JP2011154007A - 磁性体検出器 - Google Patents

磁性体検出器 Download PDF

Info

Publication number
JP2011154007A
JP2011154007A JP2010017401A JP2010017401A JP2011154007A JP 2011154007 A JP2011154007 A JP 2011154007A JP 2010017401 A JP2010017401 A JP 2010017401A JP 2010017401 A JP2010017401 A JP 2010017401A JP 2011154007 A JP2011154007 A JP 2011154007A
Authority
JP
Japan
Prior art keywords
phase
effect element
magnetoresistive effect
magnetic
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010017401A
Other languages
English (en)
Other versions
JP5475485B2 (ja
Inventor
Yoshinobu Fujimoto
佳伸 藤本
Sosuke Nishida
聡佑 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2010017401A priority Critical patent/JP5475485B2/ja
Publication of JP2011154007A publication Critical patent/JP2011154007A/ja
Application granted granted Critical
Publication of JP5475485B2 publication Critical patent/JP5475485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】A相/B相又はA相とZa相/Zb相又はZ相との位相差を小さくし、磁気抵抗効果素子を小型化して回転体の原点検出精度を向上させること。
【解決手段】A相/B相又はA相検出用の磁気抵抗効果素子21とZa相/Zb相又はZ相検出用の磁気抵抗効果素子22とは、同一基板上に同一形状で並設され、かつ運動体に対する配置方向が前記運動体の運動方向に垂直方向である。磁気抵抗効果素子21aと磁気抵抗効果素子21bとの中点の端子電極21AからはA相の信号が、磁気抵抗効果素子21cと磁気抵抗効果素子21dとの中点の端子電極21BからB相の信号が出力される。また、磁気抵抗効果素子22aと磁気抵抗効果素子22bとの中点の端子電極22AからZa相の信号が、磁気抵抗効果素子22cと磁気抵抗効果素子22dとの中点の端子電極22BからZb相の信号が出力される。
【選択図】図7

Description

本発明は、磁性体検出器に関し、より詳細には、A相/B相又はA相とZa相/Zb相又はZ相との位相差を小さくし、磁気抵抗効果素子を小型化した上で、回転体の原点検出精度など運動体の検出精度を向上させるようにした磁性体検出器に関する。
一般に、磁気抵抗効果素子(SMRE)を用いた回転検出器は知られている。この磁気抵抗効果素子は、周囲の磁界の変化に応じて素子内を流れるキャリアの行路が変化することで、素子の抵抗値が変化する素子である。このような磁気抵抗効果素子は、磁性体からなる歯車などの回転体の回転状況を検出する回転検出素子などとして用いられている。
磁気抵抗効果素子の磁気抵抗効果は、以下の式によって記述することができる。
ΔR/R0∝(μB)2 :低印加磁界時
ΔR/R0∝(μB) :高印加磁界時
ここで、ΔR=RB−R0であり、RBは磁界中での抵抗値、R0は磁界なしでの抵抗値、μは電子移動度、Bは印加磁束密度である。ΔR/R0は、磁気抵抗効果素子の感度に相当し、低磁場中では電子移動度μの2乗に比例し、高磁場中では電子移動度μに比例する。したがって、磁気抵抗効果素子では、より高い感度(ΔR/R0)を得るために、電子移動度μの高いInSbのバルクや、真空蒸着法により形成した薄膜などが用いられている。
一般に、磁気抵抗効果素子では、基板上に化合物半導体薄膜がミアンダ(meander)状に形成され、その上に短絡電極が複数形成されている。また、外部との電気的接続を行うための取り出し電極を備え、この取り出し電極に外部端子を接続することによって外部との電気的接続が行われている。
図1乃至図3は、従来の磁気抵抗素子を用いた回転検出器を説明するための構成図で、図1は、歯車と回転検出器の位置関係を示す断面図、図2は、歯車と3端子の磁気抵抗素子の等価回路を示す図、図3は、歯車と4端子の磁気抵抗素子の等価回路を示す図である。
図1に示すような構造は、例えば、特許文献1に提案されている。符号1は磁性体から成る歯車、2a,2bは歯車1の回転を検出する磁気抵抗効果素子、3はこの磁気抵抗効果素子2に垂直な磁界(バイアス磁界)を印加する永久磁石で、磁気抵抗効果素子2a,2bとしては、InSbバルクや真空蒸着法により形成した薄膜などが用いられている(例えば、特許文献2参照)。
ところで、歯車1の回転を検出する際は、一般的には、2個の磁気抵抗効果素子を直列に接続した3端子の磁気抵抗素子(単相出力)、あるいは、4個の磁気抵抗効果素子をループ状に接続した4端子の磁気抵抗効果素子(A相/B相の2相出力)が使用されている。3端子の磁気抵抗効果素子では、図2に示すように歯車1の山と谷とに、2個の磁気抵抗効果素子2a,2bをそれぞれ合わせて配置されている。また、4端子の磁気抵抗効果素子では、図3に示すように、歯車1の山と谷にあわせて2個の磁気抵抗効果素子2a,2bを直列に配置したもの(A相)と、その1/4周期ずれた位置にさらなる2個の磁気抵抗効果素子2c,2dを直列に配置したもの(B相)が含まれている。そして、それぞれに、直流電源4を接続し、図2においては出力端子5、図3においては出力端子5a,5bの電位をそれぞれ出力電圧として取出すようにしている。
このような方式による磁気センサ回路の出力信号eは、例えば、図2の場合には、磁気抵抗効果素子2a,2bのそれぞれの抵抗値をRa,Rb、直流電源4の電圧をVinとすれば、出力端子5の電位は、e={(Rb/(Ra+Rb)}×Vinとなる(例えば、特許文献3参照)。
また、これらA相/B相又は単相検出用の磁気抵抗効果素子の他に、歯車の回転方向に対して垂直方向に原点検出用の磁気抵抗効果素子を配置し、一部を欠歯させた歯車の回転を、この原点検出用、すなわち、Za相/Zb相又はZ相用の磁気抵抗効果素子で、歯車の真の原点位置を検出することができる。従来においては、これらA相/B相又は単相検出用の磁気抵抗効果素子とZa相/Zb相又はZ相用の磁気抵抗効果素子とをそれぞれ別のチップで形成して組み合わせ、Za相/Zb相又はZ相検出用の磁気抵抗効果素子と、A相/B相又はA相検出用の磁気抵抗効果素子の出力の差分、あるいは除算といった演算処理で歯車の欠歯の角度検出を行っていた。
図4(a)乃至(c)は、従来の回転検出器及び磁気抵抗効果素子の構成図で、図4(a)は歯車と回転検出器との配置関係を示す図、図4(b)はZa相/Zb相検出用の磁気抵抗効果素子、図4(c)はA相/B相検出用の磁気抵抗効果素子の構成図を示している。なお、符号10は歯車、11は回転検出器、11S,11Zは磁気抵抗効果素子、12S,12Zは永久磁石、13は端子ピン、14は薄い金属板、15は磁石ホルダ、16は樹脂ケース、11Si,11Sg,11SA,11SB,12Zi,12Zg,12ZA,12ZBは取り出し電極を示している。
Za相/Zb相検出用の磁気抵抗効果素子11Zは、図4(b)に示すように4個の単一磁気抵抗効果素子11Za,11Zb,11Zc,11Zdとから構成され、A相/B相検出用の磁気抵抗効果素子11Sは、図4(c)に示すように4個の単一磁気抵抗効果素子11Sa,11Sb,11Sc,11Sdとから構成されている。単一磁気抵抗効果素子11Zaと単一磁気抵抗効果素子11Zbとの間隔と、単一磁気抵抗効果素子11Zcと単一磁気抵抗効果素子11Zdとの間隔は、ともに、歯車のピッチをPとすると、歯車の山と谷の間隔であるP/2に等しく、かつ、単一磁気抵抗効果素子11Zaと単一磁気抵抗効果素子11Zc、及び単一磁気抵抗効果素子11Zbと単一磁気抵抗効果素子11Zdとは、歯車の回転方向に対して、P/4だけずらして形成されている。また、A相/B相検出用の磁気抵抗効果素子11Sの単一磁気抵抗効果素子11Sa乃至11Sdについても同様である。
歯車として、1歯が欠歯している歯車10を用いるとともに、1チップ上に4端子の磁気抵抗効果素子11Zと同様の構成の磁気抵抗効果素子11Sとを2個備え、一方の磁気抵抗効果素子11SをA相/B相検出用とし、他方の磁気抵抗効果素子11ZをZa/Zb相検出用とした回転検出器11を作製すれば、図5(a),(b)に示すような、A相/B相の出力信号とともに、欠歯を検出するZa/Zb相での出力信号を得ることができる。ここではZa相の出力信号のみを図示してある。
また、一対の磁気抵抗効果素子を回転体に対して2列に並設した磁気回転センサは、例えば、特許文献4に記載されている。
特開2005−327859号公報 特開平03−259578号公報 特開昭52−073793号公報 特開平04−012222号公報
しかしながら、近年産業用ロボット等の加工精度の向上に伴って、検出する歯車の微細化や、要求角度精度が非常に高くなってきた。例えば、高精度が要求される場合において、上述した特許文献1に示された方法では、Za相/Zb相又はZ相検出用の磁気抵抗効果素子とA相/B相又はA相検出用の磁気抵抗効果素子とが異なった回転検出器であるので、2つの回転検出器の組み付け誤差や、磁気抵抗効果素子の加工精度ならびに化合物半導体特性ばらつきに起因する特性ばらつきと温度特性ばらつきにより、Za相/Zb相又はZ相と、A相/B相又はA相の角度検出精度が悪くなるという原理的な課題があった。
また、配置する際の位置精度のズレや、温度変化を含めた素子間の抵抗や磁気抵抗効果のばらつきにより、A相/B相又は単相とZa相/Zb相又はZ相の位相差が生じてしまい、結果的に原点位置検出位置が悪くなってしまうという欠点があった。また、2つの回転検出器を別々のチップで形成していたために回転検出システムが大きくなり、産業用ロボット等が小型化できないという欠点があった。
本発明は、このような状況に鑑みてなされたもので、その目的とするところは、A相/B相又はA相とZa相/Zb相又はZ相との位相差を小さくし、磁気抵抗効果素子を小型化した上で、回転体の原点検出精度など運動体の検出精度を向上させるようにした磁性体検出器を提供することにある。
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、基板上に設けられた複数の感磁部を有する磁気抵抗効果素子と、該磁気抵抗効果素子の近傍に設けられ、被検査体である運動体に磁界を供給する磁界発生手段とを備え、該磁界発生手段により前記運動体に供給された磁界の変化を前記磁気抵抗効果素子で検出して前記運動体の運動状態を検出する磁性体検出器において、前記運動体の運動状態信号を検出する第1の磁気抵抗効果素子と、前記運動体からのインデックス信号を検出する第2の磁気抵抗効果素子とを備え、前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子が、同一基板上に同一形状で並設され、かつ前記運動体に対する配置方向が前記運動体の運動方向に垂直方向であることを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の発明において、前記第1及び第2の磁気抵抗効果素子が、前記基板上に、複数の短冊状に加工された化合物半導体膜と、該化合物半導体膜上でその幅方向に平行に配置された複数の短絡電極と、前記複数の化合物半導体膜を接続する接続導体を介して、外部との電気的接続を行うために、前記短絡電極の始点と終点に設けられた取り出し電極とを備えていることを特徴とする。
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記第1の磁気抵抗効果素子の前記感磁部と、前記第2の磁気抵抗効果素子の前記感磁部との距離が、0.4mm以上10mm以下であることを特徴とする。
また、請求項4に記載の発明は、請求項2又は3に記載の発明において、前記化合物半導体膜の幅の長さが、5μm以上150μm以下であることを特徴とする。
また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記運動体の移動状態信号を検出する前記第1の磁気抵抗効果素子を前記磁性歯車のA相/B相又はA相検出用とし、前記運動体からのインデックス信号を検出する前記第2の磁気抵抗効果素子を前記磁性歯車のZa相/Zb相又はZ相検出用とすることを特徴とする。
また、請求項6に記載の発明は、請求項5に記載の発明において、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との出力信号の電気角での位相差が、0°以上5°以下であることを特徴とする。
また、請求項7に記載の発明は、請求項5又は6に記載の発明において、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子の前記短冊状の化合物半導体膜が、同一抵抗値であることを特徴とする。
また、請求項8に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記運動体が、磁性歯車であることを特徴とする。
また、請求項9に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記運動体が、磁性走行体であることを特徴とする。
なお、上述した「運動体」は、「磁性歯車」などの「磁性回転体」や「磁性走行体」を含みものである。
このように、A相/B相又はA相検出用の磁気抵抗効果素子と、Za相/Zb相又はZ相検出用の磁気抵抗効果素子とを一体形成して1チップ化することで、小型化した上で相互の位置関係を定めて位置ずれを解消した磁性体検出器を実現した。
本発明によれば、A相/B相又はA相とZa相/Zb相又はZ相の位相差を小さくし、小型化した上で歯車などの回転体の原点検出精度など運動体の検出精度を向上させるようにした磁性体検出器を提供することが可能となった。
従来の磁気抵抗効果素子を用いた回転検出器を説明するための構成図で、図1は、歯車と回転検出器の位置関係を示す断面図である。 従来の磁気抵抗効果素子を用いた回転検出器を説明するための構成図で、歯車と3端子の磁気抵抗効果素子の等価回路を示す図である。 従来の磁気抵抗効果素子を用いた回転検出器を説明するための構成図で、歯車と4端子の磁気抵抗効果素子の等価回路を示す図である。 従来の回転検出器及び磁気抵抗効果素子の構成図で、(a)は歯車と回転検出器との配置関係を示す図、(b)はZa相/Zb相検出用の磁気抵抗効果素子の構成図、(c)はA相/B相検出用の磁気抵抗効果素子の構成図である。 (a)は図4に示した回転検出器の4端子の磁気抵抗効果素子の等価回路、(b)はA相,B相,Za相の波形を示す図である。 本発明に係る磁性体検出器である回転検出器におけるZa/Zb相検出用の磁気抵抗効果素子及びA相/B相検出用の磁気抵抗効果素子を一体化した磁気センサの構成図で、(a)は単一磁気抵抗効果素子の集合体(2列×4)、(b)は単一磁気抵抗効果素子の集合体(4列×4)を示している。 本発明に係る磁性体検出器である回転体検出器の構成図で、(a)は回転体と回転体検出器との配置関係を示す図、(b)はZa/Zb相用の磁気抵抗効果素子及びA相/B相用の磁気抵抗効果素子を一体化した磁気センサの構成図である。 (a)乃至(d)は、3端子の磁気センサの作製方法を説明するための工程図である。 本発明に係る磁性体検出器である回転体検出器の磁気センサと回転体との配置関係を示す図である。 A相用磁気抵抗効果素子とZ相用磁気抵抗効果素子との感磁部間の距離と、A相の振幅の低下率との相関をグラフに示した図である。 歯車の一部を欠歯させた磁性歯車の回転検出方法を説明するための図である。 (a)乃至(c)は、A相とZ相の位相差及びA相とZ相における出力電圧の関係を示す図で、(a)はA相とZ相の位相差、(b)はA相とZ相が同位相の場合の出力電圧、(c)はA相とZ相に位相ずれがある場合の出力電圧を示している。 図6(a)に示した磁気センサの斜視図で、化合物半導体膜の幅Wを示した図である。 図6(b)に示した磁気センサの斜視図で、化合物半導体膜の幅Wを示した図である。
以下、図面を参照して本発明の実施の形態について説明する。
図6(a),(b)は、本発明に係る磁性体検出器である回転検出器におけるA相/B相検出用の磁気抵抗効果素子とZa/Zb相検出用の磁気抵抗効果素子とを一体化した各々異なる磁気センサの構成図で、図6(a)は単一磁気抵抗効果素子の集合体(2列×4)、図6(b)は単一磁気抵抗効果素子の集合体(4列×4)を示している。
図6(a)において、磁気センサ20は、A相/B相検出用の磁気抵抗効果素子21とZa相/Zb相検出用の磁気抵抗効果素子22とを一体形成して1チップ化した4端子の磁気抵抗効果素子である。A相/B相又は単相検出用の磁気抵抗効果素子21は単一磁気抵抗効果素子の集合体(2列×4)で、Za相/Zb相又はZ相検出用の磁気抵抗効果素子22も単一磁気抵抗効果素子の集合体(2列×4)である。
図6(b)においても同様に、磁気センサ30は、A相/B相又は単相検出用の磁気抵抗効果素子31とZa相/Zb相又はZ相検出用の磁気抵抗効果素子32とを一体形成して1チップ化した4端子の磁気抵抗効果素子である。A相/B相又は単相検出用の磁気抵抗効果素子31も単一磁気抵抗効果素子の集合体(2列×4)で、Za相/Zb相又はZ相検出用の磁気抵抗効果素子32も単一磁気抵抗効果素子の集合体(2列×4)である。
図7(a),(b)は、本発明に係る磁性体検出器である回転体検出器の構成図で、図7(a)は回転体と回転体検出器との配置関係を示す図、図7(b)はA相/B相検出用の磁気抵抗効果素子とZa/Zb相検出用の磁気抵抗効果素子とを一体化した磁気センサの構成図で、図6(a)に示したものと同じ構造を有している。
なお、図中符号100は歯車、110は回転検出器、111は永久磁石、112は磁石ホルダ、113は端子ピン、114は樹脂ケース、21(21a乃至21d)はA相/B相又は単相検出用の磁気抵抗効果素子、22(22a乃至22d)はZa相/Zb相又はZ相検出用の磁気抵抗効果素子、21i,21g,21A,21B,22i,22g,22A,22Bは端子電極、20aは絶縁基板、23は短絡電極、24は接続導体、21i,21g,21A,21B,22i,22g,22A,22Bは取り出し電極を示している。
本発明の回転体検出器は、A相/B相又は単相検出用の磁気抵抗効果素子及びZa相/Zb相又はZ相検出用の磁気抵抗効果素子は、同一基板上に同一形状で並設されて1チップ化され、かつ回転体に対する配置方向がその回転体の運動方向に垂直方向である。
磁気センサ20は、絶縁基板20a上に、複数の短冊状(ミアンダ状)に加工され、抵抗値が磁界によって変化する化合物半導体膜210a乃至210d及び220a乃至220d(図8参照)と、この化合物半導体膜上でその幅方向に平行に配置された複数の短絡電極23と、複数の化合物半導体膜を接続する接続導体24を介して、外部との電気的接続を行うために、短絡電極23の始点と終点に設けられた取り出し電極とを備えている。化合物半導体膜は、磁気センサ20の感磁部を構成している。
A相/B相検出用の磁気抵抗効果素子21は、4個の磁気抵抗効果素子21a,21b,21c,21dとから構成され、Za相/Zb相検出用の磁気抵抗効果素子22は、4個の磁気抵抗効果素子22a,22b,22c,22dとから構成されている。磁気抵抗効果素子21aと磁気抵抗効果素子21bとの間隔と、磁気抵抗効果素子21cと磁気抵抗効果素子21dとの間隔は、ともに、歯車のピッチをPとすると、歯車の山と谷の間隔であるP/2に等しく、かつ、磁気抵抗効果素子21aと磁気抵抗効果素子21c、及び磁気抵抗効果素子21bと磁気抵抗効果素子21dとは、歯車の回転方向に対して、P/4だけずらして形成されている。
これにより、取り出し電極(端子電極)22iと取り出し電極22gとの間に直流電源を接続すれば、歯車の回転に伴って、磁気抵抗効果素子22aと磁気抵抗効果素子22bとの中点に設けられた取り出し電極22AからはZa相の信号が、磁気抵抗効果素子22cと磁気抵抗効果素子22dとの中点に設けられた取り出し電極22Bからは、Za相とは90°の位相差を有するZb相の信号が出力される。
また、取り出し電極21iと取り出し電極21gとの間に直流電源を接続すれば、歯車の回転に伴って、磁気抵抗効果素子21aと磁気抵抗効果素子21bとの中点に設けられた取り出し電極21AからはA相の信号が、磁気抵抗効果素子21cと磁気抵抗効果素子21dとの中点に設けられた取り出し電極21Bからは、A相とは90°の位相差を有するB相の信号が出力される。
また、図6(b)に示した単一磁気抵抗効果素子の集合体(4列×4)の場合においても同様に、A相/B相検出用の磁気抵抗効果素子31は、4個の磁気抵抗効果素子31a,31b,31c,31dとから構成され、Za相/Zb相検出用の磁気抵抗効果素子32は、4個の磁気抵抗効果素子32a,32b,32c,32dとから構成されている。磁気抵抗効果素子31aと磁気抵抗効果素子31bとの間隔と、磁気抵抗効果素子31cと磁気抵抗効果素子31dとの間隔は、ともに、歯車のピッチをPとすると、歯車の山と谷の間隔であるP/2に等しく、かつ、磁気抵抗効果素子31aと磁気抵抗効果素子31c、及び磁気抵抗効果素子31bと磁気抵抗効果素子31dとは、歯車の回転方向に対して、P/4だけずらして形成されている。
これにより、取り出し電極(端子電極)32iと取り出し電極32gとの間に直流電源を接続すれば、歯車の回転に伴って、磁気抵抗効果素子32aと磁気抵抗効果素子32bとの中点に設けられた取り出し電極32AからはZa相の信号が、磁気抵抗効果素子32cと磁気抵抗効果素子22dとの中点に設けられた取り出し電極32Bからは、Za相とは90°の位相差を有するZb相の信号が出力される。
また、取り出し電極31iと取り出し電極31gとの間に直流電源を接続すれば、歯車の回転に伴って、磁気抵抗効果素子31aと磁気抵抗効果素子31bとの中点に設けられた取り出し電極31AからはA相の信号が、磁気抵抗効果素子31cと磁気抵抗効果素子31dとの中点に設けられた取り出し電極31Bからは、A相とは90°の位相差を有するB相の信号が出力される。
次に、図6(a)及び図7(b)に示した本発明に係る磁気センサの作製方法について説明する。
図8(a)乃至(d)は、3端子の磁気センサの作製方法を説明するための工程図である。A相/B相検出用の磁気抵抗効果素子と、Za相/Zb相検出用の磁気抵抗効果素子は、同じ作製工程で作製される。作製工程には、通常のフォトグラフィーの技術を用いることができる。
まず、図8(a)に示されるように、化合物半導体膜210(210a乃至210d),220(220a乃至220d)に感磁部のパターンを露光・現像し、その後、塩酸・過酸化水素系のエッチング液で所望の形状にメサエッチングして、絶縁基板20a上に短冊状の化合物半導体膜210,220を形成する。感磁部のパターンの形成方法は、ドライ方式でも良く、塩酸・過酸化水素系以外のエッチング液を用いてもよい。
次いで、図8(b)に示されるように、化合物半導体膜210,220上の幅方向に複数の短絡電極23を形成する。
次いで、図8(c)に示されるように、窒化シリコン膜からなる保護膜25をプラズマCVD法により感磁部上に形成し、短絡電極23を形成する部分の保護膜25を、短絡電極23を形成する部分よりも狭い範囲で反応性イオンエッチング装置を用いて除去した後、短絡電極23及び取り出し電極21(21A,21B,21i,21g)及び22(22A,22B,22i,22g)を形成し、さらに接続導体24を化合物半導体膜210(210a乃至210d)及び220(220a乃至220d)に形成する。
最後に、図8(d)に示されるように、単一磁気抵抗効果素子20の感磁部面上に軟樹脂層26を形成する。
磁気センサ20の感磁部を構成する化合物半導体膜210,220は、InSbやInAsのバルク、あるいは、InSb、InAs、またはInaAlbGa(1-a-b)AsxSb(1-x)(0≦a+b≦1、0≦x≦1)からなる薄膜であることが好ましいが、本発明においては、化合物半導体膜であれば良く、その構成元素を限定するものではない。化合物半導体膜の膜厚は、通常、0.1〜4μmであるが、好ましくは0.2〜2μmであり、さらに好ましくは0.3〜1.5μmである。また、Siや、Sn、S、Se、Te、Ge、またはCなどの不純物をドープしたものであっても良い。
化合物半導体膜が薄膜である場合、薄膜を形成する方法としては、真空蒸着法や分子線エピタキシー(MBE)法などが好ましいが、必ずしもこれらの形成方法でなくても良い。取り出し電極や短絡電極は、蒸着法、スパッタ法、またはめっき法などを用いて形成され、Cu、Al、Au単層、または、Ti/Au、Ni/Au、Cr/Cu、Cu/Ni/Au、Ti/Au/Ni、Cr/Au/Ni、Cr/Ni/Au/Ni、Ti/Pt/Au、NiCr/Auの積層などとしても良い。例えばTi/Auの場合、Tiが下層であり、Auが上層である。また、取り出し電極と短絡電極は、必ずしも同じ電極構造でなくても良い。
また、化合物半導体膜を保護する保護膜の材料は、一般的には絶縁性無機質材料であることが好ましい。保護膜には、例えば、窒化シリコンや酸化ケイ素等の薄膜を、プラズマCVD法等により150〜500nm程度形成したものが用いられるが、本発明においては、保護膜の有無、種類、および膜厚を規定するものではない。
また、磁気センサ20の外部に形成されるモールド樹脂による化合物半導体膜や短絡電極への圧力や面内応力を緩和する目的で、化合物半導体膜及び短絡電極上を覆うように軟樹脂層26が形成されることが多い。この軟樹脂層26には、一般的に、1〜300μmのシリコン系樹脂や、1〜10μm厚のゴム系樹脂が用いられるが、本発明においては、軟樹脂層の有無、種類、および膜厚を規定するものではない。
また、化合物半導体をエッチングして得られた幅(電流に直交する方向の化合物半導体感磁部の幅)をWとし、短絡電極間の距離(素子長)をLとした場合、L/Wを形状因子という。本発明においては、形状因子L/Wを限定するものではないが、L/W=0.1から0.3が用いられることが多い。また、本発明においてはWを限定するものではないが、抵抗を考慮して化合物半導体膜の幅Wは、5〜150μmが好ましい、さらには5〜100μmが好ましい。
このようにして、8つの取り出し電極(端子電極)を有し、各端子電極間に複数の短絡電極を有するA/B相検出用の磁気抵抗効果素子とZa/Zb相検出用の磁気抵抗効果素子を、フォトリソグラフィーを応用して作成することができる。
なお、上述した実施形態では、8端子の磁気抵抗効果素子を用いて説明を行ったが、本発明においては、端子数を規定するものではなく、例えば、6端子であっても良い。また、A相/B相検出用の磁気抵抗効果素子はA相検出用の磁気抵抗効果素子であっても良く、Za相/Zb相検出用の磁気抵抗効果素子はZ相検出用の磁気抵抗効果素子であっても良い。また、電極を形成した後に保護膜を形成しても良く、保護膜の種類は窒化シリコンでなくても良い。保護膜を除去する方法は、反応性イオンエッチングではなく、他のドライエッチングやウエットエッチング方式であっても良い。また、端子電極と短絡電極は2度に分けて形成しても良い。
次に、本発明における磁気抵抗効果素子による磁性体検出について説明する。磁性体の代表として、磁性歯車である場合の例について説明する。なお、磁性歯車を例として記載しているが、曲率無限大のラック構造である磁性走行体でも同様である。
A相/B相信号を検出するための磁性歯車の他に、磁性歯車の進行方向に対して直行する方向に並列にインデックス検出用の磁性体構造を配置した。この磁性歯車は、1体であっても位相が合う様に貼り合わせるなどして別体であっても良い。インデックス検出用の磁性体構造は、歯車の一部を欠歯させたものでもよく、歯車の一部以外を欠歯させたものでもよい。
図11は、歯車の一部を欠歯させた磁性歯車の回転検出方法を説明するための図で、図中符号300は歯車、310は永久磁石、311はA相/B相又はA相検出用の磁気抵抗効果素子、312はZa相/Zb相又はZ相検出用の磁気抵抗効果素子を示している。
パッケージは缶パッケージでも樹脂モールドパッケージであっても良い。このインデックス検出となる歯車の欠歯をZa相/Zb相又はZ相検出用の磁気抵抗効果素子312で、歯車の真の原点位置を検出する。本発明においては、A相/B相又はA相検出用の磁気抵抗効果素子311とZa相/Zb相又はZ相検出用の磁気抵抗効果素子312が同一チップ上に形成されている。
Za相/Zb相又はZ相検出用の磁気抵抗効果素子312と、A相/B相又はA相検出用の磁気抵抗効果素子311の出力の差分あるいは除算といった演算処理で歯車の欠歯あるいは残歯の角度検出を行う際に位相差が生じないように、A相/B相又はA相検出用の磁気抵抗効果素子311とZa相/Zb相又はZ相用の磁気抵抗効果素子312の半導体短冊が歯車回転方向に対して同じ位相になるように配置されていることが好ましい。
A相とZ相の位相差を、図12(a)中の符号Bで示してある。また、A相/B相又はA相検出用の磁気抵抗効果素子311とZa相/Zb相又はZ相検出用の磁気抵抗効果素子312は、同電圧源を使用した際に発熱の偏りが生じないように同一の抵抗であることが望ましい。なお、図12(b)はA相とZ相が同位相の場合の出力電圧、図12(c)はA相とZ相に位相ずれがある場合の出力電圧を示している。
図9は、本発明に係る磁性体検出器である回転体検出器の磁気センサと回転体との配置関係を示す図である。なお、図中符号Aは、A相用磁気抵抗効果素子とZ相用磁気抵抗効果素子との感磁部間の距離を示している。
図9に示すように、歯車のZ相とA相の中央に配置し、歯車の材料をS25C(機械構造用炭素鋼)、歯車の歯数を256歯、歯車の厚み3mm(A/B相側=2mm、Z相(欠歯)側=1mm )、永久磁石のサイズ4.4×4.4×t5.0mm(着磁方向:t5.0mm)、永久磁石の残留磁束密度Br=1100mT(一般的なサマリウムコバルト系磁石の残留磁束密度)、歯車と磁気抵抗効果素子の感磁部との距離を0.45mm、永久磁石と磁気抵抗効果素子の感磁部の距離を0.45mmとし、磁気抵抗効果素子の化合物半導体膜の短冊間の距離を変えた場合のA相振幅への影響をシミュレーションしたところ、A相検出用の磁気抵抗効果素子21とZ相検出用の磁気抵抗効果素子22との感磁部間の距離AがA=0.2mm以下では、Z相用の欠歯にA/B相用の磁気抵抗効果素子が近づくため、Z相用の欠歯がA/B相の出力電圧に影響を及ぼし、出力電圧振幅が1%以上低下する。一方、A相検出用の磁気抵抗効果素子21とZ相検出用の磁気抵抗効果素子22との感磁部間の距離AをA=0.4mm以上とすると、Z相用の欠歯によるA/B相の出力電圧振幅の低下率が0.5%以下となる。振幅がずれると、角度検出誤差に繋がるので、実使用上、A/B相の振幅の低下率は0.5%以下であることが望ましいことは良く知られている。よって、A相検出用の磁気抵抗効果素子21とZ相検出用の磁気抵抗効果素子22との感磁部間の距離AはA=0.4mm以上であることが好ましい。
図10は、A相検出用の磁気抵抗効果素子21とZ相検出用の磁気抵抗効果素子22との感磁部間の距離Aと、A相の振幅の低下率との相関をグラフに示した図である。また、A相検出用の磁気抵抗効果素子21とZ相検出用の磁気抵抗効果素子22との感磁部間の距離Aは、歯車幅以下であることが好ましく、通常の歯車幅を考慮してA=10mm以下が好ましく、より好ましくはA=3.5mm以下である。
以下に、本発明の磁気抵抗効果素子の具体的な実施例について説明する。しかしながら、本発明は、これらの実施例に限定されるものではない。
図13は、図6(a)に示した磁気センサの実施例1を説明するための斜視図で、化合物半導体膜Wを示した図である。
まず、厚さ0.63mmの半絶縁性GaAs単結晶基板上に、分子線エピタキシー法を用いてSnドープInSb薄膜をエピタキシャル成長させた。成膜したInSbの厚さは0.7μmであり、電気特性を公知のファンデルポー法で測定したところ、電子濃度は7×1016/cm3、電子移動度は、37000cm2/Vsであった。
次に、GaAs基板上に成膜したInSbの表面にフォトレジストを均一に塗布し、露光・現像した後に、塩酸・過酸化水素系のエッチング液でメサエッチングした。その上に、保護膜として、窒化シリコン薄膜をプラズマCVD法で150nm形成した。その後、再度フォトレジストを塗布した後に、短絡電極及び取り出し電極を形成する部分の保護膜を、反応性イオンエッチング装置を用いて除去した。続いて、フォトレジストを塗布して、短絡電極及び取り出し電極を形成するための露光・現像を行い、真空蒸着法で電極を蒸着し、リフトオフ法で短絡電極及び取り出し電極を形成した。1層目のTiを形成後、真空中で引き続き2層目のAuを形成した。次に、モールド樹脂による圧力や面内応力を緩和するために、感磁部面上にゴム系樹脂を形成した。
このようにして、化合物半導体膜を感磁部とし、この感磁部の列が1つの磁気抵抗効果素子あたり8列であり、端子電極間に複数の短絡電極を有する4端子の磁気抵抗効果素子を複数製作した。このときの短冊状に加工した化合物半導体膜の幅Wは、90μmであった。
続いて、裏面研削によって、GaAs基板を所定の厚さに研磨し、1チップに個片化した。この時、A相/B相検出用の磁気抵抗効果素子21と、Za相/Zb相検出用の磁気抵抗効果素子22が同一チップとなる様に個片化した。また、A相/B相検出用の磁気抵抗効果素子21の取り出し電極の接続部で接続された長尺状の化合物半導体膜の取り出し電極との接合部と、Za相/Zb相検出用の磁気抵抗効果素子22の取り出し電極との接合部との距離は、0.6mmであった。このとき、A/B相検出用の磁気抵抗効果素子21とZa相/Zb相検出用の磁気抵抗効果素子の抵抗は各々300Ωであった。リードフレーム上に接着剤で個片化したチップを接着した後に、プラスチックパッケージでモールドした。このときのA相/B相検出用の磁気抵抗効果素子21と、Za相/Zb相検出用の磁気抵抗効果素子22の位相差は、リードフレーム上に接着する際のθズレのみと考えて良い。θズレが±0.2°として計算すると、位相差は2.5°と小さい値となった。
[比較例1]
A相/B相検出用の磁気抵抗効果素子と、Za相/Zb相検出用の磁気抵抗効果素子の間をダイシングして個片化し、A相/B相検出用の磁気抵抗効果素子と、Za相/Zb相検出用の磁気抵抗効果素子を各々リードフレーム上に接着剤で接着したこと以外は、実施例1と同様にして磁気抵抗効果素子を作成した。Za相/Zb相検出用の磁気抵抗効果素子の位相差は、リードフレーム上に接着する際のθズレに加え、2素子をリードフレーム上に接着する際の位置ズレが考えられる。θズレが±0.2°、2素子の位置ズレを50μmとすると、位相差は29°と大きい値となった。
このように、本発明によると、特性劣化が小さい磁性体検出器を提供することが可能となる。すなわち、歯車原点検出精度を向上させることができる。
A相/B相検出用の磁気抵抗効果素子21の取り出し電極の接続部で接続された短冊状の化合物半導体膜の取り出し電極との接合部と、Za相/Zb相検出用の磁気抵抗効果素子22の取り出し電極との接合部との距離が1.0mmであること以外は、実施例1と同様にして磁気抵抗効果素子を作成した。このときのA相/B相検出用の磁気抵抗効果素子21と、Za相/Zb相検出用の磁気抵抗効果素子22の位相差は、リードフレーム上に接着する際のθズレのみと考えて良い。θズレが±0.2°として計算すると、位相差は3.3°と小さい値となった。
図14は、図6(b)に示した磁気センサの実施例3を説明するための斜視図で、化合物半導体膜の幅Wを示した図である。
短冊状に加工した化合物半導体膜の幅Wが60μmであり、感磁部の列が1つの磁気抵抗効果素子あたり16列であること以外は、実施例1と同様に磁気抵抗効果素子を作成した。このときのA相/B相検出用の磁気抵抗効果素子31と、Za相/Zb相検出用の磁気抵抗効果素子32の位相差は、リードフレーム上に接着する際のθズレのみと考えて良い。θズレが±0.2°として計算すると、位相差は1.6°と小さい値となった。
短冊状に加工した化合物半導体膜の幅Wが60μmであり、感磁部の列が1つの磁気抵抗効果素子あたり16列であること以外は、実施例2と同様に磁気抵抗効果素子を作成した。このときのA相/B相検出用の磁気抵抗効果素子31と、Za相/Zb相検出用の磁気抵抗効果素子32の位相差は、リードフレーム上に接着する際のθズレのみと考えて良い。θズレが±0.2°として計算すると、位相差は2.4°と小さい値となった。
以上は運動体として回転体について説明したが、インデックス信号の得られる走行体についても適用可能である。また、上述した実施形態では、歯車の回転を検出する回転検出器について説明したが、本発明はこれに限るものではなく、例えば、円柱棒の表面に凹部又は凸部を付けた回転体など、他の回転体の回転を検出する一般の回転検出器にも適用可能である。更には、凹凸のある磁性体から成る運動体の凹凸の検出にも適用可能である。
本発明は、A相/B相又は単相とZa相/Zb相又はZ相との位相差を小さくし、磁気抵抗効果素子を小型化した上で、回転体の原点検出精度を向上させるようにした磁性体検出器に関するもので、その磁気抵抗効果素子は、高温や湿度環境下での特性劣化が小さく、磁気抵抗効果素子として有用である。
1 磁性体から成る歯車
2a,2b 磁気抵抗効果素子
3 永久磁石
4 直流電源
5a,5b 出力端子
10 歯車
11 回転検出器
11S A相/B相検出用の磁気抵抗効果素子
11Z Za/Zb相検出用の磁気抵抗効果素子
11Za,11zb,11Zc,11Zd,11Sa,11Sb,11Sc,11Sd 単一磁気抵抗効果素子
13 端子ピン
14 薄い金属板
15 磁石ホルダ
16 樹脂ケース
20 磁気センサ
21(21a乃至21d) A相/B相検出用の磁気抵抗効果素子
22(22a乃至22d) Za相/Zb相検出用の磁気抵抗効果素子
21i,21g,21A,21B,22i,22g,22A,22B 取り出し電極
20a 絶縁基板
210a乃至210d及び220a乃至220d 化合物半導体膜
23 短絡電極
24 接続導体
25 保護膜
26 軟樹脂層
30 磁気センサ
31(31a乃至31d) A相/B相検出用の磁気抵抗効果素子
32(32a乃至32d) Za相/Zb相検出用の磁気抵抗効果素子
31i,31g,31A,31B,32i,32g,32A,32B 取り出し電極
100 歯車
110 回転検出器
110 回転検出器
111 永久磁石
112 磁石ホルダ
113 端子ピン
114 樹脂ケース、
210(210a乃至210d),220(220a乃至220d) 化合物半導体膜
300 歯車
310 永久磁石
311 A相/B相又はA相検出用の磁気抵抗効果素子
312 Za相/Zb相又はZ相検出用の磁気抵抗効果素子

Claims (9)

  1. 基板上に設けられた複数の感磁部を有する磁気抵抗効果素子と、該磁気抵抗効果素子の近傍に設けられ、被検査体である運動体に磁界を供給する磁界発生手段とを備え、該磁界発生手段により前記運動体に供給された磁界の変化を前記磁気抵抗効果素子で検出して前記運動体の運動状態を検出する磁性体検出器において、
    前記運動体の運動状態信号を検出する第1の磁気抵抗効果素子と、前記運動体からのインデックス信号を検出する第2の磁気抵抗効果素子とを備え、
    前記第1の磁気抵抗効果素子及び前記第2の磁気抵抗効果素子が、同一基板上に同一形状で並設され、かつ前記運動体に対する配置方向が前記運動体の運動方向に垂直方向であることを特徴とする磁性体検出器。
  2. 前記第1及び第2の磁気抵抗効果素子が、前記基板上に、複数の短冊状に加工された化合物半導体膜と、該化合物半導体膜上でその幅方向に平行に配置された複数の短絡電極と、前記複数の化合物半導体膜を接続する接続導体を介して、外部との電気的接続を行うために、前記短絡電極の始点と終点に設けられた取り出し電極とを備えていることを特徴とする請求項1に記載の磁性体検出器。
  3. 前記第1の磁気抵抗効果素子の前記感磁部と、前記第2の磁気抵抗効果素子の前記感磁部との距離が、0.4mm以上10mm以下であることを特徴とする請求項1又は2に記載の磁性体検出器。
  4. 前記化合物半導体膜の幅の長さが、5μm以上150μm以下であることを特徴とする請求項2又は3に記載の磁性体検出器。
  5. 前記運動体の移動状態信号を検出する前記第1の磁気抵抗効果素子を前記磁性歯車のA相/B相又はA相検出用とし、前記運動体からのインデックス信号を検出する前記第2の磁気抵抗効果素子を前記磁性歯車のZa相/Zb相又はZ相検出用とすることを特徴とする請求項1乃至4のいずれかに記載の磁性体検出器。
  6. 前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との出力信号の電気角での位相差が、0°以上5°以下であることを特徴とする請求項5に記載の磁性体検出器。
  7. 前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子の前記短冊状の化合物半導体膜が、同一抵抗値であることを特徴とする請求項5又は6に記載の磁性体検出器。
  8. 前記運動体が、磁性歯車であることを特徴とする請求項1乃至7のいずれかに記載の磁性体検出器。
  9. 前記運動体が、磁性走行体であることを特徴とする請求項1乃至7のいずれかに記載の磁性体検出器。
JP2010017401A 2010-01-28 2010-01-28 磁性体検出器 Active JP5475485B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017401A JP5475485B2 (ja) 2010-01-28 2010-01-28 磁性体検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017401A JP5475485B2 (ja) 2010-01-28 2010-01-28 磁性体検出器

Publications (2)

Publication Number Publication Date
JP2011154007A true JP2011154007A (ja) 2011-08-11
JP5475485B2 JP5475485B2 (ja) 2014-04-16

Family

ID=44540078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017401A Active JP5475485B2 (ja) 2010-01-28 2010-01-28 磁性体検出器

Country Status (1)

Country Link
JP (1) JP5475485B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014111753A1 (de) 2013-08-28 2015-03-05 Fanuc Corporation Magnetfühlervorrichtung zum Erfassen einer Position mithilfe des Magnetismus
JP2023010557A (ja) * 2021-07-08 2023-01-20 Tdk株式会社 磁気センサ装置および磁気センサシステム
US11686788B2 (en) 2021-07-08 2023-06-27 Tdk Corporation Magnetic sensor device and magnetic sensor system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327859A (ja) * 2004-05-13 2005-11-24 Asahi Kasei Corp 磁気抵抗素子及び回転検出器
JP2007285741A (ja) * 2006-04-13 2007-11-01 Tdk Corp 回転検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327859A (ja) * 2004-05-13 2005-11-24 Asahi Kasei Corp 磁気抵抗素子及び回転検出器
JP2007285741A (ja) * 2006-04-13 2007-11-01 Tdk Corp 回転検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014111753A1 (de) 2013-08-28 2015-03-05 Fanuc Corporation Magnetfühlervorrichtung zum Erfassen einer Position mithilfe des Magnetismus
JP2023010557A (ja) * 2021-07-08 2023-01-20 Tdk株式会社 磁気センサ装置および磁気センサシステム
US11686788B2 (en) 2021-07-08 2023-06-27 Tdk Corporation Magnetic sensor device and magnetic sensor system
JP7332738B2 (ja) 2021-07-08 2023-08-23 Tdk株式会社 磁気センサ装置および磁気センサシステム
US11946989B2 (en) 2021-07-08 2024-04-02 Tdk Corporation Magnetic sensor device and magnetic sensor system

Also Published As

Publication number Publication date
JP5475485B2 (ja) 2014-04-16

Similar Documents

Publication Publication Date Title
US11193989B2 (en) Magnetoresistance assembly having a TMR element disposed over or under a GMR element
US8193805B2 (en) Magnetic sensor
JP6018093B2 (ja) 単一パッケージブリッジ型磁界角度センサ
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
JP2005337866A (ja) 磁性体検出器及び半導体パッケージ
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
JP4240306B2 (ja) 回転検出器
KR20170002519A (ko) 감소된 오프셋 및 향상된 정확도를 갖는 자기장 센서들 및 관련 방법들
US10317480B2 (en) Magneto resistive device
JP5475485B2 (ja) 磁性体検出器
JP2011013200A (ja) 電流センサ
US10386427B1 (en) Magnetic field sensor having at least two CVH elements and method of operating same
JP3260921B2 (ja) 可動体変位検出装置
El-Ahmar et al. Graphene-based magnetoresistance device utilizing strip pattern geometry
JP6017152B2 (ja) 磁気抵抗素子
CN109752678B (zh) 一种简易各向异性薄膜磁阻传感器
JP2004165362A (ja) ホール効果を用いる磁気センサ及びその製造方法
JP5135612B2 (ja) 半導体素子
KR102419004B1 (ko) 일체화된 3축 홀 센서 및 그 제조방법
JP6144505B2 (ja) 磁気センサ装置
JP2012204539A (ja) 磁気抵抗素子
JP2013030550A (ja) 磁気抵抗素子及びその製造方法
JP4308084B2 (ja) 磁性体検出器
US20240111006A1 (en) Methods for tunnel magnetoresistance multi-turn sensor manufacture and read-out
JP6073565B2 (ja) 磁気抵抗素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Ref document number: 5475485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350