JP2011144437A - Method for separating and recovering copper from copper-containing iron sulfide - Google Patents

Method for separating and recovering copper from copper-containing iron sulfide Download PDF

Info

Publication number
JP2011144437A
JP2011144437A JP2010007745A JP2010007745A JP2011144437A JP 2011144437 A JP2011144437 A JP 2011144437A JP 2010007745 A JP2010007745 A JP 2010007745A JP 2010007745 A JP2010007745 A JP 2010007745A JP 2011144437 A JP2011144437 A JP 2011144437A
Authority
JP
Japan
Prior art keywords
copper
extraction
sulfuric acid
leaching
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007745A
Other languages
Japanese (ja)
Other versions
JP5477009B2 (en
Inventor
Satoshi Asano
聡 浅野
Masatoshi Takano
雅俊 高野
Noriyuki Nagase
範幸 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010007745A priority Critical patent/JP5477009B2/en
Publication of JP2011144437A publication Critical patent/JP2011144437A/en
Application granted granted Critical
Publication of JP5477009B2 publication Critical patent/JP5477009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating and recovering copper from a copper-containing iron sulfide which contains copper and iron, by which the amount of sulfuric acid consumed in the whole steps from leaching to electrowinning is reduced, and the use of a neutralizing agent in extraction and back extraction steps is eliminated, thus allowing substantial cost reduction. <P>SOLUTION: The method includes the steps of: leaching a copper-containing iron sulfide with a sulfuric acid solution; mixing the leaching solution with an organic extractant to extract copper; back-extracting copper from the resulting organic extractant containing copper; and electrowinning copper from a solution after back extraction. The temperature in the leaching step is maintained in the range of 102 to 112°C. An aldoxime extractant essentially comprising 5-alkyl salicylaldoxime and containing less than 5 wt.% of alcohols or phenols is used as the organic extractant in the extraction step. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅と共に鉄などの不純物を含有する含銅鉄硫化物から湿式法により銅を分離回収する方法、特に工程全体で使用する硫酸及び中和剤の使用量を削減することが可能な方法に関する。   The present invention is a method for separating and recovering copper by a wet method from copper-containing iron sulfide containing impurities such as iron together with copper, and in particular, the amount of sulfuric acid and neutralizing agent used in the entire process can be reduced. Regarding the method.

銅精鉱や銅鉱石などの硫化銅鉱物あるいは銅製錬工程の中間原料などの銅や鉄などを含む硫化物から、湿式法により銅を製錬する湿式銅製錬プロセスは、硫化物中の銅を溶液に浸出する際に用いる液の種類によって、塩化系と硫酸系の2つのプロセスに大別することができる。   The wet copper smelting process that smelts copper by a wet method from copper sulfide minerals such as copper concentrate and copper ore, or sulfides containing copper and iron as intermediate raw materials in the copper smelting process, Depending on the type of liquid used when leaching into the solution, it can be broadly divided into two processes, chlorinated and sulfuric.

即ち、塩化系のプロセスは、塩化物その他のハロゲン化合物などを含有する溶液を用い、塩素ガスなどの酸化剤を併用して銅を溶液中へ浸出するものである。一方、硫酸系のプロセスは、硫酸や硫酸塩の溶液を用い、酸素や空気などの酸化剤を併用して銅を溶液中へ浸出するものである。尚、いずれのプロセスを用いた場合でも、得られた浸出液中の銅は、溶媒抽出工程で浸出液中の鉄やヒ素などの不純物を分離して除去し、逆抽出を経た後、逆浸出液中の銅を電解採取などの方法を用いて電気銅として回収する。   That is, the chlorinated process uses a solution containing chloride and other halogen compounds, and leaches copper into the solution in combination with an oxidizing agent such as chlorine gas. On the other hand, the sulfuric acid-based process uses a sulfuric acid or sulfate solution and leaches copper into the solution in combination with an oxidizing agent such as oxygen or air. In any of the processes, the copper in the obtained leachate is separated by removing impurities such as iron and arsenic in the leachate in the solvent extraction step, and after back extraction, Copper is recovered as electrolytic copper using a method such as electrowinning.

上記硫酸系のプロセスは、浸出反応の機構の観点から、更に2つの方法に区別できる。第1の方法は、例えば特許文献1に記載されるように、硫酸を含有する水溶液中で酸素又は空気を導入し、硫化物中の銅を硫酸により酸化浸出する方法である。具体的には、特許文献1には、115℃〜175℃において銅硫化物を加圧酸化すると共に硫酸溶液を用いて銅を浸出し、得られた硫酸銅溶液のpHを1.5〜3.0の範囲に調整して溶媒抽出し、最終的に電解採取して銅を回収する方法が示されている。   The sulfuric acid process can be further classified into two methods from the viewpoint of the mechanism of the leaching reaction. The first method is a method in which oxygen or air is introduced in an aqueous solution containing sulfuric acid and copper in the sulfide is oxidized and leached with sulfuric acid, as described in Patent Document 1, for example. Specifically, in Patent Document 1, copper sulfide is pressure-oxidized at 115 ° C. to 175 ° C. and copper is leached using a sulfuric acid solution, and the pH of the obtained copper sulfate solution is adjusted to 1.5 to 3. A method of recovering copper by adjusting to a range of 0.0, extracting with a solvent, and finally collecting by electrolysis is shown.

この方法においては、例えば黄銅鉱を酸化浸出する際には、下記化学式1に示すように、黄銅鉱に含有される銅1モルに対して2モルの硫酸を添加して浸出する。浸出により黄銅鉱中の銅は、硫酸銅の形態、即ち2価の銅イオンとして硫酸溶液中に溶解する。
[化学式1]
CuFeS+O+2HSO→CuSO+FeSO+2HO+2S
In this method, for example, when oxidizing and leaching chalcopyrite, as shown in the following chemical formula 1, 2 mol of sulfuric acid is added and leached with respect to 1 mol of copper contained in chalcopyrite. By leaching, copper in chalcopyrite dissolves in the sulfuric acid solution in the form of copper sulfate, ie, divalent copper ions.
[Chemical Formula 1]
CuFeS 2 + O 2 + 2H 2 SO 4 → CuSO 4 + FeSO 4 + 2H 2 O + 2S

また、黄銅鉱中の鉄も硫酸鉄の形態、即ち2価及び一部は3価の鉄イオンとして硫酸溶液中に溶解するが、大部分の2価の鉄イオンは、下記化学式2に示すように、加水分解を受けて難溶性の三酸化二鉄(ヘマタイト)を生成すると共に硫酸を副生する。つまり、化学式1及び2の浸出反応全体を考えると、黄銅鉱1モルを浸出するには1モルの硫酸が必要となる。
「化学式2」
FeSO+1/4O+2HO→1/2Fe+HSO
In addition, iron in chalcopyrite is also dissolved in the sulfuric acid solution in the form of iron sulfate, that is, divalent and partly trivalent iron ions. Most of the divalent iron ions are represented by the following chemical formula 2. In addition, it undergoes hydrolysis to produce hardly soluble ferric trioxide (hematite) and by-produce sulfuric acid. That is, considering the entire leaching reaction of Chemical Formulas 1 and 2, 1 mol of sulfuric acid is required to leach 1 mol of chalcopyrite.
“Chemical Formula 2”
FeSO 4 + 1 / 4O 2 + 2H 2 O → 1 / 2Fe 2 O 3 + H 2 SO 4

上記した酸化浸出で得られた2価の銅イオンを含有する硫酸溶液(浸出液)は、難溶性の三酸化二鉄を固液分離した後、有機抽出剤を用いた溶媒抽出によって2価の銅イオンを有機抽出剤中へ抽出することにより不純物と分離する。銅を含む有機抽出剤(抽出有機)は、電解採取に適した高銅濃度の液を得るため逆抽出などの処理が行なわれる。   The sulfuric acid solution (leaching solution) containing divalent copper ions obtained by the above oxidative leaching is obtained by diluting hardly soluble ferric trioxide by solid-liquid separation and then diluting copper by solvent extraction using an organic extractant. The ions are separated from the impurities by extraction into an organic extractant. The organic extractant containing copper (extracted organic) is subjected to a process such as back extraction in order to obtain a liquid having a high copper concentration suitable for electrolytic collection.

一般に、有機抽出剤は塩基性の低い元素ほど抽出しやすいという性質がある。従って、上述した黄銅鉱を硫酸で浸出した場合のように、2価の銅イオンと2価及び3価の鉄イオンが共存するような浸出液を対象とする場合には、目的とする2価の銅イオンよりも3価の鉄イオンを優先的に抽出し、銅イオンの分離が阻害される傾向がある。   In general, organic extractants have the property that elements with lower basicity are easier to extract. Therefore, in the case where a leachate in which divalent copper ions and divalent and trivalent iron ions coexist, such as when leaching the chalcopyrite with sulfuric acid, is targeted, Trivalent iron ions are preferentially extracted over copper ions, and the copper ions tend to be separated.

そのため、黄銅鉱を硫酸で浸出した浸出液から銅イオンを優先的に浸出する場合には、2価の銅イオンと安定なキレートを形成することにより、3価の鉄イオンよりも優先的に銅イオンを抽出することができるオキシム系のような酸性抽出剤が用いられることが多かった。オキシム系の酸性抽出剤の場合、下記化学式3に示す反応により、銅が抽出される。
[化学式3]
CuSO+2HA→CuA+HSO
(但し、HAはオキシム系抽出剤Aに水素Hが付加された状態を意味する。)
Therefore, when copper ions are preferentially leached from a leachate obtained by leaching chalcopyrite with sulfuric acid, copper ions are preferentially given over trivalent iron ions by forming a stable chelate with divalent copper ions. In many cases, an acidic extractant such as an oxime type that can extract sucrose is used. In the case of an oxime-based acidic extractant, copper is extracted by the reaction shown in Chemical Formula 3 below.
[Chemical formula 3]
CuSO 4 + 2HA → CuA 2 + H 2 SO 4
(However, HA means a state in which hydrogen H is added to the oxime-based extractant A.)

上記化学式3に示すように、オキシム系抽出剤では銅が抽出されるに伴って硫酸が1モル副生する。この硫酸を上記化学式1〜2の浸出に繰り返せば、新たな硫酸の添加なしに銅を浸出できることになる。しかしながら、溶媒抽出における抽出挙動は液のpHによる影響を受け、特にオキシム系抽出剤の抽出性能は高pH側の方が良好なため、抽出時には予め浸出液にアルカリなどを添加してpHを上昇させておき、副生する硫酸を中和する必要がある。   As shown in the above chemical formula 3, with the oxime-based extractant, 1 mol of sulfuric acid is by-produced as copper is extracted. If this sulfuric acid is repeated for the leaching of the above chemical formulas 1 and 2, copper can be leached without adding new sulfuric acid. However, the extraction behavior in solvent extraction is affected by the pH of the solution, and in particular, the extraction performance of the oxime-based extractant is better on the high pH side. Therefore, during extraction, the pH is raised by adding alkali or the like to the leachate in advance. In addition, it is necessary to neutralize by-product sulfuric acid.

また、オキシム系の抽出剤の場合、抽出後の抽出剤(抽出有機)から逆抽出により銅イオンを分離する際には、上記抽出時とは逆に低pH側の方が有利である。例えば抽出後の有機抽出剤(抽出有機)に硫酸溶液を添加して混合すると、下記化学式4に示すように、オキシム系抽出剤中の銅イオンが硫酸溶液中に逆抽出されて逆抽出後液が得られる。
[化学式4]
CuA+HSO→CuSO+2HA
In the case of an oxime-based extractant, when copper ions are separated from the extractant (extracted organic) after extraction by back extraction, the lower pH side is more advantageous than the above extraction. For example, when a sulfuric acid solution is added to and mixed with an organic extractant (extracted organic) after extraction, the copper ions in the oxime-based extractant are back-extracted into the sulfuric acid solution as shown in the following chemical formula 4, and the solution after back-extraction Is obtained.
[Chemical formula 4]
CuA 2 + H 2 SO 4 → CuSO 4 + 2HA

上記の逆抽出後液を電解液として、電解採取により銅を回収する。電解採取では下記化学式5に示すように、カソード上に1モルの銅が電析すると電解液中に1モルの硫酸が副生する。副生した硫酸は、上記化学式4の逆抽出で再び使用することができる。
[化学式5]
CuSO+2e+2H→Cu+HSO
Copper is recovered by electrowinning using the solution after back extraction as an electrolytic solution. In the electrolytic collection, as shown in the following chemical formula 5, when 1 mol of copper is electrodeposited on the cathode, 1 mol of sulfuric acid is by-produced in the electrolytic solution. The by-produced sulfuric acid can be used again in the back extraction of Chemical Formula 4.
[Chemical formula 5]
CuSO 4 + 2e + 2H + → Cu + H 2 SO 4

即ち、上記特許文献1の方法で1モルの黄銅鉱を処理する場合には、浸出工程では上記化学式1〜2により1モルの硫酸が消費され、抽出工程では上記化学式3に示す溶媒抽出の反応により硫酸が1モル過剰に生じる。そのため、浸出工程での硫酸の添加と、抽出工程での硫酸の中和処理とが必要となっていた。   That is, when 1 mol of chalcopyrite is processed by the method of Patent Document 1, 1 mol of sulfuric acid is consumed according to the chemical formulas 1-2 in the leaching process, and the solvent extraction reaction shown in the chemical formula 3 is performed in the extraction process. Causes a 1 molar excess of sulfuric acid. Therefore, the addition of sulfuric acid in the leaching process and the neutralization treatment of sulfuric acid in the extraction process are necessary.

硫酸系のプロセスでの他の1つの方法として、特許文献2には、銅の硫化鉱物に反応触媒として塩化物を添加し、200℃〜220℃の温度域で酸素もしくは空気を吹き込んで酸化しながら加熱し、硫化鉱物に含有される硫黄を酸化して硫酸を生成させ、下記化学式6により銅を、及び上記化学式2と同様の反応により鉄を、それぞれ硫酸溶液中に溶解させる浸出方法が示されている。
[化学式6]
CuFeS+4O→CuSO+FeSO
As another method in the sulfuric acid process, Patent Document 2 discloses that copper sulfide is added to a copper sulfide mineral as a reaction catalyst, and oxygen or air is blown in a temperature range of 200 ° C. to 220 ° C. to oxidize. The leaching method in which sulfur contained in the sulfide mineral is oxidized to produce sulfuric acid, and copper is dissolved in the following chemical formula 6 and iron is dissolved in the sulfuric acid solution by the same reaction as the above chemical formula 2 is shown. Has been.
[Chemical formula 6]
CuFeS 2 + 4O 2 → CuSO 4 + FeSO 4

この方法によれば、上記化学式6に示すように、浸出工程での硫酸添加は不要である。しかしながら、上記化学式2に示すように、浸出液中の硫酸鉄から酸化鉄が生じる際に硫酸が副生する。更に、得られた浸出液から溶媒抽出によって銅と不純物とを分離する必要があるので、上述の化学式3に示したように抽出工程において硫酸が副生し、浸出から電解採取までを通しては1モルの銅を処理するに伴って2モルの硫酸が副生する。   According to this method, as shown in the chemical formula 6, addition of sulfuric acid in the leaching process is unnecessary. However, as shown in Chemical Formula 2, sulfuric acid is by-produced when iron oxide is produced from iron sulfate in the leachate. Further, since it is necessary to separate copper and impurities from the obtained leachate by solvent extraction, sulfuric acid is by-produced in the extraction process as shown in the above chemical formula 3, and 1 mol is obtained from leaching to electrowinning. As the copper is processed, 2 moles of sulfuric acid are by-produced.

上述した硫酸系のプロセスから分るように、特許文献1及び特許文献2のいずれの方法においても、銅の溶媒抽出工程では、上記化学式3に示すように銅1モルの抽出に対して1モルの硫酸が副生する。従って、この硫酸を中和して高い抽出性能を維持するため、銅抽出時には中和剤が必要であった。   As can be seen from the sulfuric acid-based process described above, in both methods of Patent Document 1 and Patent Document 2, in the copper solvent extraction step, as shown in Chemical Formula 3, 1 mole of copper is extracted per 1 mole of extraction. Of sulfuric acid is by-produced. Therefore, in order to neutralize this sulfuric acid and maintain high extraction performance, a neutralizing agent was required during copper extraction.

一般に、銅の抽出剤としては、良好な銅の逆抽出特性が得られることを重視して、オキシム系の1種で弱酸性のケトキシム型抽出剤が選択されることが多かった。しかし、弱酸性のケトキシム型抽出剤は、抽出反応の進行に伴い、上記化学式3の反応で生成する硫酸により逆抽出反応が進行し、銅の抽出率が著しく低下するなどの弊害があった。   In general, as a copper extractant, an oxime-based weakly acidic ketoxime type extractant has often been selected with emphasis on obtaining good copper back-extraction characteristics. However, the weakly acidic ketoxime-type extractant has problems such as the back extraction reaction proceeds with the sulfuric acid generated by the reaction of Chemical Formula 3 as the extraction reaction proceeds, and the copper extraction rate is significantly reduced.

そこで、同じくオキシム系の1種である強酸性のアルドキシム型抽出剤に対し、酸性を弱める目的で、ケトキシム型抽出剤、あるいは高級アルコール類又は高級フェノール類などを添加して用いることが行なわれ、そのための抽出剤も市販されている。しかしながら、このような酸性を弱めたアルドキシム型抽出剤を用いた場合にも、銅を逆抽出することは容易であるが、溶媒抽出工程においては中和剤を添加して過剰な硫酸を中和することによって、逆抽出反応が進むことを防止する必要があった。   Therefore, the addition of a ketoxime type extractant or higher alcohols or higher phenols is used for the purpose of weakening acidity against the strongly acidic aldoxime type extractant, which is also a kind of oxime, An extractant for this purpose is also commercially available. However, it is easy to back-extract copper even when such an aldoxime type extractant with weak acidity is used. However, in the solvent extraction process, a neutralizer is added to neutralize excess sulfuric acid. It was necessary to prevent the back extraction reaction from proceeding.

その場合の中和剤としては、例えば、銅の酸化鉱を代用することもある。酸化鉱を添加すると硫酸が硫酸銅になり、中和と同じ効果が得られる。同時に酸化鉱中の銅も浸出される効果がある。しかし、酸化鉱が常に利用できるとは限らず、利用できない時には水酸化ナトリウムや消石灰などのアルカリを中和剤として用いることが必要になる。   As a neutralizing agent in that case, for example, a copper oxide ore may be substituted. When oxide ore is added, sulfuric acid becomes copper sulfate, and the same effect as neutralization is obtained. At the same time, copper in the oxide ore is also leached. However, oxide ore is not always available, and when it cannot be used, it is necessary to use an alkali such as sodium hydroxide or slaked lime as a neutralizing agent.

このような事情から、銅硫化物を硫酸系プロセスにより処理する際には、銅硫化物からの銅の浸出工程で大量の硫酸を使用するうえ、その浸出液からの銅の抽出工程では生成する硫酸の中和に使用する中和剤が大量に必要であるため、硫酸を無駄に消費すると共に多くの費用を要し、コスト競争力を低下させる原因となっていた。   For this reason, when copper sulfide is treated by a sulfuric acid-based process, a large amount of sulfuric acid is used in the copper leaching process from the copper sulfide, and the sulfuric acid produced in the copper extraction process from the leached liquid is used. Since a large amount of the neutralizing agent used for neutralization is required, sulfuric acid is wasted and a large amount of cost is required, resulting in a decrease in cost competitiveness.

尚、特許文献3には、硫酸系プロセスにより処理する際に、170℃〜235℃で硫化銅鉱物を硫酸浸出した後、過剰な酸を水で希釈し、浸出液のpHを1.2〜2.0の範囲に調整する方法が開示されている。しかしながら、浸出液を希釈することで酸濃度を低下させてpHを調整するためには、膨大な希釈水の添加が必要となるため、設備容量や水バランス、廃水処理の手間とコストなどを考慮すると、実用的な方法とは言い難い。   In Patent Document 3, when a sulfuric acid process is used, copper sulfide minerals are leached with sulfuric acid at 170 ° C. to 235 ° C., and then excess acid is diluted with water to adjust the pH of the leachate to 1.2 to 2. A method for adjusting to the range of 0.0 is disclosed. However, in order to adjust the pH by lowering the acid concentration by diluting the leachate, it is necessary to add a large amount of dilution water, so considering the capacity of the equipment, water balance, labor and cost of wastewater treatment, etc. It is hard to say that it is a practical method.

特表平10−510585号公報Japanese National Patent Publication No. 10-510585 特表平11−506166号公報Japanese National Patent Publication No. 11-506166 特開2007−297717号公報JP 2007-297717 A

本発明は、上記した硫酸系プロセスによる硫化物からの銅の分離回収方法における問題点に鑑みてなされたものであり、硫化物の浸出から銅の電解採取までの全工程で消費する硫酸の量を低減すると共に、抽出及び逆抽出工程で中和剤を使用する必要がなく、従来に比べて大幅にコストの低減を図ることが可能な銅の分離回収方法を提供することを目的とする。   The present invention has been made in view of the problems in the method for separating and recovering copper from sulfides by the sulfuric acid-based process described above, and the amount of sulfuric acid consumed in all steps from sulfide leaching to copper electrowinning. It is an object of the present invention to provide a method for separating and recovering copper, which can reduce the cost and can greatly reduce the cost as compared with the conventional method without using a neutralizing agent in the extraction and back-extraction steps.

上記目的を達成するため、本発明者らは、硫酸系プロセスにより硫化物から銅を分離回収する際の条件について詳細な検討を行った結果、浸出時の温度を特定の範囲に維持すると、硫黄の酸化が抑制されるだけでなく、鉄イオンと遊離硫酸がH型鉄明礬石を生成して沈殿することを見出した。また、浸出液からの銅の抽出時には、オキシム系抽出剤の1種であるアルドキシム型抽出剤の組成を最適化することによって、優れた抽出性能と同時に良好な逆抽出性能が得られることが分り、これらの知見に基づいて本発明を完成させたものである。   In order to achieve the above object, the present inventors have conducted detailed studies on conditions for separating and recovering copper from sulfides by a sulfuric acid-based process. As a result, when the temperature during leaching is maintained within a specific range, It was found that not only the oxidation of iron was suppressed, but also iron ions and free sulfuric acid formed and precipitated H-type iron alunite. In addition, when extracting copper from the leachate, by optimizing the composition of the aldoxime-type extractant, which is one of the oxime-based extractants, it can be seen that excellent back-extraction performance as well as excellent extraction performance can be obtained. The present invention has been completed based on these findings.

即ち、本発明が提供する含銅鉄硫化物からの銅の分離回収方法は、該硫化物と硫酸溶液とを混合したスラリーを反応容器に入れ、酸素又は空気を吹き込みながら銅と鉄を浸出する浸出工程と、得られた浸出液を有機抽出剤と混合して銅を抽出する抽出工程と、得られた抽出有機を逆抽出始液と混合し、逆抽出後液に銅を逆抽出する逆抽出工程と、得られた逆抽出後液を電解始液として電気銅を電解採取する電解工程とを含み、
上記浸出工程での温度を102℃以上112℃以下の範囲に維持すると共に、上記抽出工程での有機抽出剤としてアルドキシム型抽出剤を用い、該アルドキシム型抽出剤が5−アルキルサリチルアルドキシムを主成分とし、且つアルコール類又はフェノール類の含有量が5重量%未満であることを特徴とする。
That is, in the method for separating and recovering copper from copper-containing iron sulfide provided by the present invention, a slurry obtained by mixing the sulfide and sulfuric acid solution is placed in a reaction vessel, and copper and iron are leached while blowing oxygen or air. A leaching step, an extraction step in which the obtained leachate is mixed with an organic extractant to extract copper, and a reverse extraction in which the obtained extracted organic is mixed with a back-extraction starting solution and copper is back-extracted into the solution after back-extraction. A step and an electrolysis step of electrolytically collecting electrolytic copper using the obtained back-extracted post-extraction solution as an electrolysis start solution,
The temperature in the leaching step is maintained in the range of 102 ° C. or higher and 112 ° C. or lower, and an aldoxime type extractant is used as the organic extractant in the extraction step, and the aldoxime type extractant is mainly 5-alkylsalicylaldoxime. It is a component, and the content of alcohols or phenols is less than 5% by weight.

上記本発明による含銅鉄硫化物からの銅の分離回収方法においては、前記アルドキシム型抽出剤中の5−アルキルサリチルアルドキシム濃度を25重量%以上35重量%以下とすることが好ましい。また、前記抽出工程での抽残液は、前記浸出工程に繰り返して、銅と鉄を浸出するための硫酸溶液として使用することができる。   In the method for separating and recovering copper from copper-containing iron sulfide according to the present invention, it is preferable that the concentration of 5-alkylsalicylaldoxime in the aldoxime type extractant is 25 wt% or more and 35 wt% or less. The extraction residual liquid in the extraction step can be used as a sulfuric acid solution for leaching copper and iron by repeating the leaching step.

本発明によれば、中和剤を一切使用せずに抽出工程及び逆抽出工程を操業することができる。しかも、その抽出工程での抽残液を浸出工程に再利用することができるため、全工程をとおして硫酸の添加量を削減することができる。従って、本発明の含銅鉄硫化物からの銅の分離回収方法を使用することによって、従来の方法に比べて大幅にコストを低減することができる。   According to the present invention, the extraction step and the back extraction step can be operated without using any neutralizing agent. Moreover, since the extraction residual liquid in the extraction process can be reused in the leaching process, the amount of sulfuric acid added can be reduced throughout the entire process. Therefore, by using the method for separating and recovering copper from the copper-containing iron sulfide of the present invention, the cost can be greatly reduced as compared with the conventional method.

本発明の含銅鉄硫化物からの銅の分離回収方法における各工程を示すフロー図である。It is a flowchart which shows each process in the separation-and-recovery method of copper from the copper-containing iron sulfide of this invention.

本発明では、図1に示すように、まず浸出工程において、含銅鉄硫化物と硫酸溶液(浸出始液)とを混合したスラリーを反応容器に入れ、酸素又は空気を吹き込むことによって、含銅鉄硫化物から銅と鉄、鉛などを浸出液中に浸出する。得られた浸出液は、浸出残渣と分離して、次の抽出工程に送られる。   In the present invention, as shown in FIG. 1, first, in the leaching step, a slurry in which copper-containing iron sulfide and a sulfuric acid solution (leaching start solution) are mixed is put into a reaction vessel, and oxygen or air is blown into it. Leach copper, iron, lead, etc. from the iron sulfide into the leachate. The obtained leachate is separated from the leach residue and sent to the next extraction step.

しかしながら、含銅鉄硫化物から銅と鉄を硫酸溶液で抽出する場合、上述したように従来の浸出方法では上記化学式2により硫酸が生成する。そして、次の抽出工程でも、オキシム系抽出剤を用いることで上記化学式3により硫酸が副生する。これらの過剰な硫酸によってオキシム系抽出剤の抽出性能が低下するため、その性能低下を抑える目的で、アルカリなどを添加して硫酸を中和することが行われてきた。   However, when copper and iron are extracted from a copper-containing iron sulfide with a sulfuric acid solution, as described above, sulfuric acid is generated by the above chemical formula 2 in the conventional leaching method. In the next extraction step, sulfuric acid is by-produced by the above chemical formula 3 by using an oxime-based extractant. Since the extraction performance of the oxime-based extractant is lowered by these excessive sulfuric acids, it has been performed to neutralize the sulfuric acid by adding an alkali or the like for the purpose of suppressing the performance drop.

この過剰な硫酸が生成する問題に対して、本発明では、浸出の際に温度を102℃以上112℃以下の範囲に維持することにより、硫黄の酸化を抑制できるうえ、浸出液中の遊離硫酸を鉄イオンと反応させてH型鉄明礬石(Jarosite−Hydronium;HFe(SO(OH))として沈殿させることができる。また、遊離硫酸濃度が低くなる、例えば20g/l以下のように低くなり、且つ硫酸/鉄のモル比率が理論的な必要量の3分の2を越えると、鉄イオンは針鉄鉱(Goethite;FeOOH)を生成するため、遊離硫酸には影響を及ぼさないことが分った。 In order to solve this problem of excessive sulfuric acid, in the present invention, by maintaining the temperature in the range of 102 ° C. or higher and 112 ° C. or lower during leaching, sulfur oxidation can be suppressed, and free sulfuric acid in the leachate can be reduced. It can be precipitated as H-type iron aurite by reacting with iron ions (Jarosite-Hydronium; HFe 3 (SO 4 ) 2 (OH) 6 ). Also, when the free sulfuric acid concentration becomes low, for example, as low as 20 g / l or less, and the sulfuric acid / iron molar ratio exceeds two-thirds of the theoretical required amount, iron ions become goethite (Goethite; It has been found that free sulfuric acid is not affected because it produces (FeOOH).

上記浸出工程において含鉄銅硫化物から銅を浸出し、同時に鉄を加水分解して固定する場合、102℃未満の温度では浸出時間が非常に遅くなる。一方、浸出時の温度が112℃を超えると、共存する硫化鉄鉱の酸化が優先的に進行し、抑制可能なレベルを超える遊離硫酸が発生する。従って、浸出温度の範囲は、102℃以上112℃以下とする必要がある。   When leaching copper from iron-containing copper sulfide in the leaching step and simultaneously hydrolyzing and fixing iron, the leaching time becomes very slow at a temperature below 102 ° C. On the other hand, when the temperature at the time of leaching exceeds 112 ° C., oxidation of the coexisting iron sulfide ore proceeds preferentially, and free sulfuric acid exceeding the level that can be suppressed is generated. Therefore, the leaching temperature range needs to be 102 ° C. or higher and 112 ° C. or lower.

このように、本発明の浸出工程においては、浸出温度を102℃以上112℃以下の範囲に制御する、即ちH型鉄明礬石を生成させる条件で操業することによって、共存する鉄イオンを利用して過剰な硫酸を浸出液から分離することができる。その結果、従来の硫酸溶液での浸出のように浸出液中に過剰な硫酸が蓄積しなくなり、後述するように浸出工程から抽出工程において硫酸濃度を一定に維持することが可能となる。   Thus, in the leaching process of the present invention, the leaching temperature is controlled in the range of 102 ° C. or higher and 112 ° C. or lower, that is, by operating under conditions that generate H-type iron alunite, the coexisting iron ions are used. Excess sulfuric acid can be separated from the leachate. As a result, excess sulfuric acid does not accumulate in the leachate as in the case of leaching with a conventional sulfuric acid solution, and the sulfuric acid concentration can be kept constant from the leaching step to the extraction step as will be described later.

次の抽出工では、上記浸出工程で得られた浸出液を有機抽出剤と混合して銅を抽出するが、有機抽出剤としてオキシム系抽出剤の1種であるアルドキシム(aldoxime)型抽出剤を使用する。アルドキシム型抽出剤は、銅を抽出剤中に抽出しやすい性質を有するが、抽出後の抽出剤(抽出有機)からの銅の逆抽出が不完全となり易いことが知られている。   In the next extraction process, copper is extracted by mixing the leachate obtained in the above leaching process with an organic extractant, and an aldoxime type extractant, which is a kind of oxime-based extractant, is used as the organic extractant. To do. Aldoxime type extractants have the property of easily extracting copper into the extractant, but it is known that back extraction of copper from the extractant (extracted organic) after extraction tends to be incomplete.

そのため、現在市販されているアルドキシム型抽出剤の多くは、主成分としての5−アルキルサリチルアルドキシムのほかに、アルコール類又はフェノール類を含有させて酸性を弱めることで逆抽出性能を向上させている。しかし、アルコール類やフェノール類の添加によって酸性を弱めると、上述したように抽出反応の進行に伴って生成する硫酸により逆抽出反応が進行して、銅の抽出率が著しく低下するという欠点があった。   Therefore, many of the aldoxime type extractants currently on the market improve the back extraction performance by reducing the acidity by containing alcohols or phenols in addition to 5-alkylsalicylaldoxime as the main component. Yes. However, if the acidity is weakened by adding alcohols or phenols, as described above, the back extraction reaction proceeds due to the sulfuric acid generated as the extraction reaction proceeds, and the copper extraction rate is significantly reduced. It was.

このようなアルドキシム型抽出剤が有する問題に対し、本発明では、アルドキシム型抽出剤の組成を最適化すること、即ち、アルコール類又はフェノール類の濃度を5重量%未満に抑制することによって、優れた抽出性能を維持しながら、同時に良好な逆抽出性能を得ることが可能となった。尚、アルコール類又はフェノール類の濃度が上記範囲となるように組成を最適化するには、例えば市販のアルドキシム型抽出剤を希釈剤で希釈すればよい。   In order to solve the problem of such an aldoxime type extractant, the present invention is excellent by optimizing the composition of the aldoxime type extractant, that is, by suppressing the concentration of alcohols or phenols to less than 5% by weight. It was possible to obtain good back extraction performance at the same time while maintaining the extraction performance. In order to optimize the composition so that the concentration of alcohols or phenols falls within the above range, for example, a commercially available aldoxime type extractant may be diluted with a diluent.

また、上記アルドキシム型抽出剤の組成の最適化に際しては、例えば希釈剤で希釈することにより、5−アルキルサリチルアルドキシムの濃度が25重量%以上35重量%以下とすることが好ましい。5−アルキルサリチルアルドキシムの濃度が35重量%を超えると、粘性が増加して相分離時間が著しく増加するため好ましくない。一方、5−アルキルサリチルアルドキシムの濃度が25重量%未満になると、抽出容量が不足するため好ましくない。   Moreover, when optimizing the composition of the aldoxime type extractant, it is preferable that the concentration of 5-alkylsalicylaldoxime is 25% by weight or more and 35% by weight or less, for example, by diluting with a diluent. When the concentration of 5-alkylsalicylaldoxime exceeds 35% by weight, the viscosity increases and the phase separation time increases remarkably, which is not preferable. On the other hand, when the concentration of 5-alkylsalicylaldoxime is less than 25% by weight, the extraction capacity is insufficient, which is not preferable.

本発明で用いるアルドキシム型抽出剤としては、例えばCognis社製のLIX860N−IC(商品名)などがあり、その組成を希釈によって最適化すればよい。また、アルドキシム型抽出剤の組成を最適化するために使用する希釈剤としては、抽出剤の溶解度及び沸点、引火点が高く、水への溶解度が低い炭化水素系の溶媒が好適であり、例えばテクリーンN−20(商品名、新日本石油(株)製)などを用いることができる。   As an aldoxime type extractant used in the present invention, for example, there is LIX860N-IC (trade name) manufactured by Cognis, and the composition may be optimized by dilution. Further, as a diluent used for optimizing the composition of the aldoxime type extractant, a hydrocarbon solvent having a high solubility and boiling point of the extractant, a high flash point, and a low solubility in water is preferable. Teclean N-20 (trade name, manufactured by Nippon Oil Corporation) or the like can be used.

上記のごとく希釈により組成を最適化したアルドキシウム型抽出剤を用いて浸出液から銅を抽出した場合、上記浸出工程での温度制御により過剰な硫酸を除去できることと相まって、抽出の際に浸出液中の過剰な硫酸を中和する必要がなくなる。従って、図1に示すように、抽残液は上記浸出工程に繰り返して、含銅鉄硫化物を浸出する浸出始液(硫酸溶液)として再び使用することができる。   When copper is extracted from the leachate using the aldoxium-type extractant whose composition has been optimized by dilution as described above, excess sulfuric acid can be removed during the extraction, coupled with the ability to remove excess sulfuric acid by temperature control in the leaching step. No need to neutralize the sulfuric acid. Therefore, as shown in FIG. 1, the extraction residual liquid can be used again as a leaching start liquid (sulfuric acid solution) for leaching copper-containing iron sulfide by repeating the leaching step.

上記抽出工程で得られた抽出有機(抽出後の有機抽出剤)は、次の逆抽出工程において逆抽出始液と混合することによって、銅イオンが逆抽出された逆抽出後液が得られる。銅イオンが逆抽出された後のアルドキシム型抽出剤(逆抽出後有機)は、上記抽出工程に繰り返され、浸出液からの銅の抽出に再利用することができる。   The extracted organic obtained in the extraction step (the organic extractant after extraction) is mixed with the back extraction starting solution in the next back extraction step to obtain a back-extracted solution from which copper ions are back-extracted. The aldoxime-type extractant after the copper ions are back-extracted (organic after back-extraction) is repeated in the extraction step and can be reused for extracting copper from the leachate.

尚、実操業において、上記抽出工程は、希釈により組成を最適化したアルドキシウム型抽出剤と浸出液とを、アルドキシウム型抽出剤:浸出液の体積比が4:1の割合となるように混合し、2段もしくは3段の混合槽を経て銅を抽出することが好ましい。一方、逆抽出工程では、抽出有機と逆抽出始液(硫酸濃度200〜250g/l)とを、抽出有機:逆抽出始液の体積比が2:1の割合となるように混合し、2段もしくは3段の混合槽を用いて抽出有機中の銅を逆抽出することが好ましい。   In the actual operation, the extraction step is performed by mixing the aldoxium-type extractant whose composition is optimized by dilution and the leachate so that the volume ratio of the aldoxium-type extractant: exudate is 4: 1. It is preferable to extract copper through a stage or a three-stage mixing tank. On the other hand, in the back extraction step, the extracted organic and the back extraction start solution (sulfuric acid concentration 200 to 250 g / l) are mixed so that the volume ratio of the extract organic: back extraction start solution is 2: 1. It is preferable to back-extract copper in the extracted organic using a stage or three-stage mixing tank.

上記逆抽出工程で得られた銅を含む逆抽出後液は、電解工程に送られ、従来と同様に電解採取などの方法を用いて銅を電気銅として回収する。得られる電解廃液は硫酸溶液でるため、上記逆抽出工程に繰り返し、逆抽出始液として再利用することができる。   The back-extracted solution containing copper obtained in the back extraction step is sent to the electrolysis step, and copper is recovered as electrolytic copper using a method such as electrowinning as in the prior art. Since the obtained electrolytic waste liquid is a sulfuric acid solution, it can be reused as the back extraction start liquid by repeating the back extraction step.

上記したように、本発明によれば、中和剤を使用することなく、抽出工程と逆抽出工程のサイクルを実施することが可能である。また、抽残液を浸出工程に浸出始液として繰り返し、電解廃液を逆抽出工程に逆抽出始液として繰り返すことができるため、全工程をとおして硫酸の添加量を削減することができる。尚、本発明は、銅精鉱や黄銅鉱のような硫化銅鉱物に限定されず、銅と鉄を含有する硫化物であれば適用することができる。   As described above, according to the present invention, it is possible to carry out the cycle of the extraction step and the back extraction step without using a neutralizing agent. Further, since the extraction residual liquid can be repeated as the leaching start liquid in the leaching process and the electrolytic waste liquid can be repeated as the back extraction start liquid in the back extraction process, the amount of sulfuric acid added can be reduced throughout the entire process. In addition, this invention is not limited to copper sulfide minerals, such as copper concentrate and chalcopyrite, but can be applied if it is a sulfide containing copper and iron.

[実施例1]
含銅鉄硫化物として、黄銅鉱と黄鉄鉱の混合物からなり、銅20.6重量%、鉄25.7重量%、硫黄24.6重量%を含有する銅精鉱を用いた。この銅精鉱を湿式粉砕し、粒径10μm以下の粒子が全体の80%以上を占めるように粒度を調製した。粉砕した銅精鉱を、乾燥重量に換算して200g相当になるように分取した。
[Example 1]
As the copper-containing iron sulfide, a copper concentrate comprising a mixture of chalcopyrite and pyrite and containing 20.6% by weight of copper, 25.7% by weight of iron and 24.6% by weight of sulfur was used. This copper concentrate was wet pulverized, and the particle size was adjusted so that particles having a particle size of 10 μm or less occupied 80% or more of the total. The pulverized copper concentrate was fractionated so as to be equivalent to 200 g in terms of dry weight.

分取した銅精鉱200gを、銅濃度1.3g/l、2価鉄濃度45.3g/l、硫黄濃度64.2g/l、及び遊離硫酸濃度95g/lの硫酸水溶液1000ml中に懸濁し、更に界面活性剤としてリグニンスルホン酸ナトリウムを0.5g/lの濃度となるように添加して、スラリーとした。   200 g of the separated copper concentrate is suspended in 1000 ml of an aqueous sulfuric acid solution having a copper concentration of 1.3 g / l, a divalent iron concentration of 45.3 g / l, a sulfur concentration of 64.2 g / l, and a free sulfuric acid concentration of 95 g / l. Further, sodium lignin sulfonate as a surfactant was added to a concentration of 0.5 g / l to obtain a slurry.

上記スラリーを圧力容器中に装入して密閉し、混合しながら105℃まで昇温した。昇温後の内圧は0.1MPaであった。次に、酸素ガスを圧力容器内に吹き込み、内圧を1.5MPaまで上昇させた。更に、105℃の温度を維持しながら撹拌を2時間継続し、その間に圧力が低下した分は酸素ガスを吹き込んで一定の圧力に維持した。   The slurry was charged in a pressure vessel, sealed, and heated to 105 ° C. while mixing. The internal pressure after the temperature increase was 0.1 MPa. Next, oxygen gas was blown into the pressure vessel, and the internal pressure was increased to 1.5 MPa. Further, stirring was continued for 2 hours while maintaining a temperature of 105 ° C., and oxygen gas was blown in to maintain a constant pressure for the time during which the pressure decreased.

反応後のスラリーをヌッチェと濾瓶を用いて濾過し、浸出液と浸出残渣とに分けた。浸出液と浸出残渣中の銅、鉄、硫黄の濃度を、それぞれICPを用いて分析した。また、浸出液中の遊離硫酸濃度は中和滴定によって求めた。その結果、浸出液中の銅濃度は48.3g/lであり、銅の浸出率は81.0%であった。また、遊離硫酸濃度は2g/lであり、硫黄の酸化率(銅精鉱に含有される硫黄の中で浸出液中に溶出した割合)は7.6%であった。   The slurry after the reaction was filtered using Nutsche and a filter bottle, and separated into a leachate and a leach residue. The concentrations of copper, iron and sulfur in the leachate and leach residue were each analyzed using ICP. The concentration of free sulfuric acid in the leachate was determined by neutralization titration. As a result, the copper concentration in the leaching solution was 48.3 g / l, and the leaching rate of copper was 81.0%. Moreover, the free sulfuric acid concentration was 2 g / l, and the oxidation rate of sulfur (the ratio of the sulfur contained in the copper concentrate eluted in the leachate) was 7.6%.

次に、得られた浸出液を有機抽出剤と混合して銅を抽出した。使用した有機抽出剤は、85重量%の5−ノニルサリチルアルドキシムと5重量%の2−ノニルフェノールとからなるアルドキシム型有機抽出剤LIX860N−IC(商品名;Cognis社製)に、希釈剤としてテクリーンN−20(商品名;新日本石油製)を体積比で3:7に混合し、2−ノニルフェノールの含有量を1.5重量%に調整したものである。   Next, the obtained leachate was mixed with an organic extractant to extract copper. The organic extractant used was an aldoxime type organic extractant LIX860N-IC (trade name; manufactured by Cognis) consisting of 85% by weight of 5-nonylsalicylaldoxime and 5% by weight of 2-nonylphenol. N-20 (trade name; manufactured by Nippon Oil Corporation) is mixed at a volume ratio of 3: 7, and the content of 2-nonylphenol is adjusted to 1.5% by weight.

尚、上記の組成を調整した有機抽出剤中の5−ノニルサリチルアルドキシムの濃度は26重量%である。また、抽出操作に先だって、プロセスとして循環使用され平衡状態を維持した状態を想定し、上記有機抽出剤と硫酸銅溶液とを混合することにより、予め有機抽出剤中の銅イオン濃度を23g/lに調整した。   In addition, the density | concentration of 5-nonyl salicyl aldoxime in the organic extractant which adjusted said composition is 26 weight%. Also, prior to the extraction operation, assuming a state in which the process is circulated and maintained in an equilibrium state, the organic extractant and the copper sulfate solution are mixed, so that the copper ion concentration in the organic extractant is 23 g / l in advance. Adjusted.

上記有機抽出剤4に対して浸出液1の割合、即ち有機抽出剤と浸出液の液量の体積比(O/A比)は4:1とした。抽出段数を3段とし、有機抽出剤と浸出液とが向流となるように通液して混合し、浸出液中に含有される銅を有機抽出剤中に抽出した。   The ratio of the leachate 1 to the organic extractant 4, that is, the volume ratio (O / A ratio) of the amount of the organic extractant and the leachate was 4: 1. The number of extraction stages was three, and the organic extractant and the leachate were passed and mixed so that the countercurrent flowed countercurrently, and the copper contained in the leachate was extracted into the organic extractant.

抽出後の浸出液(抽残液)を上記と同様に分析したところ、抽残液中の銅濃度は8.3g/lまで低下し、浸出液に含有された銅イオンの83%を有機抽出剤中に抽出することができた。一方、抽残液中の遊離硫酸濃度は、硫酸の副生により78g/lとなった。また、抽出槽から有機抽出剤と浸出液の混合溶液をサンプリングし、静置させて抽出剤と浸出液が分離するまでの相分離時間を測定したところ25秒であった。   When the extracted leachate (extracted residual liquid) was analyzed in the same manner as described above, the copper concentration in the extracted residual liquid was reduced to 8.3 g / l, and 83% of the copper ions contained in the extracted liquid were contained in the organic extractant. Could be extracted. On the other hand, the free sulfuric acid concentration in the extracted residue was 78 g / l due to the by-product of sulfuric acid. Moreover, when the mixed solution of the organic extractant and the leachate was sampled from the extraction tank and allowed to stand to measure the phase separation time until the extractant and the leachate were separated, it was 25 seconds.

また、上記抽出により得られた抽残液を用いて、新たな硫酸を添加することなく、その他の条件は同じに設定して、再び上記と同一の銅精鉱の浸出を行った。その結果、得られた浸出液中の銅濃度は上記の場合と同じく48g/lであり、一方で遊離硫酸濃度は2g/lまで低下した。このことから、抽残液を次の浸出工程に繰り返して、浸出始液として使用できることが確かめられた。   In addition, using the extraction residual liquid obtained by the above extraction, the same copper concentrate was leached again with the other conditions set to the same without adding new sulfuric acid. As a result, the copper concentration in the obtained leachate was 48 g / l as in the above case, while the free sulfuric acid concentration decreased to 2 g / l. From this, it was confirmed that the extraction residual liquid can be used as a leaching start liquid by repeating it to the next leaching step.

次に、上記抽出後の有機抽出剤(抽出有機)から銅の逆抽出を行った。逆抽出始液として、予め試薬硫酸銅と硫酸とを用いて銅濃度36g/l及び遊離硫酸濃度231g/lに調製した溶液を使用した。O/A比を2とし且つ抽出段数を4段として、ミキサーセトラーに向流に通液して混合し、抽出有機から銅を硫酸溶液中に逆抽出して逆抽出後液を得た。   Next, copper was back-extracted from the extracted organic extractant (extracted organic). As a back extraction starting solution, a solution prepared in advance using a reagent copper sulfate and sulfuric acid to a copper concentration of 36 g / l and a free sulfuric acid concentration of 231 g / l was used. The O / A ratio was set to 2 and the number of extraction stages was 4, and the mixture was passed through the mixer settler in a countercurrent manner and mixed, and copper was back-extracted from the extracted organic into a sulfuric acid solution to obtain a liquid after back extraction.

得られた逆抽出後液を上記と同様に分析したところ、銅濃度は56g/l、遊離硫酸濃度は200g/lであった。また、逆抽出後の有機抽出剤(逆抽出後有機)中の銅濃度は23g/lとなり、抽出前の有機抽出剤に含有させた銅濃度まで低下した。従って、抽出した銅に対して逆抽出率はほぼ100%となり、逆抽出後有機が有機抽出剤として再生され、抽出工程に繰り返して使用できることが確認された。   When the obtained solution after back extraction was analyzed in the same manner as described above, the copper concentration was 56 g / l and the free sulfuric acid concentration was 200 g / l. Moreover, the copper concentration in the organic extractant after back extraction (organic after back extraction) was 23 g / l, which was reduced to the copper concentration contained in the organic extractant before extraction. Therefore, the back extraction rate was almost 100% with respect to the extracted copper, and it was confirmed that the organic after back extraction was regenerated as an organic extractant and could be used repeatedly in the extraction process.

上記逆抽出で得られた逆抽出後液を電解始液とし、液温度を57℃から62℃の範囲に維持しながら、鉛製のアノードとステンレス製のカソードを電極として電流密度300A/mとなる電流で通電して、銅をカソード上に電析させた。電解液中の銅濃度が36g/lになった時点で通電を止め、カソードを引揚げ、電着した銅を剥ぎ取って洗浄した。 The back-extracted solution obtained by the above-described back extraction is used as an electrolytic starting solution, and the current density is 300 A / m 2 using a lead anode and a stainless steel cathode as electrodes while maintaining the solution temperature in the range of 57 ° C. to 62 ° C. Then, copper was electrodeposited on the cathode. When the copper concentration in the electrolyte reached 36 g / l, the current supply was stopped, the cathode was lifted, and the electrodeposited copper was peeled off and washed.

上記電解終了後の電解液を上記と同様に分析した結果、電解液中の遊離硫酸濃度は上記逆抽出に使用した逆抽出始液と同じ231g/lであった。この結果から、逆抽出後液が電解採取によって再生され、逆抽出工程に繰り返して逆抽出始液として使用できることが確認された。   As a result of analyzing the electrolytic solution after completion of the electrolysis in the same manner as described above, the concentration of free sulfuric acid in the electrolytic solution was 231 g / l, which is the same as the back extraction starting solution used for the back extraction. From this result, it was confirmed that the solution after back extraction was regenerated by electrowinning and can be used as a back extraction starting solution by repeating the back extraction step.

[比較例1]
上記実施例1と同様に実施したが、銅精鉱の浸出温度を100℃、120℃、140℃にそれぞれ変化させた以外は上記と同一条件の下で浸出を行い、上記と同様にして硫黄酸化率を求めた。得られた硫黄の酸化率は、浸出温度100℃では2%、浸出温度120℃では39%、浸出温度140℃では46%となり、浸出温度が高いほど硫黄の酸化率は高くなり、遊離硫酸の副生量が増加した。尚、浸出温度が100℃の場合、浸出時間が極めて遅くなった。
[Comparative Example 1]
Although it carried out similarly to the said Example 1, it leached on the same conditions as the above except having changed the leaching temperature of the copper concentrate to 100 degreeC, 120 degreeC, and 140 degreeC, respectively, and sulfur was carried out similarly to the above. The oxidation rate was determined. The resulting sulfur oxidation rate was 2% at a leaching temperature of 100 ° C, 39% at a leaching temperature of 120 ° C, and 46% at a leaching temperature of 140 ° C. The higher the leaching temperature, the higher the oxidation rate of sulfur. Byproduct increased. When the leaching temperature was 100 ° C., the leaching time was extremely slow.

上記の各浸出温度での浸出液を上記実施例1と同じ条件で抽出処理し、抽残液を浸出工程に循環することを3回繰り返した場合、浸出温度100℃の条件では発生する硫酸イオンが不足し、硫酸の添加が必要となった。一方、浸出温度120℃と140℃での条件では、硫酸イオンが過剰となり、中和剤の添加が必要となった。   When the leachate at each leaching temperature is extracted under the same conditions as in Example 1 and the extraction liquid is circulated three times to the leaching step, sulfate ions generated under the leaching temperature of 100 ° C. Insufficient sulfuric acid was required. On the other hand, under the conditions where the leaching temperatures were 120 ° C. and 140 ° C., sulfate ions became excessive, and it was necessary to add a neutralizing agent.

[比較例2]
上記実施例1と同様に実施したが、有機抽出剤として50重量%の5−ドデシルサリチルアルドキシムと50重量%の2−ヒドロキシ−5−ノニルアセトフェノンオキシムとからなるアルドキシム型有機抽出剤LIX984(商品名;Cognis社製)を、希釈せずにそのまま用いた以外は上記と同じ条件で抽出を行った。その結果、抽出工程における銅の抽出率は45%であり、上記実施例1よりもはるかに低い結果しか得られなかった。
[Comparative Example 2]
Although it implemented similarly to the said Example 1, as an organic extractant, aldoxime type organic extractant LIX984 (commodity) which consists of 50 weight% 5-dodecyl salicyl aldoxime and 50 weight% 2-hydroxy-5-nonyl acetophenone oxime Extraction was performed under the same conditions as described above except that the product (name: Cognis) was used without dilution. As a result, the copper extraction rate in the extraction process was 45%, and only a result much lower than that of Example 1 was obtained.

[参考例1]
上記実施例1と同様に実施したが、組成を調整した有機抽出剤中の5−ノニルサリチルアルドキシムの濃度を40重量%に増加させた場合、銅の抽出率は80%前後と上記実施例1と変わらなかったが、相分離時間は234秒に増加した。また、上記濃度を50重量%にまで増加した場合、相分離時間は343秒にまで増加し、著しく相分離性が悪化することが確認された。
[Reference Example 1]
Although it implemented similarly to the said Example 1, when the density | concentration of 5-nonyl salicyl aldoxime in the organic extractant which adjusted the composition was increased to 40 weight%, the extraction rate of copper was about 80%, and said Example Although not different from 1, the phase separation time increased to 234 seconds. Moreover, when the said density | concentration was increased to 50 weight%, phase-separation time increased to 343 seconds, and it was confirmed that phase-separability deteriorates remarkably.

一方、有機抽出剤の濃度を20重量%に低下させたところ、相分離時間は23秒と短くなったが、銅の抽出率は55%にまで低下した。   On the other hand, when the concentration of the organic extractant was reduced to 20% by weight, the phase separation time was shortened to 23 seconds, but the copper extraction rate was reduced to 55%.

[参考例2]
上記実施例1と同様に実施したが、抽出工程において相比をO/A=2/1として多段向流にて5段階の抽出を行ったところ、銅の抽出率は46%と非実用的な低い抽出率しか得られなかった。
[Reference Example 2]
Although it carried out similarly to the said Example 1, when the phase ratio was set to O / A = 2/1 in the extraction process and five steps of extraction was performed by multistage countercurrent, the extraction rate of copper was 46% and was impractical Only a low extraction rate was obtained.

また、上記実施例1と同様に実施したが、抽出工程で生成した銅抽出有機について、銅濃度36g/l、遊離硫酸の濃度231g/lの組成の水溶液でO/A=4/1として多段向流にて3段階の逆抽出を行ったところ、抽出した銅に対する逆抽出率は48%までしか得られず、不完全であった。   Moreover, although implemented similarly to the said Example 1, about the copper extraction organic produced | generated at the extraction process, it is multistage with O / A = 4/1 in the aqueous solution of a composition with a copper concentration of 36 g / l and a free sulfuric acid density | concentration of 231 g / l. When three stages of back extraction were performed in countercurrent, the back extraction rate for the extracted copper was only up to 48%, which was incomplete.

Claims (3)

銅と鉄を含有する含銅鉄硫化物から湿式法により銅を分離回収する方法であって、該硫化物と硫酸溶液とを混合したスラリーを反応容器に入れ、酸素又は空気を吹き込みながら銅と鉄を浸出する浸出工程と、得られた浸出液を有機抽出剤と混合して銅を抽出する抽出工程と、得られた抽出有機を逆抽出始液と混合し、逆抽出後液に銅を逆抽出する逆抽出工程と、得られた逆抽出後液を電解始液として電気銅を電解採取する電解工程とを含み、
上記浸出工程での温度を102℃以上112℃以下の範囲に維持すると共に、上記抽出工程での有機抽出剤としてアルドキシム型抽出剤を用い、該アルドキシム型抽出剤が5−アルキルサリチルアルドキシムを主成分とし、且つアルコール類又はフェノール類の含有量が5重量%未満であることを特徴とする含銅鉄硫化物からの銅の分離回収方法。
A method of separating and recovering copper from a copper-containing iron sulfide containing copper and iron by a wet method, wherein a slurry in which the sulfide and a sulfuric acid solution are mixed is put into a reaction vessel, and copper or The leaching step of leaching iron, the extraction step of extracting the copper by mixing the obtained leachate with an organic extractant, and mixing the obtained extracted organic with the back extraction starting solution, and reverse the copper to the solution after back extraction A back extraction step for extraction, and an electrolysis step for electrolytically collecting electrolytic copper using the obtained back-extraction solution as an electrolysis start solution,
The temperature in the leaching step is maintained in the range of 102 ° C. or higher and 112 ° C. or lower, and an aldoxime type extractant is used as the organic extractant in the extraction step, and the aldoxime type extractant is mainly 5-alkylsalicylaldoxime. A method for separating and recovering copper from a copper-containing iron sulfide, characterized in that the content of the alcohol or phenol is less than 5% by weight as a component.
前記アルドキシム型抽出剤中の5−アルキルサリチルアルドキシム濃度を25重量%以上35重量%以下とすることを特徴とする、請求項1に記載の含銅鉄硫化物からの銅の分離回収方法。   The method for separating and recovering copper from copper-containing iron sulfide according to claim 1, wherein the concentration of 5-alkylsalicylaldoxime in the aldoxime-type extractant is 25 wt% or more and 35 wt% or less. 前記抽出工程での抽残液を前記浸出工程に繰り返し、銅と鉄を浸出するための硫酸溶液として使用することを特徴とする、請求項1又は2に記載の含銅鉄硫化物からの銅の分離回収方法。   The copper from the copper-containing iron sulfide according to claim 1 or 2, wherein the extraction residual liquid in the extraction step is repeated in the leaching step and used as a sulfuric acid solution for leaching copper and iron. Separation and recovery method.
JP2010007745A 2010-01-18 2010-01-18 Method for separating and recovering copper from copper-containing iron sulfides Active JP5477009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007745A JP5477009B2 (en) 2010-01-18 2010-01-18 Method for separating and recovering copper from copper-containing iron sulfides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007745A JP5477009B2 (en) 2010-01-18 2010-01-18 Method for separating and recovering copper from copper-containing iron sulfides

Publications (2)

Publication Number Publication Date
JP2011144437A true JP2011144437A (en) 2011-07-28
JP5477009B2 JP5477009B2 (en) 2014-04-23

Family

ID=44459535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007745A Active JP5477009B2 (en) 2010-01-18 2010-01-18 Method for separating and recovering copper from copper-containing iron sulfides

Country Status (1)

Country Link
JP (1) JP5477009B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706874A (en) * 2012-07-03 2012-10-03 中国科学院唐山高新技术研究与转化中心 Reagent and method for detecting copper ion content in water environment
CN103088364A (en) * 2013-02-07 2013-05-08 灵宝华鑫铜箔有限责任公司 Recycling method of copper foil production wastewater
JP2013095979A (en) * 2011-11-02 2013-05-20 Toshiba Corp Metal recovering method
CN103194767A (en) * 2013-04-16 2013-07-10 中南大学 Method for preparing manganese sulfate electrolyte by using high-iron and high-phosphor manganese ores
KR101465457B1 (en) * 2013-12-27 2014-11-27 (주) 화영 Method for hydrometallurgical recovering copper using by low grade copper oxide and copper slag
WO2018127979A1 (en) * 2017-01-06 2018-07-12 Jx金属株式会社 Treatment method for arsenic-containing copper mineral
CN112941562A (en) * 2021-01-13 2021-06-11 湖南埃格环保科技有限公司 Combined treatment method for copper-containing sludge and copper-containing etching waste liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272328A (en) * 1985-05-16 1986-12-02 ゼネカ・リミテッド Composition for extracting metal valuables

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272328A (en) * 1985-05-16 1986-12-02 ゼネカ・リミテッド Composition for extracting metal valuables

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095979A (en) * 2011-11-02 2013-05-20 Toshiba Corp Metal recovering method
CN102706874A (en) * 2012-07-03 2012-10-03 中国科学院唐山高新技术研究与转化中心 Reagent and method for detecting copper ion content in water environment
CN103088364A (en) * 2013-02-07 2013-05-08 灵宝华鑫铜箔有限责任公司 Recycling method of copper foil production wastewater
CN103088364B (en) * 2013-02-07 2016-01-06 灵宝华鑫铜箔有限责任公司 A kind of recoverying and utilizing method of copper foil production wastewater
CN103194767A (en) * 2013-04-16 2013-07-10 中南大学 Method for preparing manganese sulfate electrolyte by using high-iron and high-phosphor manganese ores
CN103194767B (en) * 2013-04-16 2016-06-01 中南大学 High ferro high-phosphorus manganese is utilized to prepare the method for manganese sulfate electrolyte
KR101465457B1 (en) * 2013-12-27 2014-11-27 (주) 화영 Method for hydrometallurgical recovering copper using by low grade copper oxide and copper slag
WO2018127979A1 (en) * 2017-01-06 2018-07-12 Jx金属株式会社 Treatment method for arsenic-containing copper mineral
CN112941562A (en) * 2021-01-13 2021-06-11 湖南埃格环保科技有限公司 Combined treatment method for copper-containing sludge and copper-containing etching waste liquid

Also Published As

Publication number Publication date
JP5477009B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP5477009B2 (en) Method for separating and recovering copper from copper-containing iron sulfides
AU2005248188B2 (en) Method of recovering nickel and cobalt
JP2010180439A (en) Method for recovering nickel from acidic aqueous solution deriving from sulfuric acid
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
CA2792401C (en) Method of processing nickel bearing raw material
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP2009235519A (en) Method for recovering metal from ore
WO2013030450A1 (en) Method for recovering metals from material containing them
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
JP2009256764A (en) Method for collecting copper from ore
JP2008266774A (en) Zinc recovery method
JP4723629B2 (en) Silver recovery method using anion exchange resin
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP6365838B2 (en) Cobalt nickel leaching method
JP5370683B2 (en) Method for recovering copper from copper sulfide
JP4717908B2 (en) Method for recovering copper from a chloride bath containing copper
WO2003054238A1 (en) A method for the recovery of cobalt
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP5281779B2 (en) Method for producing zinc electrolyte
JP6943141B2 (en) Leaching method of mixed sulfide containing nickel and cobalt
JP5181684B2 (en) Solvent extraction method for aqueous chloride solution
JP3901076B2 (en) Method for separating and recovering copper and coexisting elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5477009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150