JP2011127859A - Cooperation control device and method for heat source system - Google Patents

Cooperation control device and method for heat source system Download PDF

Info

Publication number
JP2011127859A
JP2011127859A JP2009288620A JP2009288620A JP2011127859A JP 2011127859 A JP2011127859 A JP 2011127859A JP 2009288620 A JP2009288620 A JP 2009288620A JP 2009288620 A JP2009288620 A JP 2009288620A JP 2011127859 A JP2011127859 A JP 2011127859A
Authority
JP
Japan
Prior art keywords
flow rate
load
pump
control valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288620A
Other languages
Japanese (ja)
Other versions
JP5422366B2 (en
Inventor
Yoshikazu Ishii
良和 石井
Kazunobu Morita
和信 森田
Tsutomu Kawamura
勉 河村
Kaoru Koizumi
薫 小泉
Koji Kumahara
弘二 熊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009288620A priority Critical patent/JP5422366B2/en
Publication of JP2011127859A publication Critical patent/JP2011127859A/en
Application granted granted Critical
Publication of JP5422366B2 publication Critical patent/JP5422366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize a rotational frequency of a pump for sending a heat medium produced by a heat source machine, in controlling a flow rate of the heat medium in equipment consuming heat. <P>SOLUTION: This cooperation control device is composed of a pump operating state control device for controlling the rotational frequency of an inverter-driven liquid sending pump, and a flow rate control device for controlling the flow rate of heat medium in each load piping system, the operating state control device of the liquid sending pump outputs a command for fully opening a valve to the flow rate control valve of the load piping system and the like having the maximum heat medium flow rate, controls the rotational frequency of the pump to achieve the desired flow rate, and further controls the flow rates of the other piping systems of low required flow rate on the basis of an opening of each flow rate control valve. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、工場などの生産設備および空調設備などに用いられる熱源システムの連携制御装置及び連携制御方法に係り、特に、生産設備などで用いられる送水システム,送液システムの熱媒,水,液体の流量を好適に制御する熱源システムの連携制御装置及び連携制御方法に関する。   The present invention relates to a cooperative control device and a cooperative control method for a heat source system used in production facilities such as factories and air conditioning equipment, and more particularly to a water supply system used in production facilities and the like, a heat medium for a liquid supply system, water, and liquid. The present invention relates to a cooperative control device and a cooperative control method of a heat source system that suitably controls the flow rate of the heat source system.

熱源機で生成した冷温水を受容側に送水する設備である熱源システムの多くは、例えば〔特許文献1〕,〔特許文献2〕に記載のように、受容側へ送水する冷温水の流量を負荷に応じて減らす変流量制御と、熱源機の運転台数を制御する台数制御を組合せ、冷温水の流量制御を行っている。変流量制御を行わない場合は、例えば〔特許文献2〕の〔従来の技術〕に記載されているように、熱源機側から、負荷の下流側へのバイパス流路の流量を制御することにより負荷の要求する流量と熱源側での送水流量をバランスさせている。   Many of the heat source systems, which are facilities that send cold / hot water generated by the heat source machine to the receiving side, for example, as described in [Patent Document 1] and [Patent Document 2], the flow rate of the cold / hot water to be supplied to the receiving side. The flow rate control of cold / hot water is performed by combining variable flow rate control that is reduced according to load and unit control that controls the number of operating heat source units. When the variable flow rate control is not performed, for example, as described in [Prior Art] of [Patent Document 2], by controlling the flow rate of the bypass flow path from the heat source unit side to the downstream side of the load. The flow rate required by the load is balanced with the water flow rate on the heat source side.

これら従来の技術のうち、〔特許文献1〕に記載の従来の技術では、負荷の熱需要と負荷の内部抵抗から決まる流量との関係が不明であることを前提に、結果として流れている熱媒の流量と負荷の出口側での熱媒の温度の測定結果とを用いて、熱源機側で必要となる熱量と流量を独立に計算し、運転台数と熱媒流量を決定し、熱源機の台数制御とその補機である熱媒送液ポンプの流量を制御している。これにより、熱負荷に見合うように熱源機の台数と運転状態を制御できるため、バイパスさせる場合などに比べ、省エネが実現できるとしている。   Among these conventional techniques, the conventional technique described in [Patent Document 1] assumes that the relationship between the heat demand of the load and the flow rate determined from the internal resistance of the load is unknown, and as a result, the heat flowing as a result. Using the flow rate of the medium and the measurement result of the temperature of the heat medium at the outlet side of the load, the heat quantity and flow rate required on the heat source unit side are calculated independently, the number of operating units and the heat medium flow rate are determined, and the heat source unit The number of units and the flow rate of the heat transfer pump that is an auxiliary machine are controlled. As a result, the number of heat source units and the operation state can be controlled to meet the heat load, and thus energy saving can be realized as compared with the case of bypassing.

ただし、〔特許文献1〕の従来の技術は、負荷設備と熱源システムの連携という面を見ると、熱媒流量の制御は熱源機側のみで実施し、複数あると想定される負荷設備からはそれら全体としての熱媒流量と出口温度の2つの情報のみを制御に活用しているだけである。   However, in the conventional technology of [Patent Document 1], from the viewpoint of cooperation between the load facility and the heat source system, the control of the flow rate of the heat medium is performed only on the heat source unit side, and from the load facility assumed to be plural, Only the two pieces of information of the heat medium flow rate and the outlet temperature as a whole are utilized for control.

より多くの情報を負荷設備から得ることで熱源システムの運用効率を向上させる従来の技術としては、〔特許文献3〕に記載のものがある。この従来技術では、並列に設けられた負荷設備側で熱媒の流量を制御する流量制御弁の弁開度情報などを取得し、これに基づいて熱源機の台数制御を行っている。この台数制御は、弁開度を全開にしている負荷があれば、熱源としての生成エネルギーが不足していると判断して熱源機の起動台数を増やし(増段する)、一方、弁開度がゼロの負荷があれば、熱源機を1台減らす(減段する)というものである。   As a conventional technique for improving the operation efficiency of the heat source system by obtaining more information from the load facility, there is one described in [Patent Document 3]. In this prior art, valve opening information of a flow rate control valve for controlling the flow rate of the heat medium is acquired on the load equipment side provided in parallel, and the number of heat source devices is controlled based on this information. In this unit control, if there is a load with the valve opening fully open, it is determined that the generated energy as a heat source is insufficient, and the number of heat source units started is increased (increased). If there is zero load, the number of heat source units is reduced (decreased).

負荷設備との連携に関しては、ここで示す弁開度以外に、各負荷での温度目標と実温度との偏差(各負荷での温度目標−実温度)を使う例も示されている。この例では、偏差の最大値(プラス側とマイナス側がある)が基準値より大きければ、減段あるいは増段する。例えば、熱源が冷熱の場合、マイナス側最大値が基準値より大きければ増段し、プラス側最大値が設定値より大きければ減段させる。この従来技術によれば、負荷設備の多様な運転状態を考慮して、最適に熱源機の無駄な運転を無くすことができると言われている。   Regarding the linkage with the load equipment, in addition to the valve opening shown here, an example of using a deviation between the temperature target at each load and the actual temperature (temperature target at each load-actual temperature) is also shown. In this example, if the maximum value of deviation (there is a plus side and a minus side) is larger than the reference value, the stage is reduced or increased. For example, when the heat source is cold, the step is increased if the negative maximum value is larger than the reference value, and is decreased if the positive maximum value is larger than the set value. According to this prior art, it is said that the wasteful operation of the heat source device can be optimally eliminated in consideration of various operation states of the load facility.

又、〔特許文献1〕,〔特許文献2〕には、負荷設備での熱消費が少なく、熱源機出口での温度と負荷設備出口での温度との差が、設計値より小さい場合は、熱源機の負荷が設計値より小さくなることに着目し、熱媒の流量を設計熱負荷に見合う流量(定数×設計温度差×設計流量=熱源機容量により決まる設計流量。ここで、設計温度差=絶対値(設計時の熱源機出口温度−設計時の負荷出口温度)である)よりも大きくとり、設計温度差よりも熱負荷が小さい場合に、設計流量よりも、多くの熱媒を送液できるようにする過流量制御という技術も記載されている。これにより、熱負荷的には低い状態であるにも係わらず、熱媒流量が要求される場合に、熱的にみて過剰に熱源機を起動することによるロスを低減するとしている。   In [Patent Document 1] and [Patent Document 2], when the heat consumption at the load facility is small and the difference between the temperature at the outlet of the heat source unit and the temperature at the load facility outlet is smaller than the design value, Focusing on the fact that the load of the heat source machine becomes smaller than the design value, the flow rate of the heat medium is a flow rate that matches the design heat load (constant x design temperature difference x design flow rate = design flow rate determined by heat source machine capacity. = When the heat load is larger than the absolute value (heat source machine outlet temperature at design-load outlet temperature at design) and the heat load is smaller than the design temperature difference, more heat medium is sent than the design flow rate. A technique called overflow control that allows liquid to flow is also described. As a result, when the heat medium flow rate is required even though the heat load is low, the loss caused by excessively starting the heat source device in terms of heat is reduced.

上述のように、変流量制御を行って負荷が必要とする熱量と見合う熱媒流量となるように、熱源機の補機であるポンプを駆動する制御方式では、負荷を制御することは無い。負荷の流量が制御できない場合は、このような方法が最適である。   As described above, the load is not controlled in the control system that drives the pump, which is an auxiliary device of the heat source unit, so that the heat medium flow rate matches the amount of heat required by the load by performing variable flow rate control. Such a method is optimal when the flow rate of the load cannot be controlled.

しかし、上述した従来の技術のように、負荷設備の弁開度情報を得て、熱源設備の台数を制御する場合は、実際には負荷の状態は、負荷側の制御システムやそこに与える目標値などによって変更できる場合が多い。負荷側においては、プロセスの温度が所望の値となるように除熱または予熱するため、熱媒の流量を制御しており、それらの制御はバルブやベーンなど熱媒の流路抵抗を変更することで実施している。   However, as in the prior art described above, when obtaining the valve opening information of the load facility and controlling the number of heat source facilities, the load state is actually the load-side control system and the target given thereto. It can often be changed depending on the value. On the load side, in order to remove heat or preheat so that the temperature of the process becomes a desired value, the flow rate of the heat medium is controlled, and these controls change the flow path resistance of the heat medium such as valves and vanes. It is carried out by that.

このような熱媒の送液システムでは、流路抵抗と流量の関係は、流路に与える圧力差の関数となり、圧力差を一定とした場合は、所望の流量を得るための流路抵抗が一意に決まる。このため、目標となる流量に適合した圧力にすればよいが、通常は、熱媒の圧力を、流路抵抗に適合した圧力差より十分高い所定の圧力とし、設定された一定回転数での運転を行い、熱媒の流量は各負荷設備に設けられた制御バルブやベーンにより、流路抵抗を変更することで制御されている。   In such a heat transfer system, the relationship between the channel resistance and the flow rate is a function of the pressure difference applied to the channel, and when the pressure difference is constant, the channel resistance for obtaining a desired flow rate is Determined uniquely. For this reason, the pressure may be adjusted to the target flow rate, but the pressure of the heat medium is usually set to a predetermined pressure sufficiently higher than the pressure difference suitable for the flow path resistance, and at a set constant rotational speed. In operation, the flow rate of the heat medium is controlled by changing the flow path resistance by a control valve or vane provided in each load facility.

特開2008―309428号公報JP 2008-309428 A 特開2004―245560号公報JP 2004-245560 A 特開2009―63231号公報JP 2009-63231 A

上述のようなシステムでは、流路を絞ることで所望の熱媒流量となるように制御しているため、熱源機の補機であるポンプは、配管など、制御に依存せずに決まる流路抵抗だけでなく、制御バルブやベーンによる圧損分も仕事をしなくてはならないため、エネルギーのロスが発生する。   In the system as described above, since the flow rate is controlled to be a desired heat medium flow rate, the pump that is an auxiliary machine of the heat source unit is determined without depending on the control, such as piping. Not only the resistance but also the pressure loss due to the control valve and vane must work, resulting in energy loss.

単一の補機ポンプに単一の負荷であれば、制御弁やベーンの代わりにポンプの回転数をインバータにより制御することも可能であるが、複数の負荷が圧力源に対して並列に設置されるようなシステムでは、全負荷に必要な熱媒流量の総和を送り出せるようにポンプを制御するだけでは、各負荷への配管抵抗の差や弁開度の差により、それぞれが必要な流量を確保できるとは限らない。   If a single auxiliary pump has a single load, the speed of the pump can be controlled by an inverter instead of a control valve or vane, but multiple loads are installed in parallel to the pressure source. In such a system, it is necessary to control the pump so that the total heat medium flow rate required for all loads can be sent out, depending on the difference in piping resistance and valve opening to each load. It is not always possible to secure.

又、実際には、個々の負荷は独立に流量制御を行っているため、消費電力最小のポンプ運用となるような制御は行われていない。   Further, in practice, since each individual load is controlled independently, control is not performed so as to operate the pump with minimum power consumption.

本発明の目的は、熱源システムとしては最小の送水あるいは送液圧で、全ての負荷が必要な熱媒流量を確保できる熱源システムの連携制御装置及び連携制御方法を提供することにある。   An object of the present invention is to provide a cooperative control device and a cooperative control method of a heat source system that can secure a heat medium flow rate that requires all loads with a minimum water supply or liquid supply pressure as the heat source system.

上記目的を達成するために、本発明は、並列に配置された各々の負荷を制御する制御システムで設定される各負荷に対する要求水量または要求液量または要求熱量を入力し、最大の要求流量の配管系統の流量制御弁に対して、全開指令を出力し、ポンプの出力を、流量制御弁を流れる流体の流量が、当該負荷の要求値になるように制御するポンプ運転制御装置と、弁開度による流量制御と、ポンプ運転制御装置からの全開指令がある場合は、通常の流量制御に代わって流量制御弁を全開にする負荷系統毎の流量制御装置で構成される。   In order to achieve the above object, the present invention inputs a required water amount, a required liquid amount or a required heat amount for each load set by a control system for controlling the respective loads arranged in parallel, and has a maximum required flow rate. A pump operation control device that outputs a full open command to the flow control valve of the piping system and controls the pump output so that the flow rate of the fluid flowing through the flow control valve becomes the required value of the load, and the valve opening When there is a flow control depending on the degree and a fully open command from the pump operation control device, the flow control device for each load system is configured to fully open the flow control valve instead of the normal flow control.

又、並列に配置された複数の負荷系統への熱媒流量を制御する流量制御弁の開度情報を入力し、流量制御弁の開度の何れかが全開でない状態から全開となるか、逆に全開状態から全開でない状態になるまで、ポンプの流量を徐々に低減、または増加させる制御を行うポンプ運転制御装置と、各負荷に流れる熱媒の流量を設定された量になるように流量制御弁の開度を制御する負荷系統毎の流量制御装置とで構成される。   Also, the opening information of the flow control valve that controls the flow rate of the heat medium to a plurality of load systems arranged in parallel is inputted, and either of the opening amounts of the flow control valve is not fully opened or vice versa. The pump operation control device that gradually reduces or increases the flow rate of the pump from the fully open state to the non-fully open state, and the flow rate control so that the flow rate of the heat medium flowing to each load becomes a set amount It is comprised with the flow control apparatus for every load system which controls the opening degree of a valve.

本発明によれば、並列に配備された負荷へ熱媒を送液するポンプの吐出圧を熱需要を満たす範囲で最小となるようにできるため、熱源システムの動力負荷を低減できる。   According to the present invention, since the discharge pressure of the pump that sends the heat medium to the load arranged in parallel can be minimized within a range that satisfies the heat demand, the power load of the heat source system can be reduced.

送液ポンプの運転を説明するための熱源システムの構成図。The block diagram of the heat-source system for demonstrating the driving | operation of a liquid feeding pump. 送液ポンプ運転を説明するための流量−揚程特性,配管系統の抵抗曲線及び消費電力曲線を示す図。The figure which shows the flow volume-head characteristic for demonstrating liquid feeding pump operation | movement, the resistance curve of a piping system, and a power consumption curve. 本発明の実施例1に係わる熱源システムの構成図。The block diagram of the heat-source system concerning Example 1 of this invention. ポンプ流量制御装置での処理アルゴリズムを示すPAD図。The PAD figure which shows the process algorithm in a pump flow control apparatus. 本実施例のポンプ運転制御系を用いた場合の制御系のブロック図。The block diagram of a control system at the time of using the pump operation control system of a present Example. 本発明の実施例2に係わる熱源システムの構成図。The block diagram of the heat-source system concerning Example 2 of this invention. 本実施例のポンプ運転制御装置の処理アルゴリズムを示すPAD図。The PAD figure which shows the processing algorithm of the pump operation control apparatus of a present Example. 本発明の実施例3に係わる熱源システムの構成図。The block diagram of the heat-source system concerning Example 3 of this invention. 本発明の実施例4に係わる熱源システムの構成図。The block diagram of the heat-source system concerning Example 4 of this invention.

本発明の各実施例の理解を助けるために、単純化した熱源システムで説明する。図1は、単純化した熱源システムの構成図を、図2は、図1に示す熱源システムにおける熱媒の送液ポンプの状態を示している。   In order to facilitate understanding of the embodiments of the present invention, a simplified heat source system will be described. FIG. 1 is a configuration diagram of a simplified heat source system, and FIG. 2 shows a state of a heat medium feeding pump in the heat source system shown in FIG.

図1に示す熱源システムでは、熱源機151で生成された熱媒を、送液ポンプ113により加圧して往ヘッダ152を経由して負荷設備154や負荷設備155に送液する。熱交換された熱媒は、戻り配管を通して一旦、復ヘッダ153に集まった後、再び熱源機151へ供給される。   In the heat source system shown in FIG. 1, the heat medium generated by the heat source device 151 is pressurized by the liquid feed pump 113 and sent to the load equipment 154 and the load equipment 155 via the forward header 152. The heat exchanged heat medium is once collected in the return header 153 through the return pipe, and then supplied to the heat source device 151 again.

通常は、負荷設備154,155の加熱量または冷却量に応じて、流量を設定する温度制御系が設けられており、流量計測値に基づいてバルブ開度を制御して、設定流量となるように、熱需要に応じて負荷設備154,155の熱媒の流量を制御する。図1の例では、流量センサ124,134と流量制御装置125,135および流量制御弁122,132で流量制御系を構成している例を示している。負荷設備154,155での必要な流量が、それぞれQ1,Q2であった場合を例に、図2を用いて送液ポンプ113の送液圧決定を説明する。   Normally, a temperature control system for setting the flow rate is provided according to the heating amount or cooling amount of the load equipment 154, 155, and the valve opening degree is controlled based on the flow rate measurement value so that the set flow rate is obtained. In addition, the flow rate of the heating medium of the load equipment 154, 155 is controlled according to the heat demand. In the example of FIG. 1, an example is shown in which the flow rate control system is configured by the flow rate sensors 124 and 134, the flow rate control devices 125 and 135, and the flow rate control valves 122 and 132. The determination of the liquid supply pressure of the liquid supply pump 113 will be described with reference to FIG. 2, taking as an example the case where the required flow rates at the load facilities 154 and 155 are Q1 and Q2, respectively.

図2に示す曲線323は、流量制御弁122又は123を全開にした場合の配管系統120又は130の負荷を示す。送液ポンプ113がある一定の回転数で運転されているときの流量―揚程カーブを曲線301に示す。ここで、負荷設備154では流量Q1が、負荷設備155では流量Q2が必要な場合、流量制御装置125では、弁開度を絞って、配管系統120の負荷特性を曲線303のように変更する。同様に配管系統130では、流量制御弁132の負荷特性が曲線302となるように制御する。   A curve 323 shown in FIG. 2 indicates a load on the piping system 120 or 130 when the flow control valve 122 or 123 is fully opened. A flow rate-lifting curve when the liquid feed pump 113 is operated at a certain rotation speed is shown by a curve 301. Here, when the flow rate Q1 is necessary for the load facility 154 and the flow rate Q2 is necessary for the load facility 155, the flow rate control device 125 changes the load characteristic of the piping system 120 as indicated by a curve 303 by narrowing the valve opening. Similarly, in the piping system 130, the load characteristic of the flow control valve 132 is controlled to be a curve 302.

しかし、理想的には、流量Q1とQ2のうち、流量の多いほうのバルブの開度は全開として、負荷特性を曲線303から曲線323とし、その時に必要な流量Q1が得られるように、流量―揚程カーブが曲線321となる回転数でのポンプ運転となるようにポンプ回転数を制御する方が電力消費を低くできる。この回転数を維持するように送液ポンプ113を制御した状態では、負荷設備155側の流量制御弁132は、弁開度を曲線302に比べ大きくとることができ、特性が曲線322となるように運転する。   However, ideally, of the flow rates Q1 and Q2, the opening of the valve with the larger flow rate is fully opened, the load characteristic is changed from the curve 303 to the curve 323, and the flow rate Q1 is obtained so that the necessary flow rate Q1 can be obtained at that time. -Power consumption can be reduced by controlling the pump rotation speed so that the pump operation is performed at the rotation speed at which the lift curve becomes the curve 321. In a state where the liquid feed pump 113 is controlled so as to maintain this rotational speed, the flow rate control valve 132 on the load facility 155 side can take a valve opening larger than the curve 302, and the characteristic becomes the curve 322. Drive to.

曲線304,324,305,325,332,342は、送液ポンプ113での電力消費が一定となる状態を結んだ曲線であり(曲線上で一定だが、曲線間では異なる)、送液ポンプ113の回転数を下げ、流量−揚程カーブを曲線301から曲線321にすることで、負荷設備154分の電力消費を曲線304から曲線324に、負荷設備155分の電力消費を曲線305から曲線325に移し、ポンプ運転による電力消費を熱媒需要の流量Q1とQ2を満たす範囲で最小となるように制御することができる。   Curves 304, 324, 305, 325, 332, and 342 are curves connecting states in which the power consumption in the liquid feed pump 113 is constant (constant on the curve but different between the curves). , And the flow-lift curve is changed from the curve 301 to the curve 321, the power consumption for the load equipment 154 is changed from the curve 304 to the curve 324, and the power consumption for the load equipment 155 is changed from the curve 305 to the curve 325. In other words, the power consumption by the pump operation can be controlled to be minimized within a range satisfying the flow rates Q1 and Q2 of the heat medium demand.

最終的なポンプの運転状態は曲線331となり、電力消費は曲線332となる。一方、配管系統120と配管系統130の負荷特性が各々曲線303と曲線302の場合には全体の特性は曲線340で表され、送液ポンプ113の運転状態は曲線341、その時の電力消費は曲線342で示される。   The final operating state of the pump is a curve 331 and the power consumption is a curve 332. On the other hand, when the load characteristics of the piping system 120 and the piping system 130 are the curve 303 and the curve 302, respectively, the entire characteristic is represented by the curve 340, the operation state of the liquid feed pump 113 is the curve 341, and the power consumption at that time is the curve. 342.

このように、流量制御弁と送液ポンプを協調して制御することにより、曲線342の電力消費から、曲線332の電力消費に移すことが可能なことが分る。   Thus, it can be seen that the power consumption of the curve 342 can be shifted to the power consumption of the curve 332 by cooperatively controlling the flow rate control valve and the liquid feeding pump.

本発明の実施例1について図3から図5を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図3に示す熱源システムは、熱源機151の出口側に配置された往ヘッダ152を介して負荷設備154,155,156に熱媒を供給する。負荷設備154,155,156で熱交換された熱媒は、配管を通して復ヘッダ153に集められ、送液ポンプ113により復ヘッダ153から熱源機151に供給され、システムを循環しながら負荷設備154,155,156の加熱または除熱に使用される。   The heat source system shown in FIG. 3 supplies a heat medium to the load facilities 154, 155, and 156 via the forward header 152 disposed on the outlet side of the heat source unit 151. The heat medium exchanged by the load facilities 154, 155, and 156 is collected in the return header 153 through the pipes, and is supplied from the return header 153 to the heat source unit 151 by the liquid feed pump 113. Used to heat or remove heat at 155,156.

負荷設備154,155,156には、必要に応じて、熱媒の流量を制御する流量制御装置125,135,145が設けられ、流量計124,134,144で計測した各負荷設備を流れる熱媒流量を基に、熱媒流路の流路抵抗を変更する流量制御弁122,132,142の開度を制御して、流量設定値127,137,147に制御する。   The load facilities 154, 155, and 156 are provided with flow control devices 125, 135, and 145 that control the flow rate of the heat medium as necessary, and the heat flowing through the load facilities measured by the flow meters 124, 134, and 144. Based on the medium flow rate, the opening degree of the flow rate control valves 122, 132, 142 that change the flow resistance of the heat medium flow path is controlled to control the flow rate set values 127, 137, 147.

本実施例では、熱源機151で生成した熱を、熱媒によりシステムへ送出する送液ポンプ113を制御するポンプ運転制御装置100を有している。ポンプ運転制御装置100は、各負荷設備に流れる熱媒流量の計測値121,131,141と流量設定値127,137,147を入力とし、各負荷への熱媒の流量制御装置125,135,145の出力と全開指令の選択を行うセレクタ126,136,146に、全開選択指令123,133,143を出力する。また、送液ポンプ113にも回転数指令値112を出力する。
送液ポンプ113の回転数を制御するインバータ111では、この指令を受け、送液ポンプ113の回転数を回転数指令値112になるように制御する。
In this embodiment, there is a pump operation control device 100 that controls the liquid feed pump 113 that sends heat generated by the heat source device 151 to the system by a heat medium. The pump operation control apparatus 100 receives the measured values 121, 131, and 141 of the flow rate of the heat medium flowing through each load facility and the flow rate setting values 127, 137, and 147 as inputs, and the flow rate control apparatuses 125, 135, and The full-open selection commands 123, 133, and 143 are output to the selectors 126, 136, and 146 that select the output of 145 and the full-open command. Further, the rotational speed command value 112 is also output to the liquid feed pump 113.
The inverter 111 that controls the rotational speed of the liquid feed pump 113 receives this command and controls the rotational speed of the liquid feed pump 113 to be the rotational speed command value 112.

次に図4を用いて、本実施例のポンプ運転制御装置100の処理アルゴリズムを説明する。図4に示すアルゴリズムは例えば1秒の周期で実施される処理である。   Next, the processing algorithm of the pump operation control apparatus 100 of the present embodiment will be described with reference to FIG. The algorithm shown in FIG. 4 is a process that is performed, for example, at a cycle of 1 second.

処理の最初のステップであるSTEP401は、各負荷配管系統を制御する流量制御系に対する処理であり、並列に接続された全負荷系統について、STEP402で、設定されている流量設定値、例えば図3の場合は、流量設定値127,137,147を読み出す処理を行う。   STEP 401, which is the first step of the process, is a process for the flow rate control system for controlling each load piping system. For all load systems connected in parallel, the flow rate set value set in STEP 402, for example, as shown in FIG. In this case, a process of reading the flow rate set values 127, 137, and 147 is performed.

STEP403で、読み出した全ての負荷系統のうち、流量設定値が最大である負荷配管系統を選択し、その流量設定値を抽出する。STEP404で、最大流量となる配管系統のセレクタ、例えば図3の場合、セレクタ126,136,146のいずれか一つに対して、全開選択指令を出力する。STEP405で、送液ポンプ113に対しては、STEP403で選択した負荷配管系統の流量設定値と実流量の誤差に基づいてポンプの回転数指令値を決定してインバータ111に出力する。   In STEP 403, the load piping system having the maximum flow rate setting value is selected from all the read load systems, and the flow rate setting value is extracted. In STEP 404, a full-open selection command is output to the selector of the piping system having the maximum flow rate, for example, one of the selectors 126, 136, and 146 in the case of FIG. In STEP 405, the pump rotational speed command value is determined based on the error between the flow rate setting value of the load piping system selected in STEP 403 and the actual flow rate and output to the inverter 111 for the liquid feed pump 113.

なお、STEP403で選択された負荷配管系統以外の負荷配管系統では、流量指令値と実流量を用いて弁開度指令を図3に示す流量制御装置125,135,145が計算し、流量制御弁122,132,142の開度を制御して、所望の流量となるよう制御する。   Note that, in load piping systems other than the load piping system selected in STEP 403, the flow rate control values 125, 135, and 145 shown in FIG. The opening degree of 122,132,142 is controlled and it controls to become a desired flow volume.

図5は、図3に示す制御系のブロック図である。各配管系統の流量制御装置はブロック901,902,903で表される。ポンプ運転制御装置100によって制御される送液ポンプ113の揚程が、流量制御弁の開度と流量の関係に影響を与える。一方、各流量制御弁の開度は、送液ポンプ113の負荷側をトータルした配管抵抗に影響を与える。このような関係があるため、それぞれを単独の制御系で組む場合よりも、制御系の調整は複雑になる可能性があるが、つぎのような挙動を考えると、安定化は可能である。   FIG. 5 is a block diagram of the control system shown in FIG. The flow control devices for each piping system are represented by blocks 901, 902, and 903. The head of the liquid feed pump 113 controlled by the pump operation control device 100 affects the relationship between the opening degree of the flow control valve and the flow rate. On the other hand, the opening degree of each flow control valve affects the pipe resistance of the total load side of the liquid feed pump 113. Because of this relationship, adjustment of the control system may be more complicated than when each is composed of a single control system, but stabilization is possible considering the following behavior.

例えば、流量制御系903の流量指令値が上昇した場合は、流量を増やすために流量制御弁の開度を大きくする。このように操作すると、ポンプ運転制御系では、配管系統の流量が減るため、ポンプの回転数を増加させるような制御が行われ、ポンプの揚程が高くなる。これにより流量制御系903を流れる配管系統の流量は更に増えるので、流量制御弁の開度を絞る方向に制御が働くため、大きく安定性を損ねるような挙動はしない。   For example, when the flow rate command value of the flow rate control system 903 increases, the opening degree of the flow rate control valve is increased in order to increase the flow rate. When operated in this way, in the pump operation control system, the flow rate of the piping system decreases, so that control is performed to increase the number of revolutions of the pump, and the pump head is increased. As a result, the flow rate of the piping system that flows through the flow rate control system 903 further increases, so that the control works in the direction of narrowing the opening degree of the flow rate control valve, so that there is no behavior that greatly impairs stability.

また、ポンプ運用制御系では、配管系統の流量指令値が上がった場合、ポンプの回転数を増加させるような制御が働き、ポンプの揚程が高くなる。これは、流量制御系で制御される配管系統901〜903の流量を増加させるが、流量制御弁を絞る方向の作用を及ぼし、流量制御系の指令値が一定なら、元の値に安定化できる。結局、ポンプ運用制御系の指示値増加分に見合うだけ回転数を増加させる点で安定化できる。   Further, in the pump operation control system, when the flow rate command value of the piping system rises, control that increases the rotation speed of the pump works, and the pump head increases. This increases the flow rate of the piping systems 901 to 903 controlled by the flow rate control system, but acts in the direction to throttle the flow rate control valve, and can be stabilized to the original value if the command value of the flow rate control system is constant. . Eventually, stabilization can be achieved in that the rotational speed is increased by an amount corresponding to the increase in the instruction value of the pump operation control system.

本実施例によれば、ポンプは最大の流量を流す必要のある配管系統が最小の流路抵抗となり、そこで必要な流量が確保される範囲でポンプの回転数が最低限に制御されるので、消費電力最小となるような運転を実現できる。   According to the present embodiment, the pump system that requires the maximum flow rate has a minimum flow resistance, and the number of rotations of the pump is controlled to the minimum within a range in which the necessary flow rate is ensured. Operation that minimizes power consumption can be realized.

なお、以上の説明では、一台のポンプに複数の負荷が並列に接続された系を対象として説明したが、配管系等毎にポンプを設ければ、より消費電力を抑えることはできる。   In the above description, a system in which a plurality of loads are connected in parallel to a single pump has been described. However, if a pump is provided for each piping system or the like, power consumption can be further suppressed.

本発明の実施例2を図6から図7を用いて説明する。図6は、本実施例における設備構成図である。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is an equipment configuration diagram in the present embodiment.

本実施例は、図3に示す実施例と同様に構成されているが、本実施例では、制御系の構成がより単純化され、各負荷への熱媒の流量制御装置125,135,145の出力と全開指令の選択を行うセレクタ126,136,146が設けられていなく、流量設定値127,137,147の信号がポンプ運転制御装置100に入力されてない。   Although the present embodiment is configured in the same manner as the embodiment shown in FIG. 3, in this embodiment, the configuration of the control system is further simplified, and the flow rate control devices 125, 135, and 145 for the heat medium to each load are configured. The selectors 126, 136, and 146 for selecting the output and the full-open command are not provided, and the signals of the flow rate setting values 127, 137, and 147 are not input to the pump operation control device 100.

すなわち、各負荷配管系統の流量制御装置125,135,145の出力523,533,543を流量制御弁122,132,142と、ポンプ運転制御装置500に与えている点に構成上の違いがある。   That is, there is a structural difference in that the outputs 523, 533, and 543 of the flow control devices 125, 135, and 145 of the load piping systems are provided to the flow control valves 122, 132, and 142 and the pump operation control device 500. .

図7は、図6に示す本実施例におけるポンプ運転制御装置の処理アルゴリズムを示す図である。図7に示すアルゴリズムは、例えば1秒の周期で実施される処理である。   FIG. 7 is a diagram showing a processing algorithm of the pump operation control apparatus in the present embodiment shown in FIG. The algorithm shown in FIG. 7 is a process performed with a period of 1 second, for example.

処理の最初のステップであるSTEP601は、各負荷配管系統を制御する流量制御系に対する処理であり、STEP602で、図6の例では523,533,543で示される各制御装置からの開度指令を読み込み、STEP603で、過去の当該制御装置の開度指令との比較から、弁制御状態を決定する。本実施例では、弁制御状態は「開度増」「開度減」「全開」「全閉」「保持」の5通りで識別している。   STEP 601 which is the first step of the process is a process for the flow rate control system for controlling each load piping system. In STEP 602, the opening degree commands from the respective control devices indicated by 523, 533 and 543 in the example of FIG. In step 603, the valve control state is determined from comparison with the past opening command of the control device. In the present embodiment, the valve control state is identified by five ways of “opening increase”, “opening decrease”, “fully open”, “fully closed”, and “hold”.

STEP610で、当該流量制御計の弁制御状態が「開度増」から「全開」に遷移し、かつポンプ制御状態が「ポンプ減速中」であるかをチェックする。この条件にマッチすれば、STEP611でポンプ減速を停止し、STEP612で図7に示す処理を終了する。この場合、ポンプ制御状態は「ポンプ定速」状態となる。   In STEP 610, it is checked whether the valve control state of the flow rate control meter is changed from “opening degree increase” to “fully open” and the pump control state is “pump decelerating”. If this condition is met, pump deceleration is stopped in STEP 611, and the processing shown in FIG. In this case, the pump control state is a “pump constant speed” state.

STEP620で、「全開」から「開度減」に遷移し、かつポンプ制御状態が「ポンプ増速中」であるかをチェックする。この条件にマッチすれば、STEP621で、ポンプ増速を停止し、STEP622で図6の処理を終了する。この場合、ポンプ制御状態は「ポンプ定速」状態となる。なお、ポンプ制御状態には、「ポンプ増速中」「ポンプ減速中」「ポンプ定速」状態の3つの状態を設定する。   In STEP 620, it is checked whether the state changes from “fully open” to “opening reduction” and the pump control state is “pump speed increasing”. If this condition is met, pump acceleration is stopped at STEP 621 and the processing of FIG. 6 is terminated at STEP 622. In this case, the pump control state is a “pump constant speed” state. In the pump control state, three states of “pump speed increasing”, “pump decelerating” and “pump constant speed” are set.

STEP610,STEP620のチェックで何れにも該当しない場合は、STEP630のチェックを実施する。STEP630では、全ての流量制御弁が「全開」状態でなく(¬全開)、かつポンプ制御状態が「ポンプ減速中」であるかどうかをチェックし、この条件に該当する場合は、STEP631で、ポンプの減速を継続する。STEP640では、「全開」状態の流量制御弁が1つ以上あり、かつポンプ制御状態が「ポンプ増速中」であるかどうかチェックする。チェック結果が真の場合は、STEP641でポンプの増速を継続する。   If none of the checks in STEP 610 and STEP 620 correspond, the STEP 630 is checked. In STEP 630, it is checked whether all the flow control valves are not in the “fully open” state (the fully open state) and the pump control state is “pump decelerating”. If this condition is met, in STEP 631, the pump is controlled. Continue to slow down. In STEP 640, it is checked whether one or more flow control valves are in the “fully open” state and the pump control state is “pump speed increasing”. If the check result is true, the speed increase of the pump is continued in STEP641.

STEP650で、ポンプ制御状態が「ポンプ定速」状態で、かつ一つ以上の流量制御系で、流量制御弁の制御状態が「保持」から「開度増」となった流量制御系が在るか否かをチェックする。もし、そのような流量制御系があれば、STEP651で、ポンプ制御状態を「保持」状態から「増速」状態に切り替え、ポンプの増速を開始する。STEP650のチェック結果が偽であり、ポンプ状態が「ポンプ定速」状態の場合は、STEP652で、弁制御状態が「保持」から「開度減」の系の有無をチェックする。そのような流量制御系があった場合は、STEP653で、ポンプ制御状態は、「保持」から「減速」状態に切り替え、ポンプの減速を開始する。   In STEP650, there is a flow rate control system in which the pump control state is "pump constant speed" state, and the flow rate control valve is in a state of "increase in opening" from "hold" in one or more flow rate control systems Check whether or not. If there is such a flow rate control system, in STEP 651, the pump control state is switched from the “hold” state to the “speed increase” state, and the pump speed increase is started. If the check result of STEP 650 is false and the pump state is the “pump constant speed” state, the presence or absence of a system in which the valve control state is “hold” to “decrease opening” is checked in STEP 652. If there is such a flow rate control system, in STEP 653, the pump control state is switched from the “hold” to the “deceleration” state, and the pump starts decelerating.

以上の処理を定周期で実施することにより、一つの流量制御系の流量制御弁の開度を全開近傍にし、その他は必要な弁開度となるよう流量制御を行うことができる。   By performing the above processing at a constant cycle, the flow control can be performed so that the opening of the flow control valve of one flow control system is in the vicinity of the fully open, and the other valve openings are required.

本実施例によれば、始めにポンプの吐出圧が高い状態の場合、各負荷の流量制御系がバルブを絞って流量を所要の値に制御するが、ポンプ運転制御装置によりポンプの吐出圧が徐々に低下するため、各負荷の流量制御系がバルブを開き、流量を確保するように動作する。いずれか一つのバルブ開度が全開になった時点でポンプ吐出圧低減をやめることにより、負荷の要求する熱媒流量を満たす条件で消費電力が最小となるようなポンプ運転を行うことができる。   According to the present embodiment, when the pump discharge pressure is initially high, the flow control system of each load throttles the valve to control the flow rate to a required value, but the pump operation control device controls the pump discharge pressure. Since it gradually decreases, the flow control system of each load operates to open the valve and secure the flow rate. By stopping the pump discharge pressure reduction when any one of the valve openings is fully opened, the pump operation can be performed such that the power consumption is minimized under the conditions satisfying the heat medium flow rate required by the load.

一方、ポンプの吐出圧が低く、負荷において所望の流量を確保できない場合には、バルブ開度が全開の負荷以外の負荷配管制御系のバルブ開度が大きくなるので、この場合は、ポンプ吐出圧を増加させ、バルブの開度が全開から、そうでない状態になるまでポンプ吐出圧を増加させることにより、負荷の要求する熱媒流量を満たす条件で消費電力が最小のポンプ運転を行うことができる。   On the other hand, when the pump discharge pressure is low and a desired flow rate cannot be secured at the load, the valve opening of the load piping control system other than the fully open load becomes large. By increasing the pump discharge pressure until the valve opening is fully open after the valve is fully opened, the pump operation with the minimum power consumption can be performed under conditions that satisfy the heat medium flow rate required by the load. .

本発明の実施例3について図8を用いて説明する。図8は、本実施例における設備構成図である。   A third embodiment of the present invention will be described with reference to FIG. FIG. 8 is an equipment configuration diagram in the present embodiment.

本実施例は、図3に示す実施例と同様に構成されているが、本実施例では、往ヘッダ152、復ヘッダ153の代わりに、蓄熱槽761を設けており、熱源機151を蓄熱槽761の温度で制御するようにしている。   The present embodiment is configured in the same manner as the embodiment shown in FIG. 3, but in this embodiment, a heat storage tank 761 is provided instead of the forward header 152 and the return header 153, and the heat source device 151 is used as the heat storage tank. The temperature is controlled at 761.

戻りの熱媒で熱量が設定値からずれた蓄熱槽761中の熱媒は、ポンプ760によって熱源機151に送液され、蓄熱槽761に設置した温度センサ763で計測した蓄熱槽761の熱媒温度762を用いて、熱源機151での予熱,除熱が制御され、設定された温度の熱媒として蓄熱槽761に送液される。   The heat medium in the heat storage tank 761 whose amount of heat deviates from the set value due to the return heat medium is sent to the heat source device 151 by the pump 760, and the heat medium in the heat storage tank 761 measured by the temperature sensor 763 installed in the heat storage tank 761. Preheating and heat removal in the heat source device 151 are controlled using the temperature 762 and are sent to the heat storage tank 761 as a heat medium having a set temperature.

負荷設備への熱媒の送液は、ポンプ713で実施されるが、この制御は、図3及び図4説明したポンプ運転制御装置100で実施できる。又、図8に示す制御系のブロック図は、図5で示す構成となっている。   Although the liquid transfer of the heat medium to the load facility is performed by the pump 713, this control can be performed by the pump operation control device 100 described in FIGS. 3 and 4. The block diagram of the control system shown in FIG. 8 has the configuration shown in FIG.

本発明の実施例4について図9を用いて説明する。図9は、本実施例における設備構成図である。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is an equipment configuration diagram in the present embodiment.

本実施例は、図6に示す実施例と同様に構成されているが、本実施例では、往ヘッダ152,復ヘッダ153の代わりに、蓄熱槽761を設けており、熱源機151を蓄熱槽761の温度で制御するようにしている。   Although this embodiment is configured in the same manner as the embodiment shown in FIG. 6, in this embodiment, a heat storage tank 761 is provided instead of the forward header 152 and the return header 153, and the heat source device 151 is used as the heat storage tank. The temperature is controlled at 761.

戻りの熱媒で熱量が設定値からずれた蓄熱槽761中の熱媒は、ポンプ760によって熱源機151に送液され、蓄熱槽761に設置した温度センサ763で計測した蓄熱槽761の熱媒温度762を用いて、熱源機151での予熱,除熱が制御され、設定された温度の熱媒として蓄熱槽761に送液される。   The heat medium in the heat storage tank 761 whose amount of heat deviates from the set value due to the return heat medium is sent to the heat source device 151 by the pump 760, and the heat medium in the heat storage tank 761 measured by the temperature sensor 763 installed in the heat storage tank 761. Preheating and heat removal in the heat source device 151 are controlled using the temperature 762 and are sent to the heat storage tank 761 as a heat medium having a set temperature.

負荷設備への熱媒の送液は、ポンプ713で実施されるが、この制御は、図6及び図7で説明したポンプ運転制御装置500で実施できる。   Although the liquid supply of the heat medium to the load facility is performed by the pump 713, this control can be performed by the pump operation control device 500 described with reference to FIGS.

100,500 ポンプ運転制御装置
111 インバータ
113 送液ポンプ
122,132,142 流量制御弁
125,135,145 流量制御装置
126,136,146 セレクタ
151 熱源機
152 往ヘッダ
153 復ヘッダ
154,155,156 負荷設備
100, 500 Pump operation control device 111 Inverter 113 Liquid feed pumps 122, 132, 142 Flow rate control valves 125, 135, 145 Flow rate control devices 126, 136, 146 Selector 151 Heat source machine 152 Out header 153 Return header 154, 155, 156 Load Facility

Claims (7)

送液ポンプの下流に並列的に配置された複数の負荷装置の各々の要求流量のうち、最大の要求流量の配管系統の流量制御弁に対して全開指令を出力し、該流量制御弁を流れる流体の流量が、当該負荷装置の要求流量となるように前記送液ポンプの出力を制御し、他の要求流量の少ない配管系統の流量は、各々の流量制御弁の開度により流量を制御する熱源システムの連携制御装置。   A full open command is output to the flow rate control valve of the piping system having the maximum required flow rate among the required flow rates of the plurality of load devices arranged in parallel downstream of the liquid feed pump, and flows through the flow rate control valve. The output of the liquid feeding pump is controlled so that the flow rate of the fluid becomes the required flow rate of the load device, and the flow rate of the other piping system with a low required flow rate is controlled by the opening degree of each flow control valve. Coordinated control device for heat source system. 負荷設備の運用計画から送液ポンプの下流に並列的に配置された複数の負荷装置の各々の負荷量を算出し、最大の要求流量の配管系統の流量制御弁に対して全開指令を出力し、該流量制御弁を流れる流体の流量が、当該負荷装置の要求流量となるように、前記送液ポンプの出力を制御し、他の要求流量の少ない配管系統の流量は、各々の流量制御弁の弁開度により流量を制御する熱源システムの連携制御装置。   Calculate the load amount of each of multiple load devices arranged in parallel downstream of the pump from the operation plan of the load facility, and output a fully open command to the flow control valve of the piping system with the maximum required flow rate. The output of the liquid feeding pump is controlled so that the flow rate of the fluid flowing through the flow rate control valve becomes the required flow rate of the load device. A heat source system linkage control device that controls the flow rate according to the valve opening. 熱負荷設備の運用計画から送液ポンプの下流に並列的に配置された複数の負荷装置の各々の負荷量を算出し、最大の熱負荷である配管系統の流量制御弁に対して全開指令を出力し、該流量制御弁を流れる熱媒体の流量が、当該熱負荷の要求流量となるように前記送液ポンプの出力を制御し、他の熱負荷の少ない配管系統の流量は、前記配管系等の熱負荷に応じて必要な熱媒体の流量を確保するように前記流量制御弁の開度を制御する熱源システムの連携制御装置。   Calculate the load amount of each of the multiple load devices arranged in parallel downstream of the liquid pump from the operation plan of the heat load facility, and issue a fully open command to the flow control valve of the piping system, which is the maximum heat load. Output and control the output of the liquid feed pump so that the flow rate of the heat medium flowing through the flow rate control valve becomes the required flow rate of the heat load. A cooperative control device of a heat source system that controls the opening degree of the flow control valve so as to ensure a necessary flow rate of the heat medium according to a thermal load such as. 送液ポンプの下流に並列的に配置された複数の負荷装置に対して連携制御システムで設定される各々の負荷の要求流量に基づき、最大の要求流量となる配管系統の流量が要求流量と一致するように前記送液ポンプの吐出圧または回転数を制御し、当該配管系統の流量を制御する流量制御弁に対しては、弁開度を増加させる信号を出力し、他の要求流量の少ない配管系統の流量制御弁の弁開度により流量を制御する熱源システムの連携制御装置。   Based on the required flow rate of each load set in the cooperative control system for multiple load devices arranged in parallel downstream of the liquid pump, the flow rate of the piping system that is the maximum required flow rate matches the required flow rate For the flow control valve that controls the discharge pressure or the rotation speed of the liquid feed pump and controls the flow rate of the piping system, a signal for increasing the valve opening is output, and the other required flow rate is small A cooperative control device for a heat source system that controls the flow rate according to the opening degree of the flow rate control valve of the piping system. 送液ポンプの下流に並列的に配置された複数の負荷装置の各々の要求流量のうち、最大の要求流量の配管系統の流量制御弁に対して全開指令を出力し、該流量制御弁を流れる流体の流量が、当該負荷装置の要求流量となるように前記送液ポンプの出力を制御し、他の要求流量の少ない配管系統の流量は、各々の流量制御弁の開度により流量を制御する熱源システムの連携制御方法。   A full open command is output to the flow rate control valve of the piping system having the maximum required flow rate among the required flow rates of the plurality of load devices arranged in parallel downstream of the liquid feed pump, and flows through the flow rate control valve. The output of the liquid feeding pump is controlled so that the flow rate of the fluid becomes the required flow rate of the load device, and the flow rate of the other piping system with a low required flow rate is controlled by the opening degree of each flow control valve. A cooperative control method for the heat source system. 荷設備の運用計画から送液ポンプの下流に並列的に配置された複数の負荷装置の各々負荷量を算出し、最大の要求流量となる配管系統の流量が要求流量と一致するように前記送液ポンプの吐出圧または回転数を制御し、当該配管系統の流量を制御する流量制御弁に対しては、弁開度を増加させる信号を出力し、他の要求流量の少ない配管系統に対しては、流量制御弁の弁開度により流量を制御する熱源システムの連携制御方法。   The load amount of each of a plurality of load devices arranged in parallel downstream of the liquid feed pump is calculated from the operation plan of the load facility, and the feed rate is adjusted so that the flow rate of the piping system that is the maximum required flow rate matches the required flow rate. For the flow control valve that controls the discharge pressure or rotation speed of the liquid pump and controls the flow rate of the piping system, it outputs a signal to increase the valve opening, and for other piping systems with a low required flow rate Is a cooperative control method of the heat source system that controls the flow rate by the valve opening degree of the flow control valve. 熱負荷設備の運用計画から送液ポンプの下流に並列的に配置された複数の熱負荷装置の各々の熱負荷量を算出し、最大の要求流量となる配管系統の流量が要求流量と一致するように前記送液ポンプの吐出圧または回転数を制御し、当該配管系統の流量制御弁に対しては、弁開度を増加させる信号を出力し、他の熱負荷の少ない配管系統の流量制御弁に対しては、該配管系等の熱負荷に応じて必要な熱媒体流量を確保するべく弁開度を制御する熱源システムの連携制御方法。   Calculate the thermal load amount of each of the multiple thermal load devices arranged in parallel downstream of the liquid pump from the operation plan of the thermal load facility, and the flow rate of the piping system that is the maximum required flow rate matches the required flow rate In this way, the discharge pressure or the rotation speed of the liquid feed pump is controlled, and a signal for increasing the valve opening is output to the flow rate control valve of the piping system, and the flow rate control of other piping systems with less heat load is performed. For a valve, a heat source system cooperative control method for controlling the valve opening degree so as to ensure a necessary heat medium flow rate according to the heat load of the piping system or the like.
JP2009288620A 2009-12-21 2009-12-21 Coordinated control device and coordinated control method for heat source system Active JP5422366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288620A JP5422366B2 (en) 2009-12-21 2009-12-21 Coordinated control device and coordinated control method for heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288620A JP5422366B2 (en) 2009-12-21 2009-12-21 Coordinated control device and coordinated control method for heat source system

Publications (2)

Publication Number Publication Date
JP2011127859A true JP2011127859A (en) 2011-06-30
JP5422366B2 JP5422366B2 (en) 2014-02-19

Family

ID=44290626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288620A Active JP5422366B2 (en) 2009-12-21 2009-12-21 Coordinated control device and coordinated control method for heat source system

Country Status (1)

Country Link
JP (1) JP5422366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129349A1 (en) 2012-02-28 2013-09-06 三菱重工業株式会社 Heat source system and method of controlling flow rate of heating medium thereof
JP2014129897A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Heat supply control device, heat supply system and heat supply control method
US10119717B2 (en) 2013-01-31 2018-11-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system, and device and method for controlling cooling water supply device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811341A (en) * 1981-07-14 1983-01-22 Osaka Gas Co Ltd Air-conditioning apparatus
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH03195851A (en) * 1989-12-26 1991-08-27 Yokokawa Johnson Controls Kk Feeding pressure control system for air conditioner
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2004317000A (en) * 2003-04-15 2004-11-11 Yamatake Corp Rotating speed control method for cold/hot water circulation pump and its device
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine
JP2007315695A (en) * 2006-05-26 2007-12-06 Toyo Netsu Kogyo Kk Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP2008075978A (en) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd Air-conditioning control system
JP2008309428A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Flow rate control device of heat source system and flow rate control method of heat source system
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811341A (en) * 1981-07-14 1983-01-22 Osaka Gas Co Ltd Air-conditioning apparatus
JPS6079638U (en) * 1983-11-09 1985-06-03 東洋熱工業株式会社 Air conditioning heat source control device
JPH03195851A (en) * 1989-12-26 1991-08-27 Yokokawa Johnson Controls Kk Feeding pressure control system for air conditioner
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2004317000A (en) * 2003-04-15 2004-11-11 Yamatake Corp Rotating speed control method for cold/hot water circulation pump and its device
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine
JP2007315695A (en) * 2006-05-26 2007-12-06 Toyo Netsu Kogyo Kk Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP2008075978A (en) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd Air-conditioning control system
JP2008309428A (en) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd Flow rate control device of heat source system and flow rate control method of heat source system
JP2009063231A (en) * 2007-09-06 2009-03-26 Yamatake Corp Heat source control device and heat source control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129349A1 (en) 2012-02-28 2013-09-06 三菱重工業株式会社 Heat source system and method of controlling flow rate of heating medium thereof
CN103958980A (en) * 2012-02-28 2014-07-30 三菱重工业株式会社 Heat source system and method of controlling flow rate of heating medium thereof
US9414521B2 (en) 2012-02-28 2016-08-09 Mitsubishi Heavy Industries, Ltd. Heat source system and method of controlling flow rate of heating medium thereof
JP2014129897A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Heat supply control device, heat supply system and heat supply control method
US10119717B2 (en) 2013-01-31 2018-11-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system, and device and method for controlling cooling water supply device

Also Published As

Publication number Publication date
JP5422366B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US11740595B2 (en) Co-ordinated sensorless control system
JP5350166B2 (en) Heat medium piping system
KR101222331B1 (en) Heat-pump hot water apparatus
KR20070037319A (en) Constant temperature liquid circulating device and method of controlling temperature in the device
CN101842599A (en) Control system
JP6288496B2 (en) Heat source machine operation number control device, heat source system, control method and program
EP3115707B1 (en) Heat source device
CN110793173B (en) Water pump frequency conversion control method based on dynamic change of worst air conditioner tail end
EP3467395A1 (en) Heat source system and heat source system control method
JP5869394B2 (en) Heat medium piping system
JP2017129340A (en) Heat source control system, control method and control device
JP5422366B2 (en) Coordinated control device and coordinated control method for heat source system
JP6033674B2 (en) Heat supply control device, heat supply system, and heat supply control method
JP6434848B2 (en) Heat source control system
JP4669335B2 (en) Control method of heat transfer device in air conditioning heat source system
CN105066341A (en) Variable water temperature control system suitable for air conditioning secondary pump system
JP2006132918A (en) Air conditioner and its control method
JP2012159043A (en) Power generation plant, intake air cooling control device in power generation plant and operation control method of power generation plant
JP3972342B2 (en) Control method and control apparatus for air conditioning system and air conditioning system
JP2007046504A (en) Steam turbine control system
KR101852187B1 (en) Coolant flow rate control method for the optimum operation of the vacuum condenser
JP5963305B2 (en) Feed water flow control device and ventilation flow control device for power plant
JP3865861B2 (en) Automatic control method for air conditioning equipment
JP2003207190A (en) Air conditioning system
JPS62243995A (en) Parallel operation control device for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5422366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151