JP2011158471A - 時空間適応処理システムにおいてターゲットを検出するための方法 - Google Patents

時空間適応処理システムにおいてターゲットを検出するための方法 Download PDF

Info

Publication number
JP2011158471A
JP2011158471A JP2011005706A JP2011005706A JP2011158471A JP 2011158471 A JP2011158471 A JP 2011158471A JP 2011005706 A JP2011005706 A JP 2011005706A JP 2011005706 A JP2011005706 A JP 2011005706A JP 2011158471 A JP2011158471 A JP 2011158471A
Authority
JP
Japan
Prior art keywords
matrix
time
stap
complexity
adaptive processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005706A
Other languages
English (en)
Other versions
JP2011158471A5 (ja
Inventor
Man-On Pun
マン−オン・パン
Zafer Sahinoglu
ザファー・サヒノグル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Research Laboratories Inc
Original Assignee
Mitsubishi Electric Research Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Research Laboratories Inc filed Critical Mitsubishi Electric Research Laboratories Inc
Publication of JP2011158471A publication Critical patent/JP2011158471A/ja
Publication of JP2011158471A5 publication Critical patent/JP2011158471A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】方法が、時空間適応処理システムにおいてクラッターを抑圧する。
【解決手段】本方法は、2つのステップを介して低複雑度の計算を達成する。最初に、本方法は、改善された高速近似べき乗法を利用して、データをはるかに小さな部分空間に圧縮する。計算複雑度をさらに低減するために、プログレッシブ特異値分解(SVD)手法を用いて圧縮データの共分散行列の逆行列を更新する。結果として、提案される低複雑度のSTAP手順は、従来のSTAP手順と比較して、計算複雑度のオーダーが低減された最適に近い性能を達成することができる。
【選択図】図1

Description

本発明は、包括的にはフェーズドアレイレーダーシステムに関し、より詳細には、ターゲット検出中にクラッターを抑圧することに関する。
典型的な従来技術の時空間適応処理(STAP)システムは、N本の送受信アンテナのアレイを備える。アンテナアレイは、空中、地上、および海上のターゲットを位置特定するために、移動プラットフォーム、たとえば、航空機またはボートに装備することができる。STAPシステムは、気象学者および地質学者によっても使用される。
受信機アンテナ利得パターンは、ビーム形成プロセスによって所望の方向に導くことができる。クラッターおよびジャミングの双方が存在する中でターゲットを検出する進化型STAPシステムが必要とされている。グランドクラッターまたは海面クラッターは、角度およびレンジの双方において拡張され、プラットフォームの動きに起因してドップラー周波数に拡散される。
STAPシステムは、パルス列およびコヒーレントなパルス積分を使用する。コヒーレント処理間隔(CPI)は、パルス列の持続期間を定義する。各CPIの間、送信機は、送信アンテナを使用してM個のパルスを送出する。あるパルスの開始時点と次のパルスの開始時点との間の時間は、パルス反復間隔(PRI)と呼ばれる。パルスは、STAPシステムからの様々な距離でターゲットから反射する。
ターゲットまでのレンジは、パルスの送信と反射信号の受信との間の時間間隔によって求められる。STAPシステムは、アンテナごと、すなわち、パルスおよびレンジごとに反射信号を収集する。反射信号から導出されるデータを集成して3次元行列にすることができ、この行列は、STAPキューブと呼ばれることがある。
本発明によって解決される課題が、図1に概略的に示されている。移動プラットフォーム上に構築される検知アプリケーションにおいて、戻り信号は、通例、干渉101の形態のクラッターが返されることによって損なわれ、干渉101により、様々な入来角度102およびドップラー周波数103による信号対雑音比(SNR)の低下を招く。動いているターゲットを正確に位置特定するためには、効果的なクラッター抑圧技法が不可欠である。
多数の既知のクラッター抑圧技法の中で、時空間適応処理(STAP)は、最も有望である。STAPにおいて、戻り信号は、空間領域および時間領域にわたって同時にフィルタリングされる。結果として、クラッター干渉は、入来角度およびドップラー周波数に関わらず効果的に抑圧することができる。
しかしながら、従来のSTAPは、計算複雑度が非常に高いことによって不利な立場に置かれている。M個のパルスおよびN本のアンテナの場合、従来のSTAPは、MN×MNの非常に大きな逆行列計算を必要とする。約数百のMNを用いる実際のシステムの場合、そのような大規模な逆行列計算を必要とするため、リアルタイムターゲット検出のためにSTAPを実施するのが困難になる。
この障害を回避するために、膨大な研究努力が低複雑度のSTAPを開発するために費やされてきた。ブレナンの法則によれば、クラッター干渉共分散行列Cのランクは、MNよりもはるかに小さいことが知られている。このため、複雑度低減を達成するための1つの方法は、戻り信号をr次元の部分空間(ここで、r≪MN)に圧縮することである。特に、1つの低複雑度のSTAPは、高速近似べき乗法(FAPI)と呼ばれる部分空間追跡を利用する。FAPIを利用して、戻り信号をはるかに小さな信号部分空間に効果的に圧縮することができ、これによって、圧縮データに対して低複雑度のSTAP操作を行うことが可能になる。
本発明の実施の形態は、2ステップの低複雑度の時空間適応処理(STAP)方法を提供する。第1のステップにおいて、収束が改善した、変更された高速近似べき乗法(FAPI)手順を使用した後、該変更されたFAPI手順を適用して受信信号を圧縮する。
第2のステップにおいて、プログレッシブ特異値分解(PSVD)に基づく低複雑度の技法を使用して、圧縮データの共分散行列の逆行列を再帰的に求めてターゲットを検出する。
低複雑度のSTAPを用いる結果として、従来の計算複雑度O((MN))がO((MN)r)にまで低減される。
本発明の実施の形態によるSTAPは、全逆行列計算を使用する従来のSTAPと比較した場合、最適に近い性能を達成する。
本発明は、強いクラッターを受ける移動プラットフォーム上に装備される検知アプリケーションのための2ステップの低複雑度の時空間適応処理(STAP)手順を提供する。STAP手順は、最初に、変更されたFAPI手順を使用して受信信号をはるかに小さな部分空間に圧縮し、その後、PSVDを使用して、圧縮されたデータの共分散行列の逆行列を再帰的に計算する。
このような手順の結果、NR−MFAPIを併用するPSVDの場合にはO(3NMr+(8+2m)r)、LC−MFAPIを併用するPSVDの場合にはO(3NMr+(5+2m)r)の計算複雑度を有する。
これは、O((NM))の演算を必要とする従来のSTAP手順と比較すると、一桁分の計算複雑度の低減となる。
本発明の実施の形態によって解消されるクラッター干渉スペクトルの概略図である。 本発明の実施の形態による、複数のレンジセルにわたる戻り信号構造の概略図である。 本発明の実施の形態による、低複雑度の2ステップSTAPの概略図である。 本発明の実施の形態による、高速変更されたべき乗法手順のための擬似コードのブロック図である。 本発明の実施の形態による、プログレッシブSVDのための擬似コードのブロック図である。
本発明の実施の形態は、時空間適応処理(STAP)システムにおいて低複雑度のクラッター抑圧を使用してターゲットを検出するための方法を提供する。
以下の表記法を使用する。ベクトルおよび行列は、太字で表され、‖・‖は、囲まれたベクトルのユークリッドノルムを表し、|・|は、囲まれた集合の濃度を表す。Iは、N×Nの恒等行列である。(・)をエルミート転置に使用し、R{・}を実数部に使用する。最後に、[A]i,jは、行列Aのi番目の行およびj番目の列のエントリを表し、A(:,j)は行列Aのj番目の列である。
検知システムは、下式の形式のパルスを送信する。
Figure 2011158471
ここで、ωは、搬送波周波数であり、Aは、送信電力であり、E(t)は、パルス波形である。
図2に示すように、戻り信号は、N本のアンテナ202およびM個のパルス203に対してK個のレンジセル201で配置される。レンジセルは、現在の瞬間時点および以前の瞬間時点に対応する。
最初に、k番目のレンジセル201において各アンテナ202からM個のパルス203にわたって収集されたサンプルを積み重ねることによって、長さMNの受信信号データベクトルx(k)を構築する。ここで、k=1,2,...,Kは、瞬間時点に対応する。
k番目のレンジセル内にターゲットが存在するか否かを判断するために、クラッターと雑音とを加えたMN×MNの大きさの共分散行列C(k)が、近隣のレンジセル、すなわち、隣接する瞬間時点から求められる。ここで、近隣のレンジセルは、同じクラッターによって損なわれるが、ターゲットを含まないものと想定する。レンジセルのインデックスΩを使用して、C(k)を求める。このため、C(k)は、下式のように表すことができる。
Figure 2011158471
クラッター抑圧のための最適な時空間フィルターが、C(k)−1によって与えられる。このため、受信信号x(k)は、最初にC(k)−1を用いてフィルタリングされる。
z(k)=C(k)−1x(k) (2)
z(k)を得ると、ターゲット検出を実行することができる。式(2)の性能が良好であるにも関わらず、レンジセルごとの逆行列計算C(k)−1によって、上述したように複雑度が非常に高くなる。
この問題に対処するために、最初にx(k)の大きさを低減させてから逆行列計算を実行する、種々の部分空間追跡手順が既知である。
部分空間凝縮行列(subspace concentration matrix)Wが、MN×rの大きさを有すると想定する。ここで、rank(C(k))<r=MNである。部分空間凝縮プロセスの後の圧縮信号は、
y(k)=Wx(k) (3)
によって与えられる。ここで、Wは、下式の最適化関数によって与えられる。
Figure 2011158471
式(4)における最適化問題は、FAPIのような部分空間追跡手順を使用して数値的に解くことができる。次に、圧縮信号は、
r(k)=R(k)−1y(k) (5)
を用いてフィルタリングされる。ここで、R(k)は、対応する圧縮された、クラッターと雑音とを加えた共分散行列であり、下式で表される。
Figure 2011158471
R(k)は、r×rの大きさであり、これは、C(k)よりも大幅に小さいことは注目に値する。最後に、ターゲット検出が、圧縮されフィルタリングされた信号r(k)に適用される。
図3は、本発明による2ステップSTAPを示している。N本のアンテナ301から受信された信号は、タップT302を有する遅延線を通じて供給される。第1のステップ310は、本発明による高速部分空間凝縮を実行する。第2のステップは、PSVD320を実行し、この後に、ターゲット検出330が続く。以下において、これらのステップを詳細に説明する。本方法は、反復性であるため、{x(l);l=1,2,...,k}から導出されるWを表すのにW(k)を使用する。
変更された高速近似べき乗法(MFAPI)
従来技術のFAPI手順は、投影近似部分空間追跡(PAST)手順に近似している。W(k)≒W(k−1)の近似を利用することによって、FAPIは、PASTの計算複雑度をO(NMr)からO(3NMr+5r)に低減することができる。しかしながら、FAPIの導出は、付加雑音の影響を明示的に考慮に入れていない。結果として、信号対雑音比(SNR)が減少するにつれて、性能が劣化する。
より詳細には、FAPIは、近似べき乗法(API)手順から導出される。APIにおいて、補助行列Zは、
Z(k)
=(1/β)Θ(k)[I−g(k)y(k)]Z(k−1)Θ(k)−H(7)
によって更新され、ここで、
Θ(k)=W(k−1)W(k) (8)
であり、g(k)は、長さrである。
式(7)の最終項Θ(k)−Hでは、O(r)の演算が生じるが、Θ(k)に雑音がある場合には、雑音を増大させる場合もあることを見極めることが重要である。この見極めが動機となって、式(7)の以下の2つの変更を提供する。Θがほぼ正規直交であることを想起すると、Θ(k)−H
Θ(k)−H=Θ(k) (9)
として近似することが妥当である。
結果として、式(7)は、
Z(k)
=(1/β)Θ(k)[I−g(k)y(k)]Z(k−1)Θ(k)(10)
となる。
式(10)は、式(7)と同じ計算複雑度を有することに留意されたい。さらなる計算縮小は、Wが正規直交列ベクトルを含むことを見極めることによって達成することができる。このため、近似をとり、式(7)においてΘ(k)−H≒Iとすることができ、Z(k)は下式の形式をとる。
Z(k)
=(1/β)Θ(k)[I−g(k)y(k)]Z(k−1) (11)
式(11)は、式(7)および式(10)と比較して、O(r)のない演算を有することを指摘しておきたい。
式(10)および式(11)を組み込むことによって、本発明者らの変更されたFAPI(MFAPI)を再導出することができる。式(10)および式(11)を使用した、Z(k)のための更新関数は、それぞれ下式のように与えられる。
Z(k)
=(1/β)(Z(k−1)−g(k)h’(k)−ε(k)g(k))(12)
および
Z(k)
=(1/β)(Z(k−1)−g(k)h’(k)) (13)
ここで、h’(k)およびε(k)の定義は、図4に示される。
別の実施の形態では、式(12)を利用するMFAPI手順は、雑音にロバストなMFAPI(NR−MFAPI)として参照され、式(13)を利用するMFAPI手順は、低複雑度のMFAPI(LC−MFAPI)として参照される。NR−MFAPIおよびLC−MFAPIの総計算複雑度は、それぞれ、O(3NMr+5r)およびO(3NMr+3r)である。
本発明者らのNR/LC−MFAPI手順のための擬似コードが、図4に要約されている。
プログレッシブSVD(PSVD)
部分空間凝縮の出力y(k)がx(k)と比較してはるかに小さい大きさを有するにも関わらず、k=1,2,...,Kについての式(5)におけるR(k)−1の計算は、依然として計算量が多いままである可能性がある。この障害を回避するために、R(k)およびR(k−1)が相関していることを観測することが重要である。これは、それらが何らかの共通の圧縮データベクトルから導出され、かつ連続するパルス間隔間のクラッター変動が相関しているためである。
このため、薄いSVDの技法を活用することによってPSVD手法を提供する。より詳細には、PSVD手法は、R(k−1)−1が与えられ、かつrank(ΔR(k))=rであると想定し、R(k−1)−1およびΔR(k)=R(k)−R(k−1)に関してR(k)−1を求める。R(k)−1を得ると、同じ手順を繰り返してΔR(k+1)−1を再帰的に導出することができる。
ΔR(k)の低ランクの想定によって、ΔR(k)を下式の形式に分解することができる。
Figure 2011158471
ここで、Dkは、下式である。
Figure 2011158471
さらに、qは、固有ベクトルであり、αは、関連固有値であり、下式の関係を有する。
Figure 2011158471
低複雑度の計算を達成するために、以下のランク1の近似を使用して、ΔR(k)を分解する。
ΔR(k)≒aa (14)
ここで、aは、下式である。
Figure 2011158471
最後に、R(1)−1が与えられ、かつR(1)を以下のように分解することができると想定する。
R(1)=USU (15)
階層1のPSVD手順のための擬似コードが、図5に示されている。
従来の直接逆行列計算R(k)−1の場合のO(r)と比較して、PSVDの計算複雑度は、O((3+2m)r)であることに留意されたい。PSVDの利点を十分に活用するために、(3+2m)=rを設定する。式(14)ではなく、むしろ、ΔR(k)のより高いランクの近似によって、より高い計算複雑度を代償に、より良好な近似正確度へと導くことができることを強調すべきである。後述するように、式(14)におけるランク1の近似は、通常、結果として性能が満足のいくものとなるのに十分である。
計算複雑度
本発明者らの2ステップのSTAP手順の総計算複雑度は、NR−MFAPIを併用するPSVDの場合にはO(3NMr+(8+2m)r)であり、LC−MFAPIを併用するPSVDの場合にはO(3NMr+(5+2m)r)である。
これは明らかに、特に、実効値NおよびMの場合に、O((NM))の演算の全逆行列計算C(k)−1と比較して大幅な計算縮小を表す。

Claims (1)

  1. 時空間適応処理システムにおいてターゲットを検出するための方法であって、
    N本のアンテナによって、前記ターゲットから反射された信号を受信するステップと、
    受信信号ベクトルx(k)内にMN個のパルスを生成するために、各前記アンテナによって受信した信号を、該アンテナに関連付けられる、N個のタップを有する遅延線を通じて渡すステップと、
    前記パルスをK個のレンジセルを有する3次元MNK行列に配置するステップと、
    前記MNK行列を圧縮するステップであって、圧縮行列を作成し、該圧縮はMNに線形に比例する低計算複雑度において達成される、圧縮するステップと、
    前記圧縮された行列にプログレッシブ特異値分解(PSVD)を適用するステップであって、クラッター共分散行列C(k)の逆行列を、前の瞬間時点において得られた前記クラッター共分散行列の前記逆行列から作成し、前記クラッター共分散行列が現在の瞬間時点内で得られ、前記PSVDが、該現在の瞬間時点の前記クラッター共分散行列の前記逆行列を計算する低複雑度の方法を提供する、適用するステップと、
    前記受信信号ベクトルx(k)を、z(k)=C(k)−1x(k)に従ってフィルタリングするステップと、
    z(k)を使用して前記ターゲットを検出するステップと、
    を含む方法。
JP2011005706A 2010-01-29 2011-01-14 時空間適応処理システムにおいてターゲットを検出するための方法 Pending JP2011158471A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/696,997 US8179300B2 (en) 2010-01-29 2010-01-29 Method for suppressing clutter in space-time adaptive processing systems
US12/696,997 2010-01-29

Publications (2)

Publication Number Publication Date
JP2011158471A true JP2011158471A (ja) 2011-08-18
JP2011158471A5 JP2011158471A5 (ja) 2012-12-13

Family

ID=44341149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005706A Pending JP2011158471A (ja) 2010-01-29 2011-01-14 時空間適応処理システムにおいてターゲットを検出するための方法

Country Status (2)

Country Link
US (1) US8179300B2 (ja)
JP (1) JP2011158471A (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007942B2 (en) 2012-08-02 2015-04-14 Qualcomm Incorporated Iterative covariance inversion based on linear receiver designs
CN102928827B (zh) * 2012-10-26 2014-01-08 北京理工大学 一种基于past的快速降维空时自适应处理方法
CN103267964A (zh) * 2013-04-21 2013-08-28 北京航空航天大学 一种基于低秩矩阵恢复的弹载导引头雷达σδ-stap方法
CN104215939B (zh) * 2014-10-10 2017-02-15 北京航空航天大学 一种融合广义对称结构信息的知识辅助空时自适应处理方法
KR102435550B1 (ko) * 2015-06-09 2022-08-24 주식회사 에이치엘클레무브 레이더 신호처리 장치 및 그 신호처리방법
US9857455B2 (en) * 2015-07-20 2018-01-02 The United States Of America As Represented By The Secretary Of The Navy Radar filter process using antenna patterns
CN105158749A (zh) * 2015-08-26 2015-12-16 哈尔滨工业大学 高频雷达海杂波幅度统计分布检验方法
CN107154813B (zh) * 2016-03-06 2020-01-24 南京理工大学 自适应Rake接收机及接收方法
CN106338723B (zh) * 2016-09-12 2018-04-24 深圳大学 一种基于互质脉冲重复间隔的空时自适应处理方法及装置
WO2018045594A1 (zh) * 2016-09-12 2018-03-15 深圳大学 一种基于互质脉冲重复间隔的空时自适应处理方法及装置
NO20200430A1 (en) * 2017-10-06 2020-04-07 Airmar Tech Corporation Aft-looking sonar
WO2019204976A1 (zh) * 2018-04-24 2019-10-31 深圳大学 一种基于稀疏的空时自适应处理方法及系统
CN109001687A (zh) * 2018-05-24 2018-12-14 西安电子科技大学 基于广义旁瓣相消结构的机载雷达空时自适应滤波方法
CN109061599B (zh) * 2018-08-28 2022-06-03 电子科技大学 一种基于循环平稳和对称先验知识的stap方法
CN110109066B (zh) * 2019-04-28 2022-05-03 电子科技大学 一种新的迭代stap优化方法
CN110177063B (zh) * 2019-05-27 2021-09-24 东南大学 一种非正交滤波器组上行多址接入无线通信发送方法
CN111474527B (zh) * 2020-04-24 2022-03-08 成都航空职业技术学院 机载stap雷达快速去互耦的杂波协方差矩阵估计方法
CN113376606B (zh) * 2021-05-21 2023-05-26 西安电子科技大学 沿杂波脊快速收敛稀疏贝叶斯的杂波抑制方法
CN115113160B (zh) * 2022-06-15 2024-07-30 西安电子科技大学 一种基于数据统计的杂波干扰级联抑制方法及电子设备
CN115687931B (zh) * 2022-11-22 2023-06-27 中国人民解放军空军预警学院 一种极低训练样本数时的空时自适应处理方法与系统
CN116430348B (zh) * 2023-06-14 2023-08-22 北京理工大学 一种基于初相捷变脉冲串波形的空时自适应信号处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506656A (ja) * 1992-11-18 1996-07-16 ウィリアム エイチ ハトソン 多次元信号処理及び表示
JPH09191209A (ja) * 1996-01-10 1997-07-22 Nec Corp ウェイト制御装置
JPH11242674A (ja) * 1997-10-31 1999-09-07 Internatl Business Mach Corp <Ibm> 多次元データを表示する方法、プログラム記憶装置及び計算機用プログラム製品
JP2001281332A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp 合成開口レーダ装置および目標画像再生方法
JP2003132338A (ja) * 2001-08-08 2003-05-09 Mitsubishi Electric Research Laboratories Inc 物体の非剛体3d形状および動きを復元するための方法およびシーンの非剛体3dモデルを復元するためのシステム
JP2003316764A (ja) * 2002-04-18 2003-11-07 Mitsubishi Electric Research Laboratories Inc 加算的特異値分解方法
JP2007164783A (ja) * 2005-11-29 2007-06-28 Mitsubishi Electric Research Laboratories Inc スパース主成分分析の基数制約組み合わせ最適化問題に対する候補解を最大にするための、そして該最適化問題を解くための、コンピュータによって実施される方法
JP2009128165A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp 不要波抑圧装置
JP2010223895A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp レーダ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506656A (ja) * 1992-11-18 1996-07-16 ウィリアム エイチ ハトソン 多次元信号処理及び表示
JPH09191209A (ja) * 1996-01-10 1997-07-22 Nec Corp ウェイト制御装置
JPH11242674A (ja) * 1997-10-31 1999-09-07 Internatl Business Mach Corp <Ibm> 多次元データを表示する方法、プログラム記憶装置及び計算機用プログラム製品
JP2001281332A (ja) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp 合成開口レーダ装置および目標画像再生方法
JP2003132338A (ja) * 2001-08-08 2003-05-09 Mitsubishi Electric Research Laboratories Inc 物体の非剛体3d形状および動きを復元するための方法およびシーンの非剛体3dモデルを復元するためのシステム
US6873724B2 (en) * 2001-08-08 2005-03-29 Mitsubishi Electric Research Laboratories, Inc. Rendering deformable 3D models recovered from videos
JP2003316764A (ja) * 2002-04-18 2003-11-07 Mitsubishi Electric Research Laboratories Inc 加算的特異値分解方法
JP2007164783A (ja) * 2005-11-29 2007-06-28 Mitsubishi Electric Research Laboratories Inc スパース主成分分析の基数制約組み合わせ最適化問題に対する候補解を最大にするための、そして該最適化問題を解くための、コンピュータによって実施される方法
JP2009128165A (ja) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp 不要波抑圧装置
JP2010223895A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp レーダ装置

Also Published As

Publication number Publication date
US8179300B2 (en) 2012-05-15
US20110187584A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP2011158471A (ja) 時空間適応処理システムにおいてターゲットを検出するための方法
CN106125053B (zh) 脉冲多普勒雷达极化抗干扰方法
CN106338723B (zh) 一种基于互质脉冲重复间隔的空时自适应处理方法及装置
CN108562866B (zh) 基于矩阵填充的双基地mimo雷达角度估算方法
CN109188387B (zh) 基于插值补偿的分布式相参雷达目标参数估计方法
CN109407055A (zh) 基于多径利用的波束形成方法
CN105929371A (zh) 一种基于协方差矩阵估计的机载雷达杂波抑制方法
CN101881822B (zh) 一种针对共享谱雷达同频干扰的抑制方法
CN107561512A (zh) 一种脉冲多普勒雷达抗压制式拖曳干扰的极化对消方法
CN106772253B (zh) 一种非均匀杂波环境下的雷达杂波抑制方法
CN109541548B (zh) 一种基于匹配场的空气声呐定位方法
CN110850445A (zh) 一种基于空时采样协方差求逆的脉冲干扰抑制方法
Tabrikian et al. Transmission diversity smoothing for multi-target localization [radar/sonar systems]
CN102353947A (zh) 一种基于csa-mwf的无源雷达目标回波信号子空间的估计方法
CN110531311A (zh) 一种基于矩阵重组的lte外辐射源雷达doa估计方法
CN104635219A (zh) 基于阵元-脉冲域补偿的匀加速平台空时自适应处理方法
CN108828504B (zh) 基于部分相关波形的mimo雷达目标方向快速估计方法
CN112255608A (zh) 一种基于正交投影的雷达杂波自适应抑制方法
CN106680797A (zh) 基于宽带模糊函数的目标参数估计新方法
CN108845318B (zh) 基于Relax算法的星载高分宽幅成像方法
Zhang et al. Improved main-lobe cancellation method for space spread clutter suppression in HFSSWR
CN108983227B (zh) 一种基于白化滤波的极化mimo雷达检测方法
RU2431862C1 (ru) Способ поляризационно-независимого пеленгования многолучевых радиосигналов
CN109597034B (zh) 一种基于欧几里得距离的空时自适应处理方法
Pandey et al. Space Time Adaptive Processing for High Signal to Clutter Ratio Target's Detection Radar System

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507