JPH04151453A - Method for leading out necessary capacity of heating means in control of hot water supply of hot-cold water combination type tap-controlled water heater - Google Patents

Method for leading out necessary capacity of heating means in control of hot water supply of hot-cold water combination type tap-controlled water heater

Info

Publication number
JPH04151453A
JPH04151453A JP2273695A JP27369590A JPH04151453A JP H04151453 A JPH04151453 A JP H04151453A JP 2273695 A JP2273695 A JP 2273695A JP 27369590 A JP27369590 A JP 27369590A JP H04151453 A JPH04151453 A JP H04151453A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heating means
capacity
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2273695A
Other languages
Japanese (ja)
Other versions
JP2886319B2 (en
Inventor
Takanori Yamamoto
山本 孝徳
Hiroshi Ichikawa
浩 市川
Masakazu Kubota
久保田 雅収
Noritaka Morinaka
森中 宣隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2273695A priority Critical patent/JP2886319B2/en
Publication of JPH04151453A publication Critical patent/JPH04151453A/en
Application granted granted Critical
Publication of JP2886319B2 publication Critical patent/JP2886319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To conduct a control stably without hunting and to prevent shortening of the lifetime of a control element by a method wherein the temperature of tap water and the quantity of hot water supply are compared with previous values thereof and a necessary capacity is led out on the basis of stored values without updating the values thereof when they are in prescribed error ranges and with updating them when they are beyond the ranges. CONSTITUTION:On the occasion of supply of hot water, a control means 13 leads out a necessary capacity of a heating means 12 on the basis of the temperature of tap water and the quantity of hot water supply obtained by measurement and a set temperature of hot water. Prior to this leading out, it compares the temperature of tap water and the quantity of hot water supply obtained by measurement, with values stored in a storage means. When values thereof are within prescribed error ranges, the stored values are not updated and the necessary capacity is led out on the basis of the values stored theretofore. When they are beyond the error ranges, the values are updated and the necessary capacity is led out on the basis of these values. Therefore the necessary capacity led out is prevented from changing every time under the effect of a measured error, and a stable control can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湯水混合式瞬間湯沸器の給湯制御に於ける加熱
手段の所要能力の導出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for deriving the required capacity of a heating means in hot water supply control of a hot and cold instantaneous water heater.

(従来の技術) 上水を単に熱交換器に於いて加熱してそのまま出湯する
従来の通常の瞬間湯沸器に対して、近来、この熱交換器
からの湯と上水とを混合して所望の温度の湯を供給し得
るようにした瞬間湯沸器が提供されつつある。前者は熱
交換器を加熱するバーナ等の加熱手段の発生熱量の範囲
の関係上、夏期に於ける小流量での適温の給湯が困難で
ある等の課題を有するのに対して、後者はこのようなa
題を解決することができる。例えば、扱者の従来例とし
ては特開平2−183733号公報に開示されるものが
ある。
(Prior art) In contrast to conventional instantaneous water heaters that simply heat tap water in a heat exchanger and dispense the hot water as is, in recent years, water heaters that mix the hot water from the heat exchanger with tap water have been developed. Instantaneous water heaters that can supply hot water at a desired temperature are becoming available. The former has problems such as difficulty in supplying hot water at an appropriate temperature at a small flow rate in summer due to the range of heat generated by the heating means such as a burner that heats the heat exchanger, whereas the latter like a
be able to solve problems. For example, a conventional example of a handler is disclosed in Japanese Unexamined Patent Publication No. 2-183733.

本出願人は先に、このように熱交換器からの湯と上水を
合流させ、混合して所望の温度の湯を供給し得る瞬間湯
沸器に於いて、かかる湯と上水の混合を、合流路中に設
けた熱応動素子により弁体を移動させて流量比率を変化
自在な混合弁により行う給湯機構を提案した。(例えば
特願平1−344752号の願書に添付した明細書及び
図面参照) 第1図、第2図を参照して説明すると、この給湯機構は
、バーナ12を設けた熱交換器3を通る製経路1と並列
に、該熱交換器3の上流側で分岐させ、下流側で混合弁
4を介して合流させろ水経路5を設けると共に、該混合
弁4は合流路6中に設けた熱応動素子7により弁体8を
移動させて前記水経路5と製経路lの流量比率を変化さ
せる構成とし、そして該熱応動素子7を出湯温度設定器
14の出湯設定温度に対応して作動機構9によりバイア
スさせる構成とすると共に、前記バーナ12を前記熱交
換器3の下流側に設けた温度センサ15を用いて制御手
段13により制御して、この下流側の湯温を所定温度に
調節する構成としている。
The applicant has previously proposed that hot water from a heat exchanger and tap water can be combined and mixed to supply hot water at a desired temperature in an instantaneous water heater. We proposed a hot water supply mechanism that uses a mixing valve that can freely change the flow rate ratio by moving the valve body using a thermally responsive element installed in the merging channel. (For example, refer to the specification and drawings attached to the application of Japanese Patent Application No. 1-344752.) To explain with reference to FIGS. 1 and 2, this hot water supply mechanism passes through a heat exchanger 3 provided with a burner 12. In parallel with the production route 1, a sewage route 5 is provided, which is branched on the upstream side of the heat exchanger 3 and merged downstream via a mixing valve 4. The valve body 8 is moved by a responsive element 7 to change the flow rate ratio between the water path 5 and the production path 1, and the thermally responsive element 7 is activated by an operating mechanism in accordance with the hot water setting temperature of the hot water tap temperature setting device 14. 9, and the burner 12 is controlled by the control means 13 using a temperature sensor 15 provided downstream of the heat exchanger 3 to adjust the temperature of the water on the downstream side to a predetermined temperature. It is structured as follows.

かかる構成に於いてバーナ12の燃焼により熱交換器3
で昇温され、製経路lを流れた湯は、混合弁4に於いて
水経路5を流れてきた上水と混合して温度が低下し、合
流路6を流れて呂湯口19かも出湯される。この際、制
御手段13は温度センサ15の測定値に基づいてバーナ
12をフィードバック制御することにより、熱交換器3
の下流側の湯を所定の温度、例えば80℃に調節し、そ
して合流路6中に設けた熱応動素子7は、該合流路6中
の湯温に応動して弁体8を移動させて前記水経路5と製
経路1の流量比率を変化させ、こうして合流路6中の湯
温を、熱応動素子7のバイアス量に応じた値に調節する
ことができる。そしてこのバイアス量は出湯温度設定器
14の出湯設定温度に対応して作動機構9により変化さ
せることができ、こうして出湯設定温度に調節した湯を
供給することができるのである。
In such a configuration, the combustion of the burner 12 causes the heat exchanger 3 to
The hot water that has been heated up in the water and has flowed through the production path 1 is mixed with the tap water that has flowed through the water path 5 at the mixing valve 4, the temperature of which is lowered, and the hot water flows through the confluence path 6 and is also discharged from the hot water outlet 19. Ru. At this time, the control means 13 performs feedback control of the burner 12 based on the measured value of the temperature sensor 15, thereby controlling the heat exchanger 3.
The hot water on the downstream side of the water is adjusted to a predetermined temperature, for example, 80° C., and the thermally responsive element 7 provided in the confluence channel 6 moves the valve body 8 in response to the temperature of the hot water in the confluence channel 6. By changing the flow rate ratio between the water path 5 and the manufacturing path 1, the temperature of the hot water in the confluence path 6 can be adjusted to a value corresponding to the bias amount of the thermally responsive element 7. This bias amount can be changed by the actuating mechanism 9 in accordance with the hot water setting temperature of the hot water tap temperature setting device 14, thereby making it possible to supply hot water adjusted to the hot water tap temperature setting.

上述の構成に於いて熱応動素子7のバイアス量は、平均
的な出湯量及び上水の温度に於いて、出湯温度の範囲の
中間に対応する出湯設定温度、例えば50℃に於いて、
前述した流量比率が]:〕となるように設定しており、
この出湯設定温度が高くなると次第に製経路1の流量比
率が高くなり、逆に低くなると水経路5の流量比率が高
くなる。
In the above-described configuration, the bias amount of the thermally responsive element 7 is such that at an average hot water output amount and tap water temperature, at a hot water tap temperature setting corresponding to the middle of the hot water tap temperature range, for example, 50°C,
The flow rate ratio mentioned above is set to be ]:],
As the hot water tap setting temperature increases, the flow rate ratio of the water production path 1 gradually increases, and conversely, as it decreases, the flow rate ratio of the water path 5 increases.

ところでバーナ12の所要能力は、例えば号数<lQの
水を25℃上昇させるのに必要な1時間当りの熱量、即
ち1号= ] 500kcal/hour)として次式
で表すことができる。
By the way, the required capacity of the burner 12 can be expressed by the following equation, for example, as the amount of heat per hour required to raise the temperature of water of number < lQ by 25° C., that is, number 1 = ] 500 kcal/hour).

この式から分かるように、バーナ12の所要能力は、出
湯設定温度が低い程、夏期等に於いて上水温度が高い程
又は出湯量が少ない程小さくなレバそして製経路1側の
流量も少なくなる。このようにしてバーナの所要能力が
低下して、低能力域の所定能力、例えば5号以下となる
と製経路1側の弁の開度が非常に小さくなるので、熱応
動素子7による弁の開度の分解能の限界となり、僅かな
変位でも製経路1側の流量が相対的に大きく変化し、従
ってハンチングを起こして合流路6の湯温は安定しなく
なる。また例えば3号以下となると、連続した燃焼では
熱交換器3内の湯が沸騰する危険が生じ、ON−〇FF
制御が必要となる。そして所要能力が更に低下して、例
えば1号以下となると熱交換器3の応答性能の限界を越
えてしまい、上記ON−〇FF制御でも沸騰の危険が生
じる。
As can be seen from this equation, the required capacity of the burner 12 is smaller as the hot water setting temperature is lower, the water temperature is higher in summer, etc., or the amount of hot water is smaller. Become. In this way, when the required capacity of the burner decreases to a predetermined capacity in the low capacity range, for example, No. 5 or less, the opening degree of the valve on the production path 1 side becomes very small, so This is the limit of the degree of resolution, and even a slight displacement causes a relatively large change in the flow rate on the production path 1 side, resulting in hunting and the temperature of the hot water in the merging path 6 becoming unstable. For example, if the temperature is below No. 3, there is a danger that the hot water in the heat exchanger 3 will boil due to continuous combustion, and the ON-〇FF
Control is required. If the required capacity further decreases, for example, below No. 1, the response performance limit of the heat exchanger 3 will be exceeded, and there will be a risk of boiling even with the above ON-FF control.

このような不都合を解消するためには、これらのバーナ
12の所要能力を給湯時に導出し、導出した所要能力に
応じて該加熱手段12や混合弁4の制御方法を適宜に切
り替えて制御を行う必要がある。この場合、所要能力の
導出は、温度センサ17により測定した上水温度と流量
測定手段18により測定した出湯量と、出湯温度設定器
14に設定した出湯設定温度とから前記(1)式を用い
て行うことができる。
In order to eliminate such inconveniences, the required capacity of these burners 12 is derived at the time of hot water supply, and the control method of the heating means 12 and the mixing valve 4 is appropriately switched and controlled according to the derived required capacity. There is a need. In this case, the required capacity is derived using the above equation (1) from the water temperature measured by the temperature sensor 17, the amount of hot water measured by the flow rate measuring means 18, and the hot water setting temperature set in the hot water temperature setting device 14. It can be done by

(発明が解決しようとする課題) 流量センサの測定誤差は、例えば流量の7〜8%程度、
また温度センサの測定誤差は、例えば1℃程度あるのが
現状であり、このような測定誤差を加味せずに、そのま
まの測定値に基づいて所要能力の導出を行うと、導出し
た所要能力がこれらの測定誤差に影響されて毎回変化し
てしまう可能性が大きく、このまま制御を行うと、ハン
チング等を起こして安定した出湯温度が得られないばか
りか、制御要素の寿命低下等の不都合を来してしまう。
(Problem to be solved by the invention) The measurement error of a flow rate sensor is, for example, about 7 to 8% of the flow rate.
Furthermore, the current measurement error of temperature sensors is, for example, about 1°C, and if the required capacity is derived based on the measured value without taking such measurement error into account, the derived required capacity will be There is a high possibility that the temperature will change each time due to the influence of these measurement errors, and if the control is continued as it is, it will not only result in hunting, etc., making it impossible to obtain a stable tapping temperature, but also lead to inconveniences such as a shortened lifespan of the control elements. Resulting in.

本発明は以上の課題を解決することを目的とするもので
ある。
The present invention aims to solve the above problems.

(課題を解決するための手段) 上述した課題を解決するための手段を、添付図面を参照
して説明すると、本発明の給湯制御に於ける加熱手段の
所要能力の導出方法の第一の構成は、加熱手段12を設
けた熱交換器3を通る製経路1と並列に、該熱交換器3
の上流側で分岐させ、下流側で混合弁4を介して合流さ
せる水経路5を設けると共に、該混合弁4は合流路6中
に設けた熱応動素子7により弁体8を移動させて前記水
経路5と製経路1の流量比率を変化させる構成とし、そ
して該熱応動素子7を出湯温度設定器14の出湯設定温
度に対応して作動機構9によりバイアスさせる構成とす
ると共に、前記加熱手段12を前記熱交換器3の下流側
に設けた温度センサ15を用いて制御手段13により制
御して、該下流側の湯温を所定温度に調節する構成とし
た湯水混合式瞬間湯沸器に於いて、該制御手段13は、
出湯設定温度と、測定により得た上水温度と出湯量とか
ら加熱手段12の所要能力を導出して、この所要能力に
応じて該加熱手段12や前記混合弁4の制御を行う構成
とすると共に、前記上水温度と出湯量の記憶手段を設け
て、測定により得た前記上水温度と出湯量を、記憶され
ているこれらの値と比較し、夫々所定の誤差範囲内にあ
る場合には値を更新せずに、それまで記憶されている値
に基づいて前記所要能力の導出を行い、また誤差範囲を
越えた場合には値を更新して、それらの値に基づいて前
記所要能力の導出を行うことを要旨とするものである。
(Means for Solving the Problems) The means for solving the above-mentioned problems will be explained with reference to the attached drawings.The first configuration of the method for deriving the required capacity of the heating means in hot water supply control of the present invention The heat exchanger 3 is installed in parallel with the manufacturing path 1 passing through the heat exchanger 3 provided with the heating means 12.
A water path 5 is provided which branches on the upstream side and merges through the mixing valve 4 on the downstream side, and the mixing valve 4 moves the valve body 8 by a thermally responsive element 7 provided in the merging path 6. The flow rate ratio between the water path 5 and the production path 1 is changed, and the thermally responsive element 7 is biased by the operating mechanism 9 in accordance with the hot water setting temperature of the hot water tap temperature setting device 14, and the heating means 12 is controlled by a control means 13 using a temperature sensor 15 provided on the downstream side of the heat exchanger 3 to adjust the temperature of the water on the downstream side to a predetermined temperature. In this case, the control means 13:
The required capacity of the heating means 12 is derived from the hot water set temperature, the measured tap water temperature, and the amount of hot water dispensed, and the heating means 12 and the mixing valve 4 are controlled according to this required capacity. At the same time, a means for storing the tap water temperature and hot water output amount is provided, and the tap water temperature and hot water output amount obtained by measurement are compared with these stored values, and if each is within a predetermined error range, The required ability is derived based on the previously stored values without updating the values, and if the error range is exceeded, the values are updated and the required ability is calculated based on those values. The purpose of this paper is to derive the following.

また第二の構成は上記の構成に於いて、制御手段13は
前記加熱手段12の所要能力を導出し、その所要能力が
低能力域の第一の設定能力よりも低い場合には、前記加
熱手段12を高温域の所定温度範囲でON−OFF制御
すると共に、前記所要能力が約記第−の設定能力よりも
更に低く設定している第二の設定能力に満たない場合に
は、この第二の設定能力に対して逆算される出湯温度を
出湯設定温度として前記ON−OFF制御を行うことを
要旨とするものである。
Further, in the second configuration, in the above configuration, the control means 13 derives the required capacity of the heating means 12, and when the required capacity is lower than the first set capacity in the low capacity range, When the means 12 is ON-OFF controlled in a predetermined temperature range of the high temperature range, and the required capacity is less than the second set capacity which is set lower than the first set capacity, this second set capacity is set. The gist of the present invention is to perform the ON-OFF control using the hot water outlet temperature calculated inversely with respect to the second set capacity as the hot water outlet temperature setting.

(作用) 給湯に際して制御手段13は、測定により得た上水温度
と出湯量並びに出湯設定温度に基づき前記(1)式によ
り加熱手段12の所要能力を導出するのであるが、この
導出に先立ち、測定により得たこれらの上水温度と出湯
量を、記憶手段に記憶されているこれらの値と比較する
。しかして、これらの値が、夫々所定の誤差範囲内にあ
る場合には記憶している値を更新せずに、それまで記憶
されている値に基づいて前記所要能力の導出を行い、ま
た誤差範囲を越えた場合には値を更新して、それらの値
に基づいて前記所要能力の導出を行う。
(Function) When supplying hot water, the control means 13 derives the required capacity of the heating means 12 from the above formula (1) based on the measured tap water temperature, hot water output amount, and hot water supply setting temperature, but prior to this derivation, The water temperature and amount of hot water obtained by measurement are compared with these values stored in the storage means. If these values are within a predetermined error range, the required ability is derived based on the previously stored values without updating the stored values. If the range is exceeded, the values are updated and the required ability is derived based on these values.

このため導出した所要能力が測定誤差に影響されて毎回
変化してしまうことがなく、安定した制御を行うことが
できる。特に、第二の構成のように、所要能力が低能力
域の第一の設定能力よりも低い場合に、加熱手段12を
高温域の所定温度範囲でON−OFF制御し、また前記
第一の設定能力よりも更に低く設定している第二の設定
能力に満たない場合には、第二の設定能力に対して逆算
される出湯温度を出湯設定温度として前述したONOF
F制御を行うことにより、熱交換器内の湯の沸騰を防止
するように制御を行う場合には、後者の制御に於ける混
合弁4の動作におけるハンチングの発生を防止して、安
定した出湯温度が得られると共に、混合弁4に関する制
御要素の寿命低下を防止することができる。
Therefore, the derived required capacity does not change every time due to the influence of measurement errors, and stable control can be performed. In particular, as in the second configuration, when the required capacity is lower than the first set capacity in the low capacity range, the heating means 12 is ON-OFF controlled in a predetermined temperature range in the high temperature range, and If the second setting capacity, which is set even lower than the set capacity, is not reached, the ONOF described above uses the outlet hot water temperature calculated inversely with respect to the second setting capacity as the outlet hot water set temperature.
When performing control to prevent boiling of hot water in the heat exchanger by performing F control, hunting in the operation of the mixing valve 4 in the latter control is prevented, and stable hot water output is achieved. In addition to obtaining the temperature, it is possible to prevent the life span of the control elements related to the mixing valve 4 from decreasing.

(実施例) 次に本発明の実施例を図について説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

まず、第1図は本発明を適用する湯水混合式瞬間湯沸器
2の一例の全体構成を表したもので、符号1は湯溝器2
の熱交換器3を通る製経路であり、この製経路lと並列
に、該熱交換器3の上流側で分岐させ、下流側で混合弁
4を介して合流させる水経路5を設けている。混合弁4
は、第2図に示すように、合流路6中に設けた熱応動素
子7により弁体8を移動させて前記水経路5と製経路l
の流量比率を変化させる構成とすると共に前記熱応動素
子7をバイアスさせる電動式作動機構等の作動機構9を
設けている。該熱応動素子7は、例えばワックスを封入
して熱膨張、収縮する構成とし、熱膨張による弁体8の
移動方向が製経路】の湯量を少なくすると共に水経路5
の水量を多くする方向としている。この熱応動素子7は
バイアスばね10を介して作動体〕1によりバイアス量
を調節する構成としており、この作動体11は前述した
通り、電動式作動機構等の作動機構9により作動して図
中上下方向に移動させる構成としている。
First, FIG. 1 shows the overall configuration of an example of a hot and cold instantaneous water heater 2 to which the present invention is applied, and reference numeral 1 indicates a water gutter 2.
This is a production route passing through a heat exchanger 3, and in parallel with this production route 1, a water route 5 is provided which is branched on the upstream side of the heat exchanger 3 and merged via a mixing valve 4 on the downstream side. . Mixing valve 4
As shown in FIG.
In addition to changing the flow rate ratio, an actuation mechanism 9 such as an electric actuation mechanism that biases the thermally responsive element 7 is provided. The thermally responsive element 7 is configured to expand and contract thermally by enclosing wax, for example.
The direction is to increase the amount of water. This thermally responsive element 7 has a configuration in which the amount of bias is adjusted by an actuating body] 1 via a bias spring 10, and as described above, this actuating body 11 is actuated by an actuating mechanism 9 such as an electric actuating mechanism. It is configured to move in the vertical direction.

以上の構成に於いて、第2図(a)は製経路lの湯量が
多い状態を表しており、この状態に於いてワックスが膨
張して第2図(b)に示すように熱応動素子7が熱膨張
すると、弁体8を下方に移動して製経路1の湯量を少な
くすると共に、水経路5の水量を多くして合流路6中の
湯温が低下し、逆に湯温が低下し過ぎて熱応動素子7が
収縮すると、弁体8を上方に移動して水経路5の水量を
少なくすると共に、製経路1の湯量を多くして合流路6
中の湯温を上昇させ、こうして合流路6を流れる湯温を
制御することができる。そして、作動機構9により熱応
動素子7を下方にバイアスさせると、設定湯温を低下さ
せることができ、逆に上方にバイアスさせると設定湯温
を上昇させることができる。
In the above configuration, Fig. 2(a) shows a state in which the amount of hot water in the manufacturing path 1 is large, and in this state, the wax expands and the thermally responsive element as shown in Fig. 2(b). 7 thermally expands, the valve body 8 is moved downward to reduce the amount of hot water in the production path 1, and at the same time increases the amount of water in the water path 5, causing the temperature of the hot water in the confluence path 6 to drop; When the temperature decreases too much and the thermally responsive element 7 contracts, the valve body 8 is moved upward to reduce the amount of water in the water path 5, and at the same time, the amount of hot water in the production path 1 is increased and the amount of hot water in the merging path 6 is increased.
By increasing the temperature of the hot water inside, the temperature of the hot water flowing through the confluence channel 6 can be controlled in this way. When the thermally responsive element 7 is biased downward by the operating mechanism 9, the set hot water temperature can be lowered, and conversely, when the thermally responsive element 7 is biased upward, the set hot water temperature can be increased.

符号12は熱交換器3を加熱するための加熱手段であり
、図示例では、この加熱手段12はバーナとしているが
、バーナ12以外に電気ヒータ等を用いることもできる
。符号13は制御手段、14は湯温設定器であり、この
制御手段13は、前記バーナ12を、湯温設定器14の
設定湯温と熱交換器3の下流側に設けたサーミスタ等の
温度センサ15からの湯温を基に、前記熱交換器3の下
流側の湯温を所定の目標温度とするように前記バーナ1
2の燃焼量をフィードバック制御したり、所要能力が後
述する低能力域の第一の設定能力よりも低い場合には、
前記バーナ】2を高温域の所定温度範囲でON−OFF
制御したり、製経路lの流量を測定する流量測定手段1
6と上水の温度を測定する温度センサ〕7の測定値と、
前記目標温度とから行うフィードフォワード制御する構
成とすると共に、前記作動機構9を作動して熱応動素子
7に上記のバイアスを設定するように構成している。尚
、以上の実施例に於いては、流fi測定手段は、総流量
を測定可能な流量測定手段】8と、製経路1の流量を測
定可能な流量測定手段16とを設けているが、製経路1
の流量は、流量測定手段18によって測定する総流量と
、上水温度、出湯設定温度及び熱交換器下流側の湯温か
ら算出することもでき、従って湯経路lの流量を測定す
る流量測定手段16は省略が可能である。
Reference numeral 12 denotes a heating means for heating the heat exchanger 3. In the illustrated example, the heating means 12 is a burner, but an electric heater or the like may be used in addition to the burner 12. Reference numeral 13 denotes a control means, and 14 denotes a hot water temperature setting device. Based on the water temperature from the sensor 15, the burner 1 is controlled so that the water temperature on the downstream side of the heat exchanger 3 reaches a predetermined target temperature.
If the combustion amount in step 2 is feedback-controlled, or if the required capacity is lower than the first set capacity in the low capacity range described later,
The burner] 2 is turned on and off in a predetermined temperature range of high temperature range.
Flow rate measuring means 1 for controlling and measuring the flow rate in the manufacturing path l
6 and a temperature sensor that measures the temperature of the tap water] the measured value of 7,
Feedforward control is performed from the target temperature, and the actuation mechanism 9 is actuated to set the bias to the thermally responsive element 7. In the above embodiment, the flow fi measuring means is provided with a flow rate measuring means 8 capable of measuring the total flow rate and a flow rate measuring means 16 capable of measuring the flow rate of the manufacturing path 1. Manufacturing route 1
The flow rate can also be calculated from the total flow rate measured by the flow rate measuring means 18, the tap water temperature, the hot water outlet temperature setting, and the hot water temperature on the downstream side of the heat exchanger. 16 can be omitted.

以上の構成に於ける本発明の加熱手段の所要能力の導出
方法の具体例を、本発明の導出過程を含む全体の制御過
程を表した第3図と、本発明の導出過程を詳細に表した
第4図の流れ図を参照して説明する。
A specific example of the method for deriving the required capacity of the heating means of the present invention in the above configuration is shown in FIG. This will be explained with reference to the flowchart shown in FIG.

第3図に示すように、まず制御開始後、ステップS1に
於いて総流量、即ち出湯量が所定量、この場合3Q/分
を満たしているが否かを流量測定手段18の測定値から
判断する。この所定量は、使用者が使用できる最小流量
として設定した量であり、この流量に満たない場合には
燃焼を停止する(ステップSo)。しかして、出湯量が
所定量以上の場合には、次のステップS2に於いて出湯
温度設定器14の出湯設定温度を基に制御の分岐を行う
。即ち、出湯設定温度が65℃以上の場合にはステップ
S3に移行し、その温度以下の場合には本発明の導出過
程に対応するステップS5に移行する。尚、この実施例
に於いては、前記境界温度65℃の場合にはステップS
3に移行するようにしているが、このように温度等の境
界値に於いていずれのステップに分岐するかは、後述の
分岐判断ステップを含め、適宜に設定することができる
As shown in FIG. 3, after starting the control, in step S1, it is determined from the measured value of the flow rate measuring means 18 whether the total flow rate, that is, the amount of hot water supplied, satisfies a predetermined amount, in this case 3Q/min. do. This predetermined amount is the amount set as the minimum flow rate that can be used by the user, and when the flow rate is less than this flow rate, combustion is stopped (step So). If the amount of hot water dispensed is equal to or greater than the predetermined amount, control is branched in the next step S2 based on the hot water set temperature of the hot water temperature setter 14. That is, if the hot water setting temperature is 65° C. or higher, the process moves to step S3, and if it is below that temperature, the process moves to step S5, which corresponds to the derivation process of the present invention. In this embodiment, when the boundary temperature is 65°C, step S
3, however, which step to branch to at a boundary value such as temperature can be set as appropriate, including the branch judgment step described later.

ステップS3に移行した場合、即ち出湯設定温度が65
℃以上の場合には、制御手段13は、前記作動機構9に
より熱応動素子7を介して弁体8を移動して湯経路l側
を全開、水経路5側を閉とし、混合弁4の動作を停止し
た状態とする。次いでステップS4に於いて、制御手段
13は、湯経路1の流量を測定する流量測定手段16と
上水の温度を測定する温度センサ17の測定値を利用す
るフィードフォワード制御と、熱交換器3の下流側の温
度センサ15の測定値を利用するフィードバック制御に
より、前記出湯設定温度を目標値としてバーナ12の燃
焼量を制御する。このような制御を行うことにより、熱
交換器3の下流側の湯温、即ち混合弁4の湯経路1側に
流入し、そのまま合流路6を経て出湯口19から出湯さ
れる湯温を、所望の前記出湯設定温度に調節することが
できる。このような制御に於いては、混合弁4は動作を
停止した状態であるので、そのハンチングは本質的に発
生しないし、バーナ12についても制御し易い燃焼域で
制御するので、制御が容易でハンチングも発生し難い。
If the process moves to step S3, that is, the hot water setting temperature is 65.
℃ or higher, the control means 13 uses the operating mechanism 9 to move the valve body 8 via the thermally responsive element 7 to fully open the hot water path l side and close the water path 5 side, and closes the mixing valve 4. The operation is stopped. Next, in step S4, the control means 13 performs feedforward control using the measured values of the flow rate measuring means 16 for measuring the flow rate of the hot water path 1 and the temperature sensor 17 for measuring the temperature of the tap water, and the control means 13 for controlling the heat exchanger 3. The combustion amount of the burner 12 is controlled by feedback control using the measured value of the temperature sensor 15 on the downstream side of the burner 12 with the hot water outlet temperature set as a target value. By performing such control, the temperature of the hot water on the downstream side of the heat exchanger 3, that is, the temperature of the hot water flowing into the hot water path 1 side of the mixing valve 4, passing through the merging path 6, and exiting from the hot water outlet 19, can be controlled. The hot water tap temperature can be adjusted to a desired temperature. In this type of control, since the mixing valve 4 is in a stopped state, hunting essentially does not occur, and the burner 12 is also controlled in a combustion range that is easy to control, so it is easy to control. Hunting is also less likely to occur.

なお以上のバーナ12の制御に於いては、フィードフォ
ワード制御を省略することも可能である。また、上記ス
テップs3、S4は同時に行ったり、逆の順序で行うこ
ともできる。
In addition, in the control of the burner 12 described above, it is also possible to omit the feedforward control. Moreover, the above steps s3 and S4 can be performed simultaneously or in the reverse order.

上述のステップs2の判断から移行したステップS5、
即ち本発明に於ける制御過程に対応するステップS5は
、以下のステップ820〜326から成る。まずステッ
プs20に於いて、流量測定手段18により今回測定し
た出湯量を、記憶手段に記憶されている以前の出湯量と
比較し、その変化率を導出する。次いで導出した変化率
をステップS21に於いて設定値と比較する。しかして
、このように導出した変化率の絶対値が、例えば7゜7
%以上の場合にはステップS22に移行して、記憶手段
の記憶内容を今回測定した出湯量の値に更新し、その後
ステップS23に移行する。一方、前記変化率の絶対値
が7.7%以上でない場合には、記憶手段の内容を更新
せず、以前の記憶内容のままステップS23に移行する
Step S5, which is a transition from the determination in step s2 described above;
That is, step S5 corresponding to the control process in the present invention consists of the following steps 820 to 326. First, in step s20, the amount of hot water currently measured by the flow rate measuring means 18 is compared with the previous amount of hot water stored in the storage means, and the rate of change is derived. Next, the derived rate of change is compared with a set value in step S21. Therefore, if the absolute value of the rate of change derived in this way is, for example, 7°7
% or more, the process moves to step S22, where the stored content of the storage means is updated to the value of the currently measured hot water output amount, and then the process moves to step S23. On the other hand, if the absolute value of the rate of change is not 7.7% or more, the contents of the storage means are not updated and the process proceeds to step S23 with the previous stored contents unchanged.

ステップS23に於いては、温度センサ17により今回
測定した上水温度を、記憶手段に記憶されている以前の
上水温度と比較し、その変化量を導出する0次いでステ
ップS24に於いて導出した変化量を設定値と比較する
。しがして、このように導出した変化量の絶対値が、例
えば1’C以上の場合にはステップS25に移行して、
記憶手段の記憶内容を今回測定した上水温度値に更新し
、その後ステップS26に移行する。一方、前記変化量
の絶対値が1℃以上でない場合には、記憶手段の内容を
更新せず、以前の記憶内容のままステップS26に移行
する。
In step S23, the water temperature measured this time by the temperature sensor 17 is compared with the previous water temperature stored in the storage means, and the amount of change is derived.Then, in step S24, the amount of change is derived. Compare the amount of change with the set value. However, if the absolute value of the amount of change derived in this way is, for example, 1'C or more, the process moves to step S25,
The stored contents of the storage means are updated to the currently measured water temperature value, and then the process moves to step S26. On the other hand, if the absolute value of the amount of change is not 1° C. or more, the contents of the storage means are not updated and the process proceeds to step S26 with the previous stored contents unchanged.

こうしてステップS26では、記憶手段に記憶されてい
る出湯量並びに上水温度、そして出湯温度設定器14に
設定した出湯設定温度とから、上述の(1)式に基づい
て加熱手段12の所要能力の導出を行う。以上のステッ
プ520−’S26から成る本発明の制御過程は、測定
により得た上水温度と出湯量を、記憶手段に記憶されて
いるこれらの値と比較し、これらの値が、夫々所定の誤
差範囲内にある場合には値を更新せずに、それまで記憶
されている値に基づいて前記所要能力の導出を行い、ま
た誤差範囲を越えた場合には値を更新して、それらの値
に基づいて前記所要能力の導出を行うので、導出した所
要能力が測定誤差により毎回変化してしまうことがなく
、安定した制御を行うことができる。尚、上述したよう
に、誤差範囲は、変化率や変化量等適宜にとらえること
ができる。
In this way, in step S26, the required capacity of the heating means 12 is calculated based on the above-mentioned equation (1) from the hot water amount and tap water temperature stored in the storage means, and the hot water setting temperature set in the hot water temperature setting device 14. Perform the derivation. The control process of the present invention consisting of the above steps 520-'S26 compares the measured clean water temperature and hot water output amount with these values stored in the storage means, and determines whether these values are respectively predetermined. If it is within the error range, the required ability is derived based on the previously stored value without updating the value, and if it exceeds the error range, the value is updated and those Since the required ability is derived based on the value, the derived required ability does not change each time due to measurement error, and stable control can be performed. Note that, as described above, the error range can be appropriately determined by the rate of change, amount of change, etc.

次いでこの導出した所要能力をステップS6に於いて、
予め設定している第二の設定能力と比較して制御の分岐
を行う。この第二の設定能力は、後述の第一の設定能力
よりも低く設定しており、この第二の設定能力は、前記
フィードバック制御に於ける熱交換器3の応答性能の限
界に対応する。
Next, in step S6, the derived required ability is
Branching of control is performed by comparing with a second preset setting capacity. This second setting ability is set lower than the first setting ability described later, and this second setting ability corresponds to the limit of the response performance of the heat exchanger 3 in the feedback control.

本実施例では、この第二の設定能力は1号に設定してい
る。しかして、上述の如く導出した所要能力が1号より
も大きい場合には、次のステップS7に於いて、出湯温
度設定器14に設定している出湯設定温度にそのまま対
応して前記熱応動素子7を作動機構9によりバイアスさ
せ、また1号に満たない場合にはステップS17に分岐
する。
In this embodiment, this second setting ability is set to No. 1. If the required capacity derived as described above is larger than No. 1, in the next step S7, the thermally responsive element 7 is biased by the actuating mechanism 9, and if the number is less than 1, the process branches to step S17.

ステップS7に分岐した場合には、次いでステップS8
に於いて、再び前述の導出した所要能力を設定能力と比
較して制御の分岐を行う。この比較する設定能力は前述
の第二の設定設定能力よりも大きい第一の設定能力、こ
の実施例に於いては3号としている。この第一の設定能
力、即ち3号は、前記フィードバック制御やフィードフ
ォワード制御により、熱交換器3の下流側の湯温を安定
して設定温度に制御し得る限界に対応する。しかして前
述の所要能力が3号よりも低い場合にはステップS]9
に移行し、高い場合にはステップS9に移行する。ステ
ップS19に於いては、バーナ12を高温域の所定温度
範囲でON−OFF制御する。即ち、制御手段13は、
熱交換器3の下流側の湯温が85℃以上となった場合に
はバーナ12の燃焼を停止すると共に、燃焼の停止によ
り湯温が低下して75℃以下となった場合には燃焼を再
開するON−OFF制御を行う。このような制御を行う
ことにより、熱交換器3の下流側の湯温を安定して設定
温度に制御し得る限界以下の所要能力の場合にも、熱交
換器3内の湯の沸騰を防止することができ、そして混合
弁4の動作により出湯温度設定器14に設定した温度の
出湯を行うことができる。
If the process branches to step S7, then step S8
In this step, the required capacity derived above is again compared with the set capacity and control is branched. The setting ability to be compared is the first setting ability, which is No. 3 in this embodiment, which is greater than the second setting ability described above. This first setting capability, ie, No. 3, corresponds to the limit at which the temperature of the hot water on the downstream side of the heat exchanger 3 can be stably controlled to the set temperature by the feedback control or feedforward control. However, if the above-mentioned required ability is lower than No. 3, step S]9
If the value is high, the process moves to step S9. In step S19, the burner 12 is ON-OFF controlled within a predetermined temperature range of the high temperature range. That is, the control means 13
When the temperature of the hot water on the downstream side of the heat exchanger 3 reaches 85°C or higher, combustion in the burner 12 is stopped, and when the hot water temperature decreases to 75°C or lower due to the stoppage of combustion, combustion is stopped. Performs restart ON-OFF control. By performing such control, even if the required capacity is below the limit for stably controlling the water temperature downstream of the heat exchanger 3 to the set temperature, boiling of the water in the heat exchanger 3 can be prevented. By operating the mixing valve 4, hot water can be discharged at the temperature set in the hot water temperature setting device 14.

一方、ステップS6からステップS17に移行した場合
、即ち前述したように導出した所要能力が第二の設定能
力、即ち1号に満たない場合には、このステップS17
に於いて、第二の設定能力、即ち1号に対して逆算され
る出湯温度を導出する。
On the other hand, when the process moves from step S6 to step S17, that is, when the required ability derived as described above is less than the second setting ability, that is, No. 1, this step S17
In this step, the second setting capacity, that is, the outlet temperature calculated inversely to No. 1 is derived.

即ち、この出湯温度の導出は前記(1)式を変形した次
式により行う。
That is, the tapping temperature is derived using the following equation, which is a modification of equation (1).

出湯量 次いでステップS18に於いて、上述したように導出し
た出湯温度に対応して前記熱応動素子7を作動機構9に
よりバイアスさせ、この状態に於いて前述のステップS
19に移行して前述のON−OFF制御を行う。こうす
ることによりバーナは、1号の動作を維持され、従って
上記ON−OFF制御により熱交換器3内の湯の沸騰を
防止することができると共に出湯温度は当初設定した温
度よりも若干上昇するものの、燃焼停止に伴う温度の低
下は防止することができる。
Amount of hot water dispensed Next, in step S18, the thermally responsive element 7 is biased by the actuating mechanism 9 in accordance with the dispensed hot water temperature derived as described above, and in this state, the step S18 is performed.
19, the above-mentioned ON-OFF control is performed. By doing this, the burner is maintained in the No. 1 operation, and therefore, the above-mentioned ON-OFF control can prevent the hot water in the heat exchanger 3 from boiling, and the hot water temperature rises slightly from the initially set temperature. However, it is possible to prevent the temperature from decreasing due to combustion termination.

一方、ステップS8からステップS9に移行した場合に
は、このステップS9に於いて、再び前述の導出した所
要能力を設定能力と比較して制御の分岐を行う。この比
較する設定能力は前述の第一の設定設定能力よりも更に
大きい第三の設定能力、実施例に於いて5号とする。こ
の第三の設定能力は、混合弁4が低能力域に於いで湯経
路1側の弁開度が閉近傍で動作することによるハンチン
グの発生を防止し得る最低の能力に対応するものである
On the other hand, when the process moves from step S8 to step S9, in this step S9, the above-mentioned derived required capacity is again compared with the set capacity and control is branched. The setting ability to be compared is a third setting ability, which is larger than the first setting ability described above, and is No. 5 in the embodiment. This third setting capacity corresponds to the lowest capacity that can prevent the occurrence of hunting due to the mixing valve 4 operating in a low capacity range with the valve opening on the hot water path 1 side close to closed.

しかして、導出した所要能力が5号よりも大きい場合に
はステップS13に移行し、低い場合にはステップSI
Oに移行する。前者の場合には、ステップS13に於い
て制御手段13中の適宜の記憶手段に、それまでに5号
以下の記憶がされているか否かを判定し、記憶されてい
ない場合にはステップS16に移行し、記憶されている
場合には、次のステップS14に移行し、このステップ
S14に於いて前述の導出した所要能力を更に判定する
。即ちステップ314では、今回の能力が、上記第三の
設定能力よりも大きい、6号よりも大きいか小さいかを
判定し、大きい場合には制御のヒステリシスを越えたと
して次のステップS15に移行し、このステップS15
に於いて前記5号以下の記憶を消去した後、次のステッ
プS16に移行する。このように、ステップS13、S
14並びに315は制御のヒステリシスを構成してハン
チングを防止する。
If the derived required ability is greater than No. 5, the process moves to step S13, and if it is lower, the process proceeds to step S13.
Move to O. In the former case, it is determined in step S13 whether or not No. 5 and below have been stored in the appropriate storage means in the control means 13, and if not stored, the process proceeds to step S16. If it has been transferred and stored, the process moves to the next step S14, and in this step S14, the above-mentioned derived required ability is further determined. That is, in step 314, it is determined whether the current capacity is greater than the third setting capacity, larger or smaller than No. 6, and if it is larger, it is determined that the control hysteresis has been exceeded and the process moves to the next step S15. , this step S15
After erasing the memory of No. 5 and below, the process moves to the next step S16. In this way, steps S13, S
14 and 315 constitute control hysteresis to prevent hunting.

しかしてステップS16に於いては、前記熱交換器3の
下流側の湯温の目標値を所定の最高温度、例えば80℃
としてバーナ12をフィードバック制御、フィードフォ
ワード制御する。
Therefore, in step S16, the target value of the water temperature on the downstream side of the heat exchanger 3 is set to a predetermined maximum temperature, for example, 80°C.
The burner 12 is controlled as feedback control and feedforward control.

一方、ステップSIOに於いては、出湯温度設定器14
の出湯設定温度を判定し、この出湯設定温度が所定温度
、例えば50℃以上の場合には、ステップS12に移行
し、また50℃以下の場合には、ステップSllに移行
する。しかして、ステップS12に於いては、出湯設定
温度に所定の温度幅、例えば+15℃を加えて得られる
温度を前記熱交換器3の下流側の湯温の目標値として加
熱手段12をフィードバック制御、フィードフォワード
制御する。例えば、出湯設定温度が60℃の場合には上
記目標値は75℃となる。尚、熱交換器3の下流側の湯
温は、安全上、温度は制限されるので、このようにして
目標値を導出するにも係らず、その最高温度は上記ステ
ップS16に於ける最高温度に制限する必要がある。
On the other hand, in step SIO, the hot water temperature setting device 14
If the set hot water outlet temperature is a predetermined temperature, for example, 50° C. or higher, the process moves to step S12, and if it is 50° C. or lower, the process moves to step Sll. Therefore, in step S12, the heating means 12 is feedback-controlled by using the temperature obtained by adding a predetermined temperature range, for example, +15° C., to the hot water set point temperature as the target value of the hot water temperature on the downstream side of the heat exchanger 3. , feedforward control. For example, when the hot water tap temperature setting is 60°C, the target value is 75°C. Note that the temperature of the water on the downstream side of the heat exchanger 3 is limited for safety reasons, so even though the target value is derived in this way, the maximum temperature is the same as the maximum temperature in step S16 above. need to be limited to.

一方、ステップSllに移行した場合、即ち出湯設定温
度が50℃以下の場合には、一定の所定の温度、例えば
60℃を前記熱交換器3の下流側の湯温の目標値として
バーナ12をフィードバック制御、フィードフォワード
制御する。
On the other hand, when the process moves to step Sll, that is, when the hot water outlet temperature setting is 50°C or lower, the burner 12 is set to a certain predetermined temperature, for example, 60°C, as the target value of the hot water temperature on the downstream side of the heat exchanger 3. Feedback control, feedforward control.

しかして、以上の制御下に於けるバーナ12の燃焼によ
り熱交換器3で上記所定の温度に昇温され製経路1を流
れて混合弁4に至った湯は、この混合弁4に於いて水経
路5を流れてきた上水と混合して温度が低下し、合流路
6を流れて出湯口19から出湯される。この際、合流路
6中に設けた熱応動素子7は、該合流路6中の湯温に応
動して弁体8を移動させるので、前記水経路5と製経路
1の流量比率が変化し、こうして合流路6中の湯温を、
熱応動素子7のバイアス量に応じた値に調節することが
できる。このような制御に於いては、熱交換器3でバー
ナ12により昇温した湯を上水で冷まして出湯口19か
ら出湯することができるので、バーナ12の最小燃焼量
が比較的大きい場合にも小流量で低い温度の給湯を行う
ことができる。また比較的短い時間間隔での間欠的使用
に於いて、製経路1内の湯には、熱交換器3内の後沸き
による高温出湯(オーバーシュート)やバーナ12の点
火遅れによる冷水の混入(アンダーシュート)等があっ
ても、合流路6の湯には伝達しない。尚、加熱手段12
の前記所要能力は、前記号数の他、適宜の尺度を利用す
ることができる。
The hot water heated to the predetermined temperature in the heat exchanger 3 by combustion in the burner 12 under the above control and flowing through the production path 1 and reaching the mixing valve 4 is heated at the mixing valve 4. The hot water mixes with the tap water that has flowed through the water path 5 to lower its temperature, flows through the confluence path 6, and is tapped out from the hot water outlet 19. At this time, the thermally responsive element 7 provided in the merging channel 6 moves the valve body 8 in response to the temperature of the water in the merging channel 6, so that the flow rate ratio between the water channel 5 and the manufacturing channel 1 changes. , thus the water temperature in the confluence channel 6,
It can be adjusted to a value depending on the amount of bias of the thermally responsive element 7. In this kind of control, the hot water heated by the burner 12 in the heat exchanger 3 can be cooled with tap water and then discharged from the hot water outlet 19, so that when the minimum combustion amount of the burner 12 is relatively large, It is also possible to supply hot water at a low temperature with a small flow rate. In addition, during intermittent use at relatively short time intervals, hot water in the production path 1 may be contaminated with hot water (overshoot) due to after-boiling in the heat exchanger 3 or cold water due to ignition delay of the burner 12. Even if there is an undershoot, etc., it will not be transmitted to the hot water in the confluence channel 6. In addition, the heating means 12
In addition to the number of symbols, an appropriate scale can be used for the required ability.

(発明の効果) 本発明は以上の通り、熱交換器からの湯と上水とを、合
流路中に設けた熱応動素子により弁体を移動させて流量
比率を変化自在な混合弁に於いて混合して所望の温度の
湯を供給し得るようにした湯水混合式瞬間湯沸器に於い
て、これらの加熱手段の所要能力を給湯時に導出し、導
出した所要能力に応じて加熱手段や混合弁の制御方法を
適宜に切り替えて制御を行う構成とすると共に、この所
要能力の導出は、測定により得た上水温度と出湯量を、
記憶手段に記憶されているこれらの以前の値と比較し、
これらの値が、夫々所定の誤差範囲内にある場合には値
を更新せずにそれまで記憶されている値に基づいて前記
所要能力の導出を行い、また誤差範囲を越えた場合には
値を更新して、それらの値に基づいて前記所要能力の導
出を行うことにより、導出した所要能力が測定誤差に影
響されて毎回変化してしまという不都合が発生せず、従
ってこれによるハンチングなしに安定した制御を行うこ
とができ、安定した出湯温度が得られると共に、制御要
素の寿命低下を防止することができるという効果がある
(Effects of the Invention) As described above, the present invention uses a mixing valve that can freely change the flow rate of hot water and tap water from a heat exchanger by moving a valve body using a thermally responsive element provided in a merging channel. In an instant hot water heater that can supply hot water at a desired temperature by mixing the hot water at the desired temperature, the required capacity of these heating means is derived at the time of hot water supply, and the heating means and the hot water are adjusted according to the derived required capacity. In addition to controlling the mixing valve by appropriately switching the control method, deriving this required capacity is based on the measured water temperature and hot water output amount.
compared with these previous values stored in the storage means,
If each of these values is within a predetermined error range, the required ability is derived based on the previously stored value without updating the value, and if it exceeds the error range, the value is By updating the above values and deriving the required capacity based on those values, the problem that the derived required capacity changes every time due to the influence of measurement error does not occur, and therefore, there is no hunting due to this. This has the effect that stable control can be performed, a stable tapping temperature can be obtained, and a reduction in the life of the control element can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の全体構成を表した説明図、第
2図(a)、(b)は混合弁の実施例の構成及び動作を
表した説明的断面図である。また第3図は本発明方法を
含む制御全体の具体例を表した流れ図、第4図は本発明
方法を詳細に表した流れ図である。 符号l・・・湯経路、2・・・湯沸器、3・・・熱交換
器、4・・・混合弁、5・・・水経路、6・・・合流路
、7・・・熱応動素子、8・・・弁体、9・・・作動機
構、10・・・バイアスばね、11・・・作動体、12
・・・加熱手段(バーナ)13・制御手段、14・・・
出湯温度設定器、15・・・温度センサ、16・・・流
量測定手段、17・・・温度センサ、18・・総流量測
定手段、19・・出湯口、20・・・戻しばね。
FIG. 1 is an explanatory diagram showing the overall configuration of an embodiment of the present invention, and FIGS. 2(a) and 2(b) are explanatory cross-sectional views showing the configuration and operation of the embodiment of a mixing valve. Further, FIG. 3 is a flow chart showing a specific example of the entire control including the method of the present invention, and FIG. 4 is a flow chart showing the method of the present invention in detail. Code l... Hot water route, 2... Water heater, 3... Heat exchanger, 4... Mixing valve, 5... Water route, 6... Merging path, 7... Heat Response element, 8... Valve body, 9... Actuation mechanism, 10... Bias spring, 11... Actuation body, 12
...Heating means (burner) 13, control means, 14...
Hot water outlet temperature setting device, 15... Temperature sensor, 16... Flow rate measuring means, 17... Temperature sensor, 18... Total flow rate measuring means, 19... Tap water outlet, 20... Return spring.

Claims (4)

【特許請求の範囲】[Claims] (1)加熱手段を設けた熱交換器を通る湯経路と並列に
、該熱交換器の上流側で分岐させ、下流側で混合弁を介
して合流させる水経路を設けると共に、該混合弁は合流
路中に設けた熱応動素子により弁体を移動させて前記水
経路と湯経路の流量比率を変化させる構成とし、そして
該熱応動素子を出湯温度設定器の出湯設定温度に対応し
て作動機構によりバイアスさせる構成とすると共に、前
記加熱手段を前記熱交換器の下流側に設けた温度センサ
を用いて制御手段により制御して、該下流側の湯温を所
定温度に調節する構成とした湯水混合式瞬間湯沸器に於
いて、該制御手段は、出湯設定温度と、測定により得た
上水温度と出湯量とから加熱手段の所要能力を導出して
、この所要能力に応じて該加熱手段や前記混合弁の制御
を行う構成とすると共に、前記上水温度と出湯量の記憶
手段を設けて、測定により得た前記の上水温度と出湯量
を、記憶されているこれらの値と比較し、夫々所定の誤
差範囲内にある場合には値を更新せずに、それまで記憶
されている値に基づいて前記所要能力の導出を行い、ま
た誤差範囲を越えた場合には値を更新して、それらの値
に基づいて前記所要能力の導出を行うことを特徴とする
湯水混合式瞬間湯沸器の給湯制御に於ける加熱手段の所
要能力の導出方法
(1) In parallel with the hot water path passing through the heat exchanger provided with the heating means, provide a water path that branches on the upstream side of the heat exchanger and joins through the mixing valve on the downstream side, and the mixing valve The valve body is moved by a thermally responsive element provided in the merging path to change the flow rate ratio between the water path and the hot water path, and the thermally responsive element is operated in accordance with the hot water setting temperature of the hot water tap temperature setting device. The heating means is biased by a mechanism, and the heating means is controlled by a control means using a temperature sensor provided downstream of the heat exchanger to adjust the temperature of the water on the downstream side to a predetermined temperature. In the hot water mixing type instantaneous water heater, the control means derives the required capacity of the heating means from the hot water setting temperature, the measured tap water temperature and the hot water output amount, and adjusts the required capacity according to this required capacity. In addition to controlling the heating means and the mixing valve, the heating means and the mixing valve are also provided with storage means for storing the water temperature and the amount of hot water output, so that the water temperature and the amount of hot water obtained by measurement can be stored as these stored values. If it is within a predetermined error range, the required ability is derived based on the previously stored value without updating the value, and if it exceeds the error range, the value is A method for deriving the required capacity of a heating means in hot water supply control of a hot water mixing type instantaneous water heater, characterized in that the required capacity is derived based on these values.
(2)請求項1の制御手段は前記加熱手段の所要能力を
導出し、その所要能力が低能力域の第一の設定能力より
も低い場合には、前記加熱手段を高温域の所定温度範囲
でON−OFF制御すると共に、前記所要能力が前記第
一の設定能力よりも更に低く設定している第二の設定能
力に満たない場合には、この第二の設定能力に対して逆
算される出湯温度を出湯設定温度として前記ON−OF
F制御を行うことを特徴とする湯水混合式瞬間湯沸器の
給湯制御に於ける加熱手段の所要能力の導出方法
(2) The control means according to claim 1 derives the required capacity of the heating means, and when the required capacity is lower than the first set capacity of the low capacity range, the control means operates the heating means within a predetermined temperature range of the high temperature range. When the required capacity is less than the second setting capacity, which is set lower than the first setting capacity, the second setting capacity is calculated backwards. The above ON-OF with the hot water temperature as the hot water set temperature
Method for deriving the required capacity of a heating means in hot water supply control of a hot water mixing type instantaneous water heater characterized by performing F control
(3)請求項1の加熱手段はバーナであることを特徴と
する湯水混合式瞬間湯沸器の給湯制御に於ける加熱手段
の所要能力の導出方法
(3) A method for deriving the required capacity of a heating means in hot water supply control of a hot and cold instantaneous water heater, characterized in that the heating means of claim 1 is a burner.
(4)請求項1の熱応動素子は、ワックスを内蔵して周
囲の温度に応じて膨張、収縮する構成としたことを特徴
とする湯水混合式瞬間湯沸器の給湯制御に於ける加熱手
段の所要能力の導出方法
(4) The heat-responsive element according to claim 1 is a heating means in hot water supply control of a hot water mixing type instantaneous water heater, characterized in that the thermally responsive element has a built-in wax and is configured to expand and contract according to the surrounding temperature. How to derive the required ability of
JP2273695A 1990-10-12 1990-10-12 Derivation method of required capacity of heating means in hot water supply control of mixed water heater Expired - Fee Related JP2886319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273695A JP2886319B2 (en) 1990-10-12 1990-10-12 Derivation method of required capacity of heating means in hot water supply control of mixed water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273695A JP2886319B2 (en) 1990-10-12 1990-10-12 Derivation method of required capacity of heating means in hot water supply control of mixed water heater

Publications (2)

Publication Number Publication Date
JPH04151453A true JPH04151453A (en) 1992-05-25
JP2886319B2 JP2886319B2 (en) 1999-04-26

Family

ID=17531266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273695A Expired - Fee Related JP2886319B2 (en) 1990-10-12 1990-10-12 Derivation method of required capacity of heating means in hot water supply control of mixed water heater

Country Status (1)

Country Link
JP (1) JP2886319B2 (en)

Also Published As

Publication number Publication date
JP2886319B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
US8165726B2 (en) Water heater energy savings algorithm for reducing cold water complaints
KR100968701B1 (en) Method for controlling hot-water temperature of a boiler according to direct water temperature in the boiler with fast hot-water function
JP6350968B2 (en) Hot water storage system
KR20170073908A (en) Heating device and method for controlling the same
JPH04151453A (en) Method for leading out necessary capacity of heating means in control of hot water supply of hot-cold water combination type tap-controlled water heater
JPS63213747A (en) Hot water supplier
JPS6260624B2 (en)
JP5816226B2 (en) Hot water storage water heater
JPH04126951A (en) Hot water temperature control device for hot water feeder
JPH04151452A (en) Controlling method of hot water supply of hot-cold water combination type tap-controlled water heater
JPH04151450A (en) Controlling method of hot water feeding of hot-cold water combination type tap-controlled water heater
JPH04151449A (en) Controlling method of hot water supply of hot-cold water combination type tap-controlled water heater
JPH0426840Y2 (en)
JP3862822B2 (en) Water heater
JPH04341675A (en) Hot/cold water combination system
JPH01203844A (en) Hot-water apparatus
JP2570568B2 (en) How to operate the water heater
GB2337320A (en) Water heater with thermostatic control of flow rate
JP2820583B2 (en) Water heater temperature control device
KR100985390B1 (en) boiler and control method thereof for varying a pump output according to a change of amount of a hot water used
JPH102609A (en) Hot-water supply apparatus
JP3748464B2 (en) Water heater
JP3097430B2 (en) Water heater
JPH0480551A (en) Temperature controlling device for output of hot water feeder
JPH0432653A (en) Temperature setting device for supplied hot water in hot water supplying device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees