JP3862822B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3862822B2
JP3862822B2 JP22107697A JP22107697A JP3862822B2 JP 3862822 B2 JP3862822 B2 JP 3862822B2 JP 22107697 A JP22107697 A JP 22107697A JP 22107697 A JP22107697 A JP 22107697A JP 3862822 B2 JP3862822 B2 JP 3862822B2
Authority
JP
Japan
Prior art keywords
temperature
hot water
bypass
water temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22107697A
Other languages
Japanese (ja)
Other versions
JPH1151481A (en
Inventor
英夫 稲垣
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP22107697A priority Critical patent/JP3862822B2/en
Publication of JPH1151481A publication Critical patent/JPH1151481A/en
Application granted granted Critical
Publication of JP3862822B2 publication Critical patent/JP3862822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給湯器に関し、詳しくはバイパスミキシング方式の給湯器に関する。
【0002】
【従来の技術】
従来から、熱交換器をバイパスするバイパス路を備えた給湯器が知られている。このような給湯器では、バイパス路に電磁弁や水モータ等バイパス流量を変化させるためのアクチュエータを備え、コントローラにより設定温度に応じてアクチュエータを駆動制御してバイパス率を変化させることで、熱交換器での湯の温度をドレンの発生や沸騰を起こさせない範囲に調整していた。
【0003】
【発明が解決しようとする課題】
しかしながら、このようにコントローラによりアクチュエータを駆動制御しようとすると構造が複雑となり、またこれらの開閉制御や駆動制御を行なう制御回路を別途設ける必要が生じるため、器具全体のコストアップに繋がってしまうといった問題があった。そこで、出湯路に湯温の変化に応じて動作する熱応動部材を設け、その動作により直接バイパス率を変化させる構成が考えられるが、設定温度の変更時や間欠使用時(出湯停止して間もなく再出湯した状態)等には過剰に動作してしまい、出湯温度がハンチングして不安定となってしまう。
本発明の給湯器は上記課題を解決し、安定した出湯性能を損なうことなくドレン及び沸騰を防止する給湯器を低コストで実現することを目的とする。
【0004】
【発明の解決するための手段】
上記課題を解決する本発明の給湯器は、
給水路から供給された水をバーナの燃焼熱により加熱して出湯路に送り出す熱交換器と、
上記熱交換器をバイパスして上記給水路と上記出湯路とを連通するバイパス路と、
設定温度を設定する温度設定手段と、
出湯温度を上記設定温度に近づけるように上記バーナの燃焼量を調節する出湯温制御手段と
を備えた給湯器において、
入水温度の変化に応じて付勢力が変化する形状記憶合金製のばね部材を有し、このばね部材によって開度が調整されるバイパス率変更手段を設けて、入水温度が高くなるにつれてバイパス率を上昇させる一方、入水温度が低くなるにつれて上記バイパス率を低下させるとともに、
記バーナの燃焼量を補正制御する補正制御手段を設けて、上記熱交換器での湯温が、所定のドレン限界温度以上であって所定沸騰限界温度以下である温度範囲から逸脱した場合には、その範囲内に戻すように上記バーナの燃焼量を補正制御することを要旨とする。
【0005】
上記構成を有する本発明の給湯器は、給水路から供給された水の一部をバイパス路に分岐し、熱交換器で加熱した湯と再び合流させて出湯する。そして、その出湯温度を設定温度に近づけるようにバーナの燃焼量を調節する。また、形状記憶合金製のばね部材を有し、このばね部材によって開度が調整されるバイパス率変更手段によりバイパス率を変化させる。そして、入水温度が高くなるほどバイパス率を上昇させ、入水温度が低くなるほどバイパス率を下降させることにより、熱交換器での湯温をドレン及び沸騰が発生しにくい温度に保つのである。このようにバイパス率を変化させるにもかかわらず、熱交換器の出口温度が所定のドレン限界温度以上であって所定の沸騰限界温度以下である温度範囲を逸脱した場合には、その範囲内に戻すようにバーナの燃焼量を補正制御することで、ドレン及び沸騰の発生を確実に防止する。
【0006】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の給湯器の好適な実施例について説明する。
図1は、本発明の一実施例としての給湯器の概略構成図である。この給湯器は、給水路10と出湯路20とが接続される熱交換器30と、熱交換器30を流れる水を加熱するためのバーナ40と、熱交換器30をバイパスするバイパス路50と、燃焼制御を司るコントローラ60とを備える。そして、給水路10のバイパス路50との分岐部Aより上流側には、入水温度を検出する入水温センサ11と、入水流量の最大値を制限する水ガバナ12と、入水流量を検出する流量センサ13とが設けられる。また、出湯路20のバイパス路50との合流部Bより上流側には、熱交換器30出口での湯温を検出する出口温センサ21が設けられ、バイパス路50との合流部Bより下流側には、混合後の出湯温度を検出する出湯温センサ22が設けられる。更に、バイパス路50には流路の開度を調節するバイパス弁70が設けられる。また、バーナ40にガスを供給するガス供給路80には、流路を開閉するメイン電磁弁81,元電磁弁82と、ガス供給量を調節する比例弁83とが設けられる。
【0007】
コントローラ60は、図示しない周知の算術論理演算回路を構成するCPU,RAM,ROMと、各種センサからの信号を入力する入力インタフェースと、各種アクチュエータに駆動信号を出力する出力インタフェース等から構成される。またコントローラ60には、設定温度の設定といった外部操作を行なうための操作スイッチ類と設定温度等を表示するための表示器とを備えたリモコン90が接続される。
【0008】
リモコン90では、38〜46,48,50,55,60℃の温度範囲で設定温度を設定することができる。そしてコントローラ60は、リモコン90で設定された設定温度と入水温センサ11の検出温度と流量センサ13の検出流量とに基づいて出湯温度を設定温度にするために必要な熱量を演算・制御するフィードフォワード制御と、出湯温センサ22の検出温度と設定温度との偏差に基づいてフィードフォワード制御量を補正するフィードバック制御とにより、比例弁83の開度を調節してバーナ40の燃焼量をコントロールするといった出湯温制御を行なう。
【0009】
バイパス弁70は、バイパス路50と直列に連結される弁室71内に設けられる弁体72と、入水温度に応じてばね荷重が変化し弁体72を開方向に付勢する形状記憶合金製のコイルばね(以下、SMAばねと呼ぶ)73と、一定のばね荷重でSMAばね73の付勢力に反して弁体72を閉方向に付勢するバイアスばね74とからなる。このような構成により、SMAばね73とバイアスばね74との付勢力がつりあう位置に弁体72が移動して開度を調節する。SMAばね73は入水温度が高くなるとそのばね荷重が上がり、入水温度が低くなるとそのばね荷重が下がる性質をもつため、入水温度が高くなるほど開度が大きくなりバイパス率(器具への供給流量に対するバイパス流量の割合)が高くなる。
【0010】
次に、入水温度とバイパス率との関係について、図2のグラフを用いて説明する。
尚、本実施例では、熱交換器30でのドレン発生を防止するための限界温度であるドレン限界温度を46℃、熱交換器30での沸騰を防止するための限界温度である沸騰限界温度を85℃として説明する。
【0011】
このグラフにおいて、曲線aは設定温度が最低温度(38℃)での出湯時に熱交換器30での湯温をドレン限界温度(46℃)以上に保つことが可能なバイパス率の最低値を表わすドレン限界ラインである。また、曲線bは設定温度が最高温度(60℃)での出湯時に熱交換器30での湯温を沸騰限界温度(85℃)以下に抑えることが可能なバイパス率の最高値を表わす沸騰限界ラインである。また、曲線cはバイパス弁70が入水温度に対して変化させるバイパス率を表わす制御ラインである。本実施例では、この制御ライン(曲線c)をドレン限界ライン(曲線a)より高くすることで設定温度に関係なく熱交換器30での湯温をドレン限界温度(46℃)以上に保ち、同様に沸騰限界ライン(曲線b)より低くすることで設定温度に関係なく熱交換器30での湯温を沸騰限界温度(85℃)以下に抑える。即ち、ドレン限界ライン(曲線a)より高く、沸騰限界ライン(曲線b)より低い範囲(以下、良好域と呼ぶ)のバイパス率に保つことで、設定温度に関係なくドレンと沸騰との両方を防止することができるのである。
【0012】
また、本実施例では設定温度の最低温度を38℃,最高温度を60℃としているが、設定温度の最高温度を例えば70℃とした場合、曲線dに示すようにその沸騰限界ラインは最高温度が60℃での沸騰限界ライン(曲線b)に比べ低い位置となり、ドレンと沸騰との両方を防止することができる入水温度が存在しなくなってしまう。つまり本実施例では、良好域の存在する入水温度の範囲を広くとることができるように設定温度の最高温度及び最低温度を制限しているのである。
【0013】
このように設定温度を38〜60℃に制限することで良好域を存在させているが、入水温度が約27.6℃のあたりでドレン限界ライン(曲線a)と沸騰限界ライン(曲線b)とが交差するため、入水温度がこの交点より高い範囲では良好域が存在せず、設定温度に関係なくドレンと沸騰との両方を防止することができるバイパス率が存在しない。実際には、SMAばね73やバイアスばね74のばね荷重や弁体72等のばらつきによりバイパス率の制御量に誤差が存在するため、バイパス率の制御量に前後約5%のばらつきを考慮すると、良好域が存在する入水温度範囲は25℃以下となる。良好域が存在する入水温度範囲をより広くするためには最高温度を下げるか或いは最低温度を上げればよいが、設定温度の範囲を狭くする程使い勝手が損なわれるため、設定温度範囲はできるだけ広くすることが望ましい。そこで、出口温センサ21の検出温度がドレン限界温度(46℃)を下回った場合或いは沸騰限界温度(85℃)を上回った場合には、ドレン限界温度(46℃)以上沸騰限界温度(85℃)以下の範囲内に保つようにバーナ40の燃焼量を補正制御する。この補正制御を出湯温制御より優先して行なうことで、熱交換器30での湯温をドレン及び沸騰を防止できる範囲に保つのである。
【0014】
このような補正制御によりドレン及び沸騰を防止することができるが、燃焼量を補正した分設定温度と出湯温度との間に温度差が生じる。ここで、入水温度が30℃の時に生じる温度差について説明する。
バイパス弁70のばらつきによりバイパス率が45.5%となっている時にはドレン限界ライン(曲線a)より低くなるため、設定温度が最低温度(38℃)に設定された状態で出湯温度を設定温度に制御しようとすると、熱交換器30での湯温がドレン限界温度(46℃)を下回ってしまう。そこで、出口温センサ21の検出温度がドレン限界温度(46℃)を下回らないように燃焼量を補正制御するが、その際の出湯温度は、
(1−0.455)×46+0.455×30=38.72[℃]
となり、設定温度に比べ僅かに0.72℃高くなるだけである。即ち、水温が30℃以下の範囲では、設定温度を最低温度(38℃)としても出湯温度を38〜38.72℃の間に制御できるため、使い勝手を損なわない。
【0015】
また、バイパス弁70のばらつきによりバイパス率が50%となっている時には沸騰限界(曲線b)より高くなるため、設定温度が最高温度(60℃)に設定された状態で出湯温度を設定温度に制御しようとすると、熱交換器30での湯温が沸騰限界温度(85℃)を上回ってしまう。そこで、出口温センサ21の検出温度を沸騰限界温度(85℃)を上回らないように燃焼量を補正制御するが、その際の出湯温度は、
(1−0.5)×85+0.5×30=57.5[℃]
となり、設定温度に比べ2.5℃低くなる。即ち、水温が30℃以下の範囲では、設定温度を最高温度(60℃)としても出湯温度を57.5〜60℃の間に制御でき、使用者が直接湯に触れる温度ではないことから考えてこの程度の温度差はほとんど支障ない。
【0016】
以上説明したように、本実施例の給湯器によれば、入水温度に応じてバイパス率を変化させることにより、熱交換器30での湯温をドレン及び沸騰が発生しにくい温度に保つことができる。しかも、出口温センサ21の検出温度がドレン限界温度(46℃)を下回った場合或いは沸騰限界温度(85℃)を上回った場合には、ドレン限界温度(46℃)以上沸騰限界温度(85℃)以下の範囲内に保つようにバーナ40の燃焼量を補正制御するため、設定温度や入水温度に関係なくドレン及び沸騰を防止することができる。また、設定温度の最高温度を60℃に抑えることで良好域の存在する入水温度範囲を広くし、バイパス弁70により入水温度に対するバイパス率をその良好域に保つことで、入水温度が25℃以下では設定温度の湯を出湯しつつドレン及び沸騰を防止することができ、また入水温度が25℃より高いといったまれなケースにおいても、設定温度が最低温度付近或いは最高温度付近に設定されている状態で出湯温度が僅かに高くなる或いは低くなるのみであり、使い勝手が損なわれない。このように本実施例では良好域の存在する入水温度範囲を広くするため最高温度を60℃に抑えているが、実際により高温の湯が必要となるのは高温差し湯する時くらいのものであり、安全性の面からは最高温度をある程度低くすることが望まれている。特に、最近では浴槽内の湯を循環して追い焚きする追い焚き回路を備えた給湯器が使用されていることからも、それほど高温に設定しなくても差し支えない。また、外国等では安全性の面から最高温度が55℃に制限されている例もある。このような背景から、38〜60℃といった設定温度範囲は十分なものであるといえる。
【0017】
また入水温度に応じてバイパス率を変化させる構成により、出湯温度によりバイパス率を変化させる構成に比べて出湯温度を安定させることができる。しかも、SMAばね73を入水温度により直接動作させる構成により低コストで実現できる。
【0018】
尚、本実施例ではバイパス弁の熱応動部材としてSMAばね73を用いたが、これに限ったものではなく、温度変化に応じて動作するものであれば適用できる。
また、本実施例では入水温度が25℃以下の範囲では設定温度での出湯を行なってもドレン及び沸騰を防止できるようにしたが、これに限ったものではなく、例えば設定温度幅をより広く設定してもよい。
【0019】
以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
【0020】
【発明の効果】
以上詳述したように、本発明の給湯器によれば、入水温度の変化に応じて動作する熱応動部材によりバイパス率を変化させることで、熱交換器での湯温をドレン及び沸騰が発生しにくい温度に保つことができる。また、入水温度の変化に応じてバイパス率を変化させるため、出湯温度の変化に応じてバイパス率を変化させる構成に比べ出湯温度を安定させることができる。更に、熱応動部材を入水温度の変化により直接動作させることで別途制御する必要がなく、構造を簡単にして低コストで実現できる。しかも、熱交換器での湯温がドレン限界温度以上,沸騰限界温度以下の範囲を越えた場合には、その範囲内に戻すようにバーナの燃焼量を補正制御することで、ドレン及び沸騰の発生を確実に防止することができるのである。
【図面の簡単な説明】
【図1】一実施例としての給湯器の概略構成図である。
【図2】入水温度とバイパス率との関係を表わすグラフである。
【符号の説明】
10…給水路、 20…出湯路、 30…熱交換器、 40…バーナ、
50…バイパス路、 60…コントローラ、 70…バイパス弁、
71…弁室、 72…弁体、 73…SMAばね、 74…バイアスばね、
90…リモコン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water heater, and more particularly, to a bypass mixing type water heater.
[0002]
[Prior art]
Conventionally, a water heater provided with a bypass passage that bypasses the heat exchanger is known. In such a water heater, an actuator for changing the bypass flow rate such as a solenoid valve or a water motor is provided in the bypass path, and the actuator is driven and controlled according to the set temperature by the controller to change the bypass rate, thereby exchanging heat. The temperature of the hot water in the vessel was adjusted to a range that would not cause drainage or boiling.
[0003]
[Problems to be solved by the invention]
However, if the actuator is driven and controlled by the controller in this way, the structure becomes complicated, and it becomes necessary to separately provide a control circuit for performing the opening / closing control and the drive control, leading to an increase in the cost of the entire instrument. was there. Therefore, it is conceivable to provide a heat responsive member that operates in response to changes in hot water temperature in the hot water supply path, and to change the bypass rate directly by that operation, but when changing the set temperature or intermittent use (soon after the hot water is stopped) When the hot water is re-boiled), the hot water operates excessively, and the hot water temperature hunts and becomes unstable.
An object of the present invention is to provide a water heater that solves the above-described problems and prevents drainage and boiling without impairing stable hot water discharge performance at a low cost.
[0004]
[Means for Solving the Invention]
The water heater of the present invention that solves the above problems is as follows.
A heat exchanger that heats the water supplied from the water supply channel by the combustion heat of the burner and sends it to the hot water supply channel;
A bypass path that bypasses the heat exchanger and communicates the water supply path and the hot water path;
Temperature setting means for setting the set temperature;
A hot water heater comprising a hot water temperature control means for adjusting a combustion amount of the burner so as to bring the hot water temperature close to the set temperature;
A spring member made of a shape memory alloy whose urging force changes according to the change of the incoming water temperature, and provided with a bypass rate changing means whose opening degree is adjusted by this spring member , the bypass rate is increased as the incoming water temperature becomes higher. While increasing the lower bypass rate as the incoming water temperature decreases,
Provided correction control means for correcting control the combustion amount of the upper Symbol burner, when the hot water temperature at the heat exchanger has a greater than or equal to a predetermined drain limit temperature deviates from the temperature range is below the predetermined boiling limit temperature The gist is to correct and control the burn-up amount of the burner so as to return to the range .
[0005]
The water heater of the present invention having the above configuration branches a part of the water supplied from the water supply channel to the bypass channel, and again joins the hot water heated by the heat exchanger to discharge the hot water. Then, the combustion amount of the burner is adjusted so that the hot water temperature approaches the set temperature. Further, the bypass rate is changed by a bypass rate changing means having a spring member made of a shape memory alloy and the opening degree of which is adjusted by the spring member . And by increasing the bypass rate as the incoming water temperature becomes higher and lowering the bypass rate as the incoming water temperature becomes lower, the hot water temperature in the heat exchanger is kept at a temperature at which it is difficult for drainage and boiling to occur. Despite this varying the bypass ratio, when the outlet temperature of the heat exchanger has deviated from the temperature range is be more than a predetermined drain limit temperature below a predetermined boiling temperature limit, within its scope By correcting and controlling the burner combustion amount so as to return to, drain and boiling are reliably prevented.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In order to further clarify the configuration and operation of the present invention described above, a preferred embodiment of the water heater of the present invention will be described below.
FIG. 1 is a schematic configuration diagram of a water heater as an embodiment of the present invention. This water heater includes a heat exchanger 30 to which the water supply path 10 and the hot water path 20 are connected, a burner 40 for heating water flowing through the heat exchanger 30, and a bypass path 50 that bypasses the heat exchanger 30. And a controller 60 for controlling the combustion. Then, on the upstream side of the branch portion A of the water supply passage 10 with respect to the bypass passage 50, an incoming water temperature sensor 11 for detecting the incoming water temperature, a water governor 12 for limiting the maximum value of the incoming water flow rate, and a flow rate for detecting the incoming water flow rate. A sensor 13 is provided. Further, an outlet temperature sensor 21 for detecting the hot water temperature at the outlet of the heat exchanger 30 is provided upstream of the junction B with the bypass passage 50 of the outlet 20, and downstream of the junction B with the bypass 50. On the side, a tapping temperature sensor 22 for detecting a tapping temperature after mixing is provided. Further, the bypass passage 50 is provided with a bypass valve 70 for adjusting the opening degree of the passage. The gas supply path 80 for supplying gas to the burner 40 is provided with a main electromagnetic valve 81 and an original electromagnetic valve 82 for opening and closing the flow path, and a proportional valve 83 for adjusting the gas supply amount.
[0007]
The controller 60 includes a CPU, RAM, and ROM that form a well-known arithmetic logic circuit (not shown), an input interface that inputs signals from various sensors, an output interface that outputs drive signals to various actuators, and the like. The controller 60 is connected to a remote controller 90 including operation switches for performing an external operation such as setting of a set temperature and a display for displaying the set temperature.
[0008]
The remote controller 90 can set the set temperature in a temperature range of 38 to 46, 48, 50, 55, and 60 ° C. The controller 60 calculates and controls the amount of heat necessary for setting the tapping temperature to the set temperature based on the set temperature set by the remote controller 90, the detected temperature of the incoming water temperature sensor 11 and the detected flow rate of the flow rate sensor 13. The combustion amount of the burner 40 is controlled by adjusting the opening of the proportional valve 83 by the forward control and the feedback control for correcting the feedforward control amount based on the deviation between the detected temperature of the tapping temperature sensor 22 and the set temperature. The hot water temperature control is performed.
[0009]
The bypass valve 70 is made of a valve body 72 provided in a valve chamber 71 connected in series with the bypass passage 50, and a shape memory alloy that biases the valve body 72 in the opening direction by changing the spring load according to the incoming water temperature. Coil spring (hereinafter referred to as SMA spring) 73 and a bias spring 74 that biases the valve body 72 in the closing direction against a biasing force of the SMA spring 73 with a constant spring load. With such a configuration, the valve body 72 moves to a position where the urging forces of the SMA spring 73 and the bias spring 74 are balanced to adjust the opening degree. Since the spring load of the SMA spring 73 increases when the incoming water temperature increases, and the spring load decreases when the incoming water temperature decreases, the opening degree increases as the incoming water temperature increases, and the bypass rate (bypass for the supply flow rate to the appliance) is increased. The ratio of flow rate becomes higher.
[0010]
Next, the relationship between the incoming water temperature and the bypass rate will be described using the graph of FIG.
In this embodiment, the drain limit temperature which is a limit temperature for preventing the generation of drain in the heat exchanger 30 is 46 ° C., and the boiling limit temperature which is a limit temperature for preventing boiling in the heat exchanger 30. Is described as 85 ° C.
[0011]
In this graph, curve a represents the minimum value of the bypass rate at which the hot water temperature in the heat exchanger 30 can be maintained at the drain limit temperature (46 ° C.) or higher when the set temperature is the lowest temperature (38 ° C.). This is the drain limit line. Curve b represents the boiling limit representing the maximum value of the bypass rate at which the hot water temperature in the heat exchanger 30 can be kept below the boiling limit temperature (85 ° C.) when the set temperature is the maximum temperature (60 ° C.). Line. Curve c is a control line representing a bypass rate that the bypass valve 70 changes with respect to the incoming water temperature. In this embodiment, the control line (curve c) is made higher than the drain limit line (curve a), so that the hot water temperature in the heat exchanger 30 is maintained at the drain limit temperature (46 ° C.) or higher regardless of the set temperature. Similarly, by setting the temperature lower than the boiling limit line (curve b), the hot water temperature in the heat exchanger 30 is suppressed to the boiling limit temperature (85 ° C.) or less regardless of the set temperature. That is, by keeping the bypass rate in a range higher than the drain limit line (curve a) and lower than the boiling limit line (curve b) (hereinafter referred to as a good range), both drain and boiling can be performed regardless of the set temperature. It can be prevented.
[0012]
In this embodiment, the minimum set temperature is 38 ° C. and the maximum temperature is 60 ° C. When the maximum set temperature is 70 ° C., for example, the boiling limit line is the maximum temperature as shown by curve d. Is lower than the boiling limit line (curve b) at 60 ° C., and there is no incoming water temperature at which both drain and boiling can be prevented. That is, in this embodiment, the maximum temperature and the minimum temperature of the set temperature are limited so that the range of the incoming water temperature where the good region exists can be widened.
[0013]
In this way, the good temperature exists by limiting the set temperature to 38 to 60 ° C., but the drain limit line (curve a) and the boiling limit line (curve b) when the incoming water temperature is about 27.6 ° C. Therefore, there is no good region in the range where the incoming water temperature is higher than this intersection, and there is no bypass rate that can prevent both drain and boiling regardless of the set temperature. Actually, there is an error in the control amount of the bypass rate due to variations in the spring load of the SMA spring 73 and the bias spring 74, the valve body 72, and the like. The incoming water temperature range where the good region exists is 25 ° C. or less. In order to broaden the incoming water temperature range where there is a good range, it is sufficient to lower the maximum temperature or raise the minimum temperature. However, as the set temperature range is narrowed, the usability is impaired, so the set temperature range is made as wide as possible. It is desirable. Therefore, when the detected temperature of the outlet temperature sensor 21 is lower than the drain limit temperature (46 ° C.) or exceeds the boiling limit temperature (85 ° C.), the boiling limit temperature (85 ° C.) is higher than the drain limit temperature (46 ° C.). ) The combustion amount of the burner 40 is corrected and controlled so as to keep within the following range. By performing this correction control prior to the hot water temperature control, the hot water temperature in the heat exchanger 30 is kept within a range where drainage and boiling can be prevented.
[0014]
Although such correction control can prevent drainage and boiling, a temperature difference is generated between the set temperature and the tapping temperature corresponding to the corrected amount of combustion. Here, the temperature difference that occurs when the incoming water temperature is 30 ° C. will be described.
When the bypass rate is 45.5% due to variations in the bypass valve 70, it becomes lower than the drain limit line (curve a), so the tapping temperature is set at the minimum temperature (38 ° C.). If it tries to control to, the hot water temperature in the heat exchanger 30 will fall below the drain limit temperature (46 degreeC). Therefore, the combustion amount is corrected and controlled so that the detected temperature of the outlet temperature sensor 21 does not fall below the drain limit temperature (46 ° C.).
(1-0.455) × 46 + 0.455 × 30 = 38.72 [° C.]
Thus, it is only 0.72 ° C. higher than the set temperature. That is, when the water temperature is in the range of 30 ° C. or lower, the tapping temperature can be controlled between 38 and 38.72 ° C. even if the set temperature is the lowest temperature (38 ° C.), so the usability is not impaired.
[0015]
Also, when the bypass rate is 50% due to variations in the bypass valve 70, the boiling temperature (curve b) becomes higher than the boiling limit (curve b), so that the tapping temperature is set to the set temperature while the set temperature is set to the maximum temperature (60 ° C.). If it tries to control, the hot water temperature in the heat exchanger 30 will exceed boiling limit temperature (85 degreeC). Therefore, the combustion amount is corrected and controlled so that the temperature detected by the outlet temperature sensor 21 does not exceed the boiling limit temperature (85 ° C.).
(1-0.5) × 85 + 0.5 × 30 = 57.5 [° C.]
Thus, it is 2.5 ° C. lower than the set temperature. That is, when the water temperature is in the range of 30 ° C. or less, the hot water temperature can be controlled between 57.5-60 ° C. even if the set temperature is the maximum temperature (60 ° C.), and it is not the temperature at which the user directly touches the hot water The temperature difference of the lever is almost no problem.
[0016]
As described above, according to the water heater of the present embodiment, the hot water temperature in the heat exchanger 30 can be maintained at a temperature at which it is difficult for drainage and boiling to occur by changing the bypass rate according to the incoming water temperature. it can. Moreover, when the detected temperature of the outlet temperature sensor 21 is lower than the drain limit temperature (46 ° C.) or exceeds the boiling limit temperature (85 ° C.), the boiling limit temperature (85 ° C.) is higher than the drain limit temperature (46 ° C.). ) Since the combustion amount of the burner 40 is corrected and controlled so as to be kept within the following range, drain and boiling can be prevented regardless of the set temperature and the incoming water temperature. In addition, by suppressing the maximum temperature of the set temperature to 60 ° C., the incoming water temperature range in which a good region exists is widened, and the bypass valve 70 keeps the bypass rate with respect to the incoming water temperature in the good region so that the incoming water temperature is 25 ° C. or less. Then, draining and boiling can be prevented while discharging hot water at a set temperature, and even in rare cases where the incoming water temperature is higher than 25 ° C., the set temperature is set near the minimum temperature or near the maximum temperature. However, the hot water temperature is only slightly increased or decreased, and the usability is not impaired. In this way, in this embodiment, the maximum temperature is kept at 60 ° C. in order to widen the incoming water temperature range where there is a good region, but hot water is actually required only when hot water is poured. In view of safety, it is desired to lower the maximum temperature to some extent. In particular, a hot water heater having a reheating circuit that circulates and recirculates hot water in a bathtub has recently been used. In other countries, the maximum temperature is limited to 55 ° C. for safety reasons. From such a background, it can be said that the set temperature range of 38 to 60 ° C. is sufficient.
[0017]
Moreover, the structure which changes a bypass rate according to incoming water temperature can stabilize a hot water temperature compared with the structure which changes a bypass rate with a hot water temperature. In addition, the SMA spring 73 can be realized at a low cost by the configuration in which the SMA spring 73 is directly operated by the incoming water temperature.
[0018]
In this embodiment, the SMA spring 73 is used as the heat responsive member of the bypass valve. However, the SMA spring 73 is not limited to this, and any device that operates according to a temperature change can be applied.
Further, in this embodiment, drainage and boiling can be prevented even when the hot water is discharged at the set temperature when the incoming water temperature is 25 ° C. or lower. However, the present invention is not limited to this, and for example, the set temperature range is wider. It may be set.
[0019]
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention.
[0020]
【The invention's effect】
As described above in detail, according to the water heater of the present invention, drainage and boiling of the hot water temperature in the heat exchanger are generated by changing the bypass rate by the thermally responsive member that operates according to the change in the incoming water temperature. It can be kept at a temperature that is difficult to do. Moreover, since a bypass rate is changed according to the change of incoming water temperature, the hot water temperature can be stabilized compared with the structure which changes a bypass rate according to the change of hot water temperature. Furthermore, it is not necessary to separately control the thermally responsive member by directly operating it by changing the incoming water temperature, and the structure can be simplified and realized at low cost. Moreover, when the hot water temperature in the heat exchanger exceeds the drain limit temperature or more and the boiling limit temperature or less, the burner combustion amount is corrected and controlled to return to that range, thereby reducing the drain and boiling. Occurrence can be reliably prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water heater as one embodiment.
FIG. 2 is a graph showing the relationship between incoming water temperature and bypass rate.
[Explanation of symbols]
10 ... Water supply channel, 20 ... Hot water supply channel, 30 ... Heat exchanger, 40 ... Burner,
50 ... Bypass path, 60 ... Controller, 70 ... Bypass valve,
71 ... Valve chamber, 72 ... Valve body, 73 ... SMA spring, 74 ... Bias spring,
90 ... Remote control.

Claims (1)

給水路から供給された水をバーナの燃焼熱により加熱して出湯路に送り出す熱交換器と、
上記熱交換器をバイパスして上記給水路と上記出湯路とを連通するバイパス路と、
設定温度を設定する温度設定手段と、
出湯温度を上記設定温度に近づけるように上記バーナの燃焼量を調節する出湯温制御手段と
を備えた給湯器において、
入水温度の変化に応じて付勢力が変化する形状記憶合金製のばね部材を有し、このばね部材によって開度が調整されるバイパス率変更手段を設けて、入水温度が高くなるにつれてバイパス率を上昇させる一方、入水温度が低くなるにつれて上記バイパス率を低下させるとともに、
記バーナの燃焼量を補正制御する補正制御手段を設けて、上記熱交換器での湯温が、所定のドレン限界温度以上であって所定沸騰限界温度以下である温度範囲から逸脱した場合には、その範囲内に戻すように上記バーナの燃焼量を補正制御することを特徴とする給湯器。
A heat exchanger that heats the water supplied from the water supply channel by the combustion heat of the burner and sends it to the hot water supply channel;
A bypass path that bypasses the heat exchanger and communicates the water supply path and the hot water path;
Temperature setting means for setting the set temperature;
A hot water heater comprising a hot water temperature control means for adjusting the amount of combustion of the burner so that the hot water temperature approaches the set temperature,
A spring member made of a shape memory alloy whose urging force changes according to the change in the incoming water temperature, and provided with a bypass rate changing means whose opening degree is adjusted by this spring member , the bypass rate is increased as the incoming water temperature becomes higher. While increasing the lowering of the bypass rate as the incoming water temperature decreases,
Provided correction control means for correcting control the combustion amount of the upper Symbol burner, when the hot water temperature at the heat exchanger has a greater than or equal to a predetermined drain limit temperature deviates from the temperature range is below the predetermined boiling limit temperature Is a hot water heater, wherein the combustion amount of the burner is corrected and controlled so as to return to the range .
JP22107697A 1997-08-01 1997-08-01 Water heater Expired - Lifetime JP3862822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22107697A JP3862822B2 (en) 1997-08-01 1997-08-01 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22107697A JP3862822B2 (en) 1997-08-01 1997-08-01 Water heater

Publications (2)

Publication Number Publication Date
JPH1151481A JPH1151481A (en) 1999-02-26
JP3862822B2 true JP3862822B2 (en) 2006-12-27

Family

ID=16761118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22107697A Expired - Lifetime JP3862822B2 (en) 1997-08-01 1997-08-01 Water heater

Country Status (1)

Country Link
JP (1) JP3862822B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691414B2 (en) * 2001-07-05 2005-09-07 リンナイ株式会社 Hot water system
NL2005009A (en) * 2009-07-27 2011-01-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
JP6624879B2 (en) * 2015-10-16 2019-12-25 リンナイ株式会社 Water heater
CN108825865A (en) * 2018-07-24 2018-11-16 广东万家乐燃气具有限公司 A kind of water transportation device and water heater

Also Published As

Publication number Publication date
JPH1151481A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3862822B2 (en) Water heater
JP2911989B2 (en) Hot water supply temperature control device
JP3533799B2 (en) Water heater
JP3990845B2 (en) Water heater
JP3862830B2 (en) Water heater
JP3836953B2 (en) Water heater
JPH102609A (en) Hot-water supply apparatus
JP3703620B2 (en) Water heater
JP3169785B2 (en) Hot water supply control device
JP3719292B2 (en) Water heater
JP3380047B2 (en) Water heater
JP4691215B2 (en) One can two water channel bath water heater
JP3097430B2 (en) Water heater
JP3282294B2 (en) Water heater
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP3932226B2 (en) Bypass mixing water heater
JP2019109017A (en) Water heater
JP2878799B2 (en) Hot water supply temperature control device
JP3783168B2 (en) Bypass mixing water heater
JPH08247547A (en) Hot water-supply device
JP3748464B2 (en) Water heater
JP3872864B2 (en) Hot water combustion equipment
JP2022025434A (en) Combustion device and water heater
JP3769660B2 (en) Water heater
JPH10300214A (en) Hot water supply unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term