JP2011122140A - 酸素吸収樹脂組成物 - Google Patents

酸素吸収樹脂組成物 Download PDF

Info

Publication number
JP2011122140A
JP2011122140A JP2010239671A JP2010239671A JP2011122140A JP 2011122140 A JP2011122140 A JP 2011122140A JP 2010239671 A JP2010239671 A JP 2010239671A JP 2010239671 A JP2010239671 A JP 2010239671A JP 2011122140 A JP2011122140 A JP 2011122140A
Authority
JP
Japan
Prior art keywords
oxygen
polyamide
resin composition
resin
polyamide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010239671A
Other languages
English (en)
Inventor
Shinpei Iwamoto
慎平 岩本
Takashi Kashiba
隆史 加柴
Satoshi Okada
聡史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2010239671A priority Critical patent/JP2011122140A/ja
Publication of JP2011122140A publication Critical patent/JP2011122140A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】酸素吸収性能、樹脂強度、樹脂加工性に優れた樹脂組成物を提供。
【解決手段】ポリオレフィン樹脂、遷移金属触媒及び芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂がカルボン酸により末端封止され、末端アミノ基濃度が30μeq/g以下であり、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂組成物の総量に対して15〜60重量%であることを特徴とする酸素吸収樹脂組成物。
【選択図】なし

Description

本発明は、優れた酸素吸収性能を示し、且つ、樹脂の酸化劣化による強度低下、臭気発生のない酸素吸収樹脂組成物に関するものである。
従来、包装容器としては、金属缶、ガラス瓶、各種プラスチック包装等の容器が知られているが、包装容器内の酸素による品質劣化が問題となっている。このため、近年、脱酸素包装技術の一つとして、熱可塑性樹脂に鉄系脱酸素剤等を配合した酸素吸収樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成し、容器のガスバリア性の向上を図ると共に、容器自体に酸素吸収機能を付与した包装容器の開発が行われている。例えば、酸素吸収性多層フィルムは、ヒートシール層及びガスバリア層が積層してなる従来のガスバリア性多層フィルムの間に、場合により熱可塑性樹脂からなる中間層を介して酸素吸収剤を分散した熱可塑性樹脂層である酸素吸収層を加え、外部からの酸素透過を防ぐ機能に容器内の酸素を吸収する機能を付与したものとして利用され、押し出しラミネートや共押し出しラミネート、ドライラミネート等の従来公知の製造方法を利用して製造されている(特許文献1参照)。
しかしながら、鉄粉等の酸素吸収剤を用いるものは、食品等の異物検知に使用される金属探知機に検知される、不透明性の問題により内部視認性が不足する、さらに、鉄粉の混入により風味が損なわれるアルコール等の飲料への使用ができない、といった課題を有していた。また、鉄粉の酸化反応を利用しているため、被保存物が高水分系であるものでしか、酸素吸収の効果を発現することができなかった。
一方、ポリマーからなり、酸素捕捉特性を有する組成物では、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属からなる樹脂組成物が知られており、酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムの例示もある(特許文献2〜6参照)。
しかしながら、遷移金属触媒を含有させ、ポリアミド樹脂等を酸化させ酸素吸収機能を発現させる樹脂組成物は、キシリレン基含有ポリアミド樹脂が酸化するため、樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。
さらに、ポリアミド樹脂と遷移金属触媒にて酸化反応を示すものとして、メタキシリレンジアミンとアジピン酸との重縮合によって得られるポリアミドであるMXD6の例示があるが、MXD6に遷移金属を混合した系では、酸素吸収樹脂組成物として使用し、被保存物を良好に保存するには、酸素吸収能力が低い場合があった。また、MXD6に遷移金属を混合した系は、通常、ポリエチレンテレフタレート(以下、PETと表記する)等のポリエステル樹脂やナイロン6等の比較的高融点の樹脂とのブレンドが使用されていた。
特開平9−234832号公報 特開平5−140555号公報 特開2001−252560号公報 特開2003−341747号公報 特開2005−119693号公報 特開2001−179090号公報
本発明の目的は、上記問題点を解決した、酸素吸収性能、樹脂強度、樹脂加工性に優れた樹脂組成物を提供することにある。
本発明者らは、特定のポリアミド、遷移金属及びポリオレフィン樹脂を、特定の割合でブレンドすることにより、酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れた酸素吸収樹脂組成物を得ることを見出した。
すなわち、本発明は、ポリオレフィン樹脂、遷移金属触媒及び芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂がカルボン酸により末端封止され、末端アミノ基濃度が30μeq/g以下であり、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂組成物の総量に対して15〜60重量%であることを特徴とする酸素吸収樹脂組成物である。
本発明により、高い酸素吸収性能を有し、ポリアミド樹脂の酸化による強度劣化もほとんどみられない酸素吸収樹脂組成物を提供できる。
本発明の酸素吸収樹脂組成物は、芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂であって、該ポリアミド樹脂がカルボン酸により末端封止され、末端アミノ基濃度が30μeq/g以下であるポリアミド樹脂(以下、当該ポリアミド樹脂を特に「ポリアミド樹脂A」と称する)と遷移金属触媒とポリオレフィン樹脂とを含有する、樹脂組成物である。樹脂組成物の各成分について、以下、詳細を説明する。
酸素吸収樹脂組成物の酸素吸収性能は、酸素吸収能を有するポリアミド樹脂が多い方が良好と考えられるが、驚くべきことに、ポリアミド樹脂A、遷移金属及びポリオレフィン樹脂を混合し、一定の比率でブレンドした際に高い酸素吸収能力を示すことを見出した。
本発明におけるポリアミド樹脂Aは、芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂であって、該ポリアミド樹脂がカルボン酸により末端封止されることにより得られる。芳香族ジアミンとジカルボン酸との重縮合は、芳香族ジアミンとジカルボン酸を溶融させる溶融重合や、ポリアミド樹脂のペレットなどを減圧下、加熱する固相重合などにより進行させることができる。
ポリアミド樹脂Aを得る際の芳香族ジアミンとしては、オルソキシリレンジアミン、パラキシリレンジアミン、メタキシリレンジアミンが挙げられるが、酸素吸収性能の観点からパラキシリレンジアミン、メタキシリレンジアミン又はこれらの混合物が好ましく用いられ、メタキシリレンジアミンが特に好ましく用いられる。また、性能に影響しない範囲で、各種脂肪族ジアミンや芳香族ジアミンを共重合成分として組み込んでもよい。
ポリアミド樹脂Aを得る際のジカルボン酸としては、アジピン酸、アゼライン酸、セバシン酸、ドデカンニ酸、イソフタル酸、テレフタル酸、マロン酸等が挙げられる。これらの中でも、酸素吸収性能の観点から、アジピン酸、セバシン酸、イソフタル酸又はこれらの混合物が好ましく、アジピン酸とセバシン酸の混合物又はアジピン酸とイソフタル酸の混合物が特に好ましい。アジピン酸とセバシン酸の混合物を用いる場合のモル比は、セバシン酸:アジピン酸=0.3〜0.7:0.7〜0.3が好ましく、0.4〜0.6:0.6〜0.4が特に好ましい。また、アジピン酸とイソフタル酸の混合物を用いる場合のアジピン酸:イソフタル酸=0.7〜0.97:0.3〜0.03が好ましく、0.8〜0.95:0.2〜0.05が特に好ましい。なお、性能に影響しない程度で、各種脂肪族ジカルボン酸や芳香族ジカルボン酸を共重合成分として組み込んでもよい。
本発明におけるポリアミド樹脂Aとは、少なくとも芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂であって、該ポリアミド樹脂がカルボン酸により末端封止されて得られる、アミノ基濃度が30μeq/g以下のポリアミド樹脂であるが、末端アミノ基濃度が25μeq/g以下であると酸素吸収性能が向上するため好ましく、20μeq/g以下であると酸素吸収性能がさらに向上するため、より好ましい。このように酸素吸収性能は、末端アミノ基濃度の低下に伴って向上する傾向があり、出来るだけ当該濃度を低下させることが好ましいが、経済合理性を考慮するとその下限値は5μeq/g以上とすることが好ましい。なお、末端アミノ基濃度が30μeq/gより高いと、良好な酸素吸収性能を得ることができない。
本発明のカルボン酸には、1以上のカルボキシル基を有する化合物の他、その無水物も含まれ、ポリアミド樹脂の末端アミノ基の末端封止剤として用いられる。末端封止とは、ポリアミド樹脂の末端アミノ基とカルボン酸を反応させてアミド結合を生じせしめることによって、末端アミノ基濃度を低減させることを意味する。用いるカルボン酸には特に制限がないが、その反応性の高さからカルボン酸無水物が好ましく、具体的には無水フタル酸、無水マレイン酸、無水コハク酸、ヘキサヒドロ無水フタル酸、無水安息香酸、無水プロピオン酸、無水カプロン酸、無水グルタル酸、無水イタコン酸、無水シトラコン酸、無水酢酸、無水酪酸、無水イソ酪酸、無水トリメリット酸、無水ピロメリット酸、などが例示できる。また、ポリアミド樹脂とカルボン酸は、例えば、溶融重合時に添加する方法や、溶融重合によって得られたポリアミド樹脂に対してカルボン酸を添加後、溶融混練する方法によって反応させることが出来、中でも、ポリアミド樹脂の重合度を上げる事が出来るという理由から溶融混練が好ましい。
カルボン酸の添加量は、理論的には、ポリアミド樹脂中の末端アミノ基濃度と等量であればよいが、一般的にはカルボン酸の揮発性や反応性によって異なり、ポリアミド樹脂中に存在する末端アミノ基濃度に対して、0.2〜5.0当量の添加が好ましく、0.5〜3.5当量の添加がより好ましい。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの末端アミノ基濃度を低減させることができるとともに、粘度の低下による樹脂加工性の悪化や酸素吸収能の低下を防止することができる。
本発明のポリアミド樹脂Aに用いるポリアミド樹脂には、結晶性の低いものが好ましく用いられる。具体的には、半結晶化時間が150秒以上の結晶性の低いものや、DSCでの融点測定時に融点ピークが見られないものが好ましい。ポリアミド樹脂Aの半結晶化時間が150秒以上であると、より高い酸素吸収性能が得られる。
また、ポリアミド樹脂Aに用いるポリアミド樹脂は、ポリオレフィン樹脂との加工性や酸素吸収性能を考慮すると、融点やガラス転移温度(以下、Tgと表記する)が低いものが好ましく用いられる。ポリアミド樹脂Aの融点は、200℃以下が好ましく、さらに190℃以下または融点を持たないものが特に好ましい。Tgは、90℃以下が好ましく、80℃以下が特に好ましい。
ポリアミド樹脂Aに用いるポリアミド樹脂の酸素透過係数は、0.2〜1.5cc・mm/(m・日・atm)(23℃・60%RH)が好ましく、0.3〜1.0cc・mm/(m・日・atm)(23℃・60%RH)がより好ましい。酸素透過係数が0.2〜1.5cc・mm/(m・日・atm)(23℃・60%RH)であると、ポリアミド樹脂Aとポリオレフィンをブレンドした際により高い酸素吸収性能が得られる。
ポリアミド樹脂Aとポリオレフィン樹脂を混合した際、加工性を考慮すると、ポリアミド樹脂Aのメルトフローレート(以下、MFRと表記する)は、200℃で、3〜20g/10分、240℃で、4〜25g/10分のものが好ましく用いられる。この場合、ポリオレフィン樹脂のMFRとポリアミド樹脂AのMFRの差が±20g/10分、好ましくは±10g/10分を示す温度にて、樹脂加工すると、混練状態が良好となり、フィルム、シートとした場合、外観に問題のない加工品を得ることができる。ポリアミド樹脂AのMFRは、例えば分子量を調節して調整できる。分子量を調節する方法としては、重合進行剤としてリン系化合物を添加する方法や、ポリアミド樹脂Aを溶融重合後、固相重合する方法が、好適な方法として例示できる。なお、本明細書でいうMFRは、特に断りがない限り、JIS K7210に準拠した装置を用いて、特定の温度において、荷重2160gの条件下で測定した当該樹脂のMFRであり、「g/10分」の単位で測定温度と共に表記される。
ポリアミド樹脂Aに用いるポリアミド樹脂は、溶融重合の後、固相重合の2段階を経る方法が好ましい。ポリアミド樹脂Aの数平均分子量は、18000〜27000が好ましく、19000〜26000が特に好ましい。
本発明のポリオレフィン樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これら、ポリオレフィン樹脂の中でも、酸素吸収性能の観点では、酸素透過係数が80〜200cc・mm/(m・日・atm)(23℃・60%RH)が好ましく、この範囲の酸素透過係数を有するポリオレフィン樹脂を使用すると、良好な酸素吸収性能が得られる。酸素吸収性能やフィルム加工性から、ポリオレフィン樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類やプロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等の各種ポリプロピレン類が特に好ましく用いられる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。
また、ポリアミド樹脂Aとの混合性を考慮すると、無水マレイン酸変性ポリオレフィン樹脂を添加することが特に好ましい。無水マレイン酸変性物の添加量は、ポリオレフィン樹脂に対し、1〜30wt%が好ましく、3〜15wt%が特に好ましい。
また、本発明のポリオレフィン樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。
本発明において使用される遷移金属触媒としては、第一遷移元素、例えばFe、Mn、Co、Cu、の化合物が挙げられる。また、遷移金属の有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、または、それらの混合物等も遷移金属触媒の一例として挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸などC2〜C22の脂肪族アルキル酸の塩、あるいは、マロン酸、コハク酸、アジピン酸、セバシン酸、ヘキサハイドロフタル酸、など2塩基酸の塩、ブタンテトラカルボン酸の塩、安息香酸、トルイック酸、o-フタル酸、イソフタル酸、テレフタル酸、トリメシン酸など芳香族カルボン酸塩の単独、または、混合物が挙げられる。遷移金属触媒の中でも、Coの有機酸塩が酸素吸収性の観点から、好ましく、安全性や加工性からステアリン酸Coが特に好ましい。
遷移金属触媒をポリアミド樹脂に添加するには、芳香族ジアミンとジカルボン酸との重縮合で得られるポリアミドに、1)カルボン酸により末端封止後、遷移金属触媒を添加、2)遷移金属触媒を添加後、カルボン酸により末端封止、3)遷移金属触媒とカルボン酸を同時に加える、等の方法により実施されることが好ましく、いずれの方法でも良好な酸素吸収性能が得られる。遷移金属触媒を添加したポリアミド樹脂Aは、その後、ポリオレフィン樹脂と混合することが好ましい。また、遷移金属触媒は、ポリアミド樹脂Aに対する該触媒中の全遷移金属の濃度が、10ppm〜5000ppm、好ましくは50ppm〜3000ppmとなるように添加することが好ましい。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができるとともに、粘度の低下による樹脂加工性の悪化を防止することが出来る。
本発明の酸素吸収樹脂組成物を製造する別の方法としては、ポリオレフィン樹脂及び遷移金属触媒を含むマスターバッチと、カルボン酸により末端封止したポリアミド樹脂とを溶融混練する酸素吸収樹脂組成物の製造方法が好ましく挙げられる。
遷移金属触媒はポリオレフィン樹脂に混練し、マスターバッチを製造し、その後、末端封止したポリアミド樹脂Aと溶融混合し、酸素吸収樹脂組成物とする。遷移金属触媒は、ポリオレフィン樹脂に対する該触媒中の全遷移金属の濃度が、好ましくは200ppm〜5000ppm、より好ましくは300ppm〜3000ppmとなるように添加する。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができる。また、5000ppmを超える場合、マスターバッチを製造することが困難となる場合があり、均一な性状を有するものを製造できなくなる場合がある。もし、遷移金属触媒をポリアミド樹脂Aに添加した場合には、ポリアミド樹脂Aの粘度低下による樹脂加工性の悪化が生じる。
酸素吸収樹脂組成物中の遷移金属触媒を含んだポリアミド樹脂Aの含有量は、15〜60重量%であり、17〜60重量%が好ましく、20〜60重量%が更に好ましく、25〜50重量%が特に好ましい。酸素吸収樹脂層中の遷移金属触媒を含んだポリアミド樹脂Aの含有量が、15重量%より下回ったり、60重量%を超えた場合は、酸素吸収能力が低くなる。また、60重量%を超えると、ポリアミド樹脂Aの酸化による樹脂劣化が生じ、強度低下等の問題が発生する。
本発明のマスターバッチとポリアミド樹脂Aを溶融混練する際に、ポリオレフィン樹脂を同時に加えることで、ポリアミド樹脂Aの含有量及び遷移金属濃度を調整することもできる。
本発明で得られたポリアミド樹脂Aに安定化剤等を適宜添加してもよい。特に、リン化合物は、安定化剤として好ましく用いられ、具体的には、ジ亜リン酸塩が好ましい。リン化合物は、ポリアミド樹脂Aが安定し、酸素吸収性能に影響するため、200ppm以下が好ましく、特に、100ppm以下が好ましい。
本発明の酸素吸収樹脂組成物は、樹脂組成物として酸素吸収剤材料として用いることができる。すなわち、ペレット状またはシート状の酸素吸収樹脂組成物を通気性包装材料に充填し、小袋状脱酸素剤と使用しても良い。ペレット状とする際は、酸素との接触を保つため、粉砕し粉末状とすることが好ましい。また、シート状とする際は、延伸して、ポリアミド樹脂Aとポリオレフィン樹脂の海島状の層間に空隙を設けることが好ましい。延伸する際のポリオレフィン樹脂としては、高密度ポリエチレンが好ましく用いられる。
また、本発明の酸素吸収樹脂組成物は、フィルム状又はシート状として、ポリオレフィン樹脂を含有するシーラント層、酸素吸収樹脂組成物を含有する酸素吸収層及びガスバリア性物質を含有するガスバリア層の少なくとも3層からなる酸素吸収多層体として用いることが好ましい。
この場合、ポリオレフィン樹脂を含有するシーラント層は、相溶性を考慮して、酸素吸収樹脂組成物に用いたポリオレフィン樹脂と同様のものを用いることが好ましい。ガスバリア性物質としては、シリカ、アルミナ、アルミ等の各種蒸着フィルム、エチレン−ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン、アミン−エポキシ硬化剤等のガスバリア性樹脂、アルミ箔等の金属箔等、公知のガスバリア性物質が用いられる。
酸素吸収層として使用する際の酸素吸収樹脂組成物の厚みは、特に制限はないが、5〜100μmが好ましく、10〜50μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂組成物が酸素を吸収する性能をより高めることができるとともに加工性や経済性が損なわれることを防止することができる。また、シーラント層の厚みは、シーラント層が酸素吸収樹脂組成物を含有する層との隔離層となるため、少ない方が好ましいが、特に、2〜50μmが好ましく、5〜30μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂組成物が酸素を吸収する速度をより高めることができるとともに加工性が損なわれることを防止することができる。フィルム、シートに加工する際、加工性を考慮すると、シーラント層と酸素吸収層の厚み比が、1:0.5〜1:3にあることが好ましく、1:1〜1:2.5が特に好ましい。
また、多層体とする際、加工性を考慮すると、ガスバリア性物質を含有するガスバリア層と酸素吸収樹脂組成物を含有する酸素吸収層間にポリオレフィン樹脂を含有する中間層を介在することが好ましい。この中間層の厚みは、加工性から、シーラント層厚みとほぼ同一とすることが好ましい。この場合、加工によるバラツキを考慮すると、厚み比が±10%以内であれば、同一とする。
得られた酸素吸収多層体は、ガスバリア層の外層に紙基材を積層して、酸素吸収紙容器として用いることができる。紙基材と積層して紙容器の加工性は、ガスバリア層の内側部が60μm以下とすることが好ましく、50μm以下が特に好ましい。ガスバリア層より内部の厚みが大きくなると、紙基材を積層し、容器形状に成形する際、容器への加工性に問題が生じる。
得られた酸素吸収多層体は、フィルムとして作製し、袋状、蓋材に加工して用いることができる。また、得られた酸素吸収多層体は、シートとして作製し、トレイ、カップに成形することができる。また、得られた袋状容器やカップ状容器は、80〜100℃のボイル処理、100〜135℃のセミレトルト、レトルト、ハイレトルト処理を行うことができる。また、袋状容器に食品等の内容物を充填し、開封口を設け、電子レンジ加熱調理時にその開封口から蒸気を放出する、電子レンジ調理対応の易通蒸口付パウチに好ましく用いることができる。
本酸素吸収樹脂組成物は、被保存物の水分の有無によらず、酸素吸収することができるため、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。その他、本発明にて得られた、酸素吸収樹脂組成物は従来の鉄粉を使用した酸素吸収樹脂組成物と異なり、鉄の存在のため保存できないアルコール飲料や炭酸飲料に好適に用いることができる。
その他、被保存物として、精米、米飯、赤飯、もち等の米加工類、スープ、シチュー、カレー等の調理食品、フルーツ、羊羹、プリン、ケーキ、饅頭等の菓子類、ツナ、魚貝等の水産製品、チーズ、バター等の乳加工品、肉、サラミ、ソーセージ、ハム等の畜肉加工品、にんじん、じゃがいも、アスパラ、しいたけ等の野菜類、卵を挙げることができる。
以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。尚、本実施例及び比較例において、各種物性値は以下の測定方法及び測定装置により測定した。
(Tgの測定方法)
Tgは、JIS K7122に準拠して測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(融点の測定方法)
融点は、ISO11357に準拠して、DSC融解ピーク温度を測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(数平均分子量の測定方法)
数平均分子量は、GPC−LALLSにて測定した。測定装置は昭和電工(株)製「Shodex GPC−2001」を使用した。
(MFRの測定方法)
各樹脂のMFRは、JIS K7210に準拠した装置((株)東洋精機製作所製「メルトインデックサ」)を用いて、特定の温度において、荷重2160gの条件下で測定し、温度と共にその値を記載した(単位:「g/10分」)。なお、JIS K7210に準拠してMFRを測定した場合はその旨、特に記載した。
(酸素透過係数の測定方法)
酸素透過係数は、MOCON社製「OX−TRAN−2/21」を使用し、23℃・60%RH、セル面積50cmの条件下で測定した。
(末端アミノ基濃度の測定方法)
試料0.5gを30mLのフェノール/エタノール=4/1(体積比)に溶解させ、メタノール5mL加え、滴定液として0.01規定の塩酸にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端アミノ基濃度を算出した。
末端アミノ基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(末端カルボキシル基濃度の測定方法)
試料0.5gを30mLのベンジルアルコールに溶解させ、メタノール10mL加え、滴定液として0.01規定の水酸化ナトリウム溶液にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端カルボキシル基濃度を算出した。
末端カルボキシル基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(半結晶化時間の測定方法)
各温度にて、ペレットを溶融させ、各温度にて樹脂を結晶化させた場合、すべてが結晶化する時間を結晶化時間といい、結晶化50%到達時間を半結晶化時間という。半結晶化時間の測定は、脱偏光強度法により行った。即ち、溶融したサンプルペレットに光を照射し、サンプルペレットの結晶化とともに、光の透過量が減少して安定した時点を結晶化とし、その時間を結晶化時間とし、光の透過量が50%に到達した時間を半結晶化時間とした。なお、結晶化時間及び半結晶化時間は、測定温度で異なるが、以下の記載においては、各温度の半結晶化時間の内、最も半結晶化時間の短いものを「半結晶化時間」として記載した。また、結晶化時間及び半結晶化時間の測定にはコタキ製「ポリマー結晶化速度測定装置MK−701型」を使用した。
(ポリアミド樹脂の溶融重合による合成条件)
反応缶内でジカルボン酸を170℃にて加熱し、溶融した後、内容物を攪拌しながら、芳香族ジアミンをジカルボン酸とのモル比が約1:1となるように徐々に連続的に滴下し、かつ温度を240℃まで上昇させた。滴下終了後、260℃に昇温し、反応を継続した。反応終了後、反応缶内を窒素にて微加圧し、穴を有するダイヘッドからストランドを押出し、ペレタイザーでペレット化した。
(ポリアミド樹脂の固相重合による合成条件)
上記の方法で溶融重合して得られたペレットを加熱装置付き回転式タンブラーに仕込み、回転させながらタンブラー内を1torr以下まで減圧した後、窒素で常圧にする操作を3回行った。その後、タンブラーを回転させながら装置内を30torr以下としながら加熱し、装置内が150℃以上になるよう調整し、その温度で所定時間、反応させた。その後、60℃まで冷却し、ポリアミド樹脂を得た。
(実施例1)
メタキシリレンジアミン:セバシン酸:アジピン酸を0.996:0.4:0.6の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は33.6μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して1.5当量添加後、二軸押出機にて200℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド1と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド1は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度21.5μeq/g、末端カルボキシル基濃度64.0μeq/g、数平均分子量は22200、240℃のMFRが15.0g/10分であった。また、得られたポリアミド1単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度400ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミドとステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1と表記する)に、ポリオレフィン樹脂として、直鎖状低密度ポリエチレン(製品名;日本ポリエチレン(株)製「ハーモレックスNC564A」、MFR3.5g/10分(JIS K7210に準拠して測定)、240℃のMFR7.5g/10分、250℃のMFR8.7g/10分、以下LLDPEと表記する)を、ステアリン酸コバルト含有ポリアミド1:LLDPE=35:65の重量比で、240℃にて溶融混練し酸素吸収樹脂組成物を得た。次いで、該酸素吸収樹脂組成物を用いて厚さ50μmの単層の酸素吸収樹脂組成物からなるフィルムを得、フィルムの外観を観察したところ、そのフィルムの外観は、良好であった。そのフィルムを10cm×10cmのフィルムとし、該フィルムを袋内の湿度が30%、及び100%のアルミ箔積層フィルムからなるガスバリア袋に、空気300ccと共にそれぞれ2枚ずつ充填密封し、23℃下に保管して、密閉後7日間に吸収した酸素の総量を測定した。また、一方で、40℃下、湿度100%で1ヶ月間、保管した後のフィルムの伸び率を測定した。これらの結果を表2に示した。
(実施例2)
無水フタル酸に代えて末端封止剤として無水コハク酸を使用した以外は実施例1と同様にして、ポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド2と表記する)。ポリアミド2は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度22.0μeq/g、末端カルボキシル基濃度63.8μeq/g、数平均分子量は21800、240℃のMFRが16.1g/10分であった。また、得られたポリアミド2単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド2へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例3)
無水フタル酸に代えて末端封止剤として無水トリメリット酸を使用した以外は実施例1と同様にして、ポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド3と表記する)。ポリアミド3は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度21.8μeq/g、末端カルボキシル基濃度65.0μeq/g、数平均分子量は22000、240℃のMFRが15.5g/10分であった。また、得られたポリアミド3単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド3へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例4)
メタキシリレンジアミン:セバシン酸:アジピン酸を0.999:0.4:0.6の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は35.8μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して0.2当量添加後、二軸押出機にて200℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド4と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド4は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度29.2μeq/g、末端カルボキシル基濃度52.8μeq/g、数平均分子量は24000、240℃のMFRが11.2g/10分であった。また、得られたポリアミド4単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド4へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例5)
無水フタル酸の添加量を、固相重合後の末端アミノ基濃度に対して4.0当量とした以外は実施例4と同様にして、ポリアミド樹脂を合成した。(以下、当該ポリアミド樹脂をポリアミド5と表記する)。ポリアミド5は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度13.5μeq/g、末端カルボキシル基濃度53.8μeq/g、数平均分子量は19700、240℃のMFRが35.0g/10分であった。また、得られたポリアミド5単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド5へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例6)
無水フタル酸の添加量を、固相重合後の末端アミノ基濃度に対して5.0当量とした以外は実施例4と同様にして、ポリアミド樹脂を合成した。(以下、当該ポリアミド樹脂をポリアミド6と表記する)。ポリアミド6は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度11.5μeq/g、末端カルボキシル基濃度52.8μeq/g、数平均分子量は18100、240℃のMFRが50.1g/10分であった。また、得られたポリアミド6単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド6へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例7)
メタキシリレンジアミン:アジピン酸:イソフタル酸を1.0:0.9:0.1の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は35.4μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して1.5当量添加後、二軸押出機にて220℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド7と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド7は、Tg94℃、融点228℃、半結晶化時間は2000秒以上、末端アミノ基濃度18.8μeq/g、末端カルボキシル基濃度52.1μeq/g、数平均分子量は24000、240℃では、融点付近であるため、MFRが測定できず、250℃のMFRを測定し、250℃におけるMFRは、15.8g/10分であった。得られたポリアミド7単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.08cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド7へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例8)
メタキシリレンジアミン:セバシン酸:アジピン酸を1.0:0.3:0.7の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は37.7μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して1.5当量添加後、二軸押出機にて220℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド8と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド8は、Tg78℃、融点199℃、半結晶化時間は2000秒以上、末端アミノ基濃度19.5μeq/g、末端カルボキシル基濃度50.2μeq/g、数平均分子量は23800、240℃のMFRが14.1g/10分であった。また、得られたポリアミド8単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.21cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド8へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例9)
メタキシリレンジアミン:セバシン酸:アジピン酸を1.001:0.7:0.3の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は38.3μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して1.5当量添加後、二軸押出機にて200℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド9と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド9は、Tg66℃、融点160℃、半結晶化時間は2000秒以上、末端アミノ基濃度20.8μeq/g、末端カルボキシル基濃度52.2μeq/g、数平均分子量は21500、240℃のMFRが16.5g/10分であった。また、得られたポリアミド9単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.68cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド9へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例10)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=55:45とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例11)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=25:75とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例12)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE=17:83とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例13)
メタキシリレンジアミンとパラキシリレンジアミンを7:3の割合のモル比で混合し、これらのジアミンとアジピン酸を1:1の割合のモル比で使用し、前記合成条件にて溶融重合のみを行ってポリアミド樹脂を合成した後、末端アミノ基濃度を測定した(末端アミノ基濃度は43.4μeq/gであった)。次いで、末端封止剤として無水フタル酸を該末端アミノ基濃度に対して1.5当量添加後、二軸押出機にて285℃で溶融混練し、末端アミノ基を封止してポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド10と表記する)。ただし、滴下時間は2時間、溶融重合においてメタキシリレンジアミン滴下終了後の重合温度は277℃とし、反応時間は30分とした。このポリアミド10は、Tg87℃、融点259℃、半結晶化時間は17秒、末端アミノ基濃度27.8μeq/g、末端カルボキシル基濃度64.3μeq/g、数平均分子量は18000であった。また、260℃では、融点付近であるため、MFRが測定できず、270℃のMFRを測定し、270℃におけるMFRは、30.3g/10分であった。得られたポリアミド10単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.13cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、溶融混練時の温度を270℃とした以外は実施例1と同様にして、ポリアミド10へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(実施例14)
LLDPEにステアリン酸コバルトをコバルト濃度600ppmとなるよう二軸押出機にて、溶融したLLDPEにサイドフィードにて添加した。さらに得られたLLDPEとステアリン酸コバルトの混合物に、ポリアミド1を、ポリアミド1:ステアリン酸コバルト含有LLDPE1=35:65の重量比で、240℃にて溶融混練し、酸素吸収樹脂ペレットを得た。
以後、実施例1と同様にして単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(比較例1)
無水フタル酸を添加せず、末端封止を行わなかったこと以外は実施例4と同様にして、ポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド11と表記する)。ポリアミド11は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度35.8μeq/g、末端カルボキシル基濃度49.7μeq/g、数平均分子量は24300、240℃のMFRが10.0g/10分であった。また、得られたポリアミド11単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド11へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(比較例2)
無水フタル酸の添加量を、固相重合後の末端アミノ基濃度に対して0.1当量とした以外は実施例4と同様にして、ポリアミド樹脂を合成した。(以下、当該ポリアミド樹脂をポリアミド12と表記する)。ポリアミド12は、Tg73℃、融点184℃、半結晶化時間は2000秒以上、末端アミノ基濃度31.8μeq/g、末端カルボキシル基濃度49.7μeq/g、数平均分子量は24000、240℃のMFRが10.6g/10分であった。また、得られたポリアミド12単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
以後、実施例1と同様にして、ポリアミド12へのステアリン酸コバルトの添加、LLDPEとの溶融混練等を行い、単層の酸素吸収樹脂組成物からなるフィルムを製造した。また、実施例1と同様にして、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(比較例3)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1:LLDPE=80:20とした以外は実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(比較例4)
LLDPEと溶融混練せず、ステアリン酸コバルト含有ポリアミド1のみのフィルムとした以外は、実施例1と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
(比較例5)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド10:LLDPE=10:90とした以外は、実施例13と同様にフィルムを製造して、該フィルムの酸素吸収量の測定・伸び率の測定・外観の観察を行った。これらの結果を表2に示した。
Figure 2011122140
Figure 2011122140
実施例1〜14から明らかなように、本発明の酸素吸収樹脂組成物は、高湿度下、低湿度下いずれにおいても良好な酸素吸収性能を示し、かつ酸素吸収後のフィルム弾性を保持した樹脂組成物であった。
これに対し、末端封止剤の添加量が0.5当量未満であった比較例1及び2においては、得られたポリアミド樹脂の末端アミノ基濃度が30μeq/gを超過し、良好な酸素吸収性能を得られなかった。
また、樹脂組成物中のポリオレフィン樹脂の含有量が60重量%を超過した比較例3及び4並びに同含有量が15重量%未満であった比較例5においては、酸素吸収性能が不充分であった。特に、比較例3〜5と実施例1、10〜12との比較からも明らかなように、樹脂組成物中のポリアミド樹脂Aの含有量が多ければ、必ずしも良好な酸素吸収性能が得られるわけではなかった。
(実施例15)
実施例1で得られた酸素吸収樹脂組成物をコア層とし、スキン層をLLDPEとした、2種3層フィルム1(厚み;10μm/20μm/10μm)を、幅1000mmで、120m/分で、片面をコロナ放電処理して、作製した。得られたフィルムの外観は良好で、HAZEは77%であった。コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製「AD817/CAT−RT86L−60」)を用いて、PET(製品名;東洋紡績(株)製「E5100」、12)/接着剤(3)/アルミ箔(9)/接着剤(3)/ナイロン(製品名;東洋紡績(株)製「N1202」、15)/接着剤(3)/LLDPE(10)/酸素吸収樹脂組成物(20)/LLDPE(10)の酸素吸収多層フィルムを得た。尚、括弧内の数字は各層の厚さ(単位:μm)を意味する。また、以下の実施例でも特別な断りがない限り、同様の表記をする。
本酸素吸収多層フィルムを用いて、4×4cmの三方シール袋を作製し、水分活性0.35のビタミンCの粉末を10g充填し、密封後、23℃下にて保存した。1ヶ月保存後の袋内酸素濃度及び外観を調査した所、袋内酸素濃度は、0.1%以下であり、ビタミンC錠剤の外観は、良好に保持されていた。
(実施例16)
実施例15と同様にして2種3層フィルム1を作製し、これを用いて低密度ポリエチレン(製品名;三井化学(株)製「ミラソン18SP」)による押し出しラミネートにて、晒クラフト紙(坪量340g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製「AD817/CAT−RT86L−60」、3)/アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製「GL−ARH−F」、12)/ウレタン系アンカーコート剤(東洋モートン(株)製「EL−557A/B」、0.5)/低密度ポリエチレン(20)/LLDPE(10)/酸素吸収樹脂組成物(20)/LLDPE(10)の酸素吸収多層紙基材を得た。この基材を、1リットル用のゲーベルトップ型の紙容器に成形した。容器の成形性は良好であった。この紙容器に、米焼酎を充填し、密封後、23℃下にて保存した。1ヶ月後の風味及び紙容器内の酸素濃度は、0.1%以下であり、米焼酎の風味は良好に保持されていた。
(実施例17)
LLDPEに代えてエチレン−プロピレンブロック共重合体(製品名;日本ポリプロ(株)製「ノバテック FG3DC」、230℃のMFR9.5g/10分、240℃のMFR10.6g/10分、以下PPと表記する)を使用した以外は実施例1と同様にして酸素吸収樹脂組成物を得た。次いで、該酸素吸収樹脂組成物をコア層とし、スキン層をLLDPEに代えてPPとした以外は実施例15と同様にして、2種3層フィルム2(厚み;15μm/30μm/15μm)を作製した。得られたフィルムのHAZEは64%であった。コロナ処理面側にウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製「AD817/CAT−RT86L−60」)を用いて、アルミナ蒸着PET(製品名;凸版印刷(株)製「GL-ARH」、12)/接着剤(3)/ナイロン(製品名;東洋紡績(株)製「N1202」、15)/接着剤(3)/PP(15)/酸素吸収樹脂組成物(30)/PP(15)の酸素吸収多層フィルムを得た。本酸素吸収多層フィルムを用いて、10×20cmの三方シール袋を作製し、その一部に直径2mmの円状の通蒸口を設け、その通蒸口をラベルシールにて周辺を仮着した。その袋に、ニンジン、肉を含んだカレーを充填し、密封後、124℃、30分のレトルト調理、加熱殺菌した後、23℃下にて保存した。袋内部のシチューを視認することができた。1ヶ月後、袋をそのまま電子レンジにて約4分加熱し、約3分後には、袋が膨張し、仮着したラベルシール部が剥がれ、通蒸口から蒸気が出ることを確認した。調理終了後、カレーの風味、ニンジンの色調を調査した所、ニンジンの外観は、良好に保持され、カレーの風味は良好であった。
(比較例6)
平均粒径20μmの鉄粉と塩化カルシウムを100:1の割合で混合し、LLDPEと30:70の重量比で混練して、鉄粉系酸素吸収樹脂組成物Aを得た。鉄粉系酸素吸収樹脂組成物Aをコア層とし、実施例15と同様に2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、フィルムが得られなかった。そのため、厚さ40μmのLLDPEに酸素吸収層として、鉄粉系酸素吸収樹脂組成物Aを厚さ20μmで押出ラミネートし、酸素吸収層面をコロナ放電処理したラミネートフィルムを得た。このラミネートフィルムを実施例16同様に晒クラフト紙と積層し、晒クラフト紙(坪量340g/m)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製「AD817/CAT−RT86L−60」、3)/アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製「GL-ARH」、12)/ウレタン系アンカーコート剤(東洋モートン(株)製「EL−557A/B」、0.5)/低密度ポリエチレン(製品名;三井化学(株)製「ミラソン18SP」、20)/鉄粉系酸素吸収樹脂組成物A(20)/LLDPE(40)の酸素吸収多層紙基材からなるゲーベルトップ型紙容器を作製しようとしたが、厚みが厚く、紙容器の角を作製することが困難であった。容器作製速度を落とし、不良品を排除してようやく容器得た。以下、実施例16と同様に、米焼酎の保存試験を行ったが、開封時アルデヒド臭が発生しており、風味は著しく低下した。
(比較例7)
LLDPEに代えてPPを使用した以外は比較例6と同様にして、鉄粉系酸素吸収樹脂組成物Bを得た。また同じく、LLDPEに代えてPPを使用した以外は比較例6と同様にして、鉄粉系酸素吸収樹脂組成物B(20)/PP(40)のラミネートフィルムを作製後、酸素吸収層面をコロナ放電処理した。以下、実施例17と同様にして、アルミナ蒸着PET(製品名;凸版印刷(株)製「GL-ARH」、12)/接着剤(3)/ナイロン(製品名;東洋紡績(株)製「N1202」、15)/接着剤(3)/鉄粉系酸素吸収樹脂組成物B(20)/PP(40)の酸素吸収多層フィルムを得た。得られた酸素吸収多層フィルムを用いて実施例17と同様の試験をした結果、風味は良好に保持されていたが、内容物は視認できず、電子レンジ加熱時に、表面に気泡状のムラが発生した。
実施例15〜17から明らかなように、本発明の酸素吸収樹脂組成物は、紙容器への加工性に優れ、アルコール飲料の保存や、電子レンジ加熱調理の際、通蒸口をとりつけても良好な保存容器となった。また、内部視認性も有しており、内容物の色調等を確認することができた。
本発明は、特定のポリアミド樹脂と遷移金属にポリオレフィン樹脂を、特定の割合でブレンドすることにより、低湿度、高湿度いずれにおいても酸素吸収性能に優れ、保存後の樹脂強度を保持し、さらに、加工性に優れ、様々な容器や用途に適用できる酸素吸収樹脂組成物であった。

Claims (6)

  1. ポリオレフィン樹脂、遷移金属触媒及び芳香族ジアミンとジカルボン酸との重縮合によって得られるポリアミド樹脂を含有する酸素吸収樹脂組成物であって、該ポリアミド樹脂がカルボン酸により末端封止され、末端アミノ基濃度が30μeq/g以下であり、且つ該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂組成物の総量に対して15〜60重量%であることを特徴とする酸素吸収樹脂組成物。
  2. 上記ジカルボン酸に、アジピン酸、セバシン酸、イソフタル酸又はこれらの混合物を用いることを特徴とする請求項1記載の酸素吸収樹脂組成物。
  3. 上記芳香族ジアミンに、パラキシリレンジアミン、メタキシリレンジアミン又はこれらの混合物を用いることを特徴とする請求項1又は2記載の酸素吸収樹脂組成物。
  4. 上記遷移金属触媒がステアリン酸コバルトであることを特徴とする請求項1〜3のいずれかに記載の酸素吸収樹脂組成物。
  5. 上記ポリアミド樹脂を得る際のジカルボン酸のモル比を、セバシン酸:アジピン酸=0.3〜0.7:0.7〜0.3とすることを特徴とする請求項2〜4のいずれかに記載の酸素吸収樹脂組成物。
  6. 上記ポリアミド樹脂を得る際のジカルボン酸のモル比を、アジピン酸:イソフタル酸=0.7〜0.97:0.3〜0.03とすることを特徴とする請求項2〜4のいずれかに記載の酸素吸収樹脂組成物。
JP2010239671A 2009-11-11 2010-10-26 酸素吸収樹脂組成物 Pending JP2011122140A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239671A JP2011122140A (ja) 2009-11-11 2010-10-26 酸素吸収樹脂組成物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009257827 2009-11-11
JP2009257827 2009-11-11
JP2010239671A JP2011122140A (ja) 2009-11-11 2010-10-26 酸素吸収樹脂組成物

Publications (1)

Publication Number Publication Date
JP2011122140A true JP2011122140A (ja) 2011-06-23

Family

ID=44286329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239671A Pending JP2011122140A (ja) 2009-11-11 2010-10-26 酸素吸収樹脂組成物

Country Status (1)

Country Link
JP (1) JP2011122140A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117316A (ja) * 2013-12-18 2015-06-25 三菱瓦斯化学株式会社 ポリアミド樹脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (ja) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd 酸素吸収性樹脂組成物
JP2000345053A (ja) * 1999-03-31 2000-12-12 Toyobo Co Ltd ガスバリヤー性に優れた成形体
JP2001261957A (ja) * 2000-03-14 2001-09-26 Toyobo Co Ltd 酸素吸収剤
JP2002241610A (ja) * 2001-02-13 2002-08-28 Toyobo Co Ltd ポリアミド樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445152A (ja) * 1990-06-11 1992-02-14 Toppan Printing Co Ltd 酸素吸収性樹脂組成物
JP2000345053A (ja) * 1999-03-31 2000-12-12 Toyobo Co Ltd ガスバリヤー性に優れた成形体
JP2001261957A (ja) * 2000-03-14 2001-09-26 Toyobo Co Ltd 酸素吸収剤
JP2002241610A (ja) * 2001-02-13 2002-08-28 Toyobo Co Ltd ポリアミド樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117316A (ja) * 2013-12-18 2015-06-25 三菱瓦斯化学株式会社 ポリアミド樹脂組成物

Similar Documents

Publication Publication Date Title
JP2011132502A (ja) 酸素吸収樹脂組成物
EP3078604B1 (en) Multi-layered container
JP2011136761A (ja) 茶含有物品の保存方法
EP3078491B1 (en) Multilayer container
JP2011131935A (ja) 加熱処理用脱酸素包装容器
JP2011126270A (ja) 酸素吸収多層体
JP5581833B2 (ja) 酸素吸収樹脂組成物
JP2011094021A (ja) 酸素吸収樹脂組成物
JP2011236285A (ja) 酸素吸収樹脂組成物の製造方法
JP2010013638A (ja) 酸素吸収樹脂組成物
JP5263040B2 (ja) 酸素吸収多層体
JP5601118B2 (ja) 酸素吸収多層体および容器
JP2011136552A (ja) 酸素吸収多層体
JP2011122140A (ja) 酸素吸収樹脂組成物
JP2012131912A (ja) 酸素吸収樹脂組成物
JP5633213B2 (ja) 酸素吸収樹脂組成物
JP2011131578A (ja) 酸素吸収多層体
JP2011135870A (ja) 果肉類の保存方法
JP2011127094A (ja) 酸素吸収樹脂組成物
JP2011131579A (ja) 加熱殺菌処理食品用酸素吸収多層体
JP2011136762A (ja) アリルイソチオシアネート含有物品の保存方法
JP2011135865A (ja) 酢酸含有食品の保存方法
JP2011136765A (ja) 酸素吸収密封容器
JP2011131934A (ja) 酸素吸収性紙容器
US20240018317A1 (en) Oxygen absorbing resin composition, oxygen absorbing film, oxygen absorbing multi-layer film, and cover material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609