JP2011146463A - レーザ発振装置 - Google Patents

レーザ発振装置 Download PDF

Info

Publication number
JP2011146463A
JP2011146463A JP2010004826A JP2010004826A JP2011146463A JP 2011146463 A JP2011146463 A JP 2011146463A JP 2010004826 A JP2010004826 A JP 2010004826A JP 2010004826 A JP2010004826 A JP 2010004826A JP 2011146463 A JP2011146463 A JP 2011146463A
Authority
JP
Japan
Prior art keywords
light
optical path
ultrashort pulse
pulse light
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010004826A
Other languages
English (en)
Inventor
Sadahiro Tomioka
貞祐 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010004826A priority Critical patent/JP2011146463A/ja
Publication of JP2011146463A publication Critical patent/JP2011146463A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】複数の光源を用いて標本の観察を行う場合に、より簡単に光源からの光の光路調整を行うことができるようにする。
【解決手段】小型レーザユニット31−1乃至小型レーザユニット31−3は、ステージ34−1乃至ステージ34−3に固定されている。各小型レーザユニット31から射出された極短パルス光は同一光路に合成され、標本12に照射されるとともに、位置検出ユニット40に入射する。位置検出ユニット40は、入射した極短パルス光を受光し、その受光位置から極短パルス光の光路のずれを検出する。駆動制御部45は、そのずれの検出結果に基づいてステージ34を平行移動または回動させることで、極短パルス光の光路を補正する。このように小型レーザユニット31を動かすことで、他の光学部材を移動させずに簡単に光路調整することができる。本発明は、走査型顕微鏡に適用することができる。
【選択図】図1

Description

本発明は、複数の光源からの光を同一光路上に合成させる場合に、より簡単に各光源からの光の光路調整をすることができるようにしたレーザ発振装置に関する。
従来、多光子励起を利用した走査型のレーザ顕微鏡である多光子顕微鏡が知られている。多光子顕微鏡では、非常に時間幅の短い(例えば、100フェムト秒の)パルス状のレーザ光である極短パルス光の射出が可能な極短パルスレーザ光源が用いられる。このような多光子顕微鏡には、波長が可変の極短パルスレーザ光源を備え、複数の波長の極短パルス光を使用できるものもある。
ところで、多光子顕微鏡において、複数の極短パルスレーザ光源を用いる場合、それらの極短パルスレーザ光源から射出される極短パルス光が同一光路上に合成されるように、各極短パルス光の光路の調整が必要となる。
複数のレーザ光源を用いる顕微鏡において、レーザ光源を交換する技術として、レーザ光源と、そのレーザ光源からの光を他のレーザ光源からの光と合成させる光学部材とをベース部材に固定し、ベース部材ごと付け替える技術が提案されている(例えば、特許文献1参照)。
特開2005−085885号公報
しかしながら、上述した技術では、複数の光源からの光が同一光路を通るように、各光源からの光の光路調整を行うことは困難だった。
例えば、波長が固定された極短パルスレーザ光源が複数設けられた多光子顕微鏡において、使用する極短パルスレーザ光源を切り替えながら、異なる波長の極短パルス光で標本の同じ部位を観察する場合、同じ光学系であっても極短パルス光の波長により光路が変化する。そのため、各波長の極短パルス光の光路が同一となるように充分に光路調整がされていないと、標本の励起位置にずれが生じてしまう。
ところが、このような光路のずれを調整するには、極短パルスレーザ光源から標本までの間に配置されたハーフミラー等の多くの光学部材の位置調整を行う必要があり、大変な手間であった。
また、例えば、第1の極短パルスレーザ光源からの極短パルス光がミラーにより反射され、ミラーからの極短パルス光と、第2の極短パルスレーザ光源からの極短パルス光とがダイクロイックミラーにより同一光路上に合成される多光子顕微鏡があったとする。
この場合、第2の極短パルスレーザ光源を異なる第3の極短パルスレーザ光源に交換するときに、ダイクロイックミラーを傾けることで、第3の極短パルスレーザ光源からの極短パルス光の光路調整をすると、第1の極短パルスレーザ光源からの極短パルス光の光路にずれが生じることになる。
そうすると、第2の極短パルスレーザ光源の交換前にされていた、第1の極短パルスレーザ光源を利用した標本の観察が再現できなくなり、再度、ミラーを傾けて第1の極短パルスレーザ光源からの極短パルス光の光路調整を行わなければならなくなる。
さらに、特許文献1に記載の技術では、レーザ光源と光学部材からなるユニットを複数固定する台などが必要であるため、顕微鏡システム全体が大型化していまい、レーザ光源からの光を顕微鏡の本体へと導入する際に、大掛かりな調整作業が必要であった。
本発明は、このような状況に鑑みてなされたものであり、複数の光源からの光を同一光路上に合成させる場合に、より簡単に各光源からの光の光路調整をすることができるようにするものである。
本発明のレーザ発振装置は、対象物に照射される照射光を射出する複数のレーザ光源と、前記複数のレーザ光源からの前記照射光を同一光路上に合成する合成手段と、前記合成手段からの前記照射光を受光して、前記照射光の光路のずれを検出する光路ずれ検出手段と、前記光路ずれ検出手段による検出結果に基づいて、前記照射光の光路のずれが補正されるように、前記複数のレーザ光源のそれぞれを独立に平行移動または回動させる駆動制御手段とを備えることを特徴とする。
本発明によれば、複数の光源からの光を同一光路上に合成させる場合に、より簡単に各光源からの光の光路調整をすることができる。
本発明を適用した走査型顕微鏡の一実施の形態の構成例を示す図である。
以下、図面を参照して、本発明を適用した実施の形態について説明する。
図1は、本発明を適用した走査型顕微鏡の一実施の形態の構成例を示す図である。
走査型顕微鏡11は、観察対象の標本12に対して照射光を照射し、これにより生じた観察光を受光して標本12の観察画像を得ることで、標本12を観察する顕微鏡である。走査型顕微鏡11は、多チャンネルレーザ発振装置として機能する走査装置21と、顕微鏡本体22とから構成される。
走査装置21内には、3つの小型レーザユニット31−1乃至小型レーザユニット31−3が、走査装置21に対して着脱可能に内蔵されている。小型レーザユニット31−1乃至小型レーザユニット31−3には、それぞれ小型レーザ32−1乃至小型レーザ32−3と、プリチャーパ33−1乃至プリチャーパ33−3が設けられている。
小型レーザ32−1乃至小型レーザ32−3は、例えば照射光として赤外波長領域の極短パルス光を射出する極短パルスレーザ光源からなり、極短パルス光を射出してプリチャーパ33−1乃至プリチャーパ33−3に入射させる。プリチャーパ33−1乃至プリチャーパ33−3は、小型レーザ32−1乃至小型レーザ32−3からの極短パルス光の群速度に負分散を発生させることで、極短パルス光のパルス幅を調整する。
なお、走査型顕微鏡11の光学系により発生するチャープ量、すなわちパルス幅の広がりの量は、極短パルス光の波長により異なる。そのため、プリチャーパ33−1乃至プリチャーパ33−3の負分散量は、各極短パルス光のパルス幅が所望の大きさとなるように、極短パルス光の波長に応じて、予め最適化されている。
また、以下、小型レーザユニット31−1乃至小型レーザユニット31−3のそれぞれを個々に区別する必要のない場合、単に小型レーザユニット31とも称する。さらに、以下、小型レーザ32−1乃至小型レーザ32−3を個々に区別する必要のない場合、単に小型レーザ32とも称し、プリチャーパ33−1乃至プリチャーパ33−3を個々に区別する必要のない場合、単にプリチャーパ33とも称する。
走査型顕微鏡11においては、各小型レーザユニット31は、個別にオン/オフの制御、すなわち極短パルス光を射出するか否かの制御が可能となっており、3つの小型レーザユニット31のうちの任意のものから極短パルス光を射出できるようにされている。以下、小型レーザ32−1乃至小型レーザ32−3のそれぞれから射出される極短パルス光を、適宜、極短パルス光A乃至極短パルス光Cとも呼ぶこととする。
また、小型レーザユニット31−1乃至小型レーザユニット31−3のそれぞれは、走査装置21に内蔵された電動のステージ34−1乃至ステージ34−3のそれぞれに着脱可能に固定されている。ステージ34−1乃至ステージ34−3は、それぞれ独立して駆動し、小型レーザユニット31を平行移動させたり、回動させたりする。
例えば、図1中、紙面縦方向をx方向とし、奥行き方向(紙面垂直方向)をy方向とすると、ステージ34−1乃至ステージ34−3は、x方向またはy方向に平行移動する。また、x方向およびy方向に垂直な方向をz方向と呼ぶこととすると、ステージ34−1乃至ステージ34−3は、y方向またはz方向に平行な直線を軸として回動する。
さらに、走査装置21には、各小型レーザユニット31からの極短パルス光を同一光路上に合成するためのミラー35、ダイクロイックミラー36、およびダイクロイックミラー37が設けられている。
小型レーザユニット31−1から射出された極短パルス光Aは、ミラー35において反射し、さらにダイクロイックミラー36を透過する。また、小型レーザユニット31−2からの射出された極短パルス光Bは、ダイクロイックミラー36により反射される。ダイクロイックミラー36においては、極短パルス光Aと極短パルス光Bの光路が同一となるように、極短パルス光の合成、つまり透過と反射がされる。
ダイクロイックミラー36において反射または透過した極短パルス光は、ダイクロイックミラー37において反射され、プリチャーパ38に入射する。また、小型レーザユニット31−3から射出された極短パルス光は、ダイクロイックミラー37を透過してプリチャーパ38に入射する。すなわち、ダイクロイックミラー37では、極短パルス光A乃至極短パルス光Cの光路が同一となるように、極短パルス光の合成が行われる。
プリチャーパ38は、ダイクロイックミラー37から入射した極短パルス光の群速度に負分散を発生させることで、極短パルス光のパルス幅を調整する。
なお、走査装置21では、プリチャーパ38により、極短パルス光A乃至極短パルス光Cの大まかなチャープ量の補正が行われるようになされている。そして、プリチャーパ33−1乃至プリチャーパ33−3において、極短パルス光A乃至極短パルス光Cのそれぞれの波長に正確に対応したチャープ量の補正が行われる。
プリチャーパ38の後段にはハーフミラー39が設けられており、ハーフミラー39は極短パルス光を分岐させて、極短パルス光の光路ずれを検出するための位置検出ユニット40、および極短パルス光を標本12に導く光学系のそれぞれに、分岐させた極短パルス光を入射させる。
具体的には、プリチャーパ38からハーフミラー39に入射した極短パルス光の一部は、ハーフミラー39で反射して光路ずれ検出用の位置検出ユニット40に入射し、残りの極短パルス光はハーフミラー39をそのまま透過してダイクロイックミラー41に入射する。
光路ずれ検出用の位置検出ユニット40は、ハーフミラー42、光位置センサ43、および光位置センサ44から構成され、極短パルス光のシフトずれおよびチルトずれを検出するとともに、その検出結果を駆動制御部45に供給する。
すなわち、ハーフミラー42は、ハーフミラー39からの極短パルス光の一部をそのまま透過させて光位置センサ43に入射させるとともに、残りの極短パルス光を反射して光位置センサ44に入射させる。
光位置センサ43は、PSD(Position Sensitive Detector)などの2次元光位置センサからなり、ハーフミラー42から入射した極短パルス光を受光して、極短パルス光のシフトずれを検出する。ここで、極短パルス光が本来通るべき光路を基準光路と呼ぶこととすると、極短パルス光のシフトずれとは、基準光路と垂直な方向への基準光路に対する実際の極短パルス光の位置のずれをいう。また、極短パルス光の光路が、基準光路に対して、基準光路と垂直な方向に所定の距離だけずれているとすると、そのずれている距離、つまりシフトずれの量をシフト量と呼ぶこととする。
光位置センサ44は、PSDなどの2次元光位置センサからなり、ハーフミラー42から入射した極短パルス光を受光して、極短パルス光のチルトずれを検出する。ここで、チルトずれとは、基準光路に対する実際の極短パルス光の光路の角度のずれをいう。以下では、極短パルス光の光路が、基準光路に対して所定の角度だけ傾いているとすると、その傾いた角度、つまりチルトずれの量をチルト量と呼ぶこととする。
さらに、位置検出ユニット40では、シフト方向の光路のずれを検出する光位置センサ43が、チルト方向の光路のずれを検出する光位置センサ44よりも、ハーフミラー42により近い位置に配置されている。つまり、ハーフミラー42から光位置センサ43に入射する極短パルス光の光路の方が、ハーフミラー42から光位置センサ44に入射する極短パルス光の光路よりも短くなるようにされている。
光位置センサ43および光位置センサ44では、それぞれ受光面に入射した極短パルス光の受光位置のずれに基づいて、シフトずれおよびチルトずれが検出されるが、受光位置のずれには、シフトずれの成分およびチルトずれの成分が含まれている。そして、チルトずれの成分は、極短パルス光の受光面がハーフミラー42から遠い位置にあるほど、より多く含まれることになる。
そこで、光位置センサ43をよりハーフミラー42に近い位置に配置し、光位置センサ44をよりハーフミラー42から遠い位置に配置することで、シフトずれおよびチルトずれをより正確に検出することができる。
また、駆動制御部45は、位置検出ユニット40から供給されたシフトおよびチルトのずれの検出結果に基づいて、それらのシフトずれおよびチルトずれが補正されるように、ステージ34を平行移動させたり、回動させたりする。
さらに、ハーフミラー39を透過し、ダイクロイックミラー41に入射した極短パルス光は、ダイクロイックミラー41で反射して、ガルバノスキャナにより構成される走査部46に入射する。そして、極短パルス光は走査部46において偏向され、走査レンズ47により集光されて走査装置21から射出され、顕微鏡本体22へと入射する。
顕微鏡本体22に入射した極短パルス光は、顕微鏡本体22内に設けられた鏡筒レンズ51により平行光とされ、さらにダイクロイックミラー52を透過して、対物レンズ53により標本12の観察面において集光される。このとき、走査部46は、極短パルス光の走査範囲や走査速度を制御しながら、標本12の観察面において極短パルス光を走査する。
極短パルス光が標本12に照射されると、標本12からは多光子励起による蛍光が発現し、この蛍光は観察光となって、ダイレクトディテクタ54またはピンホールディテクタ48により検出される。
具体的には、ダイレクトディテクタ54により観察光を検出する場合、標本12からの観察光は、対物レンズ53を介してダイクロイックミラー52に入射し、さらにダイクロイックミラー52で反射されてダイレクトディテクタ54に入射する。
ダイレクトディテクタ54は、バリアフィルタ、光電子増倍管などにより構成され、ダイクロイックミラー52から入射した観察光を受光して、その受光量に応じた電気信号を出力する。この電気信号に基づいて、標本12の観察面の画像、つまり観察画像が生成される。
これに対して、ピンホールディテクタ48により観察光を検出する場合、標本12からの観察光は、対物レンズ53乃至鏡筒レンズ51、および走査レンズ47を介して走査部46に入射する。そして、観察光は走査部46においてデスキャンされ、ダイクロイックミラー41を介してピンホールディテクタ48に入射する。
ピンホールディテクタ48は、集光レンズ、ピンホール、光電子増倍管などにより構成され、観察光は、対物レンズ53の焦点位置とほぼ共役な位置に設けられたピンホールを通過した後、受光される。ピンホールディテクタ48は、入射した観察光を受光すると、その受光量に応じた電気信号を出力する。この電気信号により標本12の観察画像が生成される。
このように、走査型顕微鏡11は、多光子顕微鏡だけでなく共焦点顕微鏡としても使用することができる。
ところで、走査型顕微鏡11においては、各小型レーザユニット31は、それぞれ個別にステージ34に固定されるため、ユーザは、各小型レーザユニット31からの極短パルス光の光路調整を独立に行うことができる。
例えば、初期の調整時において、小型レーザユニット31−3からの極短パルス光を基準として、各小型レーザユニット31からの極短パルス光が最適な状態となるように調整を行う。
具体的には、まずユーザは、小型レーザユニット31−3だけから極短パルス光を射出させる。そして、ユーザは小型レーザユニット31−3からの極短パルス光が、対物レンズ53の瞳位置で、その瞳の中央を充分満たした状態となるように、ダイクロイックミラー41等の極短パルス光の光路上に配置された光学部材の位置などを調整する。
小型レーザユニット31−3からの極短パルス光が最適な状態となると、位置検出ユニット40は、このような状態で小型レーザユニット31−3が極短パルス光を射出したときの光位置センサ43、および光位置センサ44による極短パルス光の受光位置を記録する。すなわち、各光位置センサの受光面における極短パルス光の入射位置が記録される。
これらの受光位置を用いれば、位置検出ユニット40は、その後、記録している受光位置と、実際の極短パルス光の光位置センサへの入射位置とを比較することで、極短パルス光のシフトずれおよびチルトずれを検出することができる。また、検出されたずれを補正するには、光位置センサ(光位置センサ43および光位置センサ44)への極短パルス光の入射位置が、記録されている受光位置と一致するように、ステージ34を平行移動または回動すればよい。
次に、ユーザは、小型レーザユニット31−1、および小型レーザユニット31−2からの極短パルス光が最適な状態となるように、極短パルス光の光路調整をする。
すなわち、ユーザは、小型レーザユニット31−1だけから極短パルス光を射出させる。すると、小型レーザユニット31−1からの極短パルス光は、ミラー35乃至ハーフミラー39を介してハーフミラー42に入射する。そして、極短パルス光の一部はそのままハーフミラー42を透過して光位置センサ43に入射し、残りの極短パルス光はハーフミラー42で反射されて光位置センサ44に入射する。
このように、光位置センサ43および光位置センサ44には、小型レーザユニット31−1からの極短パルス光だけが入射することになる。光位置センサ43は、入射した極短パルス光を受光して極短パルス光のシフトずれを検出し、光位置センサ44は、入射した極短パルス光を受光して極短パルス光のチルトずれを検出する。
より詳細には、位置検出ユニット40は、記録している極短パルス光の受光位置と、実際に光位置センサ43において受光された極短パルス光の位置とに基づいて、極短パルス光のシフトずれ、つまりシフトの方向および量を検出する。
同様に、位置検出ユニット40は、記録している極短パルス光の受光位置と、実際に光位置センサ44において受光された極短パルス光の位置とに基づいて、極短パルス光のチルトずれ、つまりチルトの方向および量を検出する。
そして、位置検出ユニット40は、シフトずれおよびチルトずれの検出結果を駆動制御部45に供給する。
駆動制御部45は、位置検出ユニット40から検出結果として供給されたシフトの方向および量に基づいて、ステージ34−1を平行移動させるべき方向および距離を特定し、その方向に特定された距離だけステージ34−1を平行移動させる。これにより、ステージ34−1に固定された小型レーザユニット31−1も平行移動し、極短パルス光のシフトずれが補正される。
さらに、駆動制御部45は、位置検出ユニット40から検出結果として供給されたチルトの方向および量に基づいて、ステージ34−1を回動させるべき方向および角度を特定し、その方向に特定された角度だけステージ34−1を回動させる。これにより、ステージ34−1に固定された小型レーザユニット31−1も回動し、極短パルス光のチルトずれが補正される。
そして、シフトおよびチルトのずれが検出されなくなるまで、つまり実際の光位置センサ43および光位置センサ44における極短パルス光の受光位置が、位置検出ユニット40に記録されている受光位置となるまで、上述した処理が繰り返し行われ、極短パルス光の光路調整が行われる。
なお、シフトのずれの方向および量に対して、ステージ34を移動させるべき方向および距離や、チルトのずれの方向および角度に対して、ステージ34を回動させるべき方向および角度は予め定められており、それらの情報は駆動制御部45に保持されている。
このようにしてステージ34−1が平行移動または回動されると、小型レーザユニット31−1からの極短パルス光の光路が調整される。
さらに、ユーザは、小型レーザユニット31−2だけから極短パルス光を射出させ、小型レーザユニット31−2からの極短パルス光の光路調整をする。すなわち、駆動制御部45は、位置検出ユニット40から供給されたシフトおよびチルトのずれの検出結果に基づいて、ステージ34−2を平行移動させたり、回動させたりする。これにより、小型レーザユニット31−2からの極短パルス光のシフトおよびチルトのずれが補正される。
このように、各小型レーザユニット31からの極短パルス光の光路調整がされると、それらの小型レーザユニット31から同時に極短パルス光を射出させた場合に、各極短パルス光は、ダイクロイックミラー37により同一光路に合成される。すなわち、各極短パルス光が対物レンズ53の瞳位置で、その瞳の中央を充分満たした状態となるようにされ、各極短パルス光は、同一光路を通って標本12の同じ位置に照射される。
また、走査型顕微鏡11では、ステージ34に対して小型レーザユニット31が着脱可能となっているため、ユーザは、小型レーザユニット31を所望の波長の極短パルス光を射出するものと交換することができる。
ユーザが、ステージ34に固定されている小型レーザユニット31を外して、他の新たな小型レーザユニット31をステージ34に固定する場合においても、ユーザは、新たに取り付けた小型レーザユニット31だけから極短パルス光を射出させるだけで、簡単に極短パルス光の光路調整を行うことができる。このような場合も、上述した場合と同様に、位置検出ユニット40により極短パルス光のシフトおよびチルトのずれが検出され、その検出結果に基づいて、駆動制御部45によりステージ34の駆動が制御され、極短パルス光の光路調整がされる。
以上のようにして、走査型顕微鏡11は、小型レーザユニット31からの極短パルス光を位置検出ユニット40において受光して、極短パルス光のシフトおよびチルトのずれを検出する。そして、走査型顕微鏡11は、その検出結果に応じて、小型レーザユニット31が固定されたステージ34を平行移動または回動し、小型レーザユニット31からの極短パルス光の光路調整を行う。
このように、ステージ34に個別に小型レーザユニット31を固定することで、複数の小型レーザ32からの極短パルス光を同一光路上に合成させる場合に、より簡単に小型レーザ32からの極短パルス光の光路調整をすることができる。その結果、各小型レーザユニット31をより簡単に交換することが可能となる。
すなわち、調整対象となる小型レーザユニット31が固定されたステージ34を動かすだけであるので、ミラー35乃至ダイクロイックミラー37等の極短パルス光の光路上にある光学部材を動かす必要もなく、より簡単に光路調整をすることができる。しかも、極短パルス光の光路上の部材を一切動かす必要がないので、他の小型レーザユニット31からの極短パルス光の光路がずれることもなく、その光路を調整する必要もなくなる。
例えば、小型レーザユニット31−2を交換しようとする場合、従来では、新たな小型レーザユニット31−2を取り付けた後、ダイクロイックミラー36を傾けることにより、小型レーザユニット31−2からの極短パルス光の光路を調整していた。この場合、ダイクロイックミラー36を傾けると、小型レーザユニット31−1からの極短パルス光の光路もダイクロイックミラー36においてずれが生じるため、さらにミラー35を傾けて、小型レーザユニット31−1からの極短パルス光の光路調整を行う必要があった。
これに対して、走査型顕微鏡11では、小型レーザユニット31−2からの極短パルス光の光路調整時には、ダイクロイックミラー36を傾ける必要はないので、小型レーザユニット31−1からの極短パルス光の光路にずれは生じなくなる。したがって、小型レーザユニット31−1からの極短パルス光の光路調整も不要となり、より簡単に小型レーザユニット31の交換ができるようになる。
また、走査型顕微鏡11では、小型レーザ32およびプリチャーパ33が一体となって小型レーザユニット31とされているため、小型レーザユニット31の交換時に新たにチャープ量の調整を行う必要がなく、さらに簡単に小型レーザユニット31の交換ができる。
なお、極短パルス光の光路調整時に、駆動制御部45がどのステージ34を駆動させるかは、ユーザにより指定されてもよいし、駆動制御部45が稼動している小型レーザユニット31を特定することで、駆動させるべきステージ34を特定するようにしてもよい。
また、極短パルス光の初期の光路調整時に基準となる小型レーザユニット31については、その基準とされる小型レーザユニット31は、ステージ34に固定されずに、平行移動または回動しないように走査装置21の筐体等にそのまま固定されてもよい。但し、この場合、基準となる小型レーザユニット31は交換することはできない。
なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
11 走査型顕微鏡, 21 走査装置, 22 顕微鏡本体, 31−1乃至31−3,31 小型レーザユニット, 34−1乃至34−3,34 ステージ, 40 位置検出ユニット, 42 ハーフミラー, 43 光位置センサ, 44 光位置センサ, 45 駆動制御部

Claims (2)

  1. 対象物に照射される照射光を射出する複数のレーザ光源と、
    前記複数のレーザ光源からの前記照射光を同一光路上に合成する合成手段と、
    前記合成手段からの前記照射光を受光して、前記照射光の光路のずれを検出する光路ずれ検出手段と、
    前記光路ずれ検出手段による検出結果に基づいて、前記照射光の光路のずれが補正されるように、前記複数のレーザ光源のそれぞれを独立に平行移動または回動させる駆動制御手段と
    を備えることを特徴とするレーザ発振装置。
  2. 前記光路ずれ検出手段は、
    前記合成手段からの前記照射光を受光して、前記照射光のシフト方向の光路ずれを検出するシフト検出手段と、
    前記合成手段からの前記照射光を受光して、前記照射光のチルト方向の光路ずれを検出するチルト検出手段と
    を備え、
    前記合成手段からの前記照射光を分岐させて、前記シフト検出手段および前記チルト検出手段に入射させる分岐手段をさらに備え、
    前記シフト検出手段は、前記チルト検出手段よりも、より前記分岐手段に近い位置に配置されている
    ことを特徴とする請求項1に記載のレーザ発振装置。
JP2010004826A 2010-01-13 2010-01-13 レーザ発振装置 Withdrawn JP2011146463A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004826A JP2011146463A (ja) 2010-01-13 2010-01-13 レーザ発振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004826A JP2011146463A (ja) 2010-01-13 2010-01-13 レーザ発振装置

Publications (1)

Publication Number Publication Date
JP2011146463A true JP2011146463A (ja) 2011-07-28

Family

ID=44461075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004826A Withdrawn JP2011146463A (ja) 2010-01-13 2010-01-13 レーザ発振装置

Country Status (1)

Country Link
JP (1) JP2011146463A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083970A (ja) * 2011-09-30 2013-05-09 Olympus Corp レーザ光源装置およびレーザ顕微鏡
JP2016115829A (ja) * 2014-12-16 2016-06-23 花王株式会社 レーザー照射装置及びレーザー照射方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083970A (ja) * 2011-09-30 2013-05-09 Olympus Corp レーザ光源装置およびレーザ顕微鏡
JP2016115829A (ja) * 2014-12-16 2016-06-23 花王株式会社 レーザー照射装置及びレーザー照射方法

Similar Documents

Publication Publication Date Title
US10509215B2 (en) Light-field microscope
CN105283792A (zh) 用于操作和成像显微样本的方法和光学布置
JP2010085826A (ja) レーザ顕微鏡装置
JP2009058776A (ja) フォーカシング光学系を有する光学系およびこれを用いたレーザ顕微鏡装置
US8730582B2 (en) Microscope apparatus
JP2007506955A (ja) エバネッセント波照明を備えた走査顕微鏡
JP2012203049A (ja) 顕微鏡
JP5058625B2 (ja) レーザ顕微鏡
JP5179099B2 (ja) 光刺激用照明装置および顕微鏡装置
JP5058624B2 (ja) レーザ顕微鏡
JP2007513374A (ja) 走査型顕微鏡
JP4573524B2 (ja) 走査型レーザー顕微鏡
JP2008233883A (ja) 走査型レーザ顕微鏡
EP2667234B1 (en) Microscope apparatus
JP5734758B2 (ja) レーザー顕微鏡
JP2008203417A5 (ja)
US11709137B2 (en) Light sheet fluorescence microscope
JP2011146463A (ja) レーザ発振装置
JP5771371B2 (ja) レーザ走査型顕微鏡
JP2010014837A (ja) 光走査顕微鏡
CN111771150B (zh) 光片显微镜以及试样观察方法
US10281699B2 (en) Microscope system configured to irradiate focused light onto an area of a specimen outside of an optical axis of an objective lens
JP2010286799A (ja) 走査型顕微鏡
JP4939855B2 (ja) 照明装置およびレーザ走査型顕微鏡
JP2007248602A (ja) 走査型顕微鏡

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402