.

図8に示すように、第4の実施形態では、上述の各実施形態とは異なり、被加工基板の1aに形成された溝2の両端部に、レーザ照射領域LBが配置されたおり、亀裂8を溝2の両側に発生させた後、進展させるようにしている。   As shown in FIG. 8, in the fourth embodiment, unlike each of the above-described embodiments, the laser irradiation regions LB are disposed at both ends of the groove 2 formed in the substrate 1a, and cracks are generated. 8 is generated on both sides of the groove 2 and then developed.

本実施形態では、上述の実施形態と比較すると、溝2の両側から亀裂8を進展させることにより、割断を完了するまでの時間を短縮することができる。また、上述の実施形態では、割断が完了しない大きさの被加工基板1aについても、確実に割断を行うことができる。   In this embodiment, as compared with the above-described embodiment, the time until the cleaving is completed can be shortened by causing the crack 8 to advance from both sides of the groove 2. Further, in the above-described embodiment, the substrate to be processed 1a having a size that does not complete the cleaving can be reliably cleaved.

本願発明に係る被加工基板の溝形成工程を示す概略説明図。Schematic explanatory drawing which shows the groove | channel formation process of the to-be-processed substrate which concerns on this invention. 本願発明の第1の実施の形態に係るレーザ割断装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the laser cleaving apparatus which concerns on 1st Embodiment of this invention. 本願発明の第1の実施の形態に係るレーザ割断装置で加工されている被加工基板の図であり、(A)は平面図、(B)は正面図である。It is a figure of the to-be-processed substrate processed with the laser cleaving apparatus which concerns on 1st Embodiment of this invention, (A) is a top view, (B) is a front view. 従来のレーザ割断方法を用いた場合の被加工基板の状態を示す平面図。The top view which shows the state of the to-be-processed substrate at the time of using the conventional laser cleaving method. 本願発明の第1の実施形態に係るレーザ割段方法を用いた被加工基板の状態を示す平面図。The top view which shows the state of the to-be-processed substrate using the laser splitting method which concerns on 1st Embodiment of this invention. 本願発明の第2の実施の形態に係るレーザ割断方法で加工されている被加工基板の平面図。The top view of the to-be-processed substrate processed with the laser cleaving method which concerns on 2nd Embodiment of this invention. 本願発明の第3の実施の形態に係るレーザ割断方法で加工されている被加工基板の平面図。The top view of the to-be-processed substrate processed by the laser cleaving method which concerns on 3rd Embodiment of this invention. 本願発明の第4の実施の形態に係るレーザ割断方法で加工されている被加工基板の平面図。The top view of the to-be-processed substrate processed with the laser cleaving method which concerns on 4th Embodiment of this invention. 一般的な被加工基板の割断工程を示す斜視図であり、(A)は被加工母基板を短冊状の被加工基板に割断する一次割断工程を示し、(B)は短冊状の被加工基板を所望の大きさのチップサイズに割断する二次割断工程を示す。It is a perspective view which shows the cleaving process of a general to-be-processed substrate, (A) shows the primary cleaving process which cleaves a to-be-processed mother board into a strip-shaped to-be-processed substrate, (B) is a strip-shaped to-be-processed substrate. The secondary cleaving process which cleaves to the chip | tip size of a desired magnitude | size is shown.

符号の説明Explanation of symbols

1 被加工母基板
1a 被加工基板
2 溝
3 機械的切削工具
4 画像処理装置
5 レーザ発振器
6 全反射ミラー
7 シリンドリカルレンズ
8 亀裂
LB レーザ照射領域
9 レーザ照射領域LBに対して最も温度差が大きい領域
10 レーザ照射されていない領域
DESCRIPTION OF SYMBOLS 1 Substrate 1a Substrate 2 Groove 3 Mechanical cutting tool 4 Image processing device 5 Laser oscillator 6 Total reflection mirror 7 Cylindrical lens 8 Crack LB Laser irradiation area 9 Area with the largest temperature difference with respect to laser irradiation area LB
10 Area not irradiated with laser

Claims (4)

表面に溝が形成された脆性材料からなる被加工基板の溝の一端部にレーザを照射することにより局部的に加熱し、その加熱により発生した熱応力によって前記被加工基板に亀裂を生じさせるとともに、前記被加工基板に対するレーザ照射領域の位置を固定して、前記溝に沿って前記亀裂を進展させて前記被加工基板を割断することを特徴とするレーザ割断方法。   One end of the groove of the substrate to be processed made of a brittle material having a groove formed on the surface is locally heated by irradiating the laser, and the substrate to be processed is cracked by the thermal stress generated by the heating. A laser cleaving method characterized in that the position of a laser irradiation region with respect to the substrate to be processed is fixed and the crack is propagated along the groove to cleave the substrate to be processed. 前記レーザのビーム形状を長軸と短軸を有する異方形状とし、前記ビーム形状の長軸が前記溝の伸張方向と略垂直となるように前記被加工基板の溝の端部にレーザを照射することを特徴とする請求項1記載のレーザ割断方法。   The laser beam shape is an anisotropic shape having a major axis and a minor axis, and the end of the groove of the substrate to be processed is irradiated with the laser so that the major axis of the beam shape is substantially perpendicular to the extending direction of the groove. 2. The laser cleaving method according to claim 1, wherein: 前記被加工基板の溝の端部に照射するレーザのビーム形状を複数のスポット形状とし、前記スポット形状の配列長手方向が前記溝の伸張方向と略垂直となるように前記被加工基板の溝の端部にレーザを照射することを特徴とする請求項1記載のレーザ割断方法。   The shape of the laser beam applied to the end portion of the groove of the substrate to be processed is a plurality of spot shapes, and the arrangement longitudinal direction of the spot shape is substantially perpendicular to the extending direction of the groove. 2. The laser cleaving method according to claim 1, wherein the end is irradiated with a laser. 前記レーザの照射を前記被加工基板の溝の両端から行うことを特徴とする請求項1乃至3記載のレーザ割断方法。   4. The laser cleaving method according to claim 1, wherein the laser irradiation is performed from both ends of the groove of the substrate to be processed.
JP2006283903A 2006-10-18 2006-10-18 Laser cutting method Pending JP2008100412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283903A JP2008100412A (en) 2006-10-18 2006-10-18 Laser cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283903A JP2008100412A (en) 2006-10-18 2006-10-18 Laser cutting method

Publications (1)

Publication Number Publication Date
JP2008100412A true JP2008100412A (en) 2008-05-01

Family

ID=39435103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283903A Pending JP2008100412A (en) 2006-10-18 2006-10-18 Laser cutting method

Country Status (1)

Country Link
JP (1) JP2008100412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177782A (en) * 2010-03-04 2011-09-15 Mitsubishi Materials Corp Laser beam machining method
JP2016068400A (en) * 2014-09-30 2016-05-09 株式会社ディスコ Division method of ceramic substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328781A (en) * 1994-06-08 1995-12-19 Souei Tsusho Kk Splitting method of brittle material
JP2003002676A (en) * 2001-06-19 2003-01-08 Seiko Epson Corp Method for splitting substrate and method for producing liquid crystal device
WO2005102638A1 (en) * 2004-04-27 2005-11-03 Mitsuboshi Diamond Industrial Co., Ltd. Method for forming vertical crack on brittle board and vertical crack forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328781A (en) * 1994-06-08 1995-12-19 Souei Tsusho Kk Splitting method of brittle material
JP2003002676A (en) * 2001-06-19 2003-01-08 Seiko Epson Corp Method for splitting substrate and method for producing liquid crystal device
WO2005102638A1 (en) * 2004-04-27 2005-11-03 Mitsuboshi Diamond Industrial Co., Ltd. Method for forming vertical crack on brittle board and vertical crack forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177782A (en) * 2010-03-04 2011-09-15 Mitsubishi Materials Corp Laser beam machining method
JP2016068400A (en) * 2014-09-30 2016-05-09 株式会社ディスコ Division method of ceramic substrate

Similar Documents

Publication Publication Date Title
JP5345334B2 (en) Thermal stress cleaving method for brittle materials
JP5113462B2 (en) Method for chamfering a brittle material substrate
KR101428823B1 (en) Laser processing method and laser processing apparatus
KR101349556B1 (en) Laser processing method and laser processing device
JP4322881B2 (en) Laser processing method and laser processing apparatus
JP4198123B2 (en) Laser processing method
JP5322418B2 (en) Laser processing method and laser processing apparatus
WO2010116917A1 (en) Laser machining device and laser machining method
JP2013146747A (en) Cleaving method by laser and laser cleaving device
JP2007013056A (en) Method for cutting work to be machined
TW201329005A (en) Tempered glass plate cutting method
JP5037082B2 (en) Laser processing method and laser processing apparatus
KR101404250B1 (en) Splitting apparatus and cleavage method for brittle material
WO2013039012A1 (en) Laser machining method and laser machining device
TW201514109A (en) Method of separating a glass sheet from a carrier
JP2008012542A (en) Laser beam machining method
JP2004155159A (en) Cutting-off equipment and cutting-off method
JP5122161B2 (en) Processing object cutting method
JP5117806B2 (en) Laser processing method and laser processing apparatus
JP6931918B2 (en) Glass substrate end face treatment method and glass substrate end face treatment device
JP2008100412A (en) Laser cutting method
TWI779068B (en) Method for reducing residual stress of glass substrate and device for reducing residual stress of glass substrate
JP5560096B2 (en) Laser processing method
JP2008168304A (en) Laser cutting method
JP2000281373A (en) Method for dividing brittle material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221