JPH07315933A - Silicon carbide-based refractory and its production - Google Patents

Silicon carbide-based refractory and its production

Info

Publication number
JPH07315933A
JPH07315933A JP6104149A JP10414994A JPH07315933A JP H07315933 A JPH07315933 A JP H07315933A JP 6104149 A JP6104149 A JP 6104149A JP 10414994 A JP10414994 A JP 10414994A JP H07315933 A JPH07315933 A JP H07315933A
Authority
JP
Japan
Prior art keywords
sic
particles
particle size
alumina
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6104149A
Other languages
Japanese (ja)
Inventor
Norio Aoyama
紀夫 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6104149A priority Critical patent/JPH07315933A/en
Publication of JPH07315933A publication Critical patent/JPH07315933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an SiC-based refractory having improved oxidation resistance by incorporating a specified percentage or more of a glassy or crystalline SiO2 phase into grain boundary bonding parts made of Al2O3, mullite or a mixture of them. CONSTITUTION:A blend is prepd. so that it is composed of 70-85wt.% SiC particles having a prescribed particle size distribution and the balance Al2O3 particles and/or mullite particles having a particle size distribution in which particles having 6-6.5mum average particle diameter account for 2-6wt.% and particles having 0.6-1mu average particle diameter account for 9-28wt.%. A clay mineral contg. glassy or crystalline SiO2, e.g. kaolin is added to the blend by >=3wt.%, especially about 4-6wt.% (expressed in terms of SiO2) of the amt. of the blend. After blending, dispersant added water is further added by the required amt. and they are molded by vibration press molding or other method. The resultant molded body is fired at 1,300-1,500 deg.C for about 2-5hr in an oxidizing atmosphere to obtain the objective SiC-based rafractory having about >=2.7g/cm<3> density and contg. SiC grains bonded in grain boundary bonding parts and coated with surface orotecting coating films of SiO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐酸化性と高温強度に
優れたSiC質耐火物及びその製造方法に関するもので
ある。SiC質耐火物は焼成用の棚板、治具、サヤ等に
使用されるセラミック技術において重要な材料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC refractory having excellent oxidation resistance and high temperature strength and a method for producing the same. SiC refractory is an important material in ceramic technology used for baking shelves, jigs, sheaths, and the like.

【0002】[0002]

【従来の技術】従来、SiC骨材粒子を粘土鉱物等によ
り結合させ焼成することによりSiC質耐火物が製造さ
れていたが、耐火度の低い粘土鉱物を結合剤として使用
しているため、使用中の高温での軟化や酸化が生じやす
いという問題があった。
2. Description of the Related Art Conventionally, SiC-based refractory materials have been manufactured by combining SiC aggregate particles with clay minerals or the like and firing them. However, since clay minerals having a low refractory degree are used as a binder, they are used. There is a problem that softening and oxidation are likely to occur at high temperatures inside.

【0003】近年では、この高温性能不良を解決するた
めSiC粒子と微量の金属Siを混合して、窒素雰囲気
中で焼成することにより結合部を窒化珪素としたSiC
質耐火物が提案されている(米国特許第2,752,2
58号明細書)。SiC粒子と微量の金属Siの混合物
を窒素雰囲気中で焼成後さらに酸化処理する方法も提案
されている(特開平4−114968号)。この処理に
より形成される粒界結合部の主相はSi3 N4 またはS
i2 ON2 であり、副相としてクリストバライトが存在
する。
In recent years, in order to solve this poor high-temperature performance, SiC particles and a small amount of metallic Si are mixed and fired in a nitrogen atmosphere, so that SiC having silicon nitride as a joint is used.
Quality refractories have been proposed (US Pat. No. 2,752,2)
No. 58). A method has also been proposed in which a mixture of SiC particles and a small amount of metallic Si is baked in a nitrogen atmosphere and then further oxidized (Japanese Patent Laid-Open No. 4-114968). The main phase of the grain boundary joint formed by this treatment is Si3 N4 or S
i2 ON2, and cristobalite exists as a subphase.

【0004】[0004]

【発明が解決しようとする課題】しかし、長時間使用す
るとSi−Nの酸化による劣化が起こり、SiC質耐火
物の耐久性や寿命の面ではまだ改善が必要とされてい
た。そこで、本発明は、室温及び高温強度、長時間使用
中の耐酸化性を向上させたSiC質耐火物及びその製造
方法を提供することを目的とするものである。
However, when used for a long period of time, deterioration of Si--N due to oxidation occurs, and there is still a need for improvement in terms of durability and life of SiC refractories. Therefore, an object of the present invention is to provide a SiC refractory having improved room temperature and high temperature strength and oxidation resistance during long-term use, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、SiC質耐火
物において粒界結合部をアルミナ及び/又はムライトで
結合させることを特徴とし、所定の方法で成形、焼成す
ることにより耐酸化性を向上させかつ高温強度を従来の
ものより向上させることを骨子とするものである。
The present invention is characterized in that grain boundary joints in SiC refractory are bonded with alumina and / or mullite, and oxidation resistance is obtained by molding and firing by a predetermined method. The main idea is to improve the strength and high temperature strength as compared with conventional ones.

【0006】本発明によれば、SiC骨材粒子が70〜
85wt%、好ましくは75〜85wt%含まれ、平均
粒径が6.5〜0.6μmの範囲内に入るアルミナ及び
/又はムライトを残部とする粒界結合部により結合され
たSiC質耐火物にガラス質又は結晶質SiO2 が外配
量で3wt%以上粒界結合部に含まれることを特徴とす
るアルミナ及び/又はムライト結合SiC質耐火物が提
供される。
According to the present invention, the SiC aggregate particles are 70-
85 wt%, preferably 75-85 wt%, to a SiC-based refractory bonded by a grain boundary bonding part with the balance being alumina and / or mullite having an average particle size in the range of 6.5 to 0.6 μm. Provided is an alumina- and / or mullite-bonded SiC refractory characterized in that glassy or crystalline SiO2 is contained in the grain boundary bonding portion in an amount of 3 wt% or more in an external amount.

【0007】本発明において、粒界結合部のアルミナ及
び/又はムライトの配合量はSiCとの合計量が100
wt%となる残部であって、30wt%を超えるとSi
C質耐火物としての強度が低下してしまい、配合量が1
5wt%未満であると粒子の充填性が悪くなるため特性
が低下してしまう。好ましい配合量は15〜25wt%
である。このようにして得られたSiC質耐火物は、ア
ルミナ及びムライトが酸化物であるため耐酸化性に優
れ、そして表面の緻密なSiO2 膜のために中心まで酸
化が進まない。また粒子充填性が良いためこのSiC質
耐火物は高温強度に優れている。
In the present invention, the compounding amount of alumina and / or mullite in the grain boundary bonding part is 100 when the total amount with SiC is 100.
If the balance is 30% by weight, the balance becomes
The strength as a C-type refractory is reduced, and the compounding amount is 1
If it is less than 5% by weight, the filling property of the particles is deteriorated and the characteristics are deteriorated. A preferred blending amount is 15 to 25 wt%
Is. The SiC refractory thus obtained is excellent in oxidation resistance because alumina and mullite are oxides, and oxidation does not proceed to the center due to the dense SiO2 film on the surface. Further, since the particle filling property is good, this SiC refractory is excellent in high temperature strength.

【0008】SiCとアルミナ及び/又はムライトの合
計量を100重量%として外配量として若干の粘土鉱物
などの結合剤が含有されるが、結合剤中の粘土鉱物に含
まれるガラス質又は結晶質SiO2 の外配量は3wt%
以上である。SiO2 の外配量が3wt%未満であると
SiC質耐火物焼成体表面に焼成中もしくは使用中に十
分に均一なSiO2 系酸化皮膜が形成されない。SiO
2 の外配量は4〜6wt%であることが好ましい。アル
ミナ及びムライトの1種又は2種を粗粒と細粒の混合と
すると、前者の粒子間隙に後者が充填されSiC質耐火
物全体の密度をさらに高めることができる。すなわち、
具体的には、平均粒径が6〜6.5μmの第1の粒子を
2〜6wt%と、平均粒径が0.6〜1μmの第2の粒
子を9〜28wt%とすることが好ましい。
A binder such as a clay mineral is contained as an external distribution with the total amount of SiC and alumina and / or mullite being 100% by weight, and the glassy or crystalline substance contained in the clay mineral in the binder. 3% by weight of SiO2
That is all. If the external amount of SiO2 is less than 3 wt%, a sufficiently uniform SiO2 oxide film cannot be formed on the surface of the fired SiC refractory during firing or during use. SiO
The externally distributed amount of 2 is preferably 4 to 6 wt%. When one or two kinds of alumina and mullite are mixed with coarse particles and fine particles, the latter can be filled in the particle gaps of the former and the density of the entire SiC refractory can be further increased. That is,
Specifically, it is preferable that the first particles having an average particle size of 6 to 6.5 μm are 2 to 6 wt% and the second particles having an average particle size of 0.6 to 1 μm are 9 to 28 wt%. .

【0009】これらSiC,アルミナ、ムライトを配合
したものに、成形バインダーとして、カオリンなどの粘
土鉱物もしくは有機結合剤を外配量で10wt%以下好
ましくは5〜8wt%添加し、分散剤を加えた水を成形
に必要量、例えば外配量で6〜10wt%加え、プレス
成形、押し出し成形などの方法で成形するが、振動プレ
ス成形が最も好ましい。これらの成形物を焼成すること
により高い密度をもつ耐火物焼成体が得られる。なおS
iC焼成体の密度としては2.7g/cm3 以上を得る
ことができる。上記の成形物を酸化性雰囲気中で130
0〜1500℃にて焼成すると成形体皮膜の表面に酸化
皮膜が形成される。加熱時間は2〜5時間が好ましい。
酸化性雰囲気は大気が好ましい。また酸化皮膜の厚みは
500〜1000μmが好ましい。
A clay mineral such as kaolin or an organic binder is added as a molding binder in an amount of 10 wt% or less, preferably 5 to 8 wt%, and a dispersant is added to a mixture of these SiC, alumina and mullite. Water is added in an amount necessary for molding, for example, 6 to 10 wt% by external distribution, and molding is performed by a method such as press molding or extrusion molding, and vibration press molding is most preferable. By firing these molded articles, a fired article of refractory having a high density can be obtained. Note that S
The density of the iC fired body can be 2.7 g / cm @ 3 or more. The above-mentioned molded product was subjected to 130 in an oxidizing atmosphere.
When baked at 0 to 1500 ° C., an oxide film is formed on the surface of the molded body film. The heating time is preferably 2 to 5 hours.
The oxidizing atmosphere is preferably air. The thickness of the oxide film is preferably 500 to 1000 μm.

【0010】図1は、粒径を変えたアルミナとSiCの
混合物を成形し焼成した焼成体の密度を測定した結果を
示し、これより粒界結合部の密度が粒径により変化する
状況を予測することができる。なお、図1は、重量比
で、SiC:Al2 O3 =8:2とし、アルミナの粒径
が平均0.6μm、6.5μm、55μm、100μm
のものの4種類の実験を行った結果である。この実験で
SiC耐火物の密度はアルミナの平均粒径に依存するこ
とが分かる。さらに平均粒径の異なるアルミナを混合し
て種々実験を行った結果、平均粒径6.5μmのアルミ
ナ4〜5wt%、平均粒径0.6μmのものを15〜2
0wt%で高い高温強度が得られることが分かった。
FIG. 1 shows the results of measuring the density of a fired body obtained by molding and firing a mixture of alumina and SiC having different grain sizes. From this, it is predicted that the density of the grain boundary joint changes with the grain size. can do. In FIG. 1, the weight ratio is SiC: Al2 O3 = 8: 2, and the average particle diameter of alumina is 0.6 μm, 6.5 μm, 55 μm, 100 μm.
These are the results of four types of experiments. This experiment shows that the density of the SiC refractory depends on the average particle size of alumina. Further, as a result of conducting various experiments by mixing aluminas having different average particle sizes, 4 to 5 wt% of alumina having an average particle size of 6.5 μm and 15 to 2 having an average particle size of 0.6 μm were used.
It was found that a high temperature strength can be obtained at 0 wt%.

【0011】そして、アルミナ及び/又はムライトを高
密度に充填したSiC質耐火物を酸化雰囲気中で焼成す
ることにより、SiCが酸化され焼成体表面に緻密な酸
化保護膜が生じるため、耐酸化性が著しく向上する。な
お、この皮膜中には結合剤に含まれるSiO2 も存在し
ており、耐酸化性向上に寄与している。したがって、本
発明に係るSiC質耐火物を焼成棚などとして長時間使
用した場合でも変形や膨れはほとんど起こらない。以下
実施例により本発明をより詳しく説明する。
When a SiC refractory filled with alumina and / or mullite at a high density is fired in an oxidizing atmosphere, the SiC is oxidized and a dense oxide protective film is formed on the surface of the fired body. Is significantly improved. Incidentally, SiO2 contained in the binder is also present in this film, which contributes to the improvement of the oxidation resistance. Therefore, even when the SiC refractory material according to the present invention is used as a baking shelf for a long time, it hardly deforms or swells. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0012】[0012]

【実施例】表1に示す粒度分布をもつSiCとアルミナ
を同表に示すと通り配合し(合計量100wt%)、さ
らにカオリンを外配合した(表1にはSiO2 換算外配
合量を示す)。これらの配合において、実施例1、2、
3は請求項1の範囲内の組成である。なお、実施例1〜
3はSiC骨材粒子の粒度分布が1000〜3600μ
mのものを15〜25wt%、1000〜350μmの
ものが23〜30wt%、350μm未満のものが23
〜30wt%となるように変化させた。比較例1はSi
C骨材粒子の量が本発明上限を超えかつアルミナの粒度
分布が本発明の下限末端である例、比較例2及び3はア
ルミナの量が本発明の上限量を超える例である。これら
の組成物を大気中で1400℃にて5時間焼成した。焼
成体の特性値を示す。なお、重量増加率は、焼成したS
iC質耐火物を温度1000℃、大気中で336時間加
熱後の測定値である。
[Examples] SiC and alumina having the particle size distribution shown in Table 1 were compounded as shown in the table (total amount 100 wt%), and kaolin was further compounded (Table 1 shows the SiO2 conversion compounding amount). . In these formulations, Examples 1, 2,
3 is a composition within the scope of claim 1. In addition, Example 1
No. 3 has a particle size distribution of SiC aggregate particles of 1000 to 3600 μ.
m of 15 to 25 wt%, 1000 to 350 μm of 23 to 30 wt%, and less than 350 μm of 23
It was changed so as to be ˜30 wt%. Comparative Example 1 is Si
Examples in which the amount of C aggregate particles exceeds the upper limit of the present invention and the particle size distribution of alumina is the lower end of the present invention, Comparative Examples 2 and 3 are examples in which the amount of alumina exceeds the upper limit of the present invention. These compositions were fired in air at 1400 ° C. for 5 hours. The characteristic values of the fired body are shown. In addition, the rate of increase in weight is based on the amount of S
It is a measured value after heating the iC refractory material at a temperature of 1000 ° C. in the atmosphere for 336 hours.

【0013】 [0013]

【表1】 実施例 比較例 1 2 3 1 2 3 SiC 3360〜 粒度分布 1000μm 20 23 18 30 25 20 (wt%) 1000〜 350 μm 25 30 33 30 20 20 350 μm 未満 30 23 30 30 20 20 アルミナ 粒度分布 平均6.5 μm 5 5 4 0 35 20 (wt%) 平均0.6 μm 未満 20 19 15 10 0 20 カオリン (外配量)wt% SiO2 換算 3 4 5 3 4 2 密度(g /cm3 ) 2.83 2.85 2.80 2.57 2.63 2.51 曲げ強度 室温 432.8 473.3 451.6 257.5 236.1 280.2(kgf /cm2 ) 1400℃ 310.3 351.1 325.5 153.3 138.4 141.2 重量増加率(%) 0.21 0.20 0.21 0.23 0.25 0.29 [Table 1] Example Comparative Example 1 2 3 1 2 3 SiC 3360 ~ particle size distribution 1000 μm 20 23 18 30 25 20 (wt%) 1000 ~ 350 μm 25 30 33 30 20 20 350 μm less than 30 23 30 30 20 20 alumina Particle size distribution Average 6.5 μm 5 5 4 0 35 20 (wt%) Average less than 0.6 μm 20 19 15 10 0 20 Kaolin (external amount) wt% SiO2 conversion 3 4 5 3 4 2 Density (g / cm3) 2.83 2.85 2.80 2.57 2.63 2.51 Bending strength Room temperature 432.8 473.3 451.6 257.5 236.1 280.2 (kgf / cm2) 1400 ℃ 310.3 351.1 325.5 153.3 138.4 141.2 Weight increase rate (%) 0.21 0.20 0.21 0.23 0.25 0.29

【0014】表から明らかなように、比較例に比べて実
施例は、密度が高く、それに伴って室温及び高温強度が
2倍程度増大している。また、重量増加率も比較例のも
のは、試験片の中心部まで酸化が進み、重量増加が多く
なっている。これはアルミナ配合量が本発明の範囲外で
は特性が向上しないことを示している。
As is clear from the table, the embodiment has a higher density than that of the comparative example, and the room temperature and high temperature strengths are increased by about two times accordingly. In addition, in the case of the comparative example, the weight increase rate was also increased because the oxidation proceeded to the center of the test piece. This indicates that the characteristics are not improved when the content of alumina is outside the range of the present invention.

【0015】[0015]

【発明の作用及び効果】本発明の請求項1に係るSiC
質耐火物は粒界結合部を平均粒径と特定したアルミナ及
び/又はムライトとしたため粒界物質の充填がよくな
り、かつ結合剤中のSiO2 を外配量で3wt%以上と
したために高温強度と耐酸化性に優れており、工業上有
用なものである。加えて、請求項3では表面被覆膜の構
成を特定したために耐酸化性がさらに改善される。請求
項4では粗粒と細粒のアルミナ等を混合して粒界結合部
としたためにさらに高い密度が得られる。
Action and effect of the invention SiC according to claim 1 of the present invention
Since the refractory material is made of alumina and / or mullite whose grain boundary bonding part is specified as the average grain size, the filling of the grain boundary material is improved, and since the SiO2 content in the binder is 3 wt% or more, the high temperature strength is high. It has excellent oxidation resistance and is industrially useful. In addition, since the structure of the surface coating film is specified in claim 3, the oxidation resistance is further improved. According to the fourth aspect, since a coarse grain and a fine grain of alumina or the like are mixed to form a grain boundary joint portion, a higher density can be obtained.

【0016】さらに、本発明の請求項5の方法は、Si
Cを所定粒度分布に配合したアルミナ及び/又はムライ
トで結合させ、酸化性雰囲気中で1300〜1500℃
で焼成するものであり、この方法で作製されたSiC質
耐火物は、粒子の充填性がよいことや焼成表面にシリカ
膜を生じさせることで、機械的・熱的性質を向上させる
ことができる。すなわち、本発明の製法に係るSiC質
耐火物は、加熱による膨れや変形もなく、耐久性が大幅
に向上している。
Further, the method of claim 5 of the present invention is the method of Si
C is bonded with alumina and / or mullite mixed in a predetermined particle size distribution, and the temperature is 1300 to 1500 ° C in an oxidizing atmosphere.
The SiC refractory produced by this method can have improved mechanical and thermal properties by having good particle packing properties and by forming a silica film on the fired surface. . That is, the SiC refractory according to the manufacturing method of the present invention has no swelling or deformation due to heating, and the durability is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミナの平均粒径と焼成後のSiC耐火物の
密度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the average particle size of alumina and the density of a SiC refractory after firing.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月6日[Submission date] June 6, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項6[Name of item to be corrected] Claim 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】近年では、この高温性能不良を解決するた
めSiC粒子と微量の金属Siを混合して、窒素雰囲気
中で焼成することにより結合部を窒化珪素としたSiC
質耐火物が提案されている(米国特許第2,752,2
58号明細書)。SiC粒子と微量の金属Siの混合物
を窒素雰囲気中で焼成後さらに酸化処理する方法も提案
されている(特開平4−114968号)。この処理に
より形成される粒界結合部の主相はSi34 またはS
2 ON2 であり、副相としてクリストバライトが存在
する。
In recent years, in order to solve this poor high-temperature performance, SiC particles and a small amount of metallic Si are mixed and fired in a nitrogen atmosphere, so that SiC having silicon nitride as a joint is used.
Quality refractories have been proposed (US Pat. No. 2,752,2)
No. 58). A method has also been proposed in which a mixture of SiC particles and a small amount of metallic Si is baked in a nitrogen atmosphere and then further oxidized (Japanese Patent Laid-Open No. 4-114968). The main phase of the grain boundary bonding portion formed by this treatment is Si 3 N 4 or S
i 2 ON 2 , and cristobalite exists as a subphase.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】本発明によれば、SiC骨材粒子が70〜
85wt%、好ましくは75〜85wt%含まれ、平均
粒径が6.5〜0.6μmの範囲内に入るアルミナ及び
/又はムライトを残部とする粒界結合部により結合され
たSiC質耐火物にガラス質又は結晶質SiO2 が外配
量で3wt%以上粒界結合部に含まれることを特徴とす
るアルミナ及び/又はムライト結合SiC質耐火物が提
供される。
According to the present invention, the SiC aggregate particles are 70-
85 wt%, preferably 75-85 wt%, to a SiC-based refractory bonded by a grain boundary bonding part with the balance being alumina and / or mullite having an average particle size in the range of 6.5 to 0.6 μm. Provided is an alumina- and / or mullite-bonded SiC refractory, characterized in that glassy or crystalline SiO 2 is contained in the grain boundary bonding portion in an amount of 3 wt% or more in an external amount.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】本発明において、粒界結合部のアルミナ及
び/又はムライトの配合量はSiCとの合計量が100
wt%となる残部であって、30wt%を超えるとSi
C質耐火物としての強度が低下してしまい、配合量が1
5wt%未満であると粒子の充填性が悪くなるため特性
が低下してしまう。好ましい配合量は15〜25wt%
である。このようにして得られたSiC質耐火物は、ア
ルミナ及びムライトが酸化物であるため耐酸化性に優
れ、そして表面の緻密なSiO2 膜のために中心まで酸
化が進まない。また粒子充填性が良いためこのSiC質
耐火物は高温強度に優れている。
In the present invention, the compounding amount of alumina and / or mullite in the grain boundary bonding part is 100 when the total amount with SiC is 100.
If the balance is 30% by weight, the balance becomes
The strength as a C-type refractory is reduced, and the compounding amount is 1
If it is less than 5% by weight, the filling property of the particles is deteriorated and the characteristics are deteriorated. A preferred blending amount is 15 to 25 wt%
Is. The SiC refractory thus obtained is excellent in oxidation resistance because alumina and mullite are oxides, and oxidation does not proceed to the center due to the dense SiO 2 film on the surface. Further, since the particle filling property is good, this SiC refractory is excellent in high temperature strength.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】SiCとアルミナ及び/又はムライトの合
計量を100重量%として外配量として若干の粘土鉱物
などの結合剤が含有されるが、結合剤中の粘土鉱物に含
まれるガラス質又は結晶質SiO2 の外配量は3wt%
以上である。SiO2 の外配量が3wt%未満であると
SiC質耐火物焼成体表面に焼成中もしくは使用中に十
分に均一なSiO2 系酸化皮膜が形成されない。SiO
2 の外配量は4〜6wt%であることが好ましい。アル
ミナ及びムライトの1種又は2種を粗粒と細粒の混合と
すると、前者の粒子間隙に後者が充填されSiC質耐火
物全体の密度をさらに高めることができる。すなわち、
具体的には、平均粒径が6〜6.5μmの第1の粒子を
2〜6wt%と、平均粒径が0.6〜1μmの第2の粒
子を9〜28wt%とすることが好ましい。
A binder such as a clay mineral is contained as an external distribution with the total amount of SiC and alumina and / or mullite being 100% by weight, and the glassy or crystalline substance contained in the clay mineral in the binder. The amount of SiO 2 distributed is 3 wt%
That is all. If the external amount of SiO 2 is less than 3 wt%, a sufficiently uniform SiO 2 oxide film is not formed on the surface of the SiC fired refractory body during firing or during use. SiO
The externally distributed amount of 2 is preferably 4 to 6 wt%. When one or two kinds of alumina and mullite are mixed with coarse particles and fine particles, the latter can be filled in the particle gaps of the former and the density of the entire SiC refractory can be further increased. That is,
Specifically, it is preferable that the first particles having an average particle size of 6 to 6.5 μm are 2 to 6 wt% and the second particles having an average particle size of 0.6 to 1 μm are 9 to 28 wt%. .

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】これらSiC,アルミナ、ムライトを配合
したものに、成形バインダーとして、カオリンなどの粘
土鉱物もしくは有機結合剤を外配量で10wt%以下好
ましくは5〜8wt%添加し、分散剤を加えた水を成形
に必要量、例えば外配量で6〜10wt%加え、プレス
成形、押し出し成形などの方法で成形するが、振動プレ
ス成形が最も好ましい。これらの成形物を焼成すること
により高い密度をもつ耐火物焼成体が得られる。なおS
iC焼成体の密度としては2.7g/cm3 以上を得る
ことができる。上記の成形物を酸化性雰囲気中で130
0〜1500℃にて焼成すると成形体皮膜の表面に酸化
皮膜が形成される。加熱時間は2〜5時間が好ましい。
酸化性雰囲気は大気が好ましい。また酸化皮膜の厚みは
500〜1000μmが好ましい。
A clay mineral such as kaolin or an organic binder is added as a molding binder in an amount of 10 wt% or less, preferably 5 to 8 wt%, and a dispersant is added to a mixture of these SiC, alumina and mullite. Water is added in an amount necessary for molding, for example, 6 to 10 wt% by external distribution, and molding is performed by a method such as press molding or extrusion molding, and vibration press molding is most preferable. By firing these molded articles, a fired article of refractory having a high density can be obtained. Note that S
The iC fired body can have a density of 2.7 g / cm 3 or more. The above-mentioned molded product was subjected to 130 in an oxidizing atmosphere.
When baked at 0 to 1500 ° C., an oxide film is formed on the surface of the molded body film. The heating time is preferably 2 to 5 hours.
The oxidizing atmosphere is preferably air. The thickness of the oxide film is preferably 500 to 1000 μm.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】図1は、粒径を変えたアルミナとSiCの
混合物を成形し焼成した焼成体の密度を測定した結果を
示し、これより粒界結合部の密度が粒径により変化する
状況を予測することができる。なお、図1は、重量比
で、SiC:Al23 =8:2とし、アルミナの粒径
が平均0.6μm、6.5μm、55μm、100μm
のものの4種類の実験を行った結果である。この実験で
SiC耐火物の密度はアルミナの平均粒径に依存するこ
とが分かる。さらに平均粒径の異なるアルミナを混合し
て種々実験を行った結果、平均粒径6.5μmのアルミ
ナ4〜5wt%、平均粒径0.6μmのものを15〜2
0wt%で高い高温強度が得られることが分かった。
FIG. 1 shows the results of measuring the density of a fired body obtained by molding and firing a mixture of alumina and SiC having different grain sizes. From this, it is predicted that the density of the grain boundary joint changes with the grain size. can do. In FIG. 1, the weight ratio is SiC: Al 2 O 3 = 8: 2, and the average particle diameter of alumina is 0.6 μm, 6.5 μm, 55 μm, 100 μm.
These are the results of four types of experiments. This experiment shows that the density of the SiC refractory depends on the average particle size of alumina. Further, as a result of conducting various experiments by mixing aluminas having different average particle sizes, 4 to 5 wt% of alumina having an average particle size of 6.5 μm and 15 to 2 having an average particle size of 0.6 μm were used.
It was found that a high temperature strength can be obtained at 0 wt%.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】そして、アルミナ及び/又はムライトを高
密度に充填したSiC質耐火物を酸化雰囲気中で焼成す
ることにより、SiCが酸化され焼成体表面に緻密な酸
化保護膜が生じるため、耐酸化性が著しく向上する。な
お、この皮膜中には結合剤に含まれるSiO2 も存在し
ており、耐酸化性向上に寄与している。したがって、本
発明に係るSiC質耐火物を焼成棚などとして長時間使
用した場合でも変形や膨れはほとんど起こらない。以下
実施例により本発明をより詳しく説明する。
When a SiC refractory filled with alumina and / or mullite at a high density is fired in an oxidizing atmosphere, the SiC is oxidized and a dense oxide protective film is formed on the surface of the fired body. Is significantly improved. In addition, SiO 2 contained in the binder is also present in this film, which contributes to the improvement of oxidation resistance. Therefore, even when the SiC refractory material according to the present invention is used as a baking shelf for a long time, it hardly deforms or swells. Hereinafter, the present invention will be described in more detail with reference to Examples.

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【実施例】表1に示す粒度分布をもつSiCとアルミナ
を同表に示すと通り配合し(合計量100wt%)、さ
らにカオリンを外配合した(表1にはSiO2 換算外配
合量を示す)。これらの配合において、実施例1、2、
3は請求項1の範囲内の組成である。なお、実施例1〜
3はSiC骨材粒子の粒度分布が1000〜3600μ
mのものを15〜25wt%、1000〜350μmの
ものが23〜30wt%、350μm未満のものが23
〜30wt%となるように変化させた。比較例1はSi
C骨材粒子の量が本発明上限を超えかつアルミナの粒度
分布が本発明の下限末端である例、比較例2及び3はア
ルミナの量が本発明の上限量を超える例である。これら
の組成物を大気中で1400℃にて5時間焼成した。焼
成体の特性値を示す。なお、重量増加率は、焼成したS
iC質耐火物を温度1000℃、大気中で336時間加
熱後の測定値である。
EXAMPLE SiC and alumina having the particle size distribution shown in Table 1 were compounded as shown in the same table (total amount 100 wt%), and kaolin was further compounded (Table 1 shows the SiO 2 conversion compounding amount). ). In these formulations, Examples 1, 2,
3 is a composition within the scope of claim 1. In addition, Example 1
No. 3 has a particle size distribution of SiC aggregate particles of 1000 to 3600 μ.
m of 15 to 25 wt%, 1000 to 350 μm of 23 to 30 wt%, and less than 350 μm of 23
It was changed so as to be ˜30 wt%. Comparative Example 1 is Si
Examples in which the amount of C aggregate particles exceeds the upper limit of the present invention and the particle size distribution of alumina is the lower end of the present invention, Comparative Examples 2 and 3 are examples in which the amount of alumina exceeds the upper limit of the present invention. These compositions were fired in air at 1400 ° C. for 5 hours. The characteristic values of the fired body are shown. In addition, the rate of increase in weight is based on the amount of S
It is a measured value after heating the iC refractory material at a temperature of 1000 ° C. in the atmosphere for 336 hours.

【手続補正13】[Procedure Amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】 [0013]

【表1】 実施例 比較例 1 2 3 1 2 3 SiC 3360〜 粒度分布 1000μm 20 23 18 30 25 20 (wt%) 1000〜 350 μm 25 30 33 30 20 20 350 μm 未満 30 23 30 30 20 20 アルミナ 粒度分布 平均6.5 μm 5 5 4 0 35 20 (wt%) 平均0.6 μm 未満 20 19 15 10 0 20 カオリン (外配量)wt% SiO2 換算 3 4 5 3 4 2 密度(g /cm3 ) 2.83 2.85 2.80 2.57 2.63 2.51 曲げ強度 室温 432.8 473.3 451.6 257.5 236.1 280.2(kgf /cm2 ) 1400℃ 310.3 351.1 325.5 153.3 138.4 141.2 重量増加率(%) 0.21 0.20 0.21 0.23 0.25 0.29 [Table 1] Example Comparative Example 1 2 3 1 2 3 SiC 3360 ~ particle size distribution 1000 μm 20 23 18 30 25 20 (wt%) 1000 ~ 350 μm 25 30 33 30 20 20 350 μm less than 30 23 30 30 20 20 alumina Particle size distribution Average 6.5 μm 5 5 4 0 35 20 (wt%) Average less than 0.6 μm 20 19 15 10 0 20 Kaolin (external amount) wt% SiO 2 conversion 3 4 5 3 4 2 Density (g / cm 3 ) 2.83 2.85 2.80 2.57 2.63 2.51 Bending strength Room temperature 432.8 473.3 451.6 257.5 236.1 280.2 (kgf / cm 2 ) 1400 ℃ 310.3 351.1 325.5 153.3 138.4 141.2 Weight increase rate (%) 0.21 0.20 0.21 0.23 0.25 0.29

【提出日】平成7年6月6日[Submission date] June 6, 1995

【手続補正14】[Procedure Amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【発明の作用及び効果】本発明の請求項1に係るSiC
質耐火物は粒界結合部を平均粒径と特定したアルミナ及
び/又はムライトとしたため粒界物質の充填がよくな
り、かつ結合剤中のSiO2 を外配量で3wt%以上と
したために高温強度と耐酸化性に優れており、工業上有
用なものである。加えて、請求項3では表面被覆膜の構
成を特定したために耐酸化性がさらに改善される。請求
項4では粗粒と細粒のアルミナ等を混合して粒界結合部
としたためにさらに高い密度が得られる。
Action and effect of the invention SiC according to claim 1 of the present invention
Since the quality refractory is made of alumina and / or mullite whose grain-boundary bonding part is specified as the average grain size, the filling of the grain-boundary material is improved, and since the SiO 2 content in the binder is 3 wt% or more, the high temperature It has excellent strength and oxidation resistance and is industrially useful. In addition, since the structure of the surface coating film is specified in claim 3, the oxidation resistance is further improved. According to the fourth aspect, since a coarse grain and a fine grain of alumina or the like are mixed to form a grain boundary joint portion, a higher density can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 SiC骨材粒子が70〜85wt%含ま
れ、平均粒径が6.5〜0.6μmの範囲内に入る粒度
分布を有するアルミナ及びムライトの1種又は2種の粒
界結合部により結合されたSiC質耐火物であって、ガ
ラス質又は結晶質SiO2 相が外配量で3wt%以上粒
界結合部に含まれることを特徴とするSiC質耐火物。
1. A grain boundary bond of one or two of alumina and mullite, which contains 70 to 85 wt% of SiC aggregate particles and has a particle size distribution in which the average particle size falls within the range of 6.5 to 0.6 μm. A SiC refractory bonded by parts, wherein the vitreous or crystalline SiO2 phase is contained in the grain boundary joint in an amount of 3 wt% or more in an external amount.
【請求項2】 前記ガラス質又は結晶質SiO2 相が粘
土鉱物の構成酸化物である請求項1記載のSiC質耐火
物。
2. The SiC refractory according to claim 1, wherein the glassy or crystalline SiO2 phase is a constituent oxide of clay mineral.
【請求項3】 実質的にSiO2 からなる表面保護皮膜
により被覆されていることを特徴とする請求項1又は2
記載のSiC質耐火物。
3. The method according to claim 1 or 2, wherein the surface protective film is substantially composed of SiO2.
The SiC-based refractory described.
【請求項4】 前記アルミナ及びムライトの1種又は2
種が平均粒経が6〜6.5μmの第1の粒子2〜6wt
%と、平均粒経が0.6〜1μmの第2の粒子を9〜2
8wt%とからなる請求項1記載のSiC質耐火物。
4. One or two of said alumina and mullite.
2-6 wt of first particles of seed having average particle size of 6-6.5 μm
%, Second particles having an average particle diameter of 0.6 to 1 μm of 9 to 2
The SiC refractory material according to claim 1, which comprises 8 wt%.
【請求項5】 請求項1又は4記載の組成物を酸化性雰
囲気中で1300〜1500℃の温度で焼成することを
特徴とするSiC質耐火物の製造方法。
5. A method for producing a SiC refractory material, which comprises firing the composition according to claim 1 or 4 at a temperature of 1300 to 1500 ° C. in an oxidizing atmosphere.
【請求項6】 前記ガラス質または結晶質SiO2 がカ
オリンに含まれている請求項5記載のSiC質耐火物の
製造方法。
6. The method for producing a SiC refractory according to claim 5, wherein the glassy or crystalline SiO2 is contained in kaolin.
JP6104149A 1994-05-18 1994-05-18 Silicon carbide-based refractory and its production Pending JPH07315933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6104149A JPH07315933A (en) 1994-05-18 1994-05-18 Silicon carbide-based refractory and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104149A JPH07315933A (en) 1994-05-18 1994-05-18 Silicon carbide-based refractory and its production

Publications (1)

Publication Number Publication Date
JPH07315933A true JPH07315933A (en) 1995-12-05

Family

ID=14373027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104149A Pending JPH07315933A (en) 1994-05-18 1994-05-18 Silicon carbide-based refractory and its production

Country Status (1)

Country Link
JP (1) JPH07315933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248788A1 (en) * 2007-12-28 2010-11-10 Nippon Crucible Co., Ltd. Casting material based on silicon carbide
US8129301B2 (en) * 2005-11-21 2012-03-06 Siemens Aktiengesellschaft Molding compound for producing a fireproof lining
WO2013146954A1 (en) 2012-03-28 2013-10-03 日本碍子株式会社 Porous material and honeycomb structure
CN109020550A (en) * 2018-08-20 2018-12-18 朝阳金工钒钛科技有限公司 A kind of production method regenerating silicon carbide deacidizing tank
EP3064482B1 (en) * 2015-03-04 2022-06-15 TYK Corporation Method of forming a silicon carbide refractory block

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129301B2 (en) * 2005-11-21 2012-03-06 Siemens Aktiengesellschaft Molding compound for producing a fireproof lining
US8137610B2 (en) * 2005-11-21 2012-03-20 Siemens Aktiengesellschaft Molding compound for producing a fireproof lining
EP2248788A1 (en) * 2007-12-28 2010-11-10 Nippon Crucible Co., Ltd. Casting material based on silicon carbide
EP2248788A4 (en) * 2007-12-28 2012-04-25 Nippon Crucible Co Casting material based on silicon carbide
WO2013146954A1 (en) 2012-03-28 2013-10-03 日本碍子株式会社 Porous material and honeycomb structure
US9346714B2 (en) 2012-03-28 2016-05-24 Ngk Insulators, Ltd. Porous material and honeycomb structure
EP3064482B1 (en) * 2015-03-04 2022-06-15 TYK Corporation Method of forming a silicon carbide refractory block
CN109020550A (en) * 2018-08-20 2018-12-18 朝阳金工钒钛科技有限公司 A kind of production method regenerating silicon carbide deacidizing tank

Similar Documents

Publication Publication Date Title
JP2828986B2 (en) Ceramic sintered body
EP1666433B1 (en) SiC REFRACTORY COMPRISING SILICON NITRIDE BONDED THERETO
US4990469A (en) Refractory material and process for production of the same
JPH07315933A (en) Silicon carbide-based refractory and its production
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP3254878B2 (en) High strength porcelain and its manufacturing method
EP0363911B1 (en) Refractories for use in firing ceramics
JPS6077174A (en) Manufacture of silicon nitride sintered body
JPH06305828A (en) Aluminum titanate composite material and its production
JP3373312B2 (en) SiC-based kiln tool and method of manufacturing the same
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP3661958B2 (en) Refractory for casting
US5244727A (en) Refractories for use in firing ceramics
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPS6251913B2 (en)
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JP2508511B2 (en) Alumina composite
JP2002173366A (en) Cordierite based ceramic material
JPH09142935A (en) Silicon nitride sintered compact and its production
JPH10158067A (en) Sialon-containing alumina-chrome composite refractory and its production
JPS608988B2 (en) Immersion nozzle composition for casting
JP3368035B2 (en) Setter
KR100435292B1 (en) Process for producing high toughness silicon oxynitride ceramics improving fracture toughness
JPH10102162A (en) Production of metal-ceramic composite material
JP2687634B2 (en) Method for producing silicon nitride sintered body