JP2011134916A - Material gas concentration control system - Google Patents

Material gas concentration control system Download PDF

Info

Publication number
JP2011134916A
JP2011134916A JP2009293533A JP2009293533A JP2011134916A JP 2011134916 A JP2011134916 A JP 2011134916A JP 2009293533 A JP2009293533 A JP 2009293533A JP 2009293533 A JP2009293533 A JP 2009293533A JP 2011134916 A JP2011134916 A JP 2011134916A
Authority
JP
Japan
Prior art keywords
concentration
temperature
material gas
valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293533A
Other languages
Japanese (ja)
Other versions
JP5419276B2 (en
Inventor
Masakazu Minami
雅和 南
Masanori Inoue
正規 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Horiba Stec Co Ltd
Original Assignee
Horiba Ltd
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Horiba Stec Co Ltd filed Critical Horiba Ltd
Priority to JP2009293533A priority Critical patent/JP5419276B2/en
Priority to TW099144303A priority patent/TWI518745B/en
Priority to CN201010601694.6A priority patent/CN102156489B/en
Priority to KR1020100132410A priority patent/KR101685711B1/en
Priority to US12/976,754 priority patent/US8459291B2/en
Priority to DE102010056004A priority patent/DE102010056004A1/en
Publication of JP2011134916A publication Critical patent/JP2011134916A/en
Application granted granted Critical
Publication of JP5419276B2 publication Critical patent/JP5419276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • G05D11/138Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture by sensing the concentration of the mixture, e.g. measuring pH value
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2499Mixture condition maintaining or sensing
    • Y10T137/2509By optical or chemical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2708Plural sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7736Consistency responsive

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material gas concentration control system capable of preventing the occurrence of a state such that when a concentration of a material gas is held in a constant state by a certain set concentration, partial pressure of the material gas becomes extremely low, thereby, total pressure corresponding to the partial pressure of the material gas cannot be achieved within a movable range of a valve, and the concentration of the material gas cannot be held constant at the set concentration. <P>SOLUTION: The material gas concentration control system is used for a material vaporization system 100, and includes: a first valve 23 provided on a lead-out pipe 12; a concentration measuring unit CS which measures the concentration of the material gas in a mixed gas; a concentration control unit CC which controls the degree of opening of the first valve 23 so that the measured concentration of the material gas measured by the concentration measuring unit CS reaches the predetermined set concentration; a temperature controller 41 which controls the temperature in a tank so as to be the set temperature; and a temperature setting unit 42 which sets the set temperature of the temperature controller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タンク内に収容されている固体又は液体の材料にキャリアガスを導入し、材料を気化させる材料気化システムにおいて、その気化した材料ガスの濃度を制御するシステムに関するものである。   The present invention relates to a system for controlling a concentration of a vaporized material gas in a material vaporization system that introduces a carrier gas into a solid or liquid material accommodated in a tank and vaporizes the material.

この種の材料気化システムに用いられ、材料ガスの濃度を一定に保つための濃度制御システムを本出願人は現在出願中である。この濃度制御システムは、キャリアガスと材料ガスの混合ガスがタンク内から導出される導出管に、第1バルブと、前記材料ガスの分圧を測定する分圧測定センサと、前記混合ガスの圧力である全圧を測定する全圧測定センサとを具備し、測定された分圧を全圧で割ることにより混合ガスにおける材料ガスの濃度を測定する濃度測定部と、前記濃度測定部により測定された測定濃度が予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部とを備えたものである。   The present applicant has applied for a concentration control system for use in this type of material vaporization system to keep the concentration of the material gas constant. The concentration control system includes a first valve, a partial pressure measuring sensor for measuring a partial pressure of the material gas, a pressure of the mixed gas, a lead-out pipe through which a mixed gas of the carrier gas and the material gas is led out from the tank. A total pressure measuring sensor that measures the total pressure, and a concentration measuring unit that measures the concentration of the material gas in the mixed gas by dividing the measured partial pressure by the total pressure, and the concentration measuring unit And a concentration control unit for controlling the opening degree of the first valve so that the measured concentration becomes a predetermined set concentration.

このように構成された濃度制御システムによれば、タンク内の材料が飽和蒸気圧で気化しておらず、気化の状態が変動して材料ガスの分圧が変動しているとしても、その変動に合わせて混合ガスの全圧が前記第1バルブにより制御される。従って、タンク内の材料ガスの発生状況に関わらず、材料ガスの濃度を設定濃度で一定に保つことができる。   According to the concentration control system configured as described above, even if the material in the tank is not vaporized at the saturated vapor pressure and the vaporization state fluctuates and the partial pressure of the material gas fluctuates, the fluctuation Accordingly, the total pressure of the mixed gas is controlled by the first valve. Therefore, the concentration of the material gas can be kept constant at the set concentration regardless of the generation state of the material gas in the tank.

特願2008−282622Japanese Patent Application No. 2008-282622

ところで、濃度制御を継続しているとタンク内の材料は、材料量が減少することにより気化する材料ガスの分圧が低下してくる。これは、材料が固体の場合であればその表面積が減少し、キャリアガスと接触する面積が小さくなることや、液体の場合であれば、液面が低下することによりキャリアガスのバブルが液体と接触できる時間が減少すること、蒸発時に奪われる気化熱によりタンク内の温度が低下する事等により、材料ガスの発生量が減少してしまうことに起因する。   By the way, if concentration control is continued, the partial pressure of the material gas which vaporizes the material in a tank by the amount of material decreasing will fall. If the material is a solid, the surface area is reduced, and the area in contact with the carrier gas is reduced. If the material is a liquid, the liquid level is lowered, and the bubble of the carrier gas is reduced. This is due to a decrease in the amount of material gas generated due to a decrease in the contactable time and a decrease in temperature in the tank due to the heat of vaporization taken away during evaporation.

このように材料ガスの発生量が減少し、材料ガスの分圧が小さくなると、前述した濃度制御システムは、材料ガスの濃度を一定に保つために、全圧を小さくするように第1バルブを制御する。この場合、全圧を小さくするために、前記第1バルブの開度をより大きくするように制御される。   When the generation amount of the material gas is reduced and the partial pressure of the material gas is reduced, the concentration control system described above sets the first valve to reduce the total pressure in order to keep the concentration of the material gas constant. Control. In this case, in order to reduce the total pressure, the opening degree of the first valve is controlled to be larger.

しかしながら、前記第1バルブには可動範囲が存在するので、第1バルブが全開になってしまうとそれ以上混合ガスの全圧を小さくすることができなくなってしまう。従って、材料ガスの分圧が小さくなりすぎると、それに追従して全圧を小さくすることができないため、材料ガスの濃度を設定濃度に保つことができなくなってしまう。   However, since the first valve has a movable range, if the first valve is fully opened, the total pressure of the mixed gas cannot be further reduced. Therefore, if the partial pressure of the material gas becomes too small, the total pressure cannot be reduced following the pressure, and the concentration of the material gas cannot be maintained at the set concentration.

また、濃度を一定に保つ場合だけでなく、キャリアガスの流量を制御することにより材料ガスの流量を一定に保ちたい場合でも同様に材料ガスの発生量の低下に起因して、キャリアガスの流量制御用のバルブの開度が開放限界開度となってしまい、材料ガスの流量制御が不可能になってしまう場合がある。   In addition, not only when the concentration is kept constant, but also when the flow rate of the material gas is kept constant by controlling the flow rate of the carrier gas, the flow rate of the carrier gas is similarly caused by a decrease in the generated amount of the material gas. The opening degree of the control valve becomes the opening limit opening degree, and the flow control of the material gas may become impossible.

本発明は上述したような問題を鑑みてなされたものであり、例えば、材料ガスの濃度をある設定濃度で一定に保っている際において、材料ガスの分圧が非常に低くなり、バルブの可動範囲内では材料ガスの分圧に対応した全圧を達成することができず、材料ガスの濃度を設定濃度で一定に保てなくなるような状況が生じることを防ぐことができる材料ガス濃度制御システムを提供することを目的とする。また、材料ガスの発生量が少なくなり材料ガスの流量を一定に保つことができなくなるような状況が生じるのを防ぐことができる材料ガス流量制御システムを提供する事も目的とする。   The present invention has been made in view of the above-described problems. For example, when the concentration of the material gas is kept constant at a certain set concentration, the partial pressure of the material gas becomes very low, and the valve can be moved. The material gas concentration control system that prevents the situation in which the total pressure corresponding to the partial pressure of the material gas cannot be achieved within the range and the concentration of the material gas cannot be kept constant at the set concentration. The purpose is to provide. It is another object of the present invention to provide a material gas flow rate control system that can prevent a situation in which the amount of material gas generated is reduced and the material gas flow rate cannot be kept constant.

すなわち、本発明の材料ガス濃度制御システムは、材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導出管上に設けられる第1バルブと、前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記タンク内の温度を設定温度となるように温調する温調器と、前記温調器の設定温度を設定する温度設定部とを備え、前記第1バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする。   That is, the material gas concentration control system of the present invention includes a tank that contains a material, an introduction pipe that introduces a carrier gas that vaporizes the contained material into the tank, a material gas that vaporizes the material, and the carrier gas. Used in a material vaporization system including a lead-out pipe for leading out the mixed gas from the tank, and a first valve provided on the lead-out pipe, and the concentration of the material gas in the mixed gas is measured A concentration measuring unit, a concentration control unit for controlling the opening of the first valve so that the measured concentration of the material gas measured by the concentration measuring unit becomes a predetermined set concentration, A temperature controller for adjusting the temperature so as to be a set temperature; and a temperature setting unit for setting the set temperature of the temperature adjuster, wherein the opening degree of the first valve is an open limit opening of a movable range. In the case of exceeding the open side threshold opening determined based, the temperature setting unit, and changes the set temperature to a temperature higher than the set temperature that is set at that time.

また、本発明の材料ガス濃度制御システムに用いられるプログラムは、前記導出管上に設けられる第1バルブと、前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記タンク内の温度を設定温度となるように温調する温調器とを備えた材料ガス濃度制御システムに用いられるプログラムであって、前記濃度測定部で測定された前記材料ガスの測定濃度が、前記温調器の設定温度を設定する温度設定部とを備え、前記第1バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする。   The program used for the material gas concentration control system of the present invention includes a first valve provided on the outlet pipe, a concentration measuring unit for measuring the concentration of the material gas in the mixed gas, and a predetermined setting. Used in a material gas concentration control system including a concentration control unit that controls the opening degree of the first valve so as to achieve a concentration, and a temperature controller that adjusts the temperature in the tank to a set temperature. A temperature setting unit that sets a set temperature of the temperature controller, wherein the measured concentration of the material gas measured by the concentration measuring unit includes an opening of the first valve in a movable range. When the opening side threshold opening determined based on the opening limit opening is exceeded, the temperature setting unit changes the set temperature to a temperature higher than the set temperature set at that time. To do.

このようなものであれば、材料ガスの濃度を設定濃度となるように濃度制御を継続している間に、材料ガスの発生量が減少し、その分圧が低下した場合において、材料ガスの濃度を設定濃度で保つために全圧を低下させ続けているうちに第1バルブの開度が開放限界開度に近づいた状態になったとしても、その時点で前記温度設定部が、設定温度を開放側閾値開度となった時点の温度よりも高く設定して、材料ガスの飽和蒸気圧を上昇させることにより材料ガスの発生量を増加させて、材料ガスの分圧を上昇させることができる。従って、材料ガスの分圧が上昇すると濃度を一定にするには、全圧も上昇させる必要があるので、バルブの開度は開放側閾値開度を超えた時点の開度よりも閉塞側の開度に制御されることになる。つまり、材料ガスの分圧がある限度の値よりも低下した場合には、温度設定部が設定温度をより高い温度に変更して、材料ガスの分圧を上昇させるので、第1バルブの開度を開放限界開度の近傍で濃度制御を行わせるのではなく、可動範囲の中央側において十分に余裕をもって濃度制御を行わせることができる。   In such a case, when the concentration of the material gas is reduced while the concentration control is continued so that the concentration of the material gas becomes the set concentration, the partial pressure of the material gas is reduced. Even if the opening degree of the first valve approaches the opening limit opening degree while the total pressure is continuously lowered to keep the concentration at the set concentration, the temperature setting unit at that time, Is set to be higher than the temperature at the time when the opening side threshold opening is reached, and the material gas generation amount is increased by increasing the saturated vapor pressure of the material gas, thereby increasing the partial pressure of the material gas. it can. Therefore, in order to make the concentration constant when the partial pressure of the material gas increases, it is necessary to increase the total pressure. Therefore, the valve opening is closer to the closing side than the opening at the time when the open side threshold opening is exceeded. The opening is controlled. That is, when the partial pressure of the material gas falls below a certain limit value, the temperature setting unit changes the set temperature to a higher temperature to increase the partial pressure of the material gas, so that the first valve is opened. The concentration control is not performed near the opening limit opening degree, but the concentration control can be performed with a sufficient margin at the center of the movable range.

このように、材料ガスの分圧の低下に起因して、第1バルブの可動範囲を超えた領域での濃度制御が必要になり、第1バルブが開放限界開度の開度で止まってしまい濃度制御が不可能になってしまうことを防ぐことができる。   As described above, due to a decrease in the partial pressure of the material gas, it is necessary to control the concentration in a region beyond the movable range of the first valve, and the first valve stops at the opening limit opening. It is possible to prevent the density control from becoming impossible.

さらに、このような構成の材料ガス濃度制御システムによれば、第1バルブを用いて全圧を制御することにより、材料ガスの分圧の変動を許容することができる濃度制御を実現できているので、温度制御により厳密に材料ガスの発生量を制御する必要はない。従って、濃度制御を行うには、第1バルブの可動範囲を超えてしまうような特殊な状況にのみ対応できる温調器及び温度設定部であればよいので、あまり精密な温度制御装置を用いなくてもよい。従って、高性能なものを用いる必要はないので簡易で安価な温調器及び温度設定部を用いるだけでも、上述したような第1バルブの可動範囲を超えることにより、濃度制御を行えなくなる問題を防ぐことができる。   Furthermore, according to the material gas concentration control system having such a configuration, it is possible to realize concentration control capable of allowing fluctuations in the partial pressure of the material gas by controlling the total pressure using the first valve. Therefore, it is not necessary to strictly control the amount of material gas generated by temperature control. Therefore, in order to control the concentration, it is only necessary to use a temperature controller and a temperature setting unit that can only deal with a special situation that exceeds the movable range of the first valve. May be. Therefore, since it is not necessary to use a high-performance one, even if a simple and inexpensive temperature controller and temperature setting unit are used, the concentration control cannot be performed by exceeding the movable range of the first valve as described above. Can be prevented.

第1バルブの開度が、開放側閾値開度になった又はその開度に近づいているのを検出してから温度制御を開始した場合、温度制御の遅れによっては、材料ガスの分圧に低下する方向に慣性が働いてしまい、第1バルブが開放限界開度に到達してしまう恐れがある。そのような問題を防ぐには、前記閾値が前記第1バルブの開度の変化率に応じて変更されるものであればよい。このようなものであれば、変化率が大きい場合には、余裕を見て、開放側閾値開度と開放限界開度との差が大きくなるようにし、変化率が小さい場合に開度の差を小さくなるように設定する等すれば、制御不能となる状態をより回避しやすい安全な濃度制御を行うことができる。   When temperature control is started after detecting that the opening of the first valve has reached or is close to the open side threshold opening, depending on the delay in temperature control, the partial pressure of the material gas Inertia acts in the decreasing direction, and the first valve may reach the opening limit opening. In order to prevent such a problem, what is necessary is just to change the said threshold value according to the change rate of the opening degree of the said 1st valve | bulb. If this is the case, when the rate of change is large, allow for a margin so that the difference between the opening threshold opening and the opening limit opening is large, and when the rate of change is small, the difference in opening is large. If the value is set to be small, for example, it is possible to perform safe concentration control that makes it easier to avoid a state where control is impossible.

材料ガスの分圧をモニタリングしておき、分圧が低下してきた場合にはある程度分圧を上昇させて第1バルブの開度の可動範囲内で濃度制御を行うことができるようにしてもよい。具体的には、材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導出管上に設けられる第1バルブと、前記材料ガスの分圧を測定する分圧測定センサと、前記混合ガスの全圧を測定する全圧測定センサとを具備し、前記分圧と前記全圧に基づいて前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定めた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記タンク内の温度を設定温度となるように温調する温調器と、前記温調器に設定温度を設定する温度設定部とを備え、前記分圧測定センサにより測定される分圧が、前記第1バルブの可動範囲の開放限界開度に基づいて定められる下限閾値分圧を下回った場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス濃度制御システムであればよい。   The partial pressure of the material gas is monitored, and if the partial pressure has decreased, the partial pressure may be increased to some extent so that the concentration control can be performed within the movable range of the opening of the first valve. . Specifically, a tank for storing the material, an introduction pipe for introducing a carrier gas for vaporizing the stored material into the tank, and a mixed gas of the material gas evaporated from the material and the carrier gas from the tank. A material vaporization system comprising a lead-out pipe for leading out, wherein the first valve provided on the lead-out pipe, a partial pressure measuring sensor for measuring the partial pressure of the material gas, and the mixed gas A total pressure measuring sensor for measuring a total pressure, a concentration measuring unit for measuring a concentration of the material gas in the mixed gas based on the partial pressure and the total pressure, and the concentration measuring unit measured by the concentration measuring unit A concentration control unit for controlling the opening degree of the first valve so that the measured concentration of the material gas becomes a predetermined set concentration, and a temperature controller for adjusting the temperature in the tank to the set temperature. The above A temperature setting unit for setting a set temperature in the controller, and a partial pressure measured by the partial pressure measuring sensor is a lower limit threshold partial pressure determined based on an opening limit opening of a movable range of the first valve. When the temperature is lower, the temperature setting unit may change the set temperature to a temperature higher than the set temperature set at that time.

第1バルブの開度が開放限界開度となることにより、濃度制御が不可能になるのを防ぐには、温度制御を用いて材料ガスの分圧を調整する方法以外のものを使用しても構わない。具体的には、材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導出管上に設けられる第1バルブと、前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定めた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記第1バルブの上流又は下流に設けられた補助バルブと、前記補助バルブの開度を制御する補助バルブ制御部と、を備え、前記第1バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記補助バルブ制御部が、前記補助バルブの開度をその時点で設定されている開度よりも開放側の開度へと変更することを特徴とする材料ガス濃度制御システムであればよい。このようなものであれば、第1バルブが開放側限界開度に近づいた場合には、補助バルブの開度が開放されることにより補助的に全圧をさらに低下させることによって、材料ガスの分圧の低下に対応して濃度を設定濃度で一定に保つことができる。   In order to prevent the concentration control from becoming impossible due to the opening degree of the first valve being the opening limit opening degree, use a method other than the method of adjusting the partial pressure of the material gas using the temperature control. It doesn't matter. Specifically, a tank for storing the material, an introduction pipe for introducing a carrier gas for vaporizing the stored material into the tank, and a mixed gas of the material gas evaporated from the material and the carrier gas from the tank. What is used in a material vaporization system including a lead-out pipe for leading out, is a first valve provided on the lead-out pipe, a concentration measuring unit that measures the concentration of the material gas in the mixed gas, and the concentration A concentration control unit for controlling the opening degree of the first valve so that the measured concentration of the material gas measured by the measuring unit becomes a predetermined set concentration; and provided upstream or downstream of the first valve. An auxiliary valve and an auxiliary valve control unit for controlling the opening degree of the auxiliary valve, wherein the opening degree of the first valve is determined based on the opening limit opening degree of the movable range. The auxiliary valve control unit changes the opening of the auxiliary valve to an opening on the open side with respect to the opening set at that time. Any system can be used. If this is the case, when the first valve approaches the opening limit opening, the opening of the auxiliary valve is opened to further reduce the total pressure in an auxiliary manner. Corresponding to the decrease in partial pressure, the concentration can be kept constant at the set concentration.

材料ガスの分圧が低下しすぎることにより、第1バルブが開放限界開度となっても設定濃度にする事が出来ない状況が生じるのを防ぐのと同様に、材料ガスの分圧が上昇しすぎることにより、それに合わせて全圧を上昇させるために第1バルブが閉塞限界開度となっても設定濃度にすることができない不具合を回避できるようにしても構わない。具体的には、 材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導出管上に設けられる第1バルブと、前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記タンク内の温度を設定温度となるように温調する温調器と、前記温調器に設定温度を設定する温度設定部とを備え、前記第1バルブの開度が、可動範囲の閉塞限界開度に基づいて定められる閉塞側閾値開度を下回った場合には、前記温度設定部が、その時点で設定されている設定温度よりも低い温度に設定温度を変更することを特徴とする材料ガス濃度制御システムであればよい。   The partial pressure of the material gas is increased in the same way as preventing the situation where the set concentration cannot be reached even if the first valve reaches the opening limit opening degree due to the excessive reduction of the partial pressure of the material gas. By excessively increasing the total pressure in accordance therewith, it may be possible to avoid a problem that the set concentration cannot be achieved even when the first valve reaches the closing limit opening. Specifically, a tank for storing a material, an introduction pipe for introducing a carrier gas for vaporizing the stored material into the tank, and a mixed gas of the material gas vaporized from the material and the carrier gas from the tank. What is used in a material vaporization system including a lead-out pipe for leading out, is a first valve provided on the lead-out pipe, a concentration measuring unit that measures the concentration of the material gas in the mixed gas, and the concentration A concentration control unit for controlling the opening degree of the first valve so that the measured concentration of the material gas measured by the measuring unit becomes a predetermined set concentration, and the temperature in the tank becomes the set temperature. And a temperature setting unit that sets a set temperature in the temperature controller, and the opening degree of the first valve is determined based on the closing limit opening degree of the movable range. If it falls below the degree, the temperature setting unit may be a material gas concentration control system and changes the set temperature to a lower temperature than the set temperature that is set at that time.

混合ガスにおける材料ガスの濃度ではなく、前記材料ガスの流量を略一定に保ちたい場合にも、材料の減少等により材料ガスの発生量が減少する事に起因して、流量制御用のバルブが開放限界開度となっても設定流量にする事が出来ない場合がある。そのような不具合を防ぐには、材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導入管上に設けられる第2バルブと、   Even when it is desired to keep the flow rate of the material gas, rather than the concentration of the material gas in the mixed gas, the flow rate control valve is reduced due to a decrease in the amount of material gas generated due to a decrease in the material. Even if the opening limit is reached, the set flow rate may not be achieved. In order to prevent such a problem, a tank for containing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, a mixed gas of the material gas vaporized from the material and the carrier gas A second valve provided on the introduction pipe, wherein the second valve is provided on the introduction pipe.

前記材料ガスの流量を測定する材料ガス流量測定部と、前記材料ガス流量測定部で測定された前記材料ガスの測定流量が、予め定められた設定流量となるように前記第1バルブの開度を制御する材料ガス流量制御部と、前記タンク内の温度を設定温度となるように温調する温調器と、前記温調器の設定温度を設定する温度設定部とを備え、前記第2バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス流量制御システムであればよい。このようなものであれば、第2バルブが開放限界開度に近づいた場合には、タンク内の温度を上昇させて前記材料ガスの発生量を増加させ、前記第2バルブの開度を可動範囲の中央側で制御させることができるようになるので、材料ガスの流量が制御不能になる事態を回避でき、常に一定流量で材料ガスを流すことができるようになる。   A material gas flow rate measurement unit for measuring the flow rate of the material gas, and an opening degree of the first valve so that the measured flow rate of the material gas measured by the material gas flow rate measurement unit becomes a predetermined set flow rate. A material gas flow rate control unit for controlling the temperature, a temperature controller for adjusting the temperature in the tank to a set temperature, and a temperature setting unit for setting the set temperature of the temperature controller, the second When the opening degree of the valve exceeds the opening side threshold opening degree determined based on the opening limit opening degree of the movable range, the temperature setting unit is set to a temperature higher than the set temperature set at that time. Any material gas flow rate control system characterized by changing the set temperature may be used. In such a case, when the second valve approaches the opening limit opening, the temperature in the tank is increased to increase the amount of the material gas generated, and the opening of the second valve is movable. Since control can be performed at the center of the range, a situation in which the flow rate of the material gas becomes uncontrollable can be avoided, and the material gas can always flow at a constant flow rate.

このように本発明の材料ガス濃度制御システムによれば、濃度制御中において材料ガスの分圧の低下が生じることにより、第1バルブの開度が開放限界開度に近づいてしまい、それ以上濃度制御が継続できなくなってしまう前に、前記温度設定部が設定温度を上昇させて、材料ガスの分圧をある程度上昇させようとするので、達成するべき全圧も上昇し、前記第1バルブの可動範囲内で確実に濃度制御を行うことができ、前記第1バルブが開放限界開度でありこれ以上動かせなくなることによって濃度制御が不可能になるという不具合を防ぐことができる。   As described above, according to the material gas concentration control system of the present invention, when the partial pressure of the material gas is reduced during the concentration control, the opening of the first valve approaches the open limit opening, and the concentration is further increased. Before the control cannot be continued, the temperature setting unit increases the set temperature to increase the partial pressure of the material gas to some extent, so that the total pressure to be achieved also increases, Concentration control can be reliably performed within the movable range, and it is possible to prevent a problem that concentration control becomes impossible when the first valve is at the opening limit opening degree and cannot be moved any more.

本発明の一実施形態に係る材料ガス濃度制御システムの模式的構造。1 is a schematic structure of a material gas concentration control system according to an embodiment of the present invention. 同実施形態における材料ガス濃度制御システムの機能ブロック図。The functional block diagram of the material gas concentration control system in the embodiment. 同実施形態における材料ガス濃度制御システムの濃度制御の動作を示すフローチャート。The flowchart which shows the operation | movement of the concentration control of the material gas concentration control system in the embodiment. 同実施形態における材料ガス濃度制御システムの流量制御の動作を示すフローチャート。The flowchart which shows the operation | movement of the flow control of the material gas concentration control system in the embodiment. 同実施形態における材料ガス濃度制御システムの設定温度変更により第1バルブの可動範囲内で濃度制御が行えることを示すグラフ。The graph which shows that concentration control can be performed within the movable range of a 1st valve | bulb by the setting temperature change of the material gas concentration control system in the embodiment. 本発明の別の実施形態に係る材料ガス濃度制御システムの模式的構造。The typical structure of the material gas concentration control system which concerns on another embodiment of this invention. 本発明の更に別の実施形態に係る材料ガス濃度制御システムの模式的構造。The typical structure of the material gas concentration control system which concerns on another embodiment of this invention. 本発明の異なる実施形態に係る材料ガス濃度制御システムの模式的構造。The typical structure of the material gas concentration control system which concerns on different embodiment of this invention.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の材料ガス濃度制御システム100は、例えば、半導体製造装置の一種であるMOCVD成膜装置にTMIn(トリメチルインジウム)を一定の濃度で供給するために用いられるものである。より具体的には、TMInの固体材料を気化させて成膜室であるチャンバに供給するバブリングシステム1に用いられるものである。なお、TMInが請求項での材料に対応し、バブリングシステム1が請求項での材料気化システムに対応する。ここで、材料は液体材料であっても本発明は同様の効果を奏し得る。また、本発明の材料濃度制御システムは、TMInの固体材料が気化した材料ガスの濃度制御に限られるものではない。例えば、CVD成膜装置等や、半導体製造プロセスに使用されるウエハ洗浄装置の乾燥処理槽内のIPA(イソプロピルアルコール)濃度を安定供給するために用いることもできる。加えて、半導体、FPD、光デバイス、MEMS等の製造プロセスに限らず、バブリングシステム1を用いたガス供給装置に用いることができる。   The material gas concentration control system 100 of the present embodiment is used, for example, to supply TMIn (trimethylindium) at a constant concentration to an MOCVD film forming apparatus which is a kind of semiconductor manufacturing apparatus. More specifically, it is used in a bubbling system 1 that vaporizes a solid material of TMIn and supplies it to a chamber that is a film forming chamber. TMIn corresponds to the material in the claims, and the bubbling system 1 corresponds to the material vaporization system in the claims. Here, even if the material is a liquid material, the present invention can achieve the same effect. Further, the material concentration control system of the present invention is not limited to the concentration control of the material gas vaporized from the TMIn solid material. For example, it can also be used to stably supply an IPA (isopropyl alcohol) concentration in a drying treatment tank of a CVD film forming apparatus or the like or a wafer cleaning apparatus used in a semiconductor manufacturing process. In addition, the present invention is not limited to manufacturing processes for semiconductors, FPDs, optical devices, MEMS, and the like, and can be used for gas supply apparatuses using the bubbling system 1.

図1に示すように、前記バブリングシステム1は、材料Lを貯留するタンク13と、前記タンク13に貯留された材料L中にキャリアガスを導入してバブリングさせる導入管11と、前記タンク13に貯留された材料Lの上方空間Nから材料Lが気化した材料ガス及び前記キャリアガスの混合ガスを導出する導出管12とを具備したものである。前記タンク13にはタンク13内の温度を測定するための温度センサTが取り付けてある。   As shown in FIG. 1, the bubbling system 1 includes a tank 13 for storing material L, an introduction pipe 11 for introducing a carrier gas into the material L stored in the tank 13 and bubbling, and a tank 13. A lead-out pipe 12 for deriving a mixed gas of the material gas vaporized from the material L and the carrier gas from the upper space N of the stored material L is provided. A temperature sensor T for measuring the temperature in the tank 13 is attached to the tank 13.

材料ガス濃度制御システム100は、前記導入管11に設けてあり、キャリアガスの流量制御を行うためのマスフローコントローラ3(流量制御器)と、前記導出管12に設けてあり、混合ガス中の材料ガスの濃度制御を行うためのコンクコントローラ2(濃度制御器)と、から構成してあるものである。本実施形態のコンクコントローラ2は、混合ガスの全圧を制御することによって濃度制御を行うものである。さらに、このような構成に加えて、本材料ガス濃度制御システム100は、さらにタンク13内の温度を一定に保つための温調機構を備えている。   The material gas concentration control system 100 is provided in the introduction pipe 11, and is provided in the mass flow controller 3 (flow rate controller) for controlling the flow rate of the carrier gas and the outlet pipe 12, and the material in the mixed gas. It is comprised from the concrete controller 2 (concentration controller) for performing density | concentration control of gas. The concrete controller 2 of the present embodiment performs concentration control by controlling the total pressure of the mixed gas. Further, in addition to such a configuration, the material gas concentration control system 100 further includes a temperature control mechanism for keeping the temperature in the tank 13 constant.

以下では図1及び図2を参照しながら各機器について、コンクコントローラ2、マスフローコントローラ3、温調機構の順で各部ごとに詳述する。   In the following, with reference to FIGS. 1 and 2, each device will be described in detail for each unit in the order of the conch controller 2, the mass flow controller 3, and the temperature control mechanism.

<コンクコントローラの構成>   <Conc controller configuration>

前記コンクコントローラ2は、前記混合ガス中の材料ガスの濃度を測定する濃度測定部CSと、前記タンク13内の圧力である混合ガスの圧力(全圧)を測定する圧力測定部たる圧力計22と、弁体の開度によって混合ガスの全圧を制御するための第1バルブ23とをこの順に上流から設けてあるものであり、さらに、コンクコントローラ制御部24を具備したものである。ここで、混合ガス中の材料ガスの濃度を制御するためには、圧力計22は第1バルブ23よりも上流に設けておく必要がある。これは、タンク13内の全圧を正確に測定し、混合ガス中の材料ガスの濃度を正確に算出して、材料Lの気化状態の変化に合わせることができるようにするためである。   The concrete controller 2 includes a concentration measuring unit CS that measures the concentration of the material gas in the mixed gas, and a pressure gauge 22 that is a pressure measuring unit that measures the pressure (total pressure) of the mixed gas, which is the pressure in the tank 13. And a first valve 23 for controlling the total pressure of the mixed gas according to the opening of the valve body is provided in this order from the upstream side, and further includes a concrete controller control unit 24. Here, in order to control the concentration of the material gas in the mixed gas, the pressure gauge 22 needs to be provided upstream of the first valve 23. This is because the total pressure in the tank 13 is accurately measured, the concentration of the material gas in the mixed gas is accurately calculated, and the change in the vaporized state of the material L can be matched.

前記濃度測定部CSは、非分散式赤外線吸収方式によって材料ガスの分圧を測定する分圧測定センサ21と、前記分圧測定センサ21によって測定される材料ガスの分圧と、前記圧力計22によって測定される測定圧力たる全圧に基づいて、混合ガス中の材料ガスの濃度を算出する濃度算出部241とを具備したものである。ここで、混合ガス中の材料ガスの濃度は、材料ガスの分圧を混合ガスの全圧によって割ることにより算出する。このような濃度の算出方法は、気体の状態方程式に基づいて導かれるものである。   The concentration measuring unit CS includes a partial pressure measuring sensor 21 that measures a partial pressure of a material gas by a non-dispersive infrared absorption method, a partial pressure of the material gas measured by the partial pressure measuring sensor 21, and the pressure gauge 22. And a concentration calculation unit 241 that calculates the concentration of the material gas in the mixed gas based on the total pressure that is the measurement pressure measured by the above. Here, the concentration of the material gas in the mixed gas is calculated by dividing the partial pressure of the material gas by the total pressure of the mixed gas. Such a concentration calculation method is derived on the basis of a gas equation of state.

前記コンクコントローラ制御部24は、前述した濃度算出部241と、濃度制御部CCと、から構成してある。濃度制御部CCは、前記濃度測定部CSによって測定された測定濃度が予め定めた設定濃度に結果としてなるように第1バルブ23を制御するものであり、第1バルブ制御部242と、前記第1バルブ制御部242に設定圧力を設定する設定圧力設定部243と、から構成してあるものである。   The concrete controller control unit 24 includes the above-described density calculation unit 241 and the density control unit CC. The concentration control unit CC controls the first valve 23 so that the measured concentration measured by the concentration measuring unit CS results in a predetermined set concentration. The first valve control unit 242 and the first control unit This is composed of a set pressure setting unit 243 for setting a set pressure in the one-valve control unit 242.

第1バルブ制御部242は、前記圧力計22で測定された圧力(全圧)が設定圧力設定部243によって設定された圧力である設定圧力になるように前記第1バルブ23の開度を制御するものである。   The first valve control unit 242 controls the opening degree of the first valve 23 so that the pressure (total pressure) measured by the pressure gauge 22 becomes a set pressure that is set by the set pressure setting unit 243. To do.

設定圧力設定部243は、設定濃度が変更された後の一定期間においては、設定圧力を後述する全圧算出部244で算出されたタンク内圧力である仮設定圧力とする一方、その他の期間においては、予め定めた設定圧力を、濃度測定部CSによって測定された測定濃度と設定濃度との偏差が小さくなる向きに変更するものである。   The set pressure setting unit 243 sets the set pressure as a temporary set pressure that is a tank internal pressure calculated by a total pressure calculation unit 244 described later in a certain period after the set concentration is changed, and in other periods. Is to change the predetermined set pressure so that the deviation between the measured concentration measured by the concentration measuring unit CS and the set concentration becomes smaller.

具体的には、測定された測定濃度が設定濃度よりも高い場合には、濃度は分圧/全圧で表されることから、全圧を大きくすることによって濃度を下げることができる。従って、測定濃度が設定濃度よりも高い場合には、設定圧力設定部243は、前記第1バルブ制御部242に対して全圧を大きくするように設定圧力を変更する。その結果、前記第1バルブ制御部242は、第1バルブ23の開度を小さくするように制御することになる。測定された測定濃度が設定濃度よりも低い場合には、この逆を行うことになる。   Specifically, when the measured concentration is higher than the set concentration, the concentration is expressed by partial pressure / total pressure, and therefore the concentration can be lowered by increasing the total pressure. Accordingly, when the measured concentration is higher than the set concentration, the set pressure setting unit 243 changes the set pressure to increase the total pressure with respect to the first valve control unit 242. As a result, the first valve control unit 242 performs control to reduce the opening degree of the first valve 23. If the measured concentration is lower than the set concentration, the reverse is performed.

このように測定濃度と設定濃度の偏差が小さくなる向きに設定圧力の変更を行うとは、測定濃度が設定濃度より高い場合には、設定圧力をより高く変更し、測定濃度が設定濃度よりも低い場合には、設定圧力をより低く変更することを言う。   In this way, changing the set pressure in such a direction that the deviation between the measured concentration and the set concentration becomes smaller means that if the measured concentration is higher than the set concentration, the set pressure is changed higher and the measured concentration is higher than the set concentration. If it is lower, it means changing the set pressure lower.

なお、コンクコントローラ制御部24はコンピュータを利用したものであり、内部バス、CPU、メモリ、I/Oチャネル、A/Dコンバータ、D/Aコンバータ等を備えている。そして、メモリに予め記憶させた所定プログラムにしたがって前記CPUや周辺機器が動作することにより、第1バルブ制御部242、前記濃度算出部241、前記設定圧力設定部243としての機能を発揮するようにしてある。ここで、第1バルブ制御部242のみが独立した1チップマイコンなどの制御回路により構成されて、設定圧力を受け付けるようにしてあり、前記圧力計22及び前記第1バルブ23を1ユニットとして設定圧力を入力するだけで容易に圧力制御を行うことができるように構成してある。このような制御部の構成であれば、従来から圧力制御用に開発された制御回路やソフトウェアを濃度制御のために使うことができるので、設計や開発コストの増大を防ぐことができる。   The controller controller 24 uses a computer and includes an internal bus, a CPU, a memory, an I / O channel, an A / D converter, a D / A converter, and the like. Then, the CPU and peripheral devices operate according to a predetermined program stored in advance in the memory, so that the functions as the first valve control unit 242, the concentration calculation unit 241, and the set pressure setting unit 243 are exhibited. It is. Here, only the first valve control unit 242 is configured by an independent control circuit such as a one-chip microcomputer so as to receive a set pressure, and the pressure gauge 22 and the first valve 23 are set as one unit. It is configured so that pressure control can be easily performed simply by inputting. With such a configuration of the control unit, it is possible to use a control circuit or software that has been developed for pressure control in the past for concentration control, and thus it is possible to prevent an increase in design and development costs.

このように、コンクコントローラ2は、混合ガスの濃度制御を単体で行っているものである。   Thus, the concrete controller 2 performs the concentration control of the mixed gas as a single unit.

<マスフローコントローラの構成>   <Configuration of mass flow controller>

次に、マスフローコントローラ3について各部について説明する。前記マスフローコントローラ3は、前記導入管11に流入するキャリアガスの質量流量を測定する流量測定部たるサーマル式流量計31と、弁体の開度によってキャリアガスの流量を調節する第2バルブ32とをこの順に上流から設けてあるものであり、さらに、マスフローコントローラ制御部33を具備したものである。流量測定部は差圧式のものを用いてもよい。   Next, each part of the mass flow controller 3 will be described. The mass flow controller 3 includes a thermal flow meter 31 that is a flow rate measuring unit that measures the mass flow rate of the carrier gas flowing into the introduction pipe 11, and a second valve 32 that adjusts the flow rate of the carrier gas according to the opening of the valve body. Are provided from the upstream in this order, and further, a mass flow controller control unit 33 is provided. As the flow rate measuring unit, a differential pressure type may be used.

前記マスフローコントローラ制御部33は、前記サーマル式流量計31からの信号に基づいてキャリアガスの流量を算出するキャリアガス流量算出部331と、前記材料ガスの測定濃度及び前記キャリアガスの測定流量に基づいて、前記導出管12を流れる材料ガス又は混合ガスの流量を算出し、その算出流量が予め定めた設定流量となるように第2バルブ32の開度を制御する流量制御部FCとから構成してある。   The mass flow controller control unit 33 is based on a carrier gas flow rate calculation unit 331 that calculates the flow rate of a carrier gas based on a signal from the thermal type flow meter 31, and based on the measured concentration of the material gas and the measured flow rate of the carrier gas. And a flow rate control unit FC that calculates the flow rate of the material gas or mixed gas flowing through the outlet pipe 12 and controls the opening degree of the second valve 32 so that the calculated flow rate becomes a predetermined set flow rate. It is.

前記流量制御部FCは、第2バルブ制御部332と、前記第2バルブ制御部332に設定流量を設定する設定キャリアガス流量設定部333とを具備したものである。   The flow rate control unit FC includes a second valve control unit 332 and a set carrier gas flow rate setting unit 333 that sets a set flow rate in the second valve control unit 332.

前記第2バルブ制御部332は、測定された測定キャリアガス流量を設定キャリアガス流量設定部333によって設定された設定キャリアガス流量となるように前記第2バルブ32の開度を制御するものである。   The second valve control unit 332 controls the opening degree of the second valve 32 so that the measured carrier gas flow rate becomes the set carrier gas flow rate set by the set carrier gas flow rate setting unit 333. .

前記設定キャリアガス流量設定部333は、前記算出流量と設定された設定流量との偏差が小さくなる向きに予め定めた設定キャリアガス流量を変更するものである。前記算出流量と設定された設定流量との偏差を小さくすることについて、具体的に説明すると、材料ガス又は混合ガスの算出流量が材料ガス又は混合ガスの設定流量よりも多い場合には、前記濃度制御部CCによって濃度が一定に保たれていると仮定して、流入するキャリアガスの流量を少なくするように前記第2バルブ制御部332に対して設定キャリアガス流量を変更することになる。算出された算出流量が設定流量よりも少ない場合にはこの逆を行うこととなる。これは、濃度が分圧/全圧で表されることから、(材料ガスの質量流量)/(全質量流量=材料ガスの質量流量+キャリアガスの質量流量)でも表せるので、濃度が一定に保たれているならば、キャリアガスの質量流量の増減がそのまま材料ガスの質量流量及び全流量の増減させることができるからである。なお、算出流量が設定流量よりも少ない場合には、多い場合とは逆の動作を行うことになる。   The set carrier gas flow rate setting unit 333 changes the preset set carrier gas flow rate in a direction in which the deviation between the calculated flow rate and the set set flow rate becomes smaller. More specifically, reducing the deviation between the calculated flow rate and the set flow rate that has been set, when the calculated flow rate of the material gas or mixed gas is greater than the set flow rate of the material gas or mixed gas, the concentration Assuming that the concentration is kept constant by the control unit CC, the set carrier gas flow rate is changed for the second valve control unit 332 so as to reduce the flow rate of the inflowing carrier gas. If the calculated flow rate is smaller than the set flow rate, the reverse is performed. Since the concentration is expressed by partial pressure / total pressure, it can also be expressed as (mass flow rate of material gas) / (total mass flow rate = mass flow rate of material gas + mass flow rate of carrier gas). This is because, if maintained, the increase and decrease in the mass flow rate of the carrier gas can directly increase and decrease the mass flow rate and the total flow rate of the material gas. Note that when the calculated flow rate is smaller than the set flow rate, an operation opposite to that when the calculated flow rate is large is performed.

なお、キャリアガス流量算出部331及び第2バルブ制御部332は、CPU、メモリ、I/Oチャネル、A/Dコンバータ、D/Aコンバータ等を備えた制御回路BFなどによって機能するものである。この制御回路BFは、流量制御用に特化したものであり、マスフローコントローラ3が制御すべき流量の値である流量設定値の信号や前記サーマル式流量計31からの信号を受け付けるように構成されているものである。また、前記設定キャリアガス流量設定部333は、汎用の1チップマイコンなどによってその機能を実現されるものである。   The carrier gas flow rate calculation unit 331 and the second valve control unit 332 function by a control circuit BF including a CPU, a memory, an I / O channel, an A / D converter, a D / A converter, and the like. This control circuit BF is specialized for flow rate control, and is configured to receive a flow rate setting value signal that is a flow rate value to be controlled by the mass flow controller 3 and a signal from the thermal type flow meter 31. It is what. The set carrier gas flow rate setting unit 333 is realized by a general-purpose one-chip microcomputer or the like.

このように、マスフローコントローラ3は、導入管11におけるキャリアガスの流量制御のみを行い、結果として材料ガス又は混合ガスの流量制御を行っているものである。   As described above, the mass flow controller 3 performs only the flow control of the carrier gas in the introduction pipe 11, and as a result, performs the flow control of the material gas or the mixed gas.

<コンクコントローラ、マスフローコントローラの動作>   <Operation of concrete controller and mass flow controller>

次に、混合ガス中の材料ガス濃度の制御動作及び混合ガス及び材料ガスの流量の制御動作について図3、図4のフローチャートを参照しながら説明する。   Next, the control operation of the material gas concentration in the mixed gas and the control operation of the flow rate of the mixed gas and the material gas will be described with reference to the flowcharts of FIGS.

まず、設定された設定濃度になるように第1バルブ23の開度を制御することによって濃度制御を行うときの動作について図3を参照しながら説明する。   First, the operation when the concentration control is performed by controlling the opening degree of the first valve 23 so that the set concentration is set will be described with reference to FIG.

前記分圧測定センサ21によって測定された材料ガスの分圧と、前記圧力計22によって測定される混合ガスの全圧とによって、濃度算出部241は、混合ガスにおける材料ガスの濃度を式(1)によって算出する。   Based on the partial pressure of the material gas measured by the partial pressure measurement sensor 21 and the total pressure of the mixed gas measured by the pressure gauge 22, the concentration calculation unit 241 calculates the concentration of the material gas in the mixed gas using the equation (1). ).

C=Pz/Pt (1)   C = Pz / Pt (1)

ここで、Cは濃度、Pzは材料ガスの分圧、Ptは混合ガスの全圧。   Here, C is the concentration, Pz is the partial pressure of the material gas, and Pt is the total pressure of the mixed gas.

通常運転時においては、濃度測定部によって測定された濃度が、設定圧力設定部243に設定された設定濃度と異なっている場合には、前記分圧測定センサ21によって測定された材料ガスの分圧Pzと設定濃度C0に基づいて式(2)によって、設定圧力設定部243は次のように設定圧力Pt0を変更する(ステップS1)。   During normal operation, if the concentration measured by the concentration measuring unit is different from the set concentration set in the set pressure setting unit 243, the partial pressure of the material gas measured by the partial pressure measuring sensor 21 Based on Pz and the set concentration C0, the set pressure setting unit 243 changes the set pressure Pt0 as follows (step S1) according to the equation (2).

Pt0=Pz/C0 (2)   Pt0 = Pz / C0 (2)

ここで、Pzは前記分圧測定センサ21によって常に測定されている値であり、C0は設定されている濃度であるので既知である。   Here, Pz is a value that is constantly measured by the partial pressure measuring sensor 21, and C0 is known because it is a set concentration.

前記第1バルブ制御部242は、設定圧力がPt0に変更されると、前記圧力計22が測定する圧力(全圧)Ptと設定圧力Pt0の偏差が小さくなるように第1バルブ23の開度を制御する(ステップS2)。   When the set pressure is changed to Pt0, the first valve control unit 242 opens the first valve 23 so that the deviation between the pressure (total pressure) Pt measured by the pressure gauge 22 and the set pressure Pt0 becomes small. Is controlled (step S2).

前記測定圧力Ptを設定圧力Pt0に追従させている間に材料ガスの分圧Pzが変動しなければ最終的に測定される混合ガス中の材料ガスの濃度は設定濃度C0となる。   If the partial pressure Pz of the material gas does not change while the measurement pressure Pt is made to follow the set pressure Pt0, the concentration of the material gas in the mixed gas that is finally measured becomes the set concentration C0.

追従中に、材料ガスの分圧Pzが変動した場合には設定圧力設定部243は、式(2)によって再び設定圧力Pt0を変更しなおし、設定濃度C0となるようにする。   When the partial pressure Pz of the material gas changes during the follow-up, the set pressure setting unit 243 changes the set pressure Pt0 again according to the equation (2) so that the set concentration C0 is obtained.

次に導出管12における材料ガス又は全流量の流量制御について図4を参照しながら説明する。なお、前述したコンクコントーラ2の濃度制御に関わりなく、マスフローコントローラ3はキャリアガスの流量の制御をおこなっている。   Next, the flow control of the material gas or the total flow rate in the outlet pipe 12 will be described with reference to FIG. Note that the mass flow controller 3 controls the flow rate of the carrier gas regardless of the concentration control of the conc controller 2 described above.

材料ガスの設定流量Qz0が設定キャリアガス流量設定部333に設定されているとする。まず、流量と濃度との間には以下の式(3)のような関係がある。   It is assumed that the material gas set flow rate Qz0 is set in the set carrier gas flow rate setting unit 333. First, there is a relationship such as the following formula (3) between the flow rate and the concentration.

C=Pz/Pt=Qz/Qt=Qz/(Qc+Qz) (3)   C = Pz / Pt = Qz / Qt = Qz / (Qc + Qz) (3)

ここでQzは材料の質量流量、Qtは混合ガスの質量流量、Qcはキャリアガスの質量流量である。   Here, Qz is the mass flow rate of the material, Qt is the mass flow rate of the mixed gas, and Qc is the mass flow rate of the carrier gas.

前記設定キャリアガス流量設定部333は、式(3)を変形した以下の式(4)により設定キャリアガス流量Qc0を設定する(ステップST1)。   The set carrier gas flow rate setting unit 333 sets the set carrier gas flow rate Qc0 by the following formula (4) obtained by modifying the formula (3) (step ST1).

Qc0=Qz0(1−C)/C (4)   Qc0 = Qz0 (1-C) / C (4)

ここで、濃度Cは濃度測定部CSによって常に測定されている値であり、Qz0も設定されている値であるので既知である。   Here, the density C is a value that is always measured by the density measuring unit CS, and Qz0 is also a set value and is known.

前記第2バルブ制御部332は、設定キャリアガス流量がQc0に変更されると、前記流量測定部で測定されたキャリアガス流量Qcと設定キャリアガス流量Qc0の偏差が小さくなるように第2バルブ32の開度を制御する(ステップST2)。   When the set carrier gas flow rate is changed to Qc0, the second valve control unit 332 causes the second valve 32 to reduce the deviation between the carrier gas flow rate Qc measured by the flow rate measuring unit and the set carrier gas flow rate Qc0. Is controlled (step ST2).

前記測定キャリアガス流量Qcを設定キャリアガス流量Qc0に追従させている間に濃度Cが変動しなければ最終的に測定される測定キャリアガスの流量は設定キャリアガス流量Qc0となる。   If the concentration C does not change while the measured carrier gas flow rate Qc is made to follow the set carrier gas flow rate Qc0, the measured carrier gas flow rate finally measured becomes the set carrier gas flow rate Qc0.

追従中に、濃度Cが変動した場合には式(4)により、設定キャリアガス流量設定部333は再び設定キャリアガス流量Qc0を設定しなおし、所定の材料ガス流量Qz0となるようにする。   If the concentration C fluctuates during the follow-up, the set carrier gas flow rate setting unit 333 resets the set carrier gas flow rate Qc0 again by Equation (4) so that the predetermined material gas flow rate Qz0 is obtained.

このように前記コンクコントローラ2及び前記マスフローコントローラ3が協業することにより、第1バルブ23によって容易に制御することのできる全圧を制御変数として濃度制御を行うように構成してあるので、材料ガスが飽和蒸気圧まで十分に気化しなかったり、気化に変動があったりしたとしても、混合ガス中の材料ガスの濃度を設定濃度で一定に保つことができる。   In this way, the concent controller 2 and the mass flow controller 3 cooperate to perform concentration control using the total pressure that can be easily controlled by the first valve 23 as a control variable. However, even if the vaporization does not sufficiently evaporate to the saturated vapor pressure or the vaporization fluctuates, the concentration of the material gas in the mixed gas can be kept constant at the set concentration.

<温調機構の構成>   <Configuration of temperature control mechanism>

次に温調機構4の構成及びその動作について説明する。前記温調機構4は、前記バブリングシステム1の設定温度となるように温調する温調器41と、前記温調器41の設定温度を設定する温度設定部42とから構成してある。   Next, the configuration and operation of the temperature control mechanism 4 will be described. The temperature adjustment mechanism 4 includes a temperature adjuster 41 that adjusts the temperature so as to be the set temperature of the bubbling system 1, and a temperature setting unit 42 that sets the set temperature of the temperature adjuster 41.

前記温調器41は、ヒータであり、前記温度センサTからタンク内の温度を取得し、その測定温度が設定温度となるようにオンオフ制御を行うものである。また、温調器41及びタンクの周囲は断熱槽で囲んである。前記温調器41はPID制御によりタンク内の温度を一定に保つものであっても構わない。   The temperature controller 41 is a heater that acquires the temperature in the tank from the temperature sensor T and performs on / off control so that the measured temperature becomes a set temperature. The temperature controller 41 and the tank are surrounded by a heat insulating tank. The temperature controller 41 may be one that keeps the temperature in the tank constant by PID control.

前記温度設定部42は、前記第1バルブ23の開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、その時点で設定されている設定温度よりも高い温度に設定温度を変更するように構成してある。   When the opening degree of the first valve 23 exceeds the opening side threshold opening degree determined based on the opening limit opening degree of the movable range, the temperature setting unit 42 is set temperature set at that time. The set temperature is changed to a higher temperature.

より具体的には、前記温度設定部42は、コンピュータ等によってその機能が実現されるものであって、前記第1バルブ23の開度を取得し、その測定された開度が前記開放側閾値開度を超えているかどうかをについて比較を行う開度比較部421と、前記開度比較部421において測定開度が前記開放側閾値開度を超えている場合には、設定温度を現状よりも高い温度に変更する温度変更部422とから構成されるものである。   More specifically, the temperature setting unit 42 has its function realized by a computer or the like, acquires the opening degree of the first valve 23, and the measured opening degree is the opening side threshold value. When the measured opening degree exceeds the open-side threshold opening degree in the opening degree comparing part 421 for comparing whether or not the opening degree is exceeded and the opening degree comparing part 421, the set temperature is It comprises a temperature changing unit 422 that changes to a higher temperature.

前記開度比較部421は、設定する開放側閾値開度を、材料の特性や、時間経過における開度の変化率に基づいて変更するように構成してある。具体的には、前記開度比較部421は、第1バルブ23の開度の変化率が大きいほど、それに相関して前記開放限界開度と、前記開放側閾値開度との差の絶対値が大きくなるように前記開放側閾値開度を設定するものである。そして、前記第1バルブ23の開度が前記開放側閾値開度を超えた場合には、前記温度変更部422へその旨を伝達する信号を送信する。   The opening degree comparison unit 421 is configured to change the opening side threshold opening degree to be set based on the characteristics of the material and the rate of change of the opening degree over time. Specifically, the opening degree comparing unit 421 correlates to the absolute value of the difference between the opening limit opening degree and the opening side threshold opening degree as the rate of change of the opening degree of the first valve 23 increases. The opening-side threshold opening is set so as to increase. When the opening degree of the first valve 23 exceeds the open-side threshold opening degree, a signal to that effect is transmitted to the temperature changing unit 422.

前記温度変更部422は、前記第1バルブ23の開度が前記開放側閾値開度を超えた場合に、現在設定されている設定温度よりも高い設定温度に変更するものである。現状より高い温度に設定温度を設定するとは、本実施形態の場合、予め定めた温度分だけ上昇させるようにしてある。例えば、前記第1バルブ23の開度の可動範囲において略中央値近傍で濃度制御が行われるように設定温度を上昇させるように構成してある。   The temperature changing unit 422 changes the temperature of the first valve 23 to a set temperature higher than the currently set temperature when the opening of the first valve 23 exceeds the open side threshold value. In the case of the present embodiment, setting the set temperature to a temperature higher than the current temperature is set to increase by a predetermined temperature. For example, the set temperature is increased so that the concentration control is performed in the vicinity of the substantially median value in the movable range of the opening degree of the first valve 23.

このように構成された材料ガス濃度制御システム100において、タンク3から発生する材料ガスの分圧が低下した場合の前記温調機構4の動作について説明する。   In the material gas concentration control system 100 configured as described above, the operation of the temperature control mechanism 4 when the partial pressure of the material gas generated from the tank 3 is reduced will be described.

前記コンクコントローラ2により材料ガスの濃度が設定濃度で一定に保たれていると、時間が経過するにつれて、材料量の減少等に起因して材料から気化するガスの量が減少することになる。材料ガスの発生量が減少すると、タンク13内での材料ガスの分圧が低下する。前記コンクコントローラ2は、濃度を一定に保つために、材料ガスの分圧の減少に合わせて混合ガスの全圧を低下させるよう前記第1バルブ23の開度を開放側へ大きくするように制御する。   When the concentration of the material gas is kept constant at the set concentration by the concrete controller 2, the amount of gas vaporized from the material decreases due to a decrease in the amount of material and the like as time elapses. When the generation amount of the material gas decreases, the partial pressure of the material gas in the tank 13 decreases. In order to keep the concentration constant, the concrete controller 2 controls the opening of the first valve 23 to increase toward the open side so as to reduce the total pressure of the mixed gas in accordance with the decrease in the partial pressure of the material gas. To do.

前記開度比較部421は、設定濃度で材料ガスの濃度が一定に保たれており、前記第1バルブ23の開度が開放側閾値開度に到達していない間は、前記第1バルブ23の開度の変化率をモニタリングしており、そのサンプリング周期又は一定周期ごとに変化率に基づいて前記開放側閾値開度を変更する。そして、前記開度比較部421が、前記第1バルブ23の開度と開放側閾値開度と比較し、開放側閾値開度を超えたと判断するとその旨を前記温度変更部422へと送信する。   The opening degree comparison unit 421 is configured such that the concentration of the material gas is kept constant at a set concentration, and the first valve 23 is in a state where the opening degree of the first valve 23 has not reached the open side threshold opening degree. The change rate of the opening is monitored, and the open-side threshold opening is changed based on the change rate at every sampling period or every fixed period. Then, when the opening degree comparing unit 421 compares the opening degree of the first valve 23 with the opening side threshold opening degree and determines that the opening side threshold opening degree is exceeded, the opening degree comparing unit 421 transmits the fact to the temperature changing unit 422. .

前記温度変更部422は、現在設定されている設定温度から予め定められた所定値だけ設定温度を上昇させて新たな設定温度に変更する。   The temperature changing unit 422 increases the set temperature by a predetermined value from the currently set temperature to a new set temperature.

このように設定温度が変更されることによって、前記第1バルブ23が常に可動範囲内で濃度制御を行うことができる理由について図5を用いて説明する。図5は横軸に設定濃度、縦軸に混合ガスの全圧をとるとともに、破線で第1バルブ23の開放限界開度のおける全圧、一点鎖線で第1バルブ23の閉塞限界開度における全圧を示してあり、その破線と一点鎖線とで挟まれる領域により第1バルブ23の可動範囲で達成できる全圧の範囲を示すものである。また、実線によって描かれる曲線は、ある温度において材料ガスの分圧Pzが一定の場合の曲線であり、式Pt=Pz/Cに基づいて描かれるものである。なお、下側に描かれる曲線は材料ガスの温度が15℃のときのものであり、上側に描かれる曲線は材料ガスの温度が25℃のときのものである。   The reason why the first valve 23 can always perform concentration control within the movable range by changing the set temperature in this way will be described with reference to FIG. FIG. 5 shows the set concentration on the horizontal axis, the total pressure of the mixed gas on the vertical axis, the total pressure at the opening limit opening of the first valve 23 with a broken line, and the closing limit opening of the first valve 23 with a dashed line. The total pressure is shown, and the range of the total pressure that can be achieved in the movable range of the first valve 23 by the region sandwiched between the broken line and the alternate long and short dash line is shown. A curve drawn by a solid line is a curve in the case where the partial pressure Pz of the material gas is constant at a certain temperature, and is drawn based on the formula Pt = Pz / C. The curve drawn on the lower side is when the temperature of the material gas is 15 ° C., and the curve drawn on the upper side is when the temperature of the material gas is 25 ° C.

図5に示すように、仮に設定濃度が0.25%の時には、15℃の曲線の場合、開放限界開度を超えてしまうため、第1バルブ23では達成できない全圧となり濃度制御が不可能になってしまう。しかしながら、図5に示される開放側閾値開度において、設定温度を変更し、25℃にしておけば、設定濃度が0.25%の時には図5に示されるように可動範囲内で達成できる全圧であるので、設定濃度に制御することができる。   As shown in FIG. 5, if the set concentration is 0.25%, the open limit opening is exceeded in the case of a curve at 15 ° C., so that the total pressure cannot be achieved by the first valve 23 and concentration control is impossible. Become. However, if the set temperature is changed to 25 ° C. at the open-side threshold opening shown in FIG. 5, when the set concentration is 0.25%, all the achievable within the movable range as shown in FIG. Since it is a pressure, it can be controlled to a set concentration.

このように本実施形態の材料ガス濃度制御システム100によれば、材料ガスの濃度及び流量を一定に保つように制御をし続けている間に材料ガスの分圧が低下してきたとしても、前記温調機構4が前記第1バルブ23の開度が開放側閾値開度を超えた時点で、設定温度をより高い温度に変更して、材料ガスの分圧を上昇させて第1バルブ23の可動範囲内で濃度制御を行うことができるようにすることができる。従って、開放限界開度に達することにより、濃度制御が不可能になるという不具合を防ぐことができ、常に材料ガス濃度を一定に保つことができるようになる。   As described above, according to the material gas concentration control system 100 of the present embodiment, even if the partial pressure of the material gas decreases while the control is continued so as to keep the concentration and flow rate of the material gas constant, When the opening degree of the first valve 23 exceeds the open-side threshold opening degree, the temperature adjustment mechanism 4 changes the set temperature to a higher temperature to increase the partial pressure of the material gas and It is possible to perform density control within the movable range. Accordingly, it is possible to prevent the problem that the concentration control becomes impossible by reaching the opening limit opening degree, and it is possible to always keep the material gas concentration constant.

また、材料ガスの発生状況や、その残量等さまざまな要因によって変化するタンク13内の温度を常にごく短い時間で一定値に制御する事は難しいが、本実施形態の前記温調機構4は、前記第1バルブ23の開度が開放側閾値開度を超えた場合に設定温度を変更し大まかにタンク内の温度を上昇させる構成となっているので、非常に単純な温度制御を行うだけでよく、目的の制御を達成しやすい。つまり、安価な温調装置であっても十分に本実施形態の目的である第1制御バルブ23の可動範囲を超える制御指令が出されてしまい、止まってしまうことを防ぐことができる。   Moreover, although it is difficult to always control the temperature in the tank 13 that changes depending on various factors such as the generation state of the material gas and the remaining amount thereof in a very short time, the temperature control mechanism 4 of the present embodiment is When the opening degree of the first valve 23 exceeds the open side threshold opening degree, the set temperature is changed to roughly increase the temperature in the tank, so only a very simple temperature control is performed. It is easy to achieve the desired control. That is, even if it is an inexpensive temperature control device, it is possible to prevent the control command that is sufficiently beyond the movable range of the first control valve 23, which is the object of the present embodiment, from being stopped.

その他の実施形態について説明する。以下の説明では前記実施形態に対応する部材には同じ符号を付すこととしている。   Other embodiments will be described. In the following description, the same reference numerals are given to members corresponding to the above-described embodiment.

前記実施形態では、混合ガスの全圧が設定圧力になるように第1バルブ23を制御することによって混合ガス中の材料ガスの濃度を制御していたが、濃度測定部CSによって測定された濃度を制御変数として、設定濃度となるように第1バルブ23を制御してもかまわない。   In the above embodiment, the concentration of the material gas in the mixed gas is controlled by controlling the first valve 23 so that the total pressure of the mixed gas becomes the set pressure. However, the concentration measured by the concentration measuring unit CS As a control variable, the first valve 23 may be controlled so as to obtain a set concentration.

前記実施形態では、材料ガスの濃度だけでなく、その流出流量も併せて制御するようにしていたが、濃度だけを制御すればよいのであれば、マスフローコントローラ3を設けずに、コンクコントローラ2のみによって制御を行うようにしてもかまわない。すなわち、材料を収容するタンクと、収容された材料を気化させるキャリアガスを前記タンクに導入する導入管と、材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導出管上に設けられた第1バルブと、前記混合ガスにおける材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された材料ガスの測定濃度が、予め定めた設定濃度となるように前記第1バルブの開度を制御する濃度制御部とを具備していることを特徴とする材料ガス濃度制御システムであっても構わない。   In the above-described embodiment, not only the concentration of the material gas but also the outflow rate thereof is controlled together. However, if only the concentration needs to be controlled, the mass controller 3 is not provided and only the conch controller 2 is provided. The control may be performed according to the above. That is, a tank for storing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, and a lead-out pipe for deriving a mixed gas of the material gas vaporized from the material and the carrier gas from the tank The first valve provided on the outlet pipe, the concentration measuring unit for measuring the concentration of the material gas in the mixed gas, and the concentration measuring unit. A material gas concentration control system comprising a concentration control unit for controlling the opening degree of the first valve so that the measured concentration of the material gas becomes a predetermined set concentration. I do not care.

このようなものであっても、濃度測定部によって混合ガスにおける材料ガスの濃度そのものを測定して、濃度制御部によって予め定めた設定濃度となるように第1バルブの開度を制御するので、タンク内で材料が飽和蒸気圧で気化していない場合や、バブリングの状態が変化する場合などにおいて材料ガスの発生する量が変動したとしても、その変動とは関係なく濃度を一定に保つことができる。   Even in such a case, the concentration measuring unit itself measures the concentration of the material gas in the mixed gas, and the concentration control unit controls the opening degree of the first valve so as to be a preset concentration. Even if the amount of material gas generated changes when the material is not vaporized with saturated vapor pressure in the tank or when the bubbling state changes, the concentration can be kept constant regardless of the change. it can.

前記濃度測定部CSは、分圧と全圧によって濃度を算出するものであったが、直接濃度を測定するようなものであってもかまわない。また、分圧測定センサ21としては非分散式赤外線吸収方式に限られず、FTIR分光方式や、レーザ吸収分光方式などであってもかまわない。   The concentration measuring unit CS calculates the concentration based on the partial pressure and the total pressure. However, the concentration measuring unit CS may directly measure the concentration. Further, the partial pressure measurement sensor 21 is not limited to the non-dispersive infrared absorption method, and may be an FTIR spectroscopy method, a laser absorption spectroscopy method, or the like.

材料ガスの流量制御を行うのは、設定された設定流量と、測定される濃度と測定されるキャリアガス流量に基づいて算出される材料ガスの算出流量との偏差が小さくなるように第2バルブ32を制御するようにしてもかまわない。   The flow control of the material gas is performed by controlling the second valve so that the deviation between the set flow rate set and the calculated flow rate of the material gas calculated based on the measured concentration and the measured carrier gas flow rate becomes small. 32 may be controlled.

混合ガス中の材料ガスの濃度のみを精度よく制御すればよく、流量はある決まった値ではなくとも安定して流れるだけでよい場合には、図6に示すようにコンクコントローラ2からマスフローコントローラ3へ測定濃度をフィードバックせずに、流量制御を行うようにしてもかまわない。この場合、設定キャリアガス流量は、設定濃度及び設定流量から式(3)に基づいて算出するようにすればよい。また、設定キャリアガス流量を予め定めておき、その流量でキャリアガスが流れるようにしておいても、コンクコントローラ2によって濃度が一定に保たれているならば、結果として、材料ガス又は混合ガスの流量も一定となる。設定キャリアガス流量を予め定める場合には、前記設定キャリアガス流量設定部333を省略した構成として、前記第2バルブ制御部332に直接設定キャリアガス流量を入力する構成とすればよい。   If only the concentration of the material gas in the mixed gas has only to be controlled accurately and the flow rate is not limited to a certain value but only needs to flow stably, the concrete controller 2 to the mass flow controller 3 as shown in FIG. The flow rate may be controlled without feeding back the measured concentration. In this case, the set carrier gas flow rate may be calculated based on the formula (3) from the set concentration and the set flow rate. Even if the carrier gas flow rate is set in advance and the carrier gas flows at that flow rate, if the concentration is kept constant by the concrete controller 2, as a result, the material gas or the mixed gas The flow rate is also constant. When the set carrier gas flow rate is determined in advance, the set carrier gas flow rate setting unit 333 may be omitted, and the set carrier gas flow rate may be directly input to the second valve control unit 332.

また、前記実施形態では、濃度測定部が混合ガスの全圧を測定する圧力計と分圧測定センサを備えたものであったが、濃度測定部が超音波濃度計等のように単体で濃度を測定するものであっても構わない。また、濃度を測定するための圧力計と、第1バルブを制御するために用いる圧力計を共通して使用していたが、それぞれが、別々に設けてあるものであっても構わないし、濃度測定部が前述のように全圧を用いないものであっても構わない。   In the above embodiment, the concentration measuring unit includes the pressure gauge for measuring the total pressure of the mixed gas and the partial pressure measuring sensor. However, the concentration measuring unit is a single unit such as an ultrasonic densitometer. May be used. Moreover, although the pressure gauge for measuring the concentration and the pressure gauge used for controlling the first valve were used in common, each may be provided separately. The measuring unit may not use the total pressure as described above.

前記実施形態では、前記第1バルブ23の開度を前記温調機構4がモニタリングすることにより、設定温度を変更するものであったが、前記材料ガスの分圧をモニタリングすることにより設定温度を適宜変更するものであってもよい。具体的には、図7に示すように前記分圧測定センサ21により測定される分圧が、前記第1バルブ23の可動範囲の開放限界開度に基づいて定められる下限閾値分圧を下回った場合には、前記温度設定部42が、その時点で設定されている設定温度よりも高い温度に設定温度を変更するものであってもよい。このような構成では、前記第1バルブ23の開度のモニタリングを行う必要がなく、分圧測定センサ21の値をそのまま使うによって、第1バルブ23が止まってしまう不具合を防ぐことができる。   In the embodiment, the set temperature is changed by monitoring the opening degree of the first valve 23 by the temperature adjusting mechanism 4, but the set temperature is set by monitoring the partial pressure of the material gas. You may change suitably. Specifically, as shown in FIG. 7, the partial pressure measured by the partial pressure measurement sensor 21 is lower than the lower limit threshold partial pressure determined based on the opening limit opening of the movable range of the first valve 23. In this case, the temperature setting unit 42 may change the set temperature to a temperature higher than the set temperature set at that time. In such a configuration, it is not necessary to monitor the opening degree of the first valve 23, and by using the value of the partial pressure measurement sensor 21 as it is, a problem that the first valve 23 stops can be prevented.

また材料ガスの分圧をモニタリングして、設定温度を変更する以外にも、例えば、圧力計から出力される混合ガスの全圧をモニタリングしておき、開放限界開度に基づいて定めた下限閾値全圧を測定全圧が下回った場合には、設定温度を変更するように構成しても構わない。   In addition to monitoring the partial pressure of the material gas and changing the set temperature, for example, the total pressure of the mixed gas output from the pressure gauge is monitored, and the lower threshold value determined based on the opening limit opening When the total pressure falls below the total pressure, the set temperature may be changed.

前記実施形態では、前記タンク13内の温度を変更することにより材料ガスの分圧を上昇させて、前記第1バルブ23の可動範囲内で制御できるようにしていたが、材料ガスの分圧を変化させる以外の方法を取っても構わない。すなわち、図8に示すように前記第1バルブ23の上流又は下流に設けられた補助バルブ5と、前記補助バルブ5の開度を制御する補助バルブ制御部6と、を備え、前記第1バルブ5の開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記補助バルブ制御部6が、前記補助バルブ5の開度をその時点で設定されている開度よりも開放側の開度へと変更することを特徴とする材料ガス濃度制御システム100であっても構わない。   In the embodiment, the partial pressure of the material gas is increased by changing the temperature in the tank 13 so that the partial pressure of the material gas can be controlled within the movable range of the first valve 23. You may take a method other than changing. That is, as shown in FIG. 8, the auxiliary valve 5 provided upstream or downstream of the first valve 23 and the auxiliary valve control unit 6 for controlling the opening degree of the auxiliary valve 5 are provided, and the first valve When the opening of 5 exceeds the open side threshold opening determined based on the opening limit opening of the movable range, the auxiliary valve controller 6 sets the opening of the auxiliary valve 5 at that time. The material gas concentration control system 100 may be characterized in that the opening degree is changed to the opening degree on the open side rather than the opening degree that is set.

より具体的には、前記導出管12に接続される反応室等のチャンバCに設けてある補助バルブ5を用い、第1バルブ23の開度が開放側閾値開度となった場合には、前記補助バルブ5を開放して、より全圧を低下できるように構成してあればよい。また、前記第1バルブ23の開度をモニタリングするのではなく、材料ガスの分圧をモニタリングするようにしても構わない。加えて、補助バルブ5は、導出管12に設けてあるものであっても構わない。   More specifically, when the auxiliary valve 5 provided in the chamber C such as the reaction chamber connected to the outlet pipe 12 is used and the opening degree of the first valve 23 becomes the open side threshold opening degree, The auxiliary valve 5 may be opened so that the total pressure can be further reduced. Further, instead of monitoring the opening degree of the first valve 23, the partial pressure of the material gas may be monitored. In addition, the auxiliary valve 5 may be provided in the outlet pipe 12.

前記実施形態では、第1バルブが開放限界開度となってしまうのを防ぐことを意図した構成としていたが、逆に閉塞限界開度となってしまうのを防ぐものであっても構わない。具体的には、前記第1バルブの開度が、可動範囲の閉塞限界開度に基づいて定められる閉塞側閾値開度を下回った場合には、前記温度設定部が、その時点で設定されている設定温度よりも低い温度に設定温度を変更するように構成されていればよい。このようなものであれば、例えば、材料ガスの分圧が高くなりすぎてしまい、前記第1バルブの可動範囲では分圧に対応した全圧を達成することができないという不具合を防ぐことができる。   In the said embodiment, although it was set as the structure intended to prevent the 1st valve | bulb becoming opening limit opening degree, it may prevent conversely becoming closing | closing limit opening degree. Specifically, when the opening degree of the first valve falls below the closing side threshold opening degree determined based on the closing limit opening degree of the movable range, the temperature setting unit is set at that time. What is necessary is just to be comprised so that preset temperature may be changed into temperature lower than the preset temperature which is. In such a case, for example, the partial pressure of the material gas becomes excessively high, and the inconvenience that the total pressure corresponding to the partial pressure cannot be achieved in the movable range of the first valve can be prevented. .

開放側閾値開度は開放限界開度に基づいて定められるものであればよい。例えば、開放限界開度と可動範囲の中央値との間にあるような開度等でもよい。また、既存の材料ガス濃度制御システム等に、前記温度設定部及び前記濃度制御部としての機能を発揮させるプログラムをインストールしてもよい。また、前記実施形態では開度自体をモニタリングしておき、その開度に対して閾値を設けておいたが、例えば、測定される開度の変化率自体に上限閾値変化率を設定しておき、その上限閾値変化率を超えた場合には、設定温度を上昇させるように構成してあるものであっても構わない。この場合、変化率は絶対値だけをみるものであってもよいし、符号も考慮するものであっても構わない。また、前記開放側閾値開度は、前記第1バルブの開度の変化率に応じて変更されるものではなく、常に固定されているものであっても構わない。例えば、前記開放限界開度の95%を前記開放側閾値開度とする等のように、前記開放側閾値開度が、前記開放限界開度の所定の割合の開度で固定されているものであっても構わない。   The opening threshold opening may be determined based on the opening limit opening. For example, an opening degree between the opening limit opening degree and the median value of the movable range may be used. In addition, a program that exhibits the functions as the temperature setting unit and the concentration control unit may be installed in an existing material gas concentration control system or the like. In the above embodiment, the opening itself is monitored and a threshold is set for the opening. For example, an upper limit threshold change rate is set for the measured change rate of the opening itself. If the upper limit threshold change rate is exceeded, the set temperature may be increased. In this case, the rate of change may be one in which only the absolute value is viewed, or the sign may be taken into consideration. Further, the opening-side threshold opening is not changed according to the rate of change of the opening of the first valve, and may be always fixed. For example, the opening side threshold opening is fixed at an opening of a predetermined ratio of the opening limit opening such that 95% of the opening limit opening is the opening side threshold opening. It does not matter.

前記実施形態では、材料ガスの濃度を一定に保つ際において材料ガスの発生量が減少し、前記第1バルブの開度が開放限界開度となり濃度制御が不可能になるのを防ぐことを目的としていたが、例えば、材料ガスの流量が一定となるように流量制御をしている際に同様に流量制御用のバルブの開度が開放限界開度となり流量を一定に保つことができなくなるのを防ぐようにしてもよい。具体的には、材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、前記導入管上に設けられる第2バルブと、前記材料ガスの流量を測定する材料ガス流量測定部と、前記材料ガス流量測定部で測定された前記材料ガスの測定流量が、予め定められた設定流量となるように前記第1バルブの開度を制御する材料ガス流量制御部と、前記タンク内の温度を設定温度となるように温調する温調器と、前記温調器の設定温度を設定する温度設定部とを備え、前記第2バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス流量制御システムであればよい。このようなものであれば、タンクの温度を上昇させることにより大まかな材料ガスの流量を確保できるようにし、前記第2バルブの開度が開放限界開度となるのを防ぐとともに、前記第2バルブの開度が中央値側において、作動させて細かい流量の制御を行えるようにすることによって材料ガスの流量を常に一定にすることができる。前記材料ガス流量測定部としては、例えば、キャリアガス流量測定部と、前記濃度測定部とから構成され、前記式(3)に基づいて材料ガスの流量を測定するものであればよい。   In the embodiment, when the concentration of the material gas is kept constant, the generation amount of the material gas is reduced, and the opening of the first valve is prevented from becoming the open limit opening and the concentration control is impossible. However, for example, when the flow rate control is performed so that the flow rate of the material gas is constant, the opening degree of the valve for flow rate control becomes the open limit opening degree, and the flow rate cannot be kept constant. May be prevented. Specifically, a tank for storing the material, an introduction pipe for introducing a carrier gas for vaporizing the stored material into the tank, and a mixed gas of the material gas evaporated from the material and the carrier gas from the tank. A material vaporization system including a lead-out pipe that leads out, a second valve provided on the lead-in pipe, a material gas flow rate measurement unit that measures the flow rate of the material gas, and the material gas flow rate A material gas flow rate control unit that controls the opening of the first valve so that the measured flow rate of the material gas measured by the measurement unit becomes a predetermined set flow rate, and the temperature in the tank is set as a set temperature. An opening in which the opening degree of the second valve is determined based on an opening limit opening degree of the movable range. Side threshold If it exceeds the opening degree is, the temperature setting unit may be a material gas flow control system and changes the set temperature to a temperature higher than the set temperature that is set at that time. If this is the case, it is possible to ensure a rough flow rate of the material gas by raising the temperature of the tank, preventing the opening of the second valve from reaching the opening limit opening, and the second. The flow rate of the material gas can always be kept constant by operating the valve on the median side so that fine flow rate control can be performed. The material gas flow rate measurement unit may be, for example, any one that includes a carrier gas flow rate measurement unit and the concentration measurement unit and measures the flow rate of the material gas based on the equation (3).

材料は前記実施形態では、固体の材料であったが、液体の材料でも構わない。   In the embodiment, the material is a solid material, but may be a liquid material.

その他、本発明の趣旨に反しない範囲において、種々の変形や実施形態の組み合わせを行っても構わない。   In addition, various modifications and combinations of embodiments may be performed without departing from the spirit of the present invention.

L・・・材料
1・・・材料気化システム(バブリングシステム)
11・・・導入管
12・・・導出管
13・・・タンク
23・・・第1バルブ
CS・・・濃度測定部
CC・・・濃度制御部
41・・・温調器
42・・・温度設定部
5・・・補助バルブ
L ... Material 1 ... Material vaporization system (Bubbling system)
DESCRIPTION OF SYMBOLS 11 ... Introducing pipe 12 ... Outlet pipe 13 ... Tank 23 ... 1st valve CS ... Concentration measurement part CC ... Concentration control part 41 ... Temperature controller 42 ... Temperature Setting part 5 ... Auxiliary valve

Claims (5)

材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、
前記導出管上に設けられる第1バルブと、
前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、
前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、
前記タンク内の温度を設定温度となるように温調する温調器と、
前記温調器の設定温度を設定する温度設定部とを備え、
前記第1バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス濃度制御システム。
A tank for containing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, and a lead-out pipe for deriving a mixed gas of the material gas vaporized from the material and the carrier gas from the tank Used in a material vaporization system comprising:
A first valve provided on the outlet pipe;
A concentration measuring unit for measuring the concentration of the material gas in the mixed gas;
A concentration control unit for controlling the opening of the first valve so that the measured concentration of the material gas measured by the concentration measuring unit becomes a predetermined set concentration;
A temperature controller for adjusting the temperature in the tank so as to be a set temperature;
A temperature setting unit for setting a set temperature of the temperature controller,
When the opening degree of the first valve exceeds the opening side threshold opening degree determined based on the opening limit opening degree of the movable range, the temperature setting unit is set to be higher than the set temperature set at that time. A material gas concentration control system characterized by changing a set temperature to a higher temperature.
前記閾値が前記第1バルブの開度の変化率に応じて変更されるものである請求項1記載の材料ガス濃度制御システム。   The material gas concentration control system according to claim 1, wherein the threshold value is changed according to a change rate of the opening degree of the first valve. 材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、
前記導出管上に設けられる第1バルブと、
前記材料ガスの分圧を測定する分圧測定センサと、前記混合ガスの全圧を測定する全圧測定センサとを具備し、前記分圧と前記全圧に基づいて前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、
前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定めた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、
前記タンク内の温度を設定温度となるように温調する温調器と、
前記温調器に設定温度を設定する温度設定部とを備え、
前記分圧測定センサにより測定される分圧が、前記第1バルブの可動範囲の開放限界開度に基づいて定められる下限閾値分圧を下回った場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス濃度制御システム。
A tank for containing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, and a lead-out pipe for deriving a mixed gas of the material gas vaporized from the material and the carrier gas from the tank. Used in a material vaporization system comprising:
A first valve provided on the outlet pipe;
A partial pressure measuring sensor for measuring a partial pressure of the material gas; and a total pressure measuring sensor for measuring a total pressure of the mixed gas, and the material gas in the mixed gas based on the partial pressure and the total pressure. A concentration measuring unit for measuring the concentration of
A concentration control unit for controlling the opening of the first valve so that the measured concentration of the material gas measured by the concentration measuring unit becomes a predetermined set concentration;
A temperature controller for adjusting the temperature in the tank so as to be a set temperature;
A temperature setting unit for setting a set temperature in the temperature controller;
When the partial pressure measured by the partial pressure measurement sensor is lower than the lower limit threshold partial pressure determined based on the opening limit opening of the movable range of the first valve, the temperature setting unit at that time A material gas concentration control system characterized in that the set temperature is changed to a temperature higher than the set set temperature.
材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであって、
前記導入管上に設けられる第2バルブと、
前記材料ガスの流量を測定する材料ガス流量測定部と、
前記材料ガス流量測定部で測定された前記材料ガスの測定流量が、予め定められた設定流量となるように前記第1バルブの開度を制御する材料ガス流量制御部と、
前記タンク内の温度を設定温度となるように温調する温調器と、
前記温調器の設定温度を設定する温度設定部とを備え、
前記第2バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス流量制御システム。
A tank for containing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, and a lead-out pipe for deriving a mixed gas of the material gas vaporized from the material and the carrier gas from the tank Used in a material vaporization system comprising:
A second valve provided on the introduction pipe;
A material gas flow rate measuring unit for measuring a flow rate of the material gas;
A material gas flow rate control unit that controls the opening of the first valve so that the measured flow rate of the material gas measured by the material gas flow rate measurement unit becomes a predetermined set flow rate;
A temperature controller for adjusting the temperature in the tank so as to be a set temperature;
A temperature setting unit for setting a set temperature of the temperature controller,
When the opening degree of the second valve exceeds the opening side threshold opening degree determined based on the opening limit opening degree of the movable range, the temperature setting unit is set to be higher than the set temperature set at that time. A material gas flow rate control system characterized by changing a set temperature to a higher temperature.
材料を収容するタンクと、収容された前記材料を気化させるキャリアガスを前記タンクに導入する導入管と、前記材料が気化した材料ガス及び前記キャリアガスの混合ガスを前記タンクから導出する導出管とを具備した材料気化システムに用いられるものであり、
前記導出管上に設けられる第1バルブと、前記混合ガスにおける前記材料ガスの濃度を測定する濃度測定部と、前記濃度測定部で測定された前記材料ガスの測定濃度が、予め定められた設定濃度となるように前記第1バルブの開度を制御する濃度制御部と、前記タンク内の温度を設定温度となるように温調する温調器とを備えた材料ガス濃度制御システムに用いられるプログラムであって、
前記温調器の設定温度を設定する温度設定部とを備え、
前記第1バルブの開度が、可動範囲の開放限界開度に基づいて定められる開放側閾値開度を超えた場合には、前記温度設定部が、その時点で設定されている設定温度よりも高い温度に設定温度を変更することを特徴とする材料ガス濃度制御システム用プログラム。
A tank for containing the material, an introduction pipe for introducing a carrier gas for vaporizing the contained material into the tank, and a lead-out pipe for deriving a mixed gas of the material gas vaporized from the material and the carrier gas from the tank Used for a material vaporization system comprising
A first valve provided on the lead-out pipe, a concentration measuring unit that measures the concentration of the material gas in the mixed gas, and a measurement concentration of the material gas measured by the concentration measuring unit are set in advance. Used in a material gas concentration control system including a concentration control unit that controls the opening degree of the first valve so as to achieve a concentration, and a temperature controller that adjusts the temperature in the tank to a set temperature. A program,
A temperature setting unit for setting a set temperature of the temperature controller,
When the opening degree of the first valve exceeds the opening side threshold opening degree determined based on the opening limit opening degree of the movable range, the temperature setting unit is set to be higher than the set temperature set at that time. A material gas concentration control system program characterized by changing a set temperature to a high temperature.
JP2009293533A 2009-12-24 2009-12-24 Material gas concentration control system and program for material gas concentration control system Active JP5419276B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009293533A JP5419276B2 (en) 2009-12-24 2009-12-24 Material gas concentration control system and program for material gas concentration control system
TW099144303A TWI518745B (en) 2009-12-24 2010-12-16 Source gas concentration control system and program for source gas concentration control system
CN201010601694.6A CN102156489B (en) 2009-12-24 2010-12-16 Source gas concentration control system and program used in the source gas concentration control system
KR1020100132410A KR101685711B1 (en) 2009-12-24 2010-12-22 Source gas concentration control system
US12/976,754 US8459291B2 (en) 2009-12-24 2010-12-22 Source gas concentration control system
DE102010056004A DE102010056004A1 (en) 2009-12-24 2010-12-23 Gas concentration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293533A JP5419276B2 (en) 2009-12-24 2009-12-24 Material gas concentration control system and program for material gas concentration control system

Publications (2)

Publication Number Publication Date
JP2011134916A true JP2011134916A (en) 2011-07-07
JP5419276B2 JP5419276B2 (en) 2014-02-19

Family

ID=44185995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293533A Active JP5419276B2 (en) 2009-12-24 2009-12-24 Material gas concentration control system and program for material gas concentration control system

Country Status (6)

Country Link
US (1) US8459291B2 (en)
JP (1) JP5419276B2 (en)
KR (1) KR101685711B1 (en)
CN (1) CN102156489B (en)
DE (1) DE102010056004A1 (en)
TW (1) TWI518745B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797563A (en) * 2011-09-06 2014-05-14 株式会社富士金 Material vaporization supply device equipped with material concentration detection mechanism
JP2016111068A (en) * 2014-12-02 2016-06-20 株式会社堀場エステック Decomposition detector, concentration measurement device, and concentration controller
KR20160111861A (en) 2015-03-17 2016-09-27 도쿄엘렉트론가부시키가이샤 Raw material gas supply apparatus and film forming apparatus
JP2018074166A (en) * 2012-07-18 2018-05-10 ケレス テクノロジーズ インコーポレイテッド Vapor delivery device, manufacturing method thereof and method of application thereof

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
DE102012210332A1 (en) * 2012-06-19 2013-12-19 Osram Opto Semiconductors Gmbh ALD COATING LINE
CN102788740B (en) * 2012-08-09 2014-04-16 天津开发区合普工贸有限公司 Volatile gas diffusion detecting equipment with accurate concentration control
JP5969869B2 (en) * 2012-09-14 2016-08-17 株式会社堀場エステック Flow control device and program for flow control device
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
KR20150086318A (en) * 2012-11-16 2015-07-27 인테그리스 - 제탈론 솔루션즈, 인크. Controlling mixing concentration
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
KR101640836B1 (en) * 2014-06-09 2016-07-20 (주)지오엘리먼트 Canister with the same, and evaporator
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
KR101652469B1 (en) * 2015-02-27 2016-08-30 주식회사 유진테크 Method for multi-supplying gas and apparatus for multi-supplying gas
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
CN105116931A (en) * 2015-07-21 2015-12-02 首钢京唐钢铁联合有限责任公司 Hydrogen control method and hydrogen control system for hydrogen-nitrogen mixing station
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102493037B1 (en) * 2016-08-05 2023-01-31 가부시키가이샤 호리바 에스텍 Gas control system and film formation apparatus equipped with the gas control system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) * 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10983537B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) * 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102607020B1 (en) * 2017-09-19 2023-11-29 가부시키가이샤 호리바 에스텍 Concentration control apparatus and material gas supply system
JP7154850B2 (en) * 2017-09-19 2022-10-18 株式会社堀場エステック Concentration control device and material gas supply device
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
WO2019065611A1 (en) * 2017-09-29 2019-04-04 日立金属株式会社 Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
TWI791689B (en) 2017-11-27 2023-02-11 荷蘭商Asm智慧財產控股私人有限公司 Apparatus including a clean mini environment
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
JP7124098B2 (en) 2018-02-14 2022-08-23 エーエスエム・アイピー・ホールディング・ベー・フェー Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR20190128558A (en) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
CN109283023B (en) * 2018-11-06 2024-04-16 华北电力大学(保定) Experimental device for simulating influence of smoke content on sulfur trioxide concentration and application method
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
JP7281285B2 (en) 2019-01-28 2023-05-25 株式会社堀場エステック DENSITY CONTROLLER, ZERO POINT ADJUSTMENT METHOD, AND PROGRAM FOR DENSITY CONTROLLER
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
US11519070B2 (en) * 2019-02-13 2022-12-06 Horiba Stec, Co., Ltd. Vaporization device, film formation device, program for a concentration control mechanism, and concentration control method
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202044325A (en) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210117157A (en) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Method of forming vanadium nitride-containing layers and structures including the same
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
JP2022038365A (en) * 2020-08-26 2022-03-10 株式会社堀場エステック Raw material vaporization system and concentration control module used therefor
TW202212623A (en) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285415A (en) * 1986-06-04 1987-12-11 Hitachi Ltd Method and apparatus for vapor growth
JPH0963965A (en) * 1995-08-24 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> Organic metal feeding device and organic metal vapor growth device
JP2001068465A (en) * 1999-06-22 2001-03-16 Tokyo Electron Ltd Method and apparatus for metal organic vapor phase growth

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839111B2 (en) * 1990-08-28 1998-12-16 日本パーカライジング株式会社 Chromate treatment method for galvanized steel sheet
WO1997028291A1 (en) 1996-02-05 1997-08-07 Nippon Steel Corporation Surface-treated metallic material with corrosion resistance and surface treatment used therefor
JP4393677B2 (en) * 1999-09-14 2010-01-06 株式会社堀場エステック Liquid material vaporization method and apparatus, and control valve
JP2006066540A (en) * 2004-08-25 2006-03-09 Tokyo Electron Ltd Thin film forming device and cleaning method thereof
US8100172B2 (en) * 2006-05-26 2012-01-24 Tai-Her Yang Installation adapted with temperature equalization system
JP4605790B2 (en) * 2006-06-27 2011-01-05 株式会社フジキン Raw material vaporization supply device and pressure automatic adjustment device used therefor.
JP2008282622A (en) 2007-05-09 2008-11-20 Toyota Motor Corp Inspection device of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285415A (en) * 1986-06-04 1987-12-11 Hitachi Ltd Method and apparatus for vapor growth
JPH0963965A (en) * 1995-08-24 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> Organic metal feeding device and organic metal vapor growth device
JP2001068465A (en) * 1999-06-22 2001-03-16 Tokyo Electron Ltd Method and apparatus for metal organic vapor phase growth

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797563A (en) * 2011-09-06 2014-05-14 株式会社富士金 Material vaporization supply device equipped with material concentration detection mechanism
JP2018074166A (en) * 2012-07-18 2018-05-10 ケレス テクノロジーズ インコーポレイテッド Vapor delivery device, manufacturing method thereof and method of application thereof
JP2016111068A (en) * 2014-12-02 2016-06-20 株式会社堀場エステック Decomposition detector, concentration measurement device, and concentration controller
KR20160111861A (en) 2015-03-17 2016-09-27 도쿄엘렉트론가부시키가이샤 Raw material gas supply apparatus and film forming apparatus
KR101775821B1 (en) 2015-03-17 2017-09-06 도쿄엘렉트론가부시키가이샤 Raw material gas supply apparatus and film forming apparatus
US10612143B2 (en) 2015-03-17 2020-04-07 Tokyo Electron Limited Raw material gas supply apparatus and film forming apparatus

Also Published As

Publication number Publication date
TW201126575A (en) 2011-08-01
US8459291B2 (en) 2013-06-11
CN102156489A (en) 2011-08-17
CN102156489B (en) 2014-11-26
US20110155264A1 (en) 2011-06-30
JP5419276B2 (en) 2014-02-19
KR20110074459A (en) 2011-06-30
KR101685711B1 (en) 2016-12-12
TWI518745B (en) 2016-01-21
DE102010056004A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5419276B2 (en) Material gas concentration control system and program for material gas concentration control system
JP5506655B2 (en) Material gas control device, material gas control method, material gas control program, and material gas control system
KR101578220B1 (en) material gas concentration control system
TWI754728B (en) Gas control system, deposition apparatus including gas control system, and program and gas control method used for gas control system
JP7369456B2 (en) Flow control method and flow control device
KR102473844B1 (en) Fluid control device, fluid control system, fluid control method, and program recording medium
JP2010109303A (en) Material gas concentration controller
JP3828821B2 (en) Liquid material vaporizer
JP5281364B2 (en) Material gas concentration control system
JP5281363B2 (en) Material gas concentration control system
JP5145193B2 (en) Material gas concentration control system
JP2013040762A (en) Storage type water heater
JPH11130403A (en) Method for controlling temperature of reformer for fuel cell
KR20110128427A (en) Flow control device and control method of the same
KR20220027020A (en) Vaporization system and concentration control module used in the same
JP5511108B2 (en) Material gas concentration controller
JP2012138407A (en) Material gas concentration control system
TW202320172A (en) Vaporization device, vaporization device control method, storage medium for vaporization device program, and fluid control device
JP2010080172A (en) Solid-oxide fuel cell system and method for controlling the same
JP2015090558A (en) Water temperature control device
JP2019145047A (en) Fluid control device, control program and fluid control system
JP2013001627A (en) Fuel evaporation device
KR970012985A (en) HMDS automatic supply device used in the manufacture of semiconductor devices
JPH04151453A (en) Method for leading out necessary capacity of heating means in control of hot water supply of hot-cold water combination type tap-controlled water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5419276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250