JP2011148676A - Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same - Google Patents

Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same Download PDF

Info

Publication number
JP2011148676A
JP2011148676A JP2010271731A JP2010271731A JP2011148676A JP 2011148676 A JP2011148676 A JP 2011148676A JP 2010271731 A JP2010271731 A JP 2010271731A JP 2010271731 A JP2010271731 A JP 2010271731A JP 2011148676 A JP2011148676 A JP 2011148676A
Authority
JP
Japan
Prior art keywords
raw material
tile
weight
lightweight
foamed lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010271731A
Other languages
Japanese (ja)
Other versions
JP5707908B2 (en
Inventor
Kosuke Ohashi
浩介 大橋
Takeyuki Sawada
健行 澤田
Michihiro Takeda
道弘 竹田
Osamu Watanabe
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2010271731A priority Critical patent/JP5707908B2/en
Publication of JP2011148676A publication Critical patent/JP2011148676A/en
Application granted granted Critical
Publication of JP5707908B2 publication Critical patent/JP5707908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed lightweight tile having excellent dimensional accuracy, a method for producing the same and a raw material for the foamed lightweight tile. <P>SOLUTION: The raw material for foamed lightweight tile contains 100 pts.wt non-foamable raw material containing at least a plastic raw material and an orientational raw material, and 0.01-1 pt.wt. foaming agent. When total of the components except ignition loss is defined by 100 wt.%, the non-foamable raw material contains 80-100 wt.% in total of three components of SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>and MgO and when total of the three component of SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>and MgO is defined by 100 wt.%, the composition ratio (SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>and MgO) by weight is present in a region A or a region B in a ternary composition diagram. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建材として壁面などに用いられるタイルに関するものであり、特に製造工程において発泡させることにより軽量化した発泡軽量タイル、その原料及びその製造方法に関する。詳しくは、本発明は、寸法精度が良好な発泡軽量タイルと、その製造方法と、この発泡軽量タイル用原料とに関する。   The present invention relates to a tile used for a wall surface or the like as a building material, and particularly to a foamed lightweight tile reduced in weight by foaming in a manufacturing process, a raw material thereof, and a manufacturing method thereof. Specifically, the present invention relates to a foamed lightweight tile having good dimensional accuracy, a method for producing the same, and a raw material for the foamed lightweight tile.

タイルを軽量化する方法としては、タイル原料に発泡剤、軽量骨材又は消失物を添加するものがある。このうち、発泡剤を添加する方法は、軽量骨材や消失物を添加する方法と比べて製造コストを抑えることができるという利点がある。この発泡剤を添加して焼成し、発泡させた発泡軽量タイルとしては、種々のものが知られている。   As a method for reducing the weight of a tile, there is a method in which a foaming agent, a lightweight aggregate, or a lost material is added to a tile raw material. Among these, the method of adding a foaming agent has an advantage that the production cost can be suppressed as compared with the method of adding a lightweight aggregate or a lost article. Various types of lightweight foam tiles that are fired by adding a foaming agent and foamed are known.

例えば、特開2007−246323号公報の第0017段落には、粘土40〜60重量部、ガラス10〜15重量部、長石25〜50重量部及び発泡剤としてのSiC0.01〜5重量部よりなるタイル原料を、成形及び焼成してなる軽量発泡タイルが記載されている。   For example, paragraph 0017 of JP 2007-246323 consists of 40 to 60 parts by weight of clay, 10 to 15 parts by weight of glass, 25 to 50 parts by weight of feldspar, and 0.01 to 5 parts by weight of SiC as a foaming agent. A lightweight foam tile obtained by molding and firing a tile material is described.

特開平4−2676号公報の第1頁右欄第16行〜第2頁左上欄第1行には、粘土40〜10重量部、長石60〜90重量部及び発泡剤としての炭化珪素1重量部以下よりなる原料を、成形及び焼成してなる発泡外装材が記載されている。   In JP-A-4-2676, page 1, right column, line 16 to page 2, upper left column, line 1 contains 40 to 10 parts by weight of clay, 60 to 90 parts by weight of feldspar, and 1 weight of silicon carbide as a foaming agent. A foamed exterior material formed by molding and firing a raw material composed of parts or less is described.

特開平7−247181号公報の第0025段落には、粘土10〜60重量部、長石40〜90重量部、ガス発生成分0.01〜2重量部よりなる発泡性原料に対して、さらに石灰石、ドロマイト、ガラス、滑石(タルク)等のアルカリ金属酸化物やアルカリ土類金属酸化物を配合した原料を用いた発泡タイルが記載されている。   In paragraph 0025 of JP-A-7-247181, limestone is further added to the foamable raw material comprising 10 to 60 parts by weight of clay, 40 to 90 parts by weight of feldspar, and 0.01 to 2 parts by weight of a gas generating component. A foam tile using a raw material blended with alkali metal oxides such as dolomite, glass, talc, or alkaline earth metal oxides is described.

従来の発泡軽量タイルは、焼成時における窯内の温度のばらつき等に伴う発泡度合いのばらつきにより、タイル寸法がばらつき寸法精度が低くなるという問題がある。   Conventional foamed lightweight tiles have a problem in that the size of the tiles varies due to variations in the degree of foaming associated with variations in temperature in the kiln during firing, and the dimensional accuracy is reduced.

発泡軽量タイルに関するものではないが、特開平6−40760号公報には、吸水率2%以下の低吸水性セラミック板の製造において、成形体の乾燥及び焼成収縮を低減させるために、原料中に雲母、βワラストナイト、タルク等の異方性結晶を添加することが記載されている。   Although not related to foamed lightweight tiles, Japanese Patent Application Laid-Open No. 6-40760 discloses that in the production of a low water absorption ceramic plate having a water absorption of 2% or less, in order to reduce drying and firing shrinkage of the molded body, The addition of anisotropic crystals such as mica, β-wollastonite, and talc is described.

同号公報では、セラミック板の製造用素地組成物として、ガラス及び/又はフリット粉末15〜60重量%、可塑性粘土15〜40重量%、雲母3〜40重量%、βワラストナイト0〜40重量%、タルク0〜20重量%を有し、かつ雲母、βワラストナイト及びタルクの合計が3〜60重量%となるように調製したものを用いる(請求項3)。これら雲母、βワラストナイト及びタルクは、プレス成形や押出し成形等において、厚さ方向よりも平面方向に配向し易い異方性の結晶物質である(第0005段落)。同号公報の第0006段落には、この原料の成形体の焼成時において、この異方性結晶物質のつっぱり効果によって平面方向への収縮を抑え、厚さ方向に収縮させることにより、セラミック板の寸法精度の向上を図ることが記載されている。   In the same publication, as a substrate composition for producing a ceramic plate, glass and / or frit powder 15 to 60% by weight, plastic clay 15 to 40% by weight, mica 3 to 40% by weight, β wollastonite 0 to 40% by weight %, Talc 0 to 20% by weight, and prepared so that the total of mica, β-wollastonite and talc is 3 to 60% by weight (Claim 3). These mica, β wollastonite, and talc are anisotropic crystalline substances that are more easily oriented in the plane direction than in the thickness direction in press molding, extrusion molding, and the like (paragraph 0005). In the paragraph 0006 of the same publication, during the firing of the molded body of the raw material, the shrinkage in the plane direction is suppressed by the pulling effect of the anisotropic crystal substance, and the ceramic plate is shrunk in the thickness direction by shrinking in the thickness direction. It is described that the dimensional accuracy is improved.

なお、同号公報は、上記の通り吸水率2%以下の低吸水性セラミック板に関するものであり、該低吸収性セラミック板の原料中には発泡剤を有しない。同号公報の発明は、焼成収縮過程での寸法精度の向上を課題とするものであり、発泡剤の発泡度合いのばらつきにより寸法精度が低くなることを防止するという課題を有しない。   Note that the above publication relates to a low water absorption ceramic plate having a water absorption rate of 2% or less as described above, and does not have a foaming agent in the raw material of the low absorption ceramic plate. The invention of this publication is intended to improve the dimensional accuracy during the firing shrinkage process, and does not have the problem of preventing the dimensional accuracy from being lowered due to variations in the foaming degree of the foaming agent.

特開2007−246323号公報JP 2007-246323 A 特開平4−2676号公報JP-A-4-2676 特開平7−247181号公報JP-A-7-247181 特開平6−40760号公報JP-A-6-40760

上記の通り、特許文献1〜3のような発泡軽量タイルにあっては、焼成時における窯内の温度のばらつき等に伴う発泡度合いのばらつきにより、寸法精度が低くなるという問題がある。   As described above, the foamed lightweight tiles as disclosed in Patent Documents 1 to 3 have a problem that the dimensional accuracy is lowered due to the variation in the degree of foaming accompanying the variation in temperature in the kiln during firing.

本発明は、寸法精度の良好な発泡軽量タイル及びその製造方法と、この発泡軽量タイルの製造用原料を提供することを目的とする。   An object of this invention is to provide the foaming lightweight tile with favorable dimensional accuracy, its manufacturing method, and the raw material for manufacture of this foaming lightweight tile.

本発明(請求項1)の発泡軽量タイル用原料は、少なくとも可塑性原料及び配向性原料を含む非発泡性原料100重量部と、発泡剤0.01〜1重量部とを含んでなる発泡軽量タイル用原料であって、該非発泡性原料は、灼熱減量を除いた成分の合計を100重量%とした場合、SiO、Al及びMgOの3成分の合計が80〜100重量%であり、該非発泡性原料中のSiO、Al及びMgOの3成分の合計を100重量%とした場合、重量組成比(SiO、Al,MgO)が、これら3成分の3元組成図において、A(66.5,8.5,25.0)、A(72.0,6.5,21.5)、A(74.5,12.0,13.5)及びA(66.5,20.0,13.5)を結んだ四角形の領域A内又はB(67.6,24.9,7.5)、B(72.2,22.2,5.6)、B(74.2,23.8,2.0)及びB(68.9,29.0,2.1)を結んだ四角形の領域B内にあることを特徴とするものである。 The foamed lightweight tile raw material of the present invention (Claim 1) is a foamed lightweight tile comprising 100 parts by weight of a non-foamable raw material containing at least a plastic raw material and an orientation raw material, and 0.01 to 1 part by weight of a foaming agent. The non-foaming raw material has a total of 80 to 100% by weight of the three components of SiO 2 , Al 2 O 3 and MgO, where the total of components excluding loss on ignition is 100% by weight. When the total of the three components of SiO 2 , Al 2 O 3 and MgO in the non-foaming raw material is 100% by weight, the weight composition ratio (SiO 2 , Al 2 O 3 , MgO) is 3 of these three components. In the original composition diagram, A 1 (66.5, 8.5, 25.0), A 2 (72.0, 6.5, 21.5), A 3 (74.5, 12.0, 13. 5) and a 4 (66.5,20.0,13.5) square connecting the Within the area A or B 1 (67.6,24.9,7.5), B 2 (72.2,22.2,5.6), B 3 (74.2,23.8,2. 0) and B 4 (68.9, 29.0, 2.1).

請求項2の発泡軽量タイル用原料は、請求項1において、前記可塑性原料は粘土鉱物であることを特徴とするものである。   According to a second aspect of the present invention, there is provided a raw material for foamed lightweight tile according to the first aspect, wherein the plastic raw material is a clay mineral.

請求項3の発泡軽量タイル用原料は、請求項1又は2において、前記配向性原料が、タルク、マイカ、板状アルミナ、アンチゴライト及びリゾルダイトの少なくとも1種よりなることを特徴とするものである。   A raw material for foamed lightweight tile according to claim 3 is characterized in that, in claim 1 or 2, the orientation raw material is composed of at least one of talc, mica, plate-like alumina, antigolite and resoldite. is there.

請求項4の発泡軽量タイル用原料は、請求項1ないし3のいずれか1項において、前記発泡性原料が、炭化珪素、窒化珪素、窒化アルミニウム、炭酸化合物、ドロマイト及び酸化セリウムの少なくとも1種であることを特徴とするものである。   A raw material for foamed lightweight tile according to claim 4 is the raw material for foamed lightweight tile according to any one of claims 1 to 3, wherein the foamable raw material is at least one of silicon carbide, silicon nitride, aluminum nitride, carbonate, dolomite, and cerium oxide. It is characterized by being.

本発明(請求項5)の発泡軽量タイルの製造方法は、請求項1ないし4のいずれか1項に記載の発泡軽量タイル用原料を成形し、焼成することを特徴とするものである。   The foamed lightweight tile manufacturing method of the present invention (invention 5) is characterized in that the foamed lightweight tile raw material according to any one of claims 1 to 4 is molded and fired.

請求項6の発泡軽量タイルの製造方法は、請求項5において、成形方法がプレス成形又は押出成形であることを特徴とするものである。   The method for producing a lightweight foam tile according to claim 6 is characterized in that, in claim 5, the molding method is press molding or extrusion molding.

請求項7の発泡軽量タイルの製造方法は、請求項5又は6において、焼成温度が1130〜1310℃であることを特徴とするものである。   The method for producing a lightweight foam tile according to claim 7 is characterized in that, in claim 5 or 6, the firing temperature is 1130 to 1310 ° C.

本発明(請求項8)の発泡軽量タイルは、請求項5ないし7のいずれか1項に記載の発泡軽量タイル用原料の製造方法によって製造されたものである。   The foamed lightweight tile of the present invention (invention 8) is produced by the method for producing a foamed lightweight tile raw material according to any one of claims 5 to 7.

請求項9の発泡軽量タイルは、請求項8において、比重が0.7〜2.0であることを特徴とするものである。   The foamed lightweight tile according to claim 9 is characterized in that, in claim 8, the specific gravity is 0.7 to 2.0.

本発明によると、寸法精度の良好な発泡軽量タイルが得られる。   According to the present invention, a foamed lightweight tile with good dimensional accuracy can be obtained.

すなわち、発泡軽量タイル用原料を成形し、焼成して発泡軽量タイルを製造するに際して、タイルの発泡の程度は焼成温度により変化する。そのため、従来例にあっては、炉内の温度分布等に起因して焼成温度の分布が広くなると、タイル寸法がばらつき得られる発泡軽量タイルは寸法精度が低いものとなる。   That is, when a foamed lightweight tile is produced by molding and firing a foamed lightweight tile raw material, the degree of foaming of the tile varies depending on the firing temperature. Therefore, in the conventional example, when the distribution of the firing temperature is widened due to the temperature distribution in the furnace or the like, the foamed lightweight tile from which the tile size can be varied becomes low in dimensional accuracy.

本発明では、発泡軽量タイル用原料中に配向性原料が配合されている。この配向性原料は、2軸方向に配向した扁平形状又は1軸方向に配向した針状の粒子よりなる。かかる配向性原料を含んだ原料を板形のタイル形状に成形した場合、配向性原料粒子は板状成形体の面方向に配向する。この配向性原料は、焼成時にその配向軸方向への膨張率が小さいという特性を有している。そのため、この配向性原料を含んだ成形体を焼成した場合、焼成時にタイル面方向(タイル厚み方向と垂直方向)への発泡膨張が抑制され、タイル厚み方向に発泡膨張し易くなる。この結果、焼成温度分布が広い状況でも、面方向の膨張率のズレ(予定膨張率からの乖離)が小さくなり、寸法精度の高い発泡軽量タイルを得ることができる。   In this invention, the orientation raw material is mix | blended with the raw material for foaming lightweight tiles. This orientation raw material consists of flat particles oriented in the biaxial direction or needle-like particles oriented in the uniaxial direction. When a raw material containing such an orientation raw material is formed into a plate-like tile shape, the orientation raw material particles are oriented in the plane direction of the plate-like molded body. This orientation raw material has a characteristic that a coefficient of expansion in the orientation axis direction is small during firing. Therefore, when the molded body containing this orientation raw material is fired, foam expansion in the tile surface direction (perpendicular to the tile thickness direction) is suppressed during firing, and the foam expansion easily occurs in the tile thickness direction. As a result, even when the firing temperature distribution is wide, the deviation of the expansion coefficient in the surface direction (deviation from the expected expansion coefficient) is reduced, and a foamed lightweight tile with high dimensional accuracy can be obtained.

また、本発明では、SiO、Al及びMgOの3成分の重量組成比が、これら3成分の3元組成図におけるクリストバライトとムライトの共融線から離れた領域A又は領域B内にあるため、焼成時に熔融粘性が急激に低下することが防止される。これによっても、得られる発泡軽量タイルの寸法精度が向上する。 Further, in the present invention, the weight composition ratio of the three components of SiO 2 , Al 2 O 3 and MgO is within the region A or region B away from the eutectic line of cristobalite and mullite in the ternary composition diagram of these three components. Therefore, it is possible to prevent the melt viscosity from rapidly decreasing during firing. This also improves the dimensional accuracy of the resulting foamed lightweight tile.

本発明において、可塑性原料としては粘土鉱物が好適である。   In the present invention, a clay mineral is suitable as the plastic raw material.

配向性原料としては、タルク、マイカ、板状アルミナ、アンチゴライト及びリゾルダイトの少なくとも1種が好ましい。これらの配向性原料は扁平状であり、この配向性原料の配向軸方向(厚み方向と垂直方向)が板状成形体の面方向(厚み方向と垂直方向)となるように良好に配向する。   As the orientation raw material, at least one of talc, mica, plate-like alumina, antigolite and resoldite is preferable. These orientation raw materials are flat, and are well oriented so that the orientation axis direction (thickness direction and perpendicular direction) of the orientation raw material becomes the plane direction (perpendicular to the thickness direction) of the plate-like molded body.

発泡剤としては、炭化珪素、窒化珪素、窒化アルミニウム、炭酸化合物、ドロマイト及び酸化セリウムの少なくとも1種が好適である。   As the foaming agent, at least one of silicon carbide, silicon nitride, aluminum nitride, carbonate compound, dolomite and cerium oxide is suitable.

この発泡軽量タイルの焼成時における焼成温度は1130〜1310℃であることが好ましい。この発泡軽量タイルの比重は0.7〜2.0であることが好ましい。   The firing temperature during firing of the foamed lightweight tile is preferably 1130 to 1310 ° C. The specific gravity of the foamed lightweight tile is preferably 0.7 to 2.0.

本発明の発泡軽量タイル用原料における、SiO、Al及びMgOの3成分の重量組成比の範囲を示す3元組成図である。It is a ternary composition diagram showing the range of the weight composition ratio of three components of SiO 2 , Al 2 O 3 and MgO in the raw material for foamed lightweight tile of the present invention. 実施例の試料No.1〜28におけるSiO、Al及びMgOの3成分の重量組成比を示す図面である。Sample No. of Example It illustrates a SiO 2, Al 2 O 3 and the weight composition ratio of the three components of MgO in 1-28. 試料No.3,12,17,27の焼成温度と長辺方向の焼成収縮率との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the baking temperature of 3, 12, 17, and 27 and the baking shrinkage rate of a long side direction. 試料No.3,12,17,27の焼成温度と体積変化率との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the calcination temperature of 3, 12, 17, and 27 and a volume change rate. 試料No.3,12,17,27の焼成温度と長辺方向への発泡寄与率との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the calcination temperature of 3, 12, 17, and 27 and the foaming contribution rate to a long side direction. 試料No.3,12,17,27の焼成温度と厚み方向への発泡寄与率との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the calcination temperature of 3, 12, 17, and 27 and the foaming contribution rate to the thickness direction.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の発泡軽量タイル用原料は、少なくとも可塑性原料及び配向性原料を含む非発泡性原料100重量部と、発泡剤0.01〜1重量部とを含んでいる。   The foamed lightweight tile raw material of the present invention contains 100 parts by weight of a non-foamable raw material containing at least a plastic raw material and an orientation raw material, and 0.01 to 1 part by weight of a foaming agent.

非発泡性原料は、可塑性原料及び配向性原料の他に、長石、珪砂、シャモット、陶石、蝋石等のタイル用原料を含むことが好ましい。   The non-foaming raw material preferably contains a raw material for tiles such as feldspar, quartz sand, chamotte, porcelain stone, and wax stone in addition to the plastic raw material and the orientation raw material.

可塑性原料としては、粘土鉱物が好適であり、具体的にはカオリン、セリサイト、木節粘土、蛙目粘土などが例示される。   As the plastic raw material, clay minerals are suitable, and specific examples include kaolin, sericite, kibushi clay, and cocoon clay.

配向性原料としては、2軸方向に配向した扁平形状粒子及び1軸方向に配向した針状の粒子のいずれよりなるものであってもよいが、タルク、マイカ、板状アルミナ、アンチゴライト、リゾルダイト等の2軸方向に配向した扁平状の粒子よりなる原料が好適である。かかる扁平状の粒子よりなる配向性原料は、1軸方向にのみ配向した針状の粒子よりなる配向性原料と比べて、上述したタイル面方向への発泡膨張抑制効果が高い。配向性原料の平均粒径は1〜75μm程度が好適である。この平均粒径はレーザー回折式粒度分布計によって計測された値である。   The orientation raw material may be any of flat particles oriented in biaxial directions and acicular particles oriented in uniaxial directions, but talc, mica, plate-like alumina, antigolite, A raw material made of flat particles oriented in the biaxial direction, such as resoldite, is preferred. The orientation raw material composed of such flat particles has a higher effect of suppressing the expansion of foam in the tile surface direction as compared to the orientation raw material composed of needle-like particles oriented only in the uniaxial direction. The average particle size of the orientation raw material is preferably about 1 to 75 μm. This average particle diameter is a value measured by a laser diffraction particle size distribution meter.

非発泡性原料100重量部(灼熱減量を含む。)中における長石、可塑性原料及び配向性原料の割合は、領域Aの場合は、長石0〜40重量部、可塑性原料20〜60重量部、配向性原料40〜60重量部(3者の合計で100重量部)であることが好ましい。領域Bの場合は、長石0〜35重量部、可塑性原料60〜90重量部、配向性原料5〜20重量部(3者の合計で100重量部)であることが好ましい。   The ratio of feldspar, plastic raw material and orientation raw material in 100 parts by weight of non-foaming raw material (including ignition loss) is 0-40 parts by weight of feldspar, 20-60 parts by weight of plastic raw material, and orientation for region A. It is preferable that it is 40-60 weight part (100 parts by weight in total of 3 persons) of a raw material. In the case of the region B, it is preferably 0 to 35 parts by weight of feldspar, 60 to 90 parts by weight of a plastic raw material, and 5 to 20 parts by weight of an orientation raw material (100 parts by weight in total for the three members).

この非発泡性原料中におけるSiO、Al及びMgOの3成分の好ましい比率について次に説明する。 Next, a preferable ratio of the three components of SiO 2 , Al 2 O 3 and MgO in the non-foaming raw material will be described.

この非発泡性原料は、灼熱減量(Ignition loss)を除いた成分の合計を100重量%とした場合、SiO、Al及びMgOの3成分の合計が80〜100重量%好ましくは90〜98重量%である。これらSiO、Al及びMgOの3成分の重量組成比(SiO、Al,MgO)が、第1図に示すこれら3成分の3元組成図において、A(66.5,8.5,25.0)、A(72.0,6.5,21.5)、A(74.5,12.0,13.5)及びA(66.5,20.0,13.5)を結んだ四角形の領域A内又はB(67.6,24.9,7.5)、B(72.2,22.2,5.6)、B(74.2,23.8,2.0)及びB(68.9,29.0,2.1)を結んだ四角形の領域B内にある。A領域は、好ましくはA(67.0,12.0,21.0)、A(70.4,8.9,20.7)、A(74.1,11.9,14.0)、及びA(67.2,18.4,14.4)を結んだ四角形の領域内にある。 In the non-foaming raw material, when the total of the components excluding ignition loss is 100% by weight, the total of the three components of SiO 2 , Al 2 O 3 and MgO is 80 to 100% by weight, preferably 90% ~ 98 wt%. In these SiO 2, Al 2 O 3 and the weight composition ratio of the three components of MgO (SiO 2, Al 2 O 3, MgO) is ternary composition diagram of the three components shown in FIG. 1, A 1 (66. 5, 8.5, 25.0), A 2 (72.0, 6.5, 21.5), A 3 (74.5, 12.0, 13.5) and A 4 (66.5). 20.0, 13.5) in a rectangular area A or B 1 (67.6, 24.9, 7.5), B 2 (72.2, 22.2, 5.6), B 3 (74.2, 23.8, 2.0) and B 4 (68.9, 29.0, 2.1). The A region is preferably A 5 (67.0, 12.0, 21.0), A 6 (70.4, 8.9, 20.7), A 7 (74.1, 11.9, 14). .0), and A 8 (67.2, 18.4, 14.4).

A領域は、特に、A(68.7,10.4,20.9)、A10(72.3,10.3,17.4)、A11(74.2,11.8,14.0)及びA12(70.8,15.0,14.2)で囲まれた領域であることが好ましい。B領域は、特に、B(67.6,24.9,7.5)、B(72.2,22.2,5.6)、B(69.5,24.8,5.7)及びB(72.3,23.9,3.8)で囲まれた領域であることが好ましい。 The A region is, in particular, A 9 (68.7, 10.4, 20.9), A 10 (72.3, 10.3, 17.4), A 11 (74.2, 11.8, 14). .0) and A 12 (70.8, 15.0, 14.2). The B region is notably B 5 (67.6, 24.9, 7.5), B 6 (72.2, 22.2, 5.6), B 7 (69.5, 24.8, 5 ). .7) and B 8 (72.3, 23.9, 3.8).

なお、第1図において、共融線Lは、クリストバライトとムライトの共融線である。   In FIG. 1, a eutectic line L is a eutectic line of cristobalite and mullite.

第1図のSiO、Al及びMgOの3元組成図内には、タルク、長石及び粘土の典型的な組成がプロットされると共に、これらの3点を結んだ三角形が描かれており、この三角形の領域内に、クリストバライトとムライトの共融線が存在する。SiO、Al及びMgOの3成分の重量組成比がこの共融線Lに近いと、焼成時に炉内温度が上昇して共融点に近づいたときに熔融粘性が急激に低下するため、被焼成体(焼成されつつあるタイル)が大きく変形してしまい、タイルの寸法精度が低下する。これに対し、本発明の発泡軽量タイル用原料は、3成分の重量組成比が領域A又は領域Bを範囲内であり、上記共融線Lからある程度離隔している。これにより、焼成時における熔融粘性の急激な低下が防止され、タイルの寸法精度が高いものとなる。 In the ternary composition diagram of SiO 2 , Al 2 O 3 and MgO in FIG. 1, typical compositions of talc, feldspar and clay are plotted, and a triangle connecting these three points is drawn. In this triangular region, there is a eutectic line of cristobalite and mullite. If the weight composition ratio of the three components of SiO 2 , Al 2 O 3 and MgO is close to this eutectic line L, the melt viscosity rapidly decreases when the furnace temperature rises during firing and approaches the eutectic point. The to-be-fired body (tile that is being fired) is greatly deformed, and the dimensional accuracy of the tile is lowered. On the other hand, the foamed lightweight tile raw material of the present invention has a three-component weight composition ratio within the region A or region B and is separated from the eutectic line L to some extent. Thereby, the rapid fall of the melt viscosity at the time of baking is prevented, and the dimensional accuracy of a tile becomes high.

原料組成が領域A,Bから共融線Lに離れる方向に逸脱したり、領域AからAlリッチ側に逸脱したりすると、焼成温度が過度に高いものとなる。原料組成が領域Bから長石リッチ側に逸脱すると、焼成温度の上昇による発泡量の増加が急激に大きくなり、寸法精度が悪化する。 If the raw material composition deviates from the regions A and B in the direction away from the eutectic line L, or deviates from the region A to the Al 2 O 3 rich side, the firing temperature becomes excessively high. When the raw material composition deviates from the region B to the feldspar rich side, the increase in the amount of foaming due to the increase in the firing temperature increases rapidly, and the dimensional accuracy deteriorates.

上記非発泡性原料の灼熱減量(Ignition loss)を除いた成分の合計を100重量%とした場合、SiO、Al及びMgOの3成分の合計が80重量%以上であると、上記3成分以外の成分による影響が小さいものとなる。 When the total of the components excluding the ignition loss of the non-foaming raw material is 100% by weight, the total of the three components of SiO 2 , Al 2 O 3 and MgO is 80% by weight or more. The influence by components other than the three components is small.

発泡剤としては、炭化珪素、窒化珪素、窒化アルミニウム、炭酸化合物、ドロマイト、酸化セリウム等が好適であり、特に炭化珪素が好適である。   As the foaming agent, silicon carbide, silicon nitride, aluminum nitride, carbonic acid compound, dolomite, cerium oxide and the like are preferable, and silicon carbide is particularly preferable.

発泡剤は、灼熱減量を含む該非発泡原料の合計100重量部に対して0.01〜1重量部好ましくは0.05〜0.7重量部特に好ましくは0.07〜0.1重量部配合される。   The foaming agent is blended in an amount of 0.01 to 1 part by weight, preferably 0.05 to 0.7 part by weight, particularly preferably 0.07 to 0.1 part by weight, based on 100 parts by weight of the total amount of the non-foaming raw material including ignition loss. Is done.

本発明の発泡軽量タイル用原料は、上記の原料以外に珪砂、シャモット、陶石、蝋石などを全体の20重量%以下の範囲で含んでもよい。   The raw material for foamed lightweight tile of the present invention may contain silica sand, chamotte, porcelain stone, wax, etc. in the range of 20% by weight or less of the whole in addition to the above raw materials.

本発明の発泡軽量タイル用原料は、これらの原料を上記割合で懸濁液となるように、水を原料重量の50〜200%で添加し、ミル等を用いて混合することにより製造される。この発泡軽量タイル用原料の平均粒径は5〜15μm程度が好適である。   The foamed lightweight tile raw material of the present invention is produced by adding water at 50 to 200% of the raw material weight and mixing using a mill or the like so that these raw materials become a suspension at the above ratio. . The average particle size of the foamed lightweight tile raw material is preferably about 5 to 15 μm.

この発泡軽量タイル用原料を成形及び焼成することにより、発泡軽量タイルが製造される。成形方法は、成形時に配向性原料が成形体内で配向する任意のものを適用することができ、プレス成形、押出し成形等が好適に採用される。例えば、配向性原料が扁平状である場合、下型内に発泡軽量タイル用原料を充填し、その上から上型を型締めし、上下方向に加圧する乾式プレス成形を行うと、扁平状の配向性原料は、その偏平面方向が略水平方向に配向する。これにより、板状成形体の板面方向に該配向性原料の偏平面方向が配向した発泡軽量タイル用成形体が得られる。乾式プレス成形の場合、成形圧は50〜500kgf/cm程度が好適である。成形体の嵩密度は、1.5〜2.0g/cm特に1.7〜1.9g/cm程度が好ましい。 A foamed lightweight tile is manufactured by molding and firing the foamed lightweight tile raw material. As the molding method, any method in which the orientation raw material is oriented in the molded body at the time of molding can be applied, and press molding, extrusion molding, and the like are suitably employed. For example, when the orientation raw material is flat, when the dry mold for foaming lightweight tile is filled in the lower mold, the upper mold is clamped from above, and dry pressing is performed in the vertical direction, the flat mold The orientation raw material is oriented in a substantially horizontal direction in the flat plane direction. Thereby, the molded object for lightweight foam tiles in which the flat surface direction of the orientation raw material is aligned in the plate surface direction of the plate-shaped molded body is obtained. In the case of dry press molding, the molding pressure is preferably about 50 to 500 kgf / cm 2 . The bulk density of the molded body is preferably about 1.5 to 2.0 g / cm 3, particularly about 1.7 to 1.9 g / cm 3 .

焼成温度は、1130〜1310℃、特に1180〜1280℃が好ましい。焼成炉としては、RHK、TK、SK、セラミックス炉などを用いることができる。セラミックス炉を用いた場合、焼成時間(上記焼成温度に維持する時間)は1〜10Hr程度が好適である。   The firing temperature is preferably 1130 to 1310 ° C, particularly 1180 to 1280 ° C. As the firing furnace, RHK, TK, SK, a ceramic furnace or the like can be used. When a ceramic furnace is used, the firing time (the time for maintaining the firing temperature) is preferably about 1 to 10 hours.

このようにして得られた発泡軽量タイルの比重は、0.7〜2特に1.2〜1.8程度が好ましい。   The specific gravity of the foamed lightweight tile thus obtained is preferably about 0.7 to 2, particularly about 1.2 to 1.8.

本発明の発泡軽量タイル用原料は、配向性原料を有するため、これを板状に成形して焼成すると、前述の通り、面方向の寸法精度の良好な発泡軽量タイルが得られる。その理由について以下に詳細に説明する。   Since the raw material for foamed lightweight tile of the present invention has an orientational raw material, when it is molded into a plate shape and fired, a foamed lightweight tile having good dimensional accuracy in the surface direction is obtained as described above. The reason will be described in detail below.

一般に、発泡剤からのガス発生量は焼成温度により変化する。そのため、発泡軽量タイル用原料を成形し、焼成して発泡軽量タイルを製造するに際し、炉内の温度分布や炉制御条件の変動などにより焼成温度が窯内で大きくばらつくと、得られる発泡軽量タイルの寸法は大きくばらつく。   In general, the amount of gas generated from the foaming agent varies depending on the firing temperature. Therefore, when foamed lightweight tiles are molded and fired to produce foamed lightweight tiles, the foamed lightweight tiles obtained when the firing temperature varies greatly in the kiln due to fluctuations in furnace temperature distribution and furnace control conditions, etc. The dimensions of vary widely.

配向性原料を含む発泡軽量タイル用原料を成形すると、配向性原料は成形体内で配向する。例えば、扁平状の配向性原料を含む発泡軽量タイル用原料を金型内に充填してタイル厚み方向に加圧して板状成形体を成形すると、該扁平状の配向性原料粒子は、その配向軸方向(偏平な面の方向)が板状成形体の板面方向(すなわち加圧方向と垂直方向)を指向するように配向する。この配向性原料は、焼成時に偏平面方向への膨張を抑制する作用を奏するので、この成形体を焼成した場合、被焼成物はタイルの厚み方向には容易に膨張するが、タイル面方向への発泡膨張が抑制される。これにより、焼成温度が予定温度から乖離したとしても、タイル面方向における寸法のバラツキが小さくなり、寸法精度の高い発泡軽量タイルを得ることができる。   When a foamed lightweight tile raw material containing an orientation raw material is molded, the orientation raw material is oriented in the molded body. For example, when a foamed lightweight tile raw material containing a flat orientation raw material is filled in a mold and pressed in the thickness direction of the tile to form a plate-shaped body, the flat orientation raw material particles are aligned. Orientation is such that the axial direction (the direction of the flat surface) is oriented in the plate surface direction (that is, the direction perpendicular to the pressing direction) of the plate-like molded body. Since this orientation raw material has an effect of suppressing expansion in the flat plane direction during firing, when this molded body is fired, the fired material easily expands in the thickness direction of the tile, but in the tile surface direction. Expansion of the foam is suppressed. Thereby, even if the firing temperature deviates from the planned temperature, the variation in dimensions in the tile surface direction is reduced, and a foamed lightweight tile with high dimensional accuracy can be obtained.

以下、実施例及び比較例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail using examples and comparative examples.

<発泡軽量タイル用原料の製造>
表1に示すタルク、蛙目粘土及び長石と、炭化珪素とを混合して発泡軽量タイル用原料を製造した。炭化珪素としては日陶産業社製炭化珪素「GP3000」平均粒径6μmを用いた。
<Manufacture of raw materials for foamed lightweight tiles>
The raw materials for foamed lightweight tiles were manufactured by mixing talc, glazed clay and feldspar shown in Table 1 with silicon carbide. As silicon carbide, silicon carbide “GP3000” manufactured by Nippon Ceramic Industry Co., Ltd. was used with an average particle size of 6 μm.

このタルク、粘土及び長石と炭化珪素とを表2に示す割合で懸濁液となるように、水を原料重量と同程度添加しミルによって混合し、発泡軽量タイル用原料No.1〜28を製造した。なお、No.1〜32中のSiO、Al及びMgOを100wt%としたときのSiO、Al及びMgOの割合を表3,4に示すと共に、第2図の3元組成図にプロットした。図面を明りょうとするために、第2図では「No」を省略し、例えばNo.1については「1」とのみ記入してある。 The talc, clay, feldspar, and silicon carbide were added in the same amount as the raw material weight so as to be a suspension at a ratio shown in Table 2 and mixed by a mill. 1-28 were produced. In addition, No. The SiO 2, the proportion of Al 2 O 3 and MgO when the SiO 2, Al 2 O 3 and MgO in the 1 to 32 was 100 wt% are shown in Table 3 and 4, the ternary composition diagram of FIG. 2 Plotted. In order to clarify the drawing, “No” is omitted in FIG. For “1”, only “1” is entered.

Figure 2011148676
Figure 2011148676

Figure 2011148676
Figure 2011148676

<発泡軽量タイル用原料の成形>
上記の発泡軽量タイル用原料No.1〜32を乾式プレス成形(圧力:50〜500kg/m)することにより、成形体の嵩密度が1.7g/cm程度となるように成形体(長辺100mm×短辺30mm×厚み約5mm)を成形した。
<Forming raw materials for foamed lightweight tiles>
The above-mentioned raw material No. for foamed lightweight tile 1 to 32 are subjected to dry press molding (pressure: 50 to 500 kg / m 2 ), so that the molded body has a bulk density of about 1.7 g / cm 2 (long side 100 mm × short side 30 mm × thickness). About 5 mm).

<焼成>
この成形体を、セラミックス炉によって、図3〜6にプロットした各温度にて1時間焼成して発泡軽量タイルを製造した。以下、No.1の原料から製造されたタイルについては、焼成温度の如何に関わらずNo.1のタイルという。No.2〜32のタイルも同様である。
<Baking>
This molded body was fired in a ceramic furnace for 1 hour at each temperature plotted in FIGS. 3 to 6 to produce a foamed lightweight tile. Hereinafter, no. No. 1 for tiles produced from the raw material No. 1 regardless of the firing temperature. This is called 1 tile. No. The same applies to 2 to 32 tiles.

<長辺方向の比温度寸法変化率A(%/℃)の測定>
No.1〜32のタイルについて、長辺方向の長さLを測定し、この長さLと上記成形体の長辺方向の長さL(100mm)とを以下の計算式に代入することにより、長辺方向の寸法変化率a(%)を算出した。
長辺方向の寸法変化率a(%)=(L−L)/L×100
<Measurement of Specific Temperature Dimensional Change Rate A L (% / ° C.) in Long Side Direction>
No. About 1-32 tiles, measuring the length L 1 in the long side direction, substitutes and the length L 1 and the length of the long side of the shaped body L 0 (100 mm) in the following equation that Thus, the dimensional change rate a L (%) in the long side direction was calculated.
Dimensional change rate in the long side direction a L (%) = (L 1 −L 0 ) / L 0 × 100

焼成温度によって発泡原料の発泡度合が変化するため、この長辺方向の寸法変化率aは焼成温度によって変化する。そこで、No.1〜32のタイルについてNo別に、第3図に例示されるように横軸を焼成温度、縦軸を該長辺方向の寸法変化率a(%)とするグラフを作成し、焼成温度に対する寸法変化率の直線の傾きから長辺方向の比温度寸法変化率A(%/℃)を求め、表3,4に示した。この長辺方向の比温度寸法変化率A(%/℃)は、焼成温度が1℃変化した場合に長辺方向の寸法変化率a(%)がどの程度変化するかを示す。 Since the foaming degree of the foaming raw material varies depending on the firing temperature, the dimensional change rate a L in the long side direction varies depending on the firing temperature. Therefore, no. For each of tiles 1 to 32, create a graph with the horizontal axis as the firing temperature and the vertical axis as the dimensional change rate a L (%) as illustrated in FIG. The specific temperature dimensional change rate A L (% / ° C.) in the long side direction was determined from the slope of the dimensional change rate line, and shown in Tables 3 and 4. The specific temperature dimensional change rate A L (% / ° C.) in the long side direction indicates how much the dimensional change rate a L (%) in the long side direction changes when the firing temperature changes by 1 ° C.

<比温度体積変化率B(%/℃)の測定>
SiCを添加した成形体および添加していない成形体の厚みを測定し、その体積V、Vを予め算出しておく。また、得られたタイルの長辺、短辺及び厚さ方向の寸法を測定し、その体積V、Vを算出した。次いで、以下の計算式により、No.1〜32のタイルについて、体積変化率(%)を以下の計算式によって算出した。
<Measurement of specific temperature volume change rate B (% / ° C.)>
The thicknesses of the molded body to which SiC is added and the molded body to which SiC is not added are measured, and the volumes V 1 and V 2 are calculated in advance. Also, the long sides of the resulting tiles, the size of the short sides and the thickness direction were measured to calculate the volume V 3, V 4. Then, according to the following calculation formula, For the tiles 1 to 32, the volume change rate (%) was calculated by the following formula.

体積変化率b(%)=(V/V−V/V)×100 Volume change rate b (%) = (V 3 / V 1 −V 4 / V 2 ) × 100

焼成温度によって発泡原料の発泡度合が変化するため、この体積変化率b(%)は焼成温度によって変化する。そこで、No.1〜32のタイルについてNo別に、第4図に例示されるように横軸を焼成温度、縦軸を該焼成収縮率b(%)とするグラフを作成し、焼成温度に対する体積変化率の直線の傾きから比温度体積変化率B(%/℃)を求め、表3,4に示した。この比温度体積変化率B(%/℃)は、焼成温度が1℃変化した場合に体積変化率がどの程度変化するかを示す。   Since the degree of foaming of the foaming raw material varies depending on the firing temperature, the volume change rate b (%) varies depending on the firing temperature. Therefore, no. For the tiles 1 to 32, create a graph with the horizontal axis representing the firing temperature and the vertical axis representing the firing shrinkage b (%), as shown in FIG. The specific temperature volume change rate B (% / ° C.) was determined from the slope of the values shown in Tables 3 and 4. This specific temperature volume change rate B (% / ° C.) indicates how much the volume change rate changes when the firing temperature changes by 1 ° C.

<長辺方向及び厚み方向への発泡寄与率(%)の測定>
No.3,12,17,27のタイルについて、以下の手順で長辺方向及び厚み方向への発泡寄与率(%)を求めた。なお、第2図に示す通り、No.17,27のタイルは、粘土と長石との配合比がほぼ同一であり、タルクの配合量を異ならせている。
<Measurement of foaming contribution ratio (%) in long side direction and thickness direction>
No. For the tiles 3, 12, 17, and 27, the foaming contribution ratio (%) in the long side direction and the thickness direction was determined by the following procedure. As shown in FIG. In the tiles 17 and 27, the blending ratio of clay and feldspar is almost the same, and the blending amount of talc is different.

まず、各タイルについて、短辺方向の長さWを測定し、この長さWと上記成形体の短辺方向の長さW(30mm)とを以下の計算式に代入することにより、短辺方向の寸法変化率a(%)を算出した。 First, by measuring the length W 1 in the short side direction for each tile, and substituting this length W 1 and the length W 0 (30 mm) in the short side direction of the molded body into the following calculation formula: The dimensional change rate a W (%) in the short side direction was calculated.

短辺方向の寸法変化率a(%)=(W−W)/W×100 Dimensional change rate in the short side direction a W (%) = (W 1 −W 0 ) / W 0 × 100

同様に、各タイルについて、厚みdを測定し、厚みdと上記成形体の厚みd(100mm)とを以下の計算式に代入することにより、厚み方向の寸法変化率a(%)を算出した。 Similarly, by measuring the thickness d 1 for each tile and substituting the thickness d 1 and the thickness d 0 (100 mm) of the molded body into the following calculation formula, the dimensional change rate a d (% ) Was calculated.

厚み方向の寸法変化率a(%)=(d−d)/d×100 Dimensional change rate in the thickness direction a d (%) = (d 1 −d 0 ) / d 0 × 100

次いで、以下の計算式により、長辺方向への発泡寄与率C(%)及び厚み方向への発泡寄与率C(%)を算出した。その結果を、それぞれ表5,6に示す。 Next, the foaming contribution rate C L (%) in the long side direction and the foaming contribution rate C d (%) in the thickness direction were calculated by the following calculation formulas. The results are shown in Tables 5 and 6, respectively.

(%)=a/(a+a+a)×100(%)
(%)=a/(a+a+a)×100(%)
C L (%) = a L / (a L + a W + a d ) × 100 (%)
C d (%) = ad / (a L + a W + a d ) × 100 (%)

Figure 2011148676
Figure 2011148676

Figure 2011148676
Figure 2011148676

Figure 2011148676
Figure 2011148676

Figure 2011148676
Figure 2011148676

<考察>
(1) 長辺方向の比温度寸法変化率A(%/℃)についての考察
表3,4の通り、軽量発泡タイル用原料中にタルクを含まないNo.27のタイルの長辺方向の比温度寸法変化率A(%/℃)は、0.048(%/℃)である。これに対して、領域A及び領域B内に存在するタイルはいずれも、長辺方向の寸法変化率A(%/℃)が0.048(%/℃)未満となっている。
<Discussion>
(1) Consideration of specific temperature dimensional change rate A L (% / ° C.) in the long side direction As shown in Tables 3 and 4, No. does not contain talc in the raw material for lightweight foam tile. The specific temperature dimensional change rate A L (% / ° C.) in the long side direction of the 27 tiles is 0.048 (% / ° C.). On the other hand, in each of the tiles existing in the region A and the region B, the dimensional change rate A L (% / ° C.) in the long side direction is less than 0.048 (% / ° C.).

なお、長辺方向の比温度寸法変化率A(%/℃)は、必ずしもタルク配合量の多い順に小さい値にはなっていない。この理由は次の通りであると推察される。 In addition, the specific temperature dimensional change rate A L (% / ° C.) in the long side direction is not necessarily a small value in descending order of the talc content. The reason for this is assumed to be as follows.

上記の通り、No.3,12,17,27のタイルは、粘土と長石との配合比がほぼ同一であり、タルクの配合量を異ならせている。No.3は領域A内に存在しており、その他のタイル(No.12,17,27)は領域A及び領域Bの範囲外である。No.12のタイルは共融線Lに近い組成となっている。   As above, no. In the tiles 3, 12, 17, and 27, the blending ratio of clay and feldspar is almost the same, and the blending amount of talc is varied. No. 3 exists in the area A, and the other tiles (No. 12, 17, 27) are out of the range of the area A and the area B. No. Twelve tiles have a composition close to the eutectic line L.

タルクは配向性原料であり、タイル面方向への発泡膨張を抑制する効果を有する。そのため、発泡膨張の抑制効果は、タルク配合量の多い順に大きい。しかしながら、No.12は共融線Lに近いため、焼成時に粘性が急激に低下する。このようなことから、これらNo.3,12,17,27のタイルを長辺方向の比温度寸法変化率A(%/℃)の小さい順に並べると、必ずしもタルクの多い順にはならない。 Talc is an orientation raw material and has the effect of suppressing foam expansion in the tile surface direction. Therefore, the effect of suppressing the expansion of foam is large in descending order of the talc content. However, no. Since 12 is close to the eutectic line L, the viscosity rapidly decreases during firing. Because of this, these No. If the tiles 3, 12, 17, and 27 are arranged in ascending order of the specific temperature dimensional change rate A L (% / ° C.) in the long side direction, the tiles are not necessarily in the order of increasing talc.

No.3(領域A内)のタイルは、最もタルクの配合比が高く、かつ共融線Lからある程度離隔した組成となっている。そして第3図の通り、長辺方向の焼成収縮率a(%)が焼成温度によらずほぼ一定(約5〜6%)であり、焼成温度が1100℃〜1240℃の間で変化しても寸法変動幅は約1%(6%−5%=1%)と小さい。従って、焼成温度分布が多少広くなったとしても、得られるタイルの寸法誤差は小さいものとなる。 No. The tile 3 (in the region A) has the highest talc blending ratio and is separated from the eutectic wire L to some extent. As shown in FIG. 3, the firing shrinkage ratio a L (%) in the long side direction is substantially constant (about 5 to 6%) regardless of the firing temperature, and the firing temperature varies between 1100 ° C. and 1240 ° C. Even so, the size fluctuation range is as small as about 1% (6% -5% = 1%). Therefore, even if the firing temperature distribution is somewhat wide, the dimensional error of the obtained tile is small.

No.27は、発泡軽量タイル用原料中に配向性原料としてのタルクを全く含まないため、配向性原料によるタイル面方向への膨張抑制効果を有しない。従って、第3図に示す通り、焼成温度が1230℃から1300℃まで約70℃変化すると、長辺方向の寸法変化率a(%)が7%から4%へと著しく変化し、寸法変動幅は約3%(7%−4%=3%)と大きな値となる。このように、No.27のタイルは、焼成温度分布が広がると、得られるタイルの寸法ばらつきが大きいものとなる。 No. No. 27 does not contain any talc as an orientation raw material in the foamed lightweight tile raw material, and therefore does not have an effect of suppressing expansion in the tile surface direction by the orientation raw material. Therefore, as shown in FIG. 3, when the firing temperature is changed by about 70 ° C. from 1230 ° C. to 1300 ° C., the dimensional change rate a L (%) in the long side direction is remarkably changed from 7% to 4%. The width is a large value of about 3% (7% -4% = 3%). Thus, no. As for the tile of 27, when the firing temperature distribution is widened, the dimensional variation of the obtained tile becomes large.

No.12,17は、配向性原料としてのタルクを含むため、配向性原料によるタイル面方向への発泡膨張の抑制効果が期待される。しかしながら、No.12は共融線Lに近い組成であるので、焼成時に熔融粘性が低下するため、焼成温度の変化による寸法誤差が大きくなっている。   No. Since 12 and 17 contain talc as an orientation raw material, an effect of suppressing foam expansion in the tile surface direction by the orientation raw material is expected. However, no. Since No. 12 has a composition close to the eutectic line L, the melt viscosity is lowered during firing, so that a dimensional error due to a change in firing temperature is large.

以上のように、領域A及び領域B内に存在するタイルは、タルクの添加による寸法精度の向上が達成されている。   As described above, the dimensional accuracy of the tiles existing in the regions A and B is improved by adding talc.

(2) 長辺方向への発泡寄与率(%)及び厚み方向への発泡寄与率(%)の考察
第5,6図に示す通り、タルク(配向性原料)を含むNo.3,12,17のタイルは、タルクを含まないNo.27のタイルと比べて、長辺方向への発泡寄与率(%)が低くかつ厚み方向への発泡寄与率(%)が高い。このことから、タルク(配向性原料)は、タイル平面方向への発泡膨張の抑制効果を有することがわかる。
(2) Consideration of foaming contribution ratio (%) in the long side direction and foaming contribution ratio (%) in the thickness direction As shown in FIGS. The tiles 3, 12, and 17 are No. which do not include talc. Compared with 27 tiles, the foaming contribution rate (%) in the long side direction is low and the foaming contribution rate (%) in the thickness direction is high. From this, it is understood that talc (orientation raw material) has an effect of suppressing foam expansion in the tile plane direction.

(3) 比温度体積変化率B(%/℃)についての考察
第4図の通り、No.3,12,17,27のタイルを比温度体積変化率B(%/℃)の小さい順に並べるとNo.27,3,17,12の順になっている。従って、予定焼成温度と実際の焼成温度との間に乖離が生じた場合、目標としていたタイルの体積と実際のタイルの体積との間の差が小さい順に並べると、同様にNo.27,3,17,12の順になる。なお、上記(1)で説明した通り、長辺方向の比温度寸法変化率A(%/℃)を小さい順に並べると、No.3,27,17,12の順になっており、比温度体積変化率Bの大小の順番と比温度寸法変化率Aの大小の順番とは完全には合致しない。これは、No.3のタイルがタルクによってタイル長辺方向への発泡膨張が抑制されたためであると考えられる。
(3) Consideration of specific temperature volume change rate B (% / ° C.) As shown in FIG. When tiles 3, 12, 17, and 27 are arranged in ascending order of specific temperature volume change rate B (% / ° C.), No. 3 is obtained. The order is 27, 3, 17, and 12. Therefore, when there is a discrepancy between the planned firing temperature and the actual firing temperature, if the difference between the target tile volume and the actual tile volume is arranged in ascending order, No. 27, 3, 17, 12 in this order. As described in the above (1), when the specific temperature dimensional change rate A L (% / ° C.) in the long side direction is arranged in ascending order, No. Has become the order of 3,27,17,12, it does not completely conform to the order of the specific temperature volume change magnitude order as the ratio temperature dimensional change rate A L magnitude of B. This is no. This is probably because the expansion of the tile 3 in the tile long side direction was suppressed by talc.

No.3,12,17,27以外のNoのタイルにおいても、長辺方向の比温度寸法変化率A(%/℃)の小さい順番と比温度体積変化率B(%/℃)の小さい順番とは必ずしも一致していない。これらの順番は、タルク(配向性原料)によるタイル面方向への発泡膨張の抑制効果と、3成分組成比(SiO、Al、MgO)の共融線Lへの近さとに密接に関係するものと考えられる。 No. In the tiles of No other than 3, 12, 17, and 27, the order of decreasing specific temperature dimensional change rate A L (% / ° C.) in the long side direction and the order of decreasing specific temperature volume change rate B (% / ° C.) Are not necessarily consistent. These orders are closely related to the effect of suppressing expansion of foaming in the tile surface direction by talc (orientation raw material) and the proximity of the three-component composition ratio (SiO 2 , Al 2 O 3 , MgO) to the eutectic line L. It seems to be related to.

(6) 領域Aと領域Bの対比
表2及び表3,4に基づいて、領域A,Bにおける、配向性原料(東大溝タルク)の配合割合(重量%)と、比温度体積変化率B(%/℃)と、長辺方向の比温度寸法変化率A(%/℃)とを考察すると、領域Aは、領域Bと比べて比温度体積変化率Bの値が大きいにもかかわらず(領域A:0.0120以下、領域B:0.0080以下)、領域Bと同等の長辺方向の比温度寸法変化率A(領域A,B共に0.048以下)を達成している。これは、領域Aの方が領域Bよりも配合原料(タルク)の配合割合が高いため(領域A:40〜60重量%、領域B:5〜20重量%)、配向性原料(タルク)によってタイル長辺方向への発泡膨張がより抑制されたためであると考えられる。
(6) Comparison between Region A and Region B Based on Table 2 and Tables 3 and 4, the blending ratio (% by weight) of the orientation raw material (Todai Mizo Talc) in the regions A and B and the specific temperature volume change rate B (% / ° C.) and the specific temperature dimensional change rate A L (% / ° C.) in the long side direction, the region A has a larger value of the specific temperature volume change rate B than the region B. (Region A: 0.0120 or less, region B: 0.0080 or less), achieving a specific temperature dimensional change rate A L in the long side direction equivalent to region B (both regions A and B are 0.048 or less) Yes. This is because the blending ratio of the blended raw material (talc) is higher in the region A than in the region B (region A: 40 to 60% by weight, region B: 5 to 20% by weight), depending on the orientation raw material (talc). This is considered to be because the expansion of foaming in the tile long side direction was further suppressed.

Claims (9)

少なくとも可塑性原料及び配向性原料を含む非発泡性原料100重量部と、
発泡剤0.01〜1重量部と
を含んでなる発泡軽量タイル用原料であって、
該非発泡性原料は、灼熱減量を除いた成分の合計を100重量%とした場合、SiO、Al及びMgOの3成分の合計が80〜100重量%であり、
該非発泡性原料中のSiO、Al及びMgOの3成分の合計を100重量%とした場合、重量組成比(SiO、Al,MgO)が、これら3成分の3元組成図において、
(66.5,8.5,25.0)
(72.0,6.5,21.5)
(74.5,12.0,13.5)
(66.5,20.0,13.5)
を結んだ四角形の領域A内又は
(67.6,24.9,7.5)
(72.2,22.2,5.6)
(74.2,23.8,2.0)
(68.9,29.0,2.1)
を結んだ四角形の領域B内にあることを特徴とする発泡軽量タイル用原料。
100 parts by weight of a non-foaming raw material containing at least a plastic raw material and an orientation raw material;
A foamed lightweight tile raw material comprising 0.01 to 1 part by weight of a foaming agent,
The non-foaming raw material has a total of 3 components of SiO 2 , Al 2 O 3 and MgO of 80 to 100% by weight, assuming that the total of components excluding ignition loss is 100% by weight,
When the total of the three components of SiO 2 , Al 2 O 3 and MgO in the non-foaming raw material is 100% by weight, the weight composition ratio (SiO 2 , Al 2 O 3 , MgO) is a ternary of these three components In the composition diagram,
A 1 (66.5, 8.5, 25.0)
A 2 (72.0, 6.5, 21.5)
A 3 (74.5, 12.0, 13.5)
A 4 (66.5, 20.0, 13.5)
In the rectangular area A connecting B1 or B 1 (67.6, 24.9, 7.5)
B 2 (72.2, 22.2, 5.6)
B 3 (74.2, 23.8, 2.0)
B 4 (68.9, 29.0, 2.1)
A material for foamed lightweight tiles, wherein the raw material is in a rectangular region B connecting the two.
請求項1において、前記可塑性原料は粘土鉱物であることを特徴とする発泡軽量タイル用原料。   2. The foamed lightweight tile material according to claim 1, wherein the plastic material is a clay mineral. 請求項1又は2において、前記配向性原料が、タルク、マイカ、板状アルミナ、アンチゴライト及びリゾルダイトの少なくとも1種よりなることを特徴とする発泡軽量タイル用原料。   3. The foamed lightweight tile material according to claim 1, wherein the orientation material comprises at least one of talc, mica, plate-like alumina, antigolite, and soldite. 請求項1ないし3のいずれか1項において、前記発泡性原料が、炭化珪素、窒化珪素、窒化アルミニウム、炭酸化合物、ドロマイト及び酸化セリウムの少なくとも1種であることを特徴とする発泡軽量タイル用原料。   4. The foam lightweight tile raw material according to claim 1, wherein the foamable raw material is at least one of silicon carbide, silicon nitride, aluminum nitride, carbonate, dolomite, and cerium oxide. . 請求項1ないし4のいずれか1項に記載の発泡軽量タイル用原料を成形し、焼成することを特徴とする発泡軽量タイルの製造方法。   A method for producing a lightweight foam tile, comprising forming and firing the raw material for a lightweight foam tile according to any one of claims 1 to 4. 請求項5において、成形方法がプレス成形又は押出成形であることを特徴とする発泡軽量タイルの製造方法。   6. The method for producing a lightweight foam tile according to claim 5, wherein the molding method is press molding or extrusion molding. 請求項5又は6において、焼成温度が1130〜1310℃であることを特徴とする発泡軽量タイルの製造方法。   The method for producing a lightweight foam tile according to claim 5 or 6, wherein the firing temperature is 1130 to 1310 ° C. 請求項5ないし7のいずれか1項に記載の発泡軽量タイル用原料の製造方法によって製造された発泡軽量タイル。   The foamed lightweight tile manufactured by the manufacturing method of the raw material for foamed lightweight tile of any one of Claim 5 thru | or 7. 請求項8において、比重が0.7〜2.0であることを特徴とする発泡軽量タイル。   The lightweight foam tile according to claim 8, wherein the specific gravity is 0.7 to 2.0.
JP2010271731A 2009-12-22 2010-12-06 Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same Active JP5707908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271731A JP5707908B2 (en) 2009-12-22 2010-12-06 Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009290718 2009-12-22
JP2009290718 2009-12-22
JP2010271731A JP5707908B2 (en) 2009-12-22 2010-12-06 Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011148676A true JP2011148676A (en) 2011-08-04
JP5707908B2 JP5707908B2 (en) 2015-04-30

Family

ID=44154876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271731A Active JP5707908B2 (en) 2009-12-22 2010-12-06 Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same

Country Status (2)

Country Link
JP (1) JP5707908B2 (en)
CN (1) CN102101786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253973A (en) * 2013-06-12 2013-08-21 许庆华 Volcanic ash composite type foaming agent
CN103253979A (en) * 2013-06-12 2013-08-21 许庆华 Serpentine composite type flame-retardant foaming agent
CN103288472A (en) * 2013-06-12 2013-09-11 许庆华 Composite trass anti-flaming foaming agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866936A (en) * 2014-03-25 2014-06-18 张尚宇 Thermal-insulating and fireproof marble-surface integrated wall brick and making method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191577A (en) * 1985-02-20 1986-08-26 有田物産株式会社 Manufacture of lightweight ceramic product
JPS63147852A (en) * 1986-12-10 1988-06-20 財団法人 日本陶磁器検査協会 Ceramic dough for open fire
JPH042676A (en) * 1990-04-17 1992-01-07 Inax Corp Foamed material for exterior use and production thereof
JPH0640760A (en) * 1991-05-17 1994-02-15 Chichibu Cement Co Ltd Base composition for producing large-sized ceramic plate having low water absorbing property and production of large-sized ceramic plate
JPH07247181A (en) * 1994-03-09 1995-09-26 Inax Corp Cellular tile having joint
JPH07247182A (en) * 1994-03-09 1995-09-26 Inax Corp Production of cellular ceramic
JPH1121161A (en) * 1997-07-02 1999-01-26 Inax Corp Production of formed lightweight tile having freezing damage resistance
JPH1129353A (en) * 1997-07-09 1999-02-02 Inax Corp Production of glazed foamed light weight tile
JPH11322463A (en) * 1998-05-21 1999-11-24 Katsukuni Imai Fire-resistant reinforced lightweight ceramics and its production
JP2006160570A (en) * 2004-12-08 2006-06-22 Takasago Ind Co Ltd Method for manufacturing vitreous bulk foamed body
JP2007039291A (en) * 2005-08-04 2007-02-15 Inax Corp Tile and its manufacturing method
JP2007509022A (en) * 2004-11-04 2007-04-12 エルジー・ケム・リミテッド Ultralight ceramic panel and manufacturing method thereof
JP2007246312A (en) * 2006-03-14 2007-09-27 Inax Corp Tile and its manufacturing method
JP2007246323A (en) * 2006-03-15 2007-09-27 Inax Corp Method of producing lightweight foamed tile and lightweight foamed tile raw material
JP2007246364A (en) * 2006-03-17 2007-09-27 Inax Corp Lightweight foamed tile and method of producing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191577A (en) * 1985-02-20 1986-08-26 有田物産株式会社 Manufacture of lightweight ceramic product
JPS63147852A (en) * 1986-12-10 1988-06-20 財団法人 日本陶磁器検査協会 Ceramic dough for open fire
JPH042676A (en) * 1990-04-17 1992-01-07 Inax Corp Foamed material for exterior use and production thereof
JPH0640760A (en) * 1991-05-17 1994-02-15 Chichibu Cement Co Ltd Base composition for producing large-sized ceramic plate having low water absorbing property and production of large-sized ceramic plate
JPH07247181A (en) * 1994-03-09 1995-09-26 Inax Corp Cellular tile having joint
JPH07247182A (en) * 1994-03-09 1995-09-26 Inax Corp Production of cellular ceramic
JPH1121161A (en) * 1997-07-02 1999-01-26 Inax Corp Production of formed lightweight tile having freezing damage resistance
JPH1129353A (en) * 1997-07-09 1999-02-02 Inax Corp Production of glazed foamed light weight tile
JPH11322463A (en) * 1998-05-21 1999-11-24 Katsukuni Imai Fire-resistant reinforced lightweight ceramics and its production
JP2007509022A (en) * 2004-11-04 2007-04-12 エルジー・ケム・リミテッド Ultralight ceramic panel and manufacturing method thereof
JP2006160570A (en) * 2004-12-08 2006-06-22 Takasago Ind Co Ltd Method for manufacturing vitreous bulk foamed body
JP2007039291A (en) * 2005-08-04 2007-02-15 Inax Corp Tile and its manufacturing method
JP2007246312A (en) * 2006-03-14 2007-09-27 Inax Corp Tile and its manufacturing method
JP2007246323A (en) * 2006-03-15 2007-09-27 Inax Corp Method of producing lightweight foamed tile and lightweight foamed tile raw material
JP2007246364A (en) * 2006-03-17 2007-09-27 Inax Corp Lightweight foamed tile and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253973A (en) * 2013-06-12 2013-08-21 许庆华 Volcanic ash composite type foaming agent
CN103253979A (en) * 2013-06-12 2013-08-21 许庆华 Serpentine composite type flame-retardant foaming agent
CN103288472A (en) * 2013-06-12 2013-09-11 许庆华 Composite trass anti-flaming foaming agent

Also Published As

Publication number Publication date
CN102101786A (en) 2011-06-22
JP5707908B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
KR101232591B1 (en) Refractory materials
KR101248031B1 (en) Zirconium-base sintered product
EP2802543B1 (en) Refractory object
JP5658294B2 (en) Refractory ceramic composite and method for producing the same
JP5707908B2 (en) Raw material for foamed lightweight tile, foamed lightweight tile and method for producing the same
KR20110004871A (en) Sintered product produced from a zircon-based charge
EP1514857A4 (en) Method for producing aluminum titanate sintered compact
KR20090068248A (en) Sintered and doped product based on zircon + nb2o5 or ta2o5
JP6754653B2 (en) How to make checker bricks for hot air ovens
JP3617964B2 (en) Large thin plate-like sintered body and method for producing the same
US7833923B2 (en) Monolithic refractory material having low expansibility, high strength, and crack extension resistance
JPWO2006051793A1 (en) Refractory brick for float bath bottom and method for producing the same
CN103771878B (en) A kind of method for making of andalusite brick
JPH07237958A (en) High-strength porcelain and production thereof
JP2582730B2 (en) Manufacturing method of ceramic molded products
JP3111741B2 (en) High strength porcelain and its manufacturing method
JP3368960B2 (en) SiC refractory
JPH0639483A (en) Ceramic core
JP2000327408A (en) Thermal shock resistant silica brick for hot repairing and its production
JPH0224779B2 (en)
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
JPH06100359A (en) Production of ceramic sintering auxiliary and production of mullite ceramic using the same
US20240116804A1 (en) Firing aid composed of a composite material, composite material and method of production thereof, and use thereof
JPH07315933A (en) Silicon carbide-based refractory and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5707908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350