JPH07328781A - Splitting method of brittle material - Google Patents

Splitting method of brittle material

Info

Publication number
JPH07328781A
JPH07328781A JP6126146A JP12614694A JPH07328781A JP H07328781 A JPH07328781 A JP H07328781A JP 6126146 A JP6126146 A JP 6126146A JP 12614694 A JP12614694 A JP 12614694A JP H07328781 A JPH07328781 A JP H07328781A
Authority
JP
Japan
Prior art keywords
laser beam
crack
laser
irradiating
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6126146A
Other languages
Japanese (ja)
Other versions
JP3210934B2 (en
Inventor
Hideki Morita
英毅 森田
Shunichi Maekawa
俊一 前川
Toshihiro Okiyama
俊裕 沖山
Hideyuki Shirahama
秀幸 白浜
Toshiyuki Yokoyama
敏幸 横山
Eishin Oonita
英信 大仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUEI TSUSHO KK
Japan Science and Technology Agency
Nagasaki Prefectural Government
Original Assignee
SOUEI TSUSHO KK
Research Development Corp of Japan
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUEI TSUSHO KK, Research Development Corp of Japan, Nagasaki Prefectural Government filed Critical SOUEI TSUSHO KK
Priority to JP12614694A priority Critical patent/JP3210934B2/en
Publication of JPH07328781A publication Critical patent/JPH07328781A/en
Application granted granted Critical
Publication of JP3210934B2 publication Critical patent/JP3210934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching

Abstract

PURPOSE:To elevate a generating rate of initial crack at machining start point and to improve the machining speed and precision in executing splitting of brittle material with use of laser beam. CONSTITUTION:Generation of an initial crack C is executed while simultaneously irradiating two positions P1, P2 at least near the edge of a work W with laser beam, successively, while plural irradiating positions S1, S2 are controlled to the prescribed position relationship or a laser output of irradiating positions S1, S2 is controlled, the laser beam is traveled along a splitting planned line L, crack C is induced. By this method, peculiar heat stress distribution is generated between laser beam irradiating positions, its tensile stress is made larger as compared to that of irradiation of one point laser beam, splitting control is improved by controlling the generating state of stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス、セラミックあ
るいは半導体材料等の脆性材料にレーザビームを照射す
ることにより発生する熱応力を利用して、その材料を割
断する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaving a brittle material such as glass, ceramic or a semiconductor material by utilizing thermal stress generated by irradiating the material with a laser beam.

【0002】[0002]

【従来の技術】ガラス等の脆性材料を切断する方法とし
ては、従来、研摩材を使用する研削あるいはレーザビー
ムによる溶断などがあるが、これらの方法によると、い
ずれも加工点に熱歪みが発生したり、機械的な構造破壊
等によって加工点周辺に研削割れ等が生じるなど材料の
劣化を伴う点、また、研削もしくは蒸発による材料の損
失が避けられない等の欠点がある。
2. Description of the Related Art Conventionally, as a method of cutting brittle materials such as glass, grinding using an abrasive or fusing by a laser beam has been known. However, according to these methods, thermal strain is generated at a processing point. However, there are drawbacks such as deterioration of the material such as grinding cracks around the processing point due to mechanical structural destruction, and loss of material due to grinding or evaporation.

【0003】そこで、このような問題を解決するため、
レーザビーム照射による熱応力を利用して材料を割断す
る、いわゆるレーザ割断方法が提案されている。この方
法は、脆性材料にレーザビームを照射して、その照射位
置に生じる熱応力により微小亀裂を発生させ、その亀裂
をレーザビームによる熱応力によって加工予定線に沿う
方向に誘導することによって材料を割断する方法で、レ
ーザビームを利用した溶断に比して加工エネルギが小さ
く、しかも材料の損失がないといった利点がある。
Therefore, in order to solve such a problem,
A so-called laser cleaving method has been proposed in which a material is cleaved by utilizing thermal stress caused by laser beam irradiation. This method irradiates a brittle material with a laser beam, generates a microcrack due to the thermal stress generated at the irradiation position, and guides the material in the direction along the planned processing line by the thermal stress due to the laser beam. The cleaving method has the advantages that the processing energy is smaller than that of fusing using a laser beam and there is no material loss.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したレ
ーザ割断方法によれば、加工の起点となる初期亀裂を、
材料の端縁近傍にレーザビームを照射して、そのビーム
中心と周辺との間に発生する急峻な温度勾配により生じ
る局部的な集中応力で発生させるわけであるが、例えば
加工周辺の雰囲気温度、材料表面での散乱状態及び材料
中での光の吸収率などの諸条件によって発生する熱応力
(引張応力)がばらつき、局部的な集中応力が材料の許
容応力を超えないことがあり、このため初期亀裂の発生
の確実性が低いという問題がある。
By the way, according to the above-mentioned laser cutting method, the initial crack which is the starting point of processing is
Irradiating a laser beam in the vicinity of the edge of the material, it is generated by a localized concentrated stress caused by a steep temperature gradient generated between the beam center and the periphery, for example, the ambient temperature around the processing, The thermal stress (tensile stress) generated due to various conditions such as the scattering state on the surface of the material and the absorption rate of light in the material may vary, and the localized concentrated stress may not exceed the allowable stress of the material. There is a problem that the certainty of the initiation of cracks is low.

【0005】また、レーザ割断方法において亀裂の誘導
は、レーザビームの照射位置を割断予定線に沿って移動
し、そのビーム進行方向の後方に熱応力(引張応力)を
発生させ、亀裂先端の応力拡大係数を材料の破壊靱性値
を超えさせるといったメカニズムにより行うが、レーザ
ビームの進行速度が速いと、亀裂誘導のための熱応力が
十分とはならず亀裂進展が停止するといった問題があ
り、この加工速度の限界及び上記した初期亀裂の発生の
再現性の問題がレーザ割断方法を実用化する上での妨げ
となっている。
In the laser cleaving method, in order to induce a crack, the irradiation position of the laser beam is moved along the expected cleaving line, thermal stress (tensile stress) is generated behind the beam traveling direction, and stress at the tip of the crack is generated. The mechanism is such that the expansion factor exceeds the fracture toughness value of the material, but if the traveling speed of the laser beam is fast, there is a problem that the thermal stress for crack induction is not sufficient and the crack growth stops. The problems of the limit of processing speed and the reproducibility of the above-mentioned generation of initial cracks are obstacles to practical use of the laser cleaving method.

【0006】さらに、この種のレーザ割断方法では、亀
裂を誘導する際にレーザビーム照射位置の移動の経路か
ら亀裂がずれて追随することがあり、このため加工精度
が悪いという問題も残されている。
Further, in this type of laser cleaving method, when the crack is guided, the crack may deviate from the path of movement of the laser beam irradiation position and follow the crack. Therefore, there remains a problem that machining accuracy is poor. There is.

【0007】本発明はそのような事情に鑑みてなされた
もので、レーザビームを用いて脆性材料の割断を行うに
あたり、その加工起点の初期亀裂の発生率が高い方法、
及び加工速度・精度の向上を達成できる割断方法の提供
を目的とする。
The present invention has been made in view of the above circumstances, and is a method in which, when a brittle material is cleaved by using a laser beam, the incidence of initial cracks at the starting point of processing is high,
It is also an object of the present invention to provide a cutting method capable of achieving improvement in processing speed and accuracy.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の第1の方法は、実施例に対応する図1に示
すように、被加工材料Wの端縁近傍の少なくとも2点P
1,P2 にレーザビームを同時に照射して初期亀裂Cの発
生を行うことによって特徴づけられる。
In order to achieve the above-mentioned object, the first method of the present invention is, as shown in FIG. 1 corresponding to the embodiment, at least two points near the edge of the material W to be processed. P
It is characterized by simultaneously irradiating 1, P2 with a laser beam to generate an initial crack C.

【0009】また、本発明の第2の方法は、図2に示す
ように、被加工材料Wの端縁近傍の亀裂Cに複数のレー
ザビームを照射し、かつ、それら複数のビーム間の出力
と、その位置関係とを制御した状態で、これらビーム照
射位置S1,S2 を割断予定線Lに沿って移動させること
により亀裂Cの誘導を行うことを特徴としている。
Further, according to the second method of the present invention, as shown in FIG. 2, the crack C near the edge of the workpiece W is irradiated with a plurality of laser beams, and the output between the plurality of beams is output. It is characterized in that the crack C is guided by moving the beam irradiation positions S1 and S2 along the planned cutting line L in a state in which the position relationship between the beam irradiation position S1 and S2 is controlled.

【0010】[0010]

【作用】まず、被加工材料Wの端縁近傍の2点のレーザ
ビームLBを同時に照射すると、そのビーム照射位置の間
に、図1(b) に示すような特異な熱応力分布が発生し、
この熱応力分布による引張応力が、レーザビーム照射位
置を1点としたときの引張応力に比して大きくなり、こ
れにより局部的な集中応力が材料の許容応力を十分に超
える値となる結果、初期亀裂が確実に発生する。
First, when two laser beams LB near the edge of the workpiece W are simultaneously irradiated, a peculiar thermal stress distribution as shown in Fig. 1 (b) is generated between the beam irradiation positions. ,
The tensile stress due to this thermal stress distribution becomes larger than the tensile stress when the laser beam irradiation position is one point, and as a result, the localized concentrated stress becomes a value that sufficiently exceeds the allowable stress of the material, The initial crack is surely generated.

【0011】次いで、発生した亀裂Cの先端の前方の位
置S1 と後方の位置S2 に位置に、それぞれレーザビー
ムLBを照射すると、その各照射位置S1 とS2 との間
に、図2(b) に示すような特異な熱応力分布、すなわち
亀裂Cの前方側が大となる熱応力分布が発生して、その
前方側の引張応力が1点のレーザビーム照射の場合に比
して大きくなる。これにより、亀裂先端の応力拡大係数
が材料の破壊靱性値を超え易くなる結果、亀裂の進展が
速くなるとともに亀裂の進展方向が割断予定線Lに対し
て曲がり難くなる。
Next, when the laser beam LB is irradiated to the position S1 in front of the tip of the crack C and the position S2 in the rear of the crack C, respectively, between the irradiation positions S1 and S2, as shown in FIG. A specific thermal stress distribution as shown in (1), that is, a thermal stress distribution in which the front side of the crack C is large occurs, and the tensile stress on the front side becomes larger than in the case of laser beam irradiation of one point. As a result, the stress intensity factor at the crack tip easily exceeds the fracture toughness value of the material. As a result, the crack progresses faster and the crack growth direction is less likely to bend with respect to the planned cleavage line L.

【0012】[0012]

【実施例】図1は本発明実施例の説明図である。まず、
本発明方法の実施に使用する装置は、ガラスあるいはア
ルミナセラミックなどの被加工材料Wを載置する2軸移
動ステージ(図示せず)と、このステージ上に置かれた
材料表面の2点に、レーザビームLBを同時に照射するた
めの2台のレーザ発振器(図示せず)を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of an embodiment of the present invention. First,
The apparatus used for carrying out the method of the present invention is a two-axis moving stage (not shown) on which a material W to be processed such as glass or alumina ceramic is placed, and two points on the surface of the material placed on this stage. Two laser oscillators (not shown) for simultaneously irradiating the laser beam LB are provided.

【0013】また、これらのレーザ発振器はステージに
対して光軸の変更が可能となっており、被加工材料Wへ
のレーザビームLBの照射位置を、割断予定線Lと直交す
る方向に線上の2点、もしくは割断予定線L上の2点の
いずれか一方に選択的に切り換えることができる。
The optical axes of these laser oscillators can be changed with respect to the stage, and the irradiation position of the laser beam LB on the material W to be processed is linear in the direction orthogonal to the planned cutting line L. It is possible to selectively switch to either of two points or two points on the planned cutting line L.

【0014】さて、本発明実施例の加工手順は、まず、
2台のレーザ発振器の光軸と被加工材料Wとの位置合わ
せを行って、図1(a) に示すように、各レーザビームLB
のスポット中心を被加工材料Wの端縁近傍で割断予定線
Lを挟んで互い対称となる2点P1,P2 に合わせ、この
状態で被加工材料Wの表面の2点にレーザビームLBを同
時に照射して、被加工材料Wの端縁付近に亀裂Cを発生
させる。
The processing procedure of the embodiment of the present invention is as follows.
After aligning the optical axes of the two laser oscillators with the workpiece W, the laser beams LB are aligned as shown in Fig. 1 (a).
The center of the spot is aligned with two points P1 and P2 which are symmetrical to each other with the planned dividing line L sandwiched in the vicinity of the edge of the workpiece W, and in this state, the laser beam LB is simultaneously applied to the two points on the surface of the workpiece W. Irradiation causes a crack C to occur near the edge of the workpiece W.

【0015】このように被加工材料Wへのレーザビーム
照射位置を2点とすると、そのビーム照射位置の間に、
図1(b) の解析図に示すような特異な熱応力分布が発生
し、その引張応力がレーザビーム照射位置を1点とした
ときの引張応力に比して大きくなる結果、初期亀裂が確
実に発生する。なお、その亀裂の発生確率は、レーザビ
ーム照射点P1 とP2 との間の距離及びレーザの発振パ
ワー等の諸条件に左右されるが、その確率は実験等によ
り100%(従来:90%程度)を達成できることが現
段階で確認できている。
Assuming that there are two laser beam irradiation positions on the workpiece W in this way, between the beam irradiation positions,
A unique thermal stress distribution is generated as shown in the analysis diagram of Fig. 1 (b), and the tensile stress becomes larger than the tensile stress when the laser beam irradiation position is set to one point. Occurs in. The crack generation probability depends on various conditions such as the distance between the laser beam irradiation points P1 and P2 and the laser oscillation power. However, the probability is 100% (previously: about 90%) by experiments. ) Has been confirmed at this stage.

【0016】次に、レーザ発振器の光軸の変更を行っ
て、図2(a) に示すように、レーザビームLBの照射位置
を割断予定線L上に沿う2点とし、また、各レーザビー
ムLBの出力を制御した状態で、ステージの移動により各
レーザビームLBの照射位置S1,S2 を割断予定線Cに沿
って移動して、材料Wの端縁付近に発生した亀裂Cを誘
導してゆく。
Next, by changing the optical axis of the laser oscillator, as shown in FIG. 2 (a), the irradiation position of the laser beam LB is set to two points along the planned cutting line L, and each laser beam LB is irradiated. While controlling the output of LB, the irradiation position S1, S2 of each laser beam LB is moved along the planned cutting line C by the movement of the stage to induce the crack C generated near the edge of the material W. go.

【0017】この亀裂誘導過程において、レーザビーム
照射位置を亀裂Cの先端の前方の位置S1 と後方の位置
S2 とすることにより、これらの照射位置S1 とS2 と
の間に、図2(b) の解析図に示すような特異な熱応力分
布が発生し、その熱応力分布は亀裂Cの前方側が大とな
る。すなわち、亀裂Cの進展方向の前方側の引張応力が
常に大きくなり、これにより、レーザビームの進行速度
つまり加工速度を速くしても亀裂Cの進展が停止するこ
とはなく、しかも、亀裂Cの進展方向が割断予定線Lに
対して曲がる確率も少なくなる。
In this crack guiding process, the laser beam irradiation position is set to a position S1 in front of the tip of the crack C and a position S2 in the rear thereof, so that the position between the irradiation positions S1 and S2 is shown in FIG. 2 (b). A unique thermal stress distribution as shown in the analysis diagram of Fig. 3 is generated, and the thermal stress distribution becomes large on the front side of the crack C. That is, the tensile stress on the front side in the propagation direction of the crack C is always large, so that even if the traveling speed of the laser beam, that is, the processing speed is increased, the propagation of the crack C is not stopped, and the crack C The probability that the traveling direction bends with respect to the planned cleavage line L also decreases.

【0018】なお、その加工速度は、従来では高々30
mm/s程度であったのに対し、現段階で150mm/sにまで
高められること、また、加工精度については、数百μ
m;従来→数十μm(表面粗さ)にまで高められること
が、実験等により現段階で確認できている。
The processing speed is 30 at most in the conventional case.
Although it was about mm / s, it can be increased to 150 mm / s at the present stage, and the processing accuracy is several hundred μ.
m; Conventional → It has been confirmed at the present stage by experiments that the surface roughness can be increased to several tens of μm (surface roughness).

【0019】ここで、以上の実施例において、初期亀裂
を発生する際のレーザビーム照射の2点P1 とP2 との
間の距離は、被加工材料Wの材質及び厚さ,レーザの出
力パワーなどの諸条件によって決定されるが、その2点
間の距離は、レーザビームのスポット径を 2.0 mm 程度
とすれば、3.0mm 〜3.6mm 程度が適当である。また、亀
裂Cの誘導の際のレーザビーム照射位置S1 とS2 との
間の距離については、初期亀裂発生時と同じであっても
よい。
Here, in the above embodiment, the distance between the two points P1 and P2 of the laser beam irradiation when the initial crack is generated is determined by the material and thickness of the workpiece W, the laser output power, etc. However, if the spot diameter of the laser beam is about 2.0 mm, a suitable distance between the two points is about 3.0 mm to 3.6 mm. Further, the distance between the laser beam irradiation positions S1 and S2 at the time of guiding the crack C may be the same as that at the time of the initial crack generation.

【0020】さらに、亀裂誘導の際のレーザビーム照射
位置S1,S2 は、図2(c) に示すように、亀裂Cの先端
近傍位置で割断予定線Lを挟んで互い対称となる位置と
してもよい。この場合、図2(d) の解析図に示すような
熱応力分布すなわち図1(b)と同等な熱応力分布が発生
して亀裂先端付近の引張応力が大きくなるので、ビーム
照射位置S1,S2 をこのような位置関係としても、先と
同様な効果を達成できる。
Further, as shown in FIG. 2C, the laser beam irradiation positions S1 and S2 at the time of guiding the cracks may be symmetrical to each other with the planned splitting line L sandwiched between them near the tip of the crack C. Good. In this case, the thermal stress distribution as shown in the analysis diagram of FIG. 2 (d), that is, the thermal stress distribution equivalent to that of FIG. 1 (b) occurs and the tensile stress near the crack tip increases, so that the beam irradiation position S1, Even if S2 has such a positional relationship, the same effect as above can be achieved.

【0021】なお、本発明方法において、被加工材料へ
のレーザビーム照射位置は2点に限られることなく3点
以上の任意の多点であってもよく、照射位置の数を多く
した場合、各照射点の位置関係を適宜に選定すれば、引
張応力を更に高めるための熱応力分布を発生することが
でき、これにより、より優れた効果すなわち加工速度・
精度等が先の実施例よりも更に向上するといった効果も
期待できる。
In the method of the present invention, the laser beam irradiation position on the material to be processed is not limited to two, but may be any number of three or more. If the number of irradiation positions is increased, By selecting the positional relationship of each irradiation point appropriately, it is possible to generate a thermal stress distribution for further increasing the tensile stress, which results in a better effect, namely, the processing speed.
It is also possible to expect an effect that the accuracy and the like are further improved as compared with the previous embodiment.

【0022】また、本発明方法は、ガラスやアルミナセ
ラミックのほか、石英あるいは半導体材料等の他の脆性
材料の加工に適用できることは勿論である。なお、使用
するレーザ発振器は、加工材料の材質によってCO2
ーザもしくはYAGレーザ等を適宜に選択する。
The method of the present invention can, of course, be applied to the processing of quartz and other brittle materials such as semiconductor materials in addition to glass and alumina ceramics. As the laser oscillator to be used, a CO 2 laser, a YAG laser, or the like is appropriately selected depending on the material of the processing material.

【0023】[0023]

【発明の効果】以上説明したように、本発明方法によれ
ば、被加工材料の表面上の少なくとも2点にレーザビー
ムを照射するので、その照射位置付近には特異な熱応力
分布が発生し、その引張応力が従来よりも大きくなる結
果、初期亀裂の発生確率が高くなるとともに加工速度・
精度がともに向上する。これによりレーザ割断方法の実
用化が達成可能となる。
As described above, according to the method of the present invention, since at least two points on the surface of the material to be processed are irradiated with the laser beam, a peculiar thermal stress distribution is generated near the irradiation position. As a result of the tensile stress becoming larger than before, the probability of initial cracking increases and the processing speed
Both accuracy is improved. This makes it possible to put the laser cleaving method to practical use.

【0024】また、材料へのレーザビーム照射位置を2
点(多点)とすることにより、ビーム照射による温度分
布を、通常の1点のレーザビーム照射の場合に比して低
く抑えても、十分な加工速度・精度を得ることができ、
これにより被加工材料に対する熱の影響を軽減できると
いう利点もある。
Further, the laser beam irradiation position on the material is set to 2
By setting the points (multi-points), sufficient processing speed and accuracy can be obtained even if the temperature distribution due to beam irradiation is suppressed to be lower than in the case of normal single point laser beam irradiation.
This also has the advantage that the influence of heat on the material to be processed can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例の説明図FIG. 1 is an explanatory view of an embodiment of the method of the present invention.

【図2】同じく実施例の説明図FIG. 2 is an explanatory diagram of the same embodiment.

【符号の説明】[Explanation of symbols]

W 被加工材料 L 割断予定線 LB レーザビーム P1,P2 初期亀裂発生の際にレーザビームを照射する
点 S1,S2 亀裂誘導のレーザビーム照射位置 C 亀裂
W Work material L Planned cutting line LB Laser beam P1, P2 Point to irradiate laser beam at initial crack generation S1, S2 Crack-induced laser beam irradiation position C Crack

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 俊一 兵庫県伊丹市春日丘1−15 (72)発明者 沖山 俊裕 兵庫県御国野町御着1174−22 (72)発明者 白浜 秀幸 長崎県長崎市川平町199−3 (72)発明者 横山 敏幸 長崎県大村市三城町1011番地 三城アパー トイ−206 (72)発明者 大仁田 英信 長崎県大村市三城町955−1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunichi Maekawa 1-15 Kasugaoka, Itami City, Hyogo Prefecture (72) Inventor Toshihiro Okiyama 1174-22 Ogiri, Mikunino Town, Hyogo Prefecture (72) Hideyuki Shirahama Nagasaki City, Nagasaki Prefecture Hiramachi 199-3 (72) Inventor Toshiyuki Yokoyama 1011 Mijo-cho, Omura-shi, Nagasaki Mijo Apertoy-206 (72) Inventor Hidenobu Onita 955-1 Mijo-cho, Omura-shi, Nagasaki

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脆性材料の端縁近傍にレーザビームを照
射し、その位置に生じる熱応力により亀裂を発生させ、
材料を割断する方法において、被加工材料の端縁近傍の
少なくとも2点にレーザビームを同時に照射して上記亀
裂の発生を行うことを特徴とする脆性材料の割断方法。
1. A laser beam is irradiated near the edge of a brittle material, and a crack is generated by the thermal stress generated at that position,
In the method of cleaving a material, a method of cleaving a brittle material is characterized in that at least two points near an edge of a material to be processed are simultaneously irradiated with a laser beam to generate the crack.
【請求項2】 脆性材料の端縁近傍にレーザビームを照
射して亀裂を発生させ、その亀裂近傍にレーザビームを
照射し、この照射位置を移動して上記亀裂を割断予定線
に沿って誘導することにより材料を割断する方法におい
て、被加工材料の端縁近傍の亀裂に複数のレーザビーム
を照射し、かつ、それら複数のビーム間の出力とその位
置関係とを制御した状態で、これらビーム照射位置を上
記割断予定線に沿って移動させることにより上記亀裂の
誘導を行うことを特徴とする脆性材料の割断方法。
2. A crack is generated by irradiating a laser beam in the vicinity of the edge of a brittle material with a laser beam, irradiating the laser beam in the vicinity of the crack, and moving the irradiation position to guide the crack along a planned cutting line. In the method of cleaving the material by irradiating a crack with a plurality of laser beams near the edge of the material to be processed, and controlling the output and the positional relationship between the plurality of beams, these beams A method for cleaving a brittle material, which comprises inducing the crack by moving an irradiation position along the planned cleavage line.
JP12614694A 1994-06-08 1994-06-08 How to cut brittle materials Expired - Fee Related JP3210934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12614694A JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12614694A JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Publications (2)

Publication Number Publication Date
JPH07328781A true JPH07328781A (en) 1995-12-19
JP3210934B2 JP3210934B2 (en) 2001-09-25

Family

ID=14927821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12614694A Expired - Fee Related JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Country Status (1)

Country Link
JP (1) JP3210934B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872303A3 (en) * 1997-04-14 1999-12-01 Schott Glas Process and apparatus for splitting flat pieces of brittle material, particularly of glass
EP1158343A2 (en) * 2000-05-23 2001-11-28 Hitachi, Ltd. Liquid crystal display apparatus and production method
WO2004067220A1 (en) * 2003-01-30 2004-08-12 Essel-Tech Co., Ltd. Laser cutting apparatus
WO2006011608A1 (en) * 2004-07-30 2006-02-02 Mitsuboshi Diamond Industrial Co., Ltd. Vertical crack forming method and vertical crack forming device in substrate
KR100634750B1 (en) * 1999-12-07 2006-10-16 삼성전자주식회사 Laser cutting equipment
US7304265B2 (en) * 2002-03-12 2007-12-04 Mitsuboshi Diamond Industrial Co., Ltd. Method and system for machining fragile material
JP2008100412A (en) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd Laser cutting method
JP2009248160A (en) * 2008-04-08 2009-10-29 Lemi Ltd Thermal stress fracture method of brittle material
JP2010064493A (en) * 2009-12-08 2010-03-25 Mitsuboshi Diamond Industrial Co Ltd Method and device for processing brittle substrate
JP2010090010A (en) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd Method for cutting brittle material substrate and cutting device
WO2011142464A1 (en) * 2010-05-14 2011-11-17 旭硝子株式会社 Cutting method and cutting device
JP2012526721A (en) * 2009-05-13 2012-11-01 コーニング インコーポレイテッド How to cut brittle materials
WO2014175147A1 (en) * 2013-04-26 2014-10-30 旭硝子株式会社 Method for cutting glass plate
WO2014175146A1 (en) * 2013-04-26 2014-10-30 旭硝子株式会社 Method for cutting glass plate
JP2016503386A (en) * 2012-11-21 2016-02-04 コーニング インコーポレイテッド Cutting method of laminated tempered glass substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11075496B2 (en) 2018-06-28 2021-07-27 Samsung Electronics Co., Ltd. Laser dicing device, method of laser beam modulation, and method of dicing a substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108006A (en) * 1987-10-21 1989-04-25 Nagasaki Pref Gov Splitting of brittle material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108006A (en) * 1987-10-21 1989-04-25 Nagasaki Pref Gov Splitting of brittle material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112967A (en) * 1997-04-14 2000-09-05 Schott Glas Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass
EP0872303A3 (en) * 1997-04-14 1999-12-01 Schott Glas Process and apparatus for splitting flat pieces of brittle material, particularly of glass
KR100634750B1 (en) * 1999-12-07 2006-10-16 삼성전자주식회사 Laser cutting equipment
US6700639B2 (en) 2000-05-23 2004-03-02 Hitachi, Ltd. Liquid crystal display apparatus and production method
US7142278B2 (en) 2000-05-23 2006-11-28 Hitachi, Ltd. Method for producing a liquid crystal display apparatus
EP1158343A2 (en) * 2000-05-23 2001-11-28 Hitachi, Ltd. Liquid crystal display apparatus and production method
US7816623B2 (en) 2002-03-12 2010-10-19 Mitsuboshi Diamond Industrial Co., Ltd. Method and apparatus for processing brittle material
US7304265B2 (en) * 2002-03-12 2007-12-04 Mitsuboshi Diamond Industrial Co., Ltd. Method and system for machining fragile material
WO2004067220A1 (en) * 2003-01-30 2004-08-12 Essel-Tech Co., Ltd. Laser cutting apparatus
WO2006011608A1 (en) * 2004-07-30 2006-02-02 Mitsuboshi Diamond Industrial Co., Ltd. Vertical crack forming method and vertical crack forming device in substrate
EP1772245A1 (en) * 2004-07-30 2007-04-11 Mitsuboshi Diamond Industrial Co., Ltd. Vertical crack forming method and vertical crack forming device in substrate
JPWO2006011608A1 (en) * 2004-07-30 2008-05-01 三星ダイヤモンド工業株式会社 Vertical crack forming method and vertical crack forming apparatus for substrate
EP1772245A4 (en) * 2004-07-30 2011-02-02 Mitsuboshi Diamond Ind Co Ltd Vertical crack forming method and vertical crack forming device in substrate
JP2008100412A (en) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd Laser cutting method
JP2009248160A (en) * 2008-04-08 2009-10-29 Lemi Ltd Thermal stress fracture method of brittle material
TWI460044B (en) * 2008-04-08 2014-11-11 Lemi Co Ltd Thermal Stress Cutting Method for Brittle Materials
JP2010090010A (en) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd Method for cutting brittle material substrate and cutting device
JP2012526721A (en) * 2009-05-13 2012-11-01 コーニング インコーポレイテッド How to cut brittle materials
EP2429961B1 (en) * 2009-05-13 2017-03-01 Corning Incorporated Methods for cutting a fragile material
JP2010064493A (en) * 2009-12-08 2010-03-25 Mitsuboshi Diamond Industrial Co Ltd Method and device for processing brittle substrate
WO2011142464A1 (en) * 2010-05-14 2011-11-17 旭硝子株式会社 Cutting method and cutting device
JP2016503386A (en) * 2012-11-21 2016-02-04 コーニング インコーポレイテッド Cutting method of laminated tempered glass substrate
JP2018172276A (en) * 2012-11-21 2018-11-08 コーニング インコーポレイテッド Cutting method of laminate reinforced glass substrate
WO2014175147A1 (en) * 2013-04-26 2014-10-30 旭硝子株式会社 Method for cutting glass plate
WO2014175146A1 (en) * 2013-04-26 2014-10-30 旭硝子株式会社 Method for cutting glass plate

Also Published As

Publication number Publication date
JP3210934B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JPH07328781A (en) Splitting method of brittle material
KR101753184B1 (en) System for performing laser filamentation within transparent materials
JP4478184B2 (en) Laser cleaving method and laser processing apparatus
JP5089735B2 (en) Laser processing equipment
WO2010116917A1 (en) Laser machining device and laser machining method
JP4835927B2 (en) Method of splitting hard and brittle plate
CN106132627A (en) For fragile material being carried out scribing and carrying out the method and system of chemical etching subsequently
JP2009248160A (en) Thermal stress fracture method of brittle material
WO2006038565A1 (en) Brittle material scribing method and scribing apparatus
JP2009066851A (en) Method of chamfering brittle substrate
CN110494255A (en) Use the device and method of phase shift focal line laser processing transparent workpiece
JPH0929472A (en) Method and device for splitting and chip material
JP2009226457A (en) Laser beam machining method
JP2000156358A (en) Method and device for processing transparent medium using laser
Ohmura et al. Analysis of internal crack propagation in silicon due to permeable pulse laser irradiation: study on processing mechanism of stealth dicing
JP2010239157A (en) Laser cutting method
JPH0532428A (en) Method for working glass and its apparatus
JPH10291084A (en) Laser machining method for brittle material and its device
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
JP2010138046A (en) Method and device for working material to be cut
KR20020047479A (en) Laser cutting method for non-metallic materials
JP2007055000A (en) Method and device for cutting article to be processed made of nonmetal material
JP2002100590A (en) Splitting device and method therefor
JPH1034364A (en) Brittle material splitting method by plural point heat sources
JPH04167985A (en) Method for cutting off wafer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees