JP2011170173A - フォトニックバンドギャップファイバ - Google Patents

フォトニックバンドギャップファイバ Download PDF

Info

Publication number
JP2011170173A
JP2011170173A JP2010034755A JP2010034755A JP2011170173A JP 2011170173 A JP2011170173 A JP 2011170173A JP 2010034755 A JP2010034755 A JP 2010034755A JP 2010034755 A JP2010034755 A JP 2010034755A JP 2011170173 A JP2011170173 A JP 2011170173A
Authority
JP
Japan
Prior art keywords
band gap
dielectric
fiber
photonic
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010034755A
Other languages
English (en)
Inventor
Hirokazu Kubota
寛和 久保田
Kazuo Hotate
和夫 保立
Sogen Ka
祖源 何
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010034755A priority Critical patent/JP2011170173A/ja
Publication of JP2011170173A publication Critical patent/JP2011170173A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】バンド構造の波長依存性を利用する事でモードフィールド径の大きい単一モードフォトニックバンドギャップファイバを提供する。
【解決手段】光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなりコア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を設けたクラッド部とを有し、回折格子は、ブラッグ回折格子を形成するために規則的に配置された、自身の長手方向にのびる複数の低屈折率部からなるフォトニックバンドギャップファイバにおいて、回折格子の格子間隔Λと、格子間隔と複数の低屈折率部の径とにもとづいて定まるクラッド部における誘電体の充填率とは、コア部の構造から使用波長域における基本モードと高次モードを求め、基本モードのみがフォトニックバンドギャップ内に位置するように設定されていることを特徴とする。
【選択図】図4

Description

本発明は、フォトニックバンドギャップファイバ、より詳しくは、単一モードのフォトニックバンドギャップファイバに関する。
フォトニックバンドギャップファイバ(以下、「PBF」と称することがある。)とは、コア部分が中空ないし低屈折率で透明な媒質であり、その周囲を2次元のブラッグ回折格子で囲んだ構造のファイバである。PBFにおいては、コア部分の屈折率は周囲部分の等価屈折率よりも低く、屈折率差による光の閉じ込め機構は存在しない。PBFで光の閉じ込めを実現するのは、周囲部分に配置されたブラッグ回折格子によって形成されるフォトニックバンドギャップ(以下、「PBG」と称することがある。)と呼ばれる現象である。
PBGを形成するブラッグ回折格子は、誘電体からなりコア部分の周囲に配置されたクラッド部内に周期的に配置された、屈折率の異なる複数の領域によって形成される。屈折率の異なる領域としては、空孔のように屈折率が周囲より低いものと、液晶や高屈折率ガラスなど、屈折率が周囲より高いものとがあるが、以下、「低屈折率部」という用語でこの領域を総称する。
低屈折率部はPBFの長手方向に対しては一定の形状を保持している。低屈折率部の格子配置や低屈折率部間の間隔を適当に設定すると、ある波長を中心波長とし、ある程度の帯域を有するPBGがPBFに生成される。その結果、PBGの範囲内の波長の光はPBGの効果でコア部分に閉じ込められ、PBF内を伝搬することが可能となる。
PBFの製造においては、通常の光ファイバと同様に、まず直径数センチメートル(cm)から数十cmの母材を作製し、それを溶融延伸によりファイバ化する。母材の形成方法にはキャピラリー法、ドリル法などがあるが、良好なPBGを形成するためには、クラッド部の低屈折率部は幾何学的に整列している必要があり、広いバンドギャップを生じる六方最密の格子配列が広く使用されている(例えば、特許文献1参照。)。
PBFは、PBGにより光を閉じ込めるため、微小な屈折率差で光を閉じ込める通常の光ファイバに比べて光の閉じ込めが強い。このため、通常のシングルモードファイバ(ITU−T G.652)と同じモードフィールド径とした場合には、複数の伝搬モードが存在するマルチモードファイバとなりやすい。非特許文献1、2には、強度分布が2分割された高次モードが存在する様子が示されている。
特許第3513101号公報
"DEMONSTRATION OF AN IR-OPTIMIZED AIR-CORE PHOTONIC BAND-GAP FIBER", ECOC 2000, paper 10.2.3 "Analysis of air-guiding photonic bandgap fibers", Optics Letters Vol.25, No2, pp.96-98, 2000.
しかしながら、マルチモードファイバとなった場合、モード結合による信号波形劣化に考慮する必要があるという問題がある。また、マルチモードファイバからシングルモードファイバへ接続する場合には損失が大きいという問題もある。
一般に、PBFで単一モード性を実現するためにはモードフィールド径を小さくする必要があるが、モードフィールド径を小さくすると、通常のシングルモードファイバとの整合性が低くなるという問題がある。
本発明は上記事情に鑑みてなされたものであり、フォトニックバンドギャップ構造の波長依存性を利用する事で、モードフィールド径の大きい単一モードのフォトニックバンドギャップファイバを提供することを目的とする。
本発明のPBFは、光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなり前記コア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を設けたクラッド部とを有し、前記回折格子は、ブラッグ回折格子を形成するために規則的に配置された、自身の長手方向にのびる複数の低屈折率部からなるフォトニックバンドギャップファイバにおいて、前記回折格子の格子間隔と、前記格子間隔と前記複数の低屈折率部の径とにもとづいて定まる前記クラッド部における前記誘電体の充填率とは、前記コア部の構造から使用波長域における基本モードと高次モードを求め、前記基本モードのみが前記フォトニックバンドギャップ内に位置するように設定されていることを特徴とする。
また、前記誘電体の充填率は、5%以上10%以下に設定されてもよい。
本発明の他のPBFは、光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなり前記コア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を設けたクラッド部とを有し、前記回折格子は、ブラッグ回折格子を形成するために規則的に配置された、自身の長手方向にのびる複数の低屈折率部からなるフォトニックバンドギャップファイバであって、前記フォトニックバンドギャップの深さは、伝搬定数の大きい基底次のモードのみが前記フォトニックバンドギャップ内に存在するように設定されていることを特徴とする。
この場合、前記格子間隔と前記複数の低屈折率部の径とにもとづいて定まる前記クラッド部における前記誘電体の充填率は、30%以上に設定されてもよい。
前記コア部の径は、ITU−T G.652のシングルモードファイバと同一に設定されてもよい。
前記クラッド部は、同じ外形をもつ多数のガラス管を用いて形成され、前記コア部は、前記複数のガラス管のうち、1本の中心ガラス管および前記中心ガラス管に隣接する6本のガラス管を除去して形成されてもよい。
前記コア部の径方向における断面形状は2回以下の回転対称性を有してもよい。
前記誘電体は石英系ガラスであってもよい。
本発明のフォトニックバンドギャップファイバによれば、フォトニックバンドギャップ構造の波長依存性を利用する事でモードフィールド径の大きい単一モードのフォトニックバンドギャップファイバを提供することができる。
本発明のフォトニックバンドギャップファイバのクラッド部の構造を示す模式図である。 設定クラッド部におけるバンドギャップ構造を示すグラフである。 (a)および(b)は、いずれも同フォトニックバンドギャップファイバにおけるコア部の形成方法を示す模式図である。 (a)は、本発明の第1実施例のフォトニックバンドギャップファイバを説明するグラフであり、(b)は(a)の部分拡大図である。 (a)および(b)は、いずれもクラッド部の誘電体充填率とバンドギャップ構造との関係を示すグラフである。 (a)および(b)は、クラッド部における誘電体の充填率とフォトニックバンドギャップの深さについて説明するグラフである。 同充填率とフォトニックバンドギャップの深さとの関係を示すグラフである。 (a)および(b)は、いずれも同フォトニックバンドギャップファイバにおけるコア部の形成方法を示す模式図である。
以下、本発明のPBFについて、実施例を交えつつ、図1から図8(b)を参照して説明する。
本発明のPBFは、光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなり、前記コア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を備えるクラッド部とを有するものであるが、コア部及びクラッド部の基本的な構造は、従来のPBFと同様である。
まず、本発明のPBFの設計について、波長1.5マイクロメートル(μm)帯で使用するものを例にとり説明する。
図1は本発明のPBF1のクラッド部20の構造を、PBF1の延在方向に見た状態を示す模式図である。図1において白い円形に示されているのは、延在方向に延びる空孔21aからなる低屈折率部21であり、黒で示された低屈折率部21間の領域は、誘電体からなる間隙部22である。間隙部22を形成する誘電体としては、例えば石英系ガラスやプラスチック、アルミナ等を好適に採用することができる。本実施形態では石英ガラスで間隙部22が形成されている。
低屈折率部21は、いわゆる六方最密構造のブラッグ回折格子を形成している。このような構造はドリルでガラスに穴をあける方法(ドリル法)、同じ外形を持つ中空のガラス管を多数束ねる方法(キャピラリー法)等により作製することができる。ドリルであけた孔やガラス管の中に高屈折率のガラスを充填すると、低屈折率部21の屈折率を高めることができる。
低屈折率部21及び間隙部22からなるクラッド部20が、PBF1の径方向において、使用される光の波長に対して5倍以上と十分広い範囲に広がっている場合には、クラッド部20の構造が無限に連続した場合のバンドギャップの計算を行なうことで、作製されるPBFのバンドギャップ構造を計算する事が出来る。
所定のバンドギャップ構造を有する媒質に様々な伝搬ベクトルをもつ光の平面波を入射し、その伝搬定数をグラフ化していくと、ある範囲の伝搬定数を持つ光がその媒質中に存在できない領域が現れる。図2は、当該光が存在できない領域をグラフ化した例を示すものである。
図2のグラフにおいて、横軸は媒質内の回折格子の格子間隔Λで規格化した波長λの比率λ/Λであり、縦軸は伝搬定数から換算した有効屈折率である。なお、本発明における格子間隔Λとは、図1に示すように、隣接する空孔21aの中心間距離を意味する。
図2では、図1に示したような形状の構造を有し、低屈折率部は空孔からなり、間隙部が石英ガラスからなるクラッド部(以下、図2に示したクラッド部を「設定クラッド部」と称する。)のバンドギャップ構造を示している。設定クラッド部において、格子間隔Λと空孔の径D1(図1参照)の比D1/Λは0.95に設定されており、この場合、クラッド部20における石英ガラスの充填率は約18%となっている。
なお、空孔に誘電体が充填されて低屈折率部が形成される場合、クラッド部における誘電体の充填率算出にあたって空孔内の誘電体は考慮しない。
図2に斜線部で示した領域A1は、設定クラッド部において、最も広いフォトニックバンドギャップの存在する領域である。また、点線L1は、設定クラッド部を備えたPBFにおける基底モードの伝搬定数の概略値である。なお、ここでは、設定クラッド部をキャピラリー法で形成し、後述するとおり母材の中心部のガラス管7本を除去して中空のコア部を形成した場合を仮定して計算している。
設定クラッド部においては、図2に示すように、波長λと格子間隔Λの比率λ/Λが概略0.6となる近辺に、広いPBGが形成されていることがわかる。あわせて、図2中に格子間隔Λが2.6μmの場合のバンドギャップの波長域を示している。図2からわかるように、使用波長λが1.5μm帯である場合には、設定クラッド部の格子間隔Λを概略2.6μmに設定すると、波長1.5μm帯に約200ナノメートル(nm)の帯域を持つPBGが実現できる。
このような微細な構造を有するクラッド部は、通常の光ファイバと同様に、直径数cmないし十数cmの母材を作製し、それを加熱延伸することにより作製できる。
図3(a)及び図3(b)は、本発明のPBF1におけるコア部10の形成方法を示す模式図である。キャピラリー法で作製したPBF1の母材1Aの中心付近において、ガラス管2を複数本除去することにより、中空のコア部となる空間を形成することができる。
通常のシングルモードファイバ(ITU−T G.652)のモードフィールド径は約10μmである。母材1Aの中心付近において、図3(a)に点線で示す領域B1と重なるように、1本のガラス管(中心ガラス管)2Aおよびその周囲の6本のガラス管2を除去してコア部を形成すると、コア部の幾何学的な直径D2はほぼ格子間隔Λの2.6倍となる。したがって、格子間隔Λが4μmの場合、上述のようにガラス管2を7本除去してコア部を形成すれば、PBF1のコア部の径を通常のシングルモードファイバのモードフィールド径とほぼ等しくすることができる。
また、格子間隔Λが3μmの場合は、図3(b)に点線で示す領域B2内に位置する12本のガラス管2を除去してコア部10を形成すると、コア部10の幾何学的な直径(コア部10の径方向の断面形状において、中心を通り最も短い直線の長さ)D3は、ほぼ格子間隔Λの3.3倍となり、同様にコア部10の径をシングルモードファイバのモードフィールド径とほぼ等しくすることができる。このように、コア部を形成するために母材1Aから除去するガラス管の数や配置は、格子間隔Λとコア部10の径の設定値にもとづいて適宜増減されて最適化されればよい。
なお、ここではキャピラリー法でPBFを形成する例について説明したが、ドリル法を用いる場合は、母材において領域B1等の内側の誘電体をドリルで切削すればよい。
図4(a)は本発明の第1実施例のPBF1を図2と同様の様式で示すグラフである。クラッド部20における誘電体の充填率は、図2に示した設定クラッド部の半分程度の9.5%に設定されている。図4(a)に示すように、バンド構造の波長に対する有効屈折率の変化は、図2に示した設定クラッド部と比較してなだらかになっている。通常のPBFでは使用波長域がバンドギャップの中心付近に位置するように格子間隔Λが決定されるため、1.5μmを使用波長λとする場合、格子間隔Λは3.2μm程度に設定されればよい。このとき、λ/Λは約0.47となり、領域A2で示されるPBGの中心付近に位置する。
図4(b)は、図4(a)の部分拡大図である。図4(b)には、クラッド部20の中心付近において図3(a)に示したように7本のガラス管2を除去して中空のコア部を形成したPBFのモードを計算し、その有効屈折率の推移を併せて示している。
図4(b)においては、横軸を、格子間隔Λを4μmとした場合の波長λの値として表記している。PBF1においては、伝搬モードとして点線L2で示すLP01モード(基本モード)と点線L3で示すLP11モード(高次モード)とが存在しているが、使用波長をバンドギャップの中心付近に位置させるような通常の設定よりも大きい値に格子間隔Λを設定することにより、図4(b)に示すように、使用波長1.5μmにおいてLP01モードのみが領域A2内に存在し、LP11モードが領域A2内に存在しない状態となっている。
すなわち、クラッド部20における格子間隔Λが4μm、かつ誘電体の充填率が9.5%であるPBF1において、使用波長λが1.5μmの場合、LP11モードはフォトニックバンドギャップによる光閉じ込め効果を得られないため、伝搬モードとはならず、単一モードファイバが実現できる。図4(b)に示す範囲R1が、本実施例のPBF1が単一モードファイバとなる波長領域である。なお、通常の単一モードファイバでは短波長側でマルチモードファイバとなるが、本発明のPBFでは、長波長側(本実施例では使用波長λが1.5μmより大きい場合)がマルチモードファイバとなる点に注意する必要がある。
図5(a)及び図5(b)は、クラッド部の誘電体充填率とバンドギャップ構造との関係を示すグラフである。図5(a)に示す直線L4は、クラッド部20における格子間隔Λが4μm、かつ誘電体の充填率が6.0%であるときの、波長に対する有効屈折率の変化を示している。
比較対象として、格子間隔Λが4μm、かつ誘電体の充填率が9.5%の場合の波長に対する有効屈折率の変化(すなわち、図4(a)に示したものと同一)を破線L5として示している。有効屈折率の変化を示す直線の傾きは、L5よりもL4の方が小さく、よりなだらかになっている。一方、図5(b)には、誘電体の充填率が21%の場合の波長に対する有効屈折率の変化を直線L6として示している。L6の傾きは、個々には若干ばらつきがあるものの、いずれも破線L5よりも大きくなっている。
したがって、クラッド部20における誘電体の充填率を変化させることにより、波長に対する有効屈折率の変化の傾きを調節することができる。すなわち、図4(b)で説明した設計原理に鑑みると、誘電体の充填率を低くすることにより、PBF1が単一モードファイバとして動作する波長領域を広くとることができる。
本発明のPBFにおいて、単一モードファイバとして動作する波長領域を広くとるためには、クラッド部における石英ガラス等の誘電体の充填率は10%以下に設定されるのが好ましい。
以上説明したように、本実施例のPBF1によれば、クラッド部20の格子間隔Λと誘電体の充填率を適切に設定することにより、通常のシングルモードファイバと同等のモードフィールド径を有し、通常のシングルモードファイバと整合性の高い単一モードのPBFを構成することができる。
本発明の第2実施例について、図6(a)から図7を参照して説明する。第2実施例のPBFでは、PBGの深さを調節することにより単一モードを実現している。本発明においてPBGの「深さ」とは、PBG内における有効屈折率の最小値と1.0との差分を指す。
図6(a)及び図6(b)は、クラッド部20における誘電体の充填率とPBGの深さについて説明するグラフである。グラフの様式は図2等と同様である。図6(a)には、クラッド部20における誘電体の充填率が4.5%の場合のバンドギャップ構造を、図6(b)には、誘電体の充填率が34%の場合のバンドギャップ構造を、それぞれ示している。なお、いずれについても格子間隔Λは4μmとなっている。図6(a)におけるPBGの深さDP1は、図6(b)におけるPBGの深さDP2よりも小さくなっており、誘電体の充填率が変化するとPBGの深さも変化することがわかる。
図7は、充填率とPBGの深さとの関係を示すグラフであり、横軸に誘電体の充填率を、縦軸に有効屈折率をとっている。充填率を変化させながらPBGにおける有効屈折率の最小値をプロットしていくと、図7に示されるように、充填率を5%未満とした場合、有効屈折率の最小値が増大し、PBGの深さが浅くなる。このとき、PBGの存在する波長依存性はなだらかになっている。また、充填率が3%未満の領域においては、LP11モード以降の高次の伝搬モードが存在しないため、単一モードのPBFを構成することが可能となる。
図6(a)には、図3(a)のようにガラス管7本を除去して中空のコア部を形成した場合のLP01モードの有効屈折率を直線L8として示している。PBGである領域A4内には伝搬定数の大きい基底次のモードであるLP01モードのみが存在しており、単一モードのPBFとなっていることがわかる。
一方、ガラスの充填率を30%以上に高めていった場合には、PBGの深さが浅くなるとともに伝搬モードの有効屈折率も低くなる。そのため、図7にA3で示すLP11モード以降の高次の伝搬モードの存在領域(概略)の有効屈折率がPBGの有効屈折率の最小値を下回り、高次の伝搬モードがPBG内に存在できなくなる。このように、クラッド部20における誘電体の充填率を高く設定することで、PBGの深さを調節し、LP01モードのみが伝搬モードとして存在する単一モードのPBFを実現することができる。
図6(b)には、図6(a)同様、ガラス管7本を除去して中空のコア部を形成した場合のLP01モードの有効屈折率を直線L7として示している。PBGである領域A5内には伝搬定数の大きい基底次のモードであるLP01モードのみが存在しており、単一モードのPBFとなっていることがわかる。
なお、図6(b)に領域A6、A7で示すように、誘電体の充填率を高めていくと、より深さが大きい高次のPBGが形成されるが、格子間隔Λを適切に設定することによりλ/Λを所望の値に調節し、基底次のPBGを使用する波長と適合させることができる。
また、本発明のPBFでは、コア部10の幾何学的形状の回転対称性を2回以下にすることにより、容易に大きな複屈折性を持たせることができる。すなわち、コア部10が2回以下の回転対称性をもつと、偏波による導波モードの縮退が解けることになるので、偏波による導波モードも含めて最低次のモードが存在するようにPBFを設計することが可能となる。図8(a)には2回回転対称の形状のコア部11を形成するために、領域B3と重なる9本のガラス管2を除去する例を示しており、図8(b)には、領域B4と重なる10本のガラス管2を除去して異なる2回回転対称の形状のコア部12を形成する例を示している。
クラッド部20における誘電体の充填率を10%とした場合、偏波モード間で5×10−4程度の伝搬定数の差を得ることができる。したがって、格子間隔Λを適切に設定することにより、伝搬定数の大きな偏波モードのみがPBG内に存在し、それ以外はPBG外に存在するようなPBFを作製する事ができる。このようにすると、偏波モードまで考慮しても単一のモードのみが伝搬する単一モード単一偏波ファイバとして機能するPBFを作製する事ができる。
なお、本発明において、「2回以下の回転対称性」には、通常回転対称性を有さないとされる1回回転対称の形状も含まれる。
以上、本発明の各実施例について説明したが、本発明の技術範囲は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において各実施形態の構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。
1 フォトニックバンドギャップファイバ
2 ガラス管
2A ガラス管(中心ガラス管)
20 クラッド部
21 低屈折率部
21a 空孔
11B 底部

Claims (8)

  1. 光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなり前記コア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を設けたクラッド部とを有し、前記回折格子は、ブラッグ回折格子を形成するために規則的に配置された、自身の長手方向にのびる複数の低屈折率部からなるフォトニックバンドギャップファイバにおいて、
    前記回折格子の格子間隔と、前記格子間隔と前記複数の低屈折率部の径とにもとづいて定まる前記クラッド部における前記誘電体の充填率とは、
    前記コア部の構造から使用波長域における基本モードと高次モードを求め、
    前記基本モードのみが前記フォトニックバンドギャップ内に位置するように設定されていることを特徴とするフォトニックバンドギャップファイバ。
  2. 請求項1に記載のフォトニックバンドギャップファイバにおいて、前記誘電体の充填率は、5%以上10%以下に設定されていることを特徴とするフォトニックバンドギャップファイバ。
  3. 光の波長の数倍ないし十数倍の直径をもつ中空のコア部と、誘電体からなり前記コア部の周囲に配置されてフォトニックバンドギャップを形成する回折格子を設けたクラッド部とを有し、前記回折格子は、ブラッグ回折格子を形成するために規則的に配置された、自身の長手方向にのびる複数の低屈折率部からなるフォトニックバンドギャップファイバであって、
    前記フォトニックバンドギャップの深さは、伝搬定数の大きい基底次のモードのみが前記フォトニックバンドギャップ内に存在するように設定されていることを特徴とするフォトニックバンドギャップファイバ。
  4. 請求項3に記載のフォトニックバンドギャップファイバにおいて、前記格子間隔と前記複数の低屈折率部の径とにもとづいて定まる前記クラッド部における前記誘電体の充填率は、30%以上に設定されていることを特徴とするフォトニックバンドギャップファイバ。
  5. 請求項1から4のいずれか1項に記載のフォトニックバンドギャップファイバにおいて、前記コア部の径は、ITU−T G.652のシングルモードファイバと同一に設定されていることを特徴とするフォトニックバンドギャップファイバ。
  6. 請求項1から5のいずれか1項に記載のフォトニックバンドギャップファイバにおいて、
    前記クラッド部は、同じ外形をもつ多数のガラス管を用いて形成され、
    前記コア部は前記複数のガラス管のうち、1本の中心ガラス管および前記中心ガラス管に隣接する6本のガラス管を除去して形成されていることを特徴とするフォトニックバンドギャップファイバ。
  7. 請求項1から6のいずれか1項に記載のフォトニックバンドギャップファイバにおいて、前記コア部の径方向における断面形状は2回以下の回転対称性を有することを特徴とするフォトニックバンドギャップファイバ。
  8. 請求項1から7のいずれか1項記載のフォトニックバンドギャップファイバにおいて、前記誘電体は石英系ガラスであることを特徴とするフォトニックバンドギャップファイバ。
JP2010034755A 2010-02-19 2010-02-19 フォトニックバンドギャップファイバ Pending JP2011170173A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034755A JP2011170173A (ja) 2010-02-19 2010-02-19 フォトニックバンドギャップファイバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010034755A JP2011170173A (ja) 2010-02-19 2010-02-19 フォトニックバンドギャップファイバ

Publications (1)

Publication Number Publication Date
JP2011170173A true JP2011170173A (ja) 2011-09-01

Family

ID=44684357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034755A Pending JP2011170173A (ja) 2010-02-19 2010-02-19 フォトニックバンドギャップファイバ

Country Status (1)

Country Link
JP (1) JP2011170173A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329204A (zh) * 2017-08-21 2017-11-07 北京航空航天大学 一种基于光子带隙中模式截止特性的单模传输方法
GB2563758A (en) * 2013-09-20 2018-12-26 Univ Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same
US11034607B2 (en) 2013-09-20 2021-06-15 University Of Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563758A (en) * 2013-09-20 2018-12-26 Univ Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same
GB2563758B (en) * 2013-09-20 2019-09-04 Univ Southampton Hollow-core photonic bandgap fibers
US11034607B2 (en) 2013-09-20 2021-06-15 University Of Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same
CN107329204A (zh) * 2017-08-21 2017-11-07 北京航空航天大学 一种基于光子带隙中模式截止特性的单模传输方法
CN107329204B (zh) * 2017-08-21 2020-03-06 北京航空航天大学 一种基于光子带隙中模式截止特性的单模传输方法

Similar Documents

Publication Publication Date Title
JP6636509B2 (ja) 中空光ファイバ
US7526165B2 (en) Optical coupler devices, methods of their production and use
JP5674725B2 (ja) 光ファイバ増幅器
AU755547B2 (en) Microstructured optical fibres
JP2009093070A (ja) ホーリーファイバ
JP2007316526A (ja) フォトニックバンドギャップファイバ及びファイバレーザ
JP5370361B2 (ja) オールソリッドフォトニックバンドギャップファイバ
EP2120073B1 (en) Photonic band gap fiber
US20100150507A1 (en) Holey fiber
JP2013228548A (ja) マルチコア光ファイバ
US7903919B2 (en) Holey fiber
JP6430832B2 (ja) 光ビームの強度の横方向空間プロファイルを、好ましくは微細構造光ファイバを用いて変換する装置
JP2011033899A (ja) ホーリーファイバ
US8442372B2 (en) Hybrid microstructured optical fibre for guidance by means of photonic forbidden bands and by total internal reflection optimised for non-linear applications
JP2011170173A (ja) フォトニックバンドギャップファイバ
JP2017503216A (ja) 選択的に拡大された低屈折率の空間を備え、特に非線形効果の発生及び応力測定用の微細構造光ファイバ
JP2009116193A (ja) ダブルクラッドファイバ
JP3871053B2 (ja) 分散フラットファイバ
JP2009008850A (ja) デュアルガイド光ファイバ
JP3917613B2 (ja) フォトニック結晶光ファイバ
JP5488157B2 (ja) 空間モードフィルタ
Biswas et al. Dirac‐mode guidance in silica‐based hollow‐core photonic crystal fiber with high‐index dielectric rings
Lou et al. Study on preparation and curvature sensing performance of dual-core photonic crystal fibers
JP2010197976A (ja) 光ファイバ
Bauer et al. Molding light flow from photonic band gap circuits to microstructured fibers