JP2011119358A - 太陽電池樹脂封止シート - Google Patents

太陽電池樹脂封止シート Download PDF

Info

Publication number
JP2011119358A
JP2011119358A JP2009273829A JP2009273829A JP2011119358A JP 2011119358 A JP2011119358 A JP 2011119358A JP 2009273829 A JP2009273829 A JP 2009273829A JP 2009273829 A JP2009273829 A JP 2009273829A JP 2011119358 A JP2011119358 A JP 2011119358A
Authority
JP
Japan
Prior art keywords
resin
sheet
solar cell
ethylene
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273829A
Other languages
English (en)
Inventor
Masahiko Kawashima
政彦 川島
Masaaki Kanao
雅彰 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009273829A priority Critical patent/JP2011119358A/ja
Publication of JP2011119358A publication Critical patent/JP2011119358A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】収縮が起こり難く、生産性に優れ、且つ、耐ブロッキング性に優れた太陽電池樹脂封止シートを提供すること。
【解決手段】樹脂を軟化させて密着させる太陽電池樹脂封止シートであって、
樹脂をシート状に製膜した後一旦冷却固化させ、前記冷却固化した樹脂シートを加熱して軟質化した後、深さ100μm以上のエンボス加工を施すことにより得られ、且つ、有機過酸化物を含有しない太陽電池樹脂封止シート。
【選択図】図1

Description

本発明は、太陽電池モジュールに用いられる樹脂封止シートに関する。
近年、世界的な温暖化現象により環境に対する意識が高まり、炭酸ガス等の温暖化ガスを発生しない新しいエネルギーシステムが関心を集めている。太陽電池発電によるエネルギーは炭酸ガス等の温暖化の原因となるガスを排出しないため、クリーンなエネルギーとして研究開発が行われており、産業用エネルギーとして注目されている。太陽電池の代表例としては、単結晶、多結晶のシリコンセル(結晶系シリコンセル)を用いたものや、アモルファスシリコン、化合物半導体を用いたもの(薄膜系セル)等が挙げられる。太陽電池は、長期間、屋外で風雨に曝されて使用されることが多く、発電部分をガラス板やバックシート等を貼り合わせてモジュール化し、外部からの水分の侵入を防止し、発電部分の保護、漏電防止等を図っていた。発電部分を保護する部材には、発電に必要な光透過を確保するために、光入射側に透明ガラスや透明樹脂を使用している。反対側の部材には、バックシートといわれるアルミ箔、フッ化ポリビニル樹脂(PVF)、ポリエチレンテレフタレート(PET)やそのシリカ等のバリアーコート加工の積層シートを使用している。そして発電素子を樹脂封止シートで挟み込み、ガラスやバックシートでさらに外部を被覆して熱処理を施して樹脂封止シートを溶融し、全体を一体化封止(モジュール化)している。
上述した樹脂封止シートは、次の(1)〜(3)が特性として要求される。すなわち、(1)ガラス、発電素子、バックシートとの良好な接着性、(2)高温状態での樹脂封止シートの溶融に起因する発電素子の流動防止性(耐クリープ性)、(3)太陽光の入射を阻害しない透明性、である。このような観点から樹脂封止シートは、エチレン−酢酸ビニル共重合体(以下、EVAとも略される。)に、紫外線劣化対策として紫外線吸収剤、ガラスとの接着性向上のためカップリング剤、架橋のため有機過酸化物等の添加剤を配合し、カレンダー成形やTダイキャストにより製膜されている。さらに長期に亘って太陽光に曝されることに鑑み、樹脂の劣化による光学特性の低下の防止を図るため耐光剤等の各種添加剤が配合されている。これにより、長期に亘り太陽光の入射を阻害しない透明性を維持している。
上述したような樹脂封止シートにより太陽電池をモジュール化する形態として、ガラス/樹脂封止シート/結晶系シリコンセル等の発電素子/樹脂封止シート/バックシートの順で重ね合わせ、ガラス面を下にして専用の太陽電池真空ラミネーターを用いて、樹脂の溶融温度以上(EVAの場合は150℃の温度条件)で予熱する工程とプレス工程を経て、樹脂封止シートを溶融して張り合わせる方法がある。この方法においては、先ず、予熱工程で樹脂封止シートの樹脂が溶融し、プレス工程で溶融した樹脂に接している部材と密着して真空ラミネートされる。このラミネート工程においては、(i)樹脂封止シートに含有されている架橋剤、例えば有機過酸化物が熱分解し、EVAの架橋が促進される。(ii)樹脂封止シートに含有しているカップリング剤が接触している部材と共有結合する。これにより互いの接着性がより向上し、ガラス、発電素子、バックシートとの優れた接着性が実現されるのである。
また、樹脂封止シートとして、真空ラミネート時における耐ブロッキング性を向上させるために、シートの表面にエンボス加工を施したエンボスシートが用いられている。エンボス加工を施すことによりシートの表面にエンボスによる凹凸が形成されるため、真空ラミネート時のブロッキングを防止することができる。
特許文献1には、エチレン系共重合体および有機過酸化物を含有する成形材料から成形され、その両面にエンボス模様が施されている太陽電池モジュール用充填接着材シートが開示されている。
また、特許文献2には、エチレン−酢酸ビニル共重合体シートからなり、その表面にエンボスロールによってエンボス加工が施された太陽電池モジュール用封止材が開示されている。
さらに、特許文献3には、エチレン−酢酸ビニル共重合体樹脂を製膜して得られるフィルムからなり、表面にエンボス加工が施された太陽電池用封止膜が開示されている。
特公平1−52428号公報 特開2002−134768号公報 特許第3473605号公報
しかしながら、上記特許文献に記載された方法のように、押出機によりシートを製膜し、溶融(軟質化)状態のシートにエンボス加工を施す場合、その後(もしくはエンボス加工と同時に)冷却固化した際に残存応力が発生し、シートの収縮が起こりやすいという問題がある。
また、上記特許文献に記載されたように、樹脂封止シートに耐熱性を付与するために、有機過酸化物を樹脂中に含有させて架橋を行う場合、シートを加熱した際の有機過酸化物の分解(開裂)を防止するために、シート製膜時やエンボス加工時におけるシート温度を十分に上げることができず、シートの生産性が低下するという問題がある。
さらに、ブロッキング防止の観点から、樹脂封止シート表面にはなるべく深いエンボス加工を施すことが求められている。
上記事情に鑑み、本発明が解決しようとする課題は、収縮が起こり難く、生産性に優れ、且つ、耐ブロッキング性にも優れた太陽電池樹脂封止シートを提供することである。
本発明者らは、上記課題に対して鋭意検討を行った結果、樹脂をシート状に製膜した後一旦冷却固化させ、前記冷却固化した樹脂シートを加熱して軟質化した後、深さ100μm以上のエンボス加工を施すことにより、樹脂封止シートの収縮が起こり難く、有機過酸化物を含有しないことによりシート製膜時やエンボス加工時におけるシート温度を上げることができるためシートの生産性が向上し、さらに耐ブロッキング性にも優れることを見出し、本発明を完成させた。
即ち、本発明は、以下のとおりである。
[1]
樹脂を軟化させて密着させる太陽電池樹脂封止シートであって、
樹脂をシート状に製膜した後一旦冷却固化させ、前記冷却固化した樹脂シートを加熱して軟質化した後、深さ100μm以上のエンボス加工を施すことにより得られ、且つ、有機過酸化物を含有しない太陽電池樹脂封止シート。
[2]
シート状に製膜する方法が、Tダイ法、サーキュラーダイ法、カレンダー法からなる群から選ばれる少なくとも1種以上である、上記[1]記載の太陽電池樹脂封止シート。
[3]
シート製膜時のシート温度が120〜230℃である、上記[1]又は[2]記載の太陽電池樹脂封止シート。
[4]
冷却固化した樹脂シートの加熱方法が、赤外線加熱、加熱ロール、熱風加熱からなる群から選ばれる少なくとも1種以上である、上記[1]〜[3]のいずれか記載の太陽電池樹脂封止シート。
[5]
エンボス加工の方法が、少なくとも1対以上のエンボスロールとバックアップロールにより加圧することでエンボスロールの形状をシート表面に転写する方法である、上記[1]〜[4]のいずれか記載の太陽電池樹脂封止シート。
[6]
エンボス加工時のシート温度が樹脂の融点−10〜融点+40℃である、上記[1]〜[5]のいずれか記載の太陽電池樹脂封止シート。
[7]
冷却固化した樹脂シートを加熱して軟質化する工程の前後に、少なくとも1対以上のピンチロールと、少なくとも1対以上のバックアップロールとエンボスロールにより、軟質化した樹脂シートが延伸しないようにテンションコントロールすることを含む、上記[1]〜[6]のいずれか記載の太陽電池樹脂封止シート。
[8]
前記樹脂は、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物、グリシジルメタクリレートを含むエチレン共重合体、及びポリオレフィン系樹脂からなる群から選択される少なくとも1種の樹脂を含有する、上記[1]〜[7]のいずれか記載の太陽電池樹脂封止シート。
[9]
前記樹脂はポリエチレン系樹脂を含む、上記[1]〜[8]のいずれか記載の太陽電池樹脂封止シート。
[10]
前記ポリエチレン系樹脂の密度が0.92g/cm3以下である、上記[9]記載の太陽電池樹脂封止シート。
[11]
電離性放射線照射により架橋処理が施された、上記[1]〜[10]のいずれか記載の太陽電池樹脂封止シート。
[12]
上記[1]〜[11]のいずれか記載の太陽電池樹脂封止シートを用いた太陽電池モジュール。
本発明により、収縮が起こり難く、生産性に優れ、且つ、耐ブロッキング性にも優れた太陽電池樹脂封止シートを提供することができる。
冷却固化した樹脂シートを加熱して軟質化した後、エンボス加工を施す工程における装置の一例(概略図)を示す。 ピラミッド模様のエンボス加工の概略図を示す。 図2のA−A’線に沿う断面図を示す。 台形模様のエンボス加工の概略図を示す。 図4のB−B’線に沿う断面図を示す。
以下、必要に応じて図面を参照して、本発明を実施するための形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
本実施の形態の太陽電池樹脂封止シートは、樹脂を軟化させて密着させる太陽電池樹脂封止シートであって、樹脂をシート状に製膜した後一旦冷却固化させ、前記冷却固化した樹脂シートを加熱して軟質化した後、深さ100μm以上のエンボス加工を施すことにより得られ、且つ、有機過酸化物を含有しない太陽電池樹脂封止シートである。
本実施の形態の太陽電池樹脂封止シートは、シートを構成する樹脂成分に熱等のエネルギーを直接与える方法や、樹脂成分に固有の振動を与え樹脂自身を発熱させる方法等により、樹脂を軟化させ、その軟化状態を利用して他の物質(被封止物)に密着させることで封止することができる。樹脂を軟化させる方法としては、樹脂成分への直接加熱、輻射熱等の間接熱、超音波等の振動発熱等を用いる公知の方法を使用することができる。
樹脂をシート状に製膜する方法としては、例えば、Tダイ法、サーキュラーダイ法、カレンダー法が挙げられる。Tダイ法は、流動性の高い(メルトフローが高い)樹脂の製膜に適している。また、サーキュラーダイ法は、比較的低いメルトフローの樹脂を製膜できる点で優れている。上記の中でも、多層構造のシートを安定して製膜できる観点から、Tダイ法及びサーキュラーダイ法が好ましく、設備コストの観点から、サーキュラーダイ法がより好ましい。
具体的な製膜方法の一例としては、例えば、まず樹脂封止シートの原材料となる樹脂、及び必要に応じてその他の添加剤を、予め周知の混合装置、例えば、ヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で事前混合する。次いで、一軸押出機、二軸押出機等のスクリュー押出機、ニーダー、ミキサー等により溶融混練した後、その混練物を、T型ダイやサーキュラーダイ、カレンダーダイ等からシート状に押出す。このとき、単層押出しであっても積層押出しであっても構わない。
樹脂をシート状に製膜する際(シート製膜時)のシート温度は、好ましくは120〜230℃、より好ましくは120〜200℃である。本実施の形態の樹脂封止シートは有機過酸化物を含有しないため、シート製膜時における有機過酸化物の分解(開裂)を考慮した温度の制約がない。従って、有機過酸化物を含む従来法と比べて、シート製膜時におけるシート温度を上げることが可能であり、その結果、シート製膜速度が向上する。具体的には、シートの樹脂材料としてエチレン−酢酸ビニル共重合体を用いる場合には、120℃〜200℃での製膜が可能であり、より分解温度が高いポリエチレン系樹脂を用いる場合には、120℃〜230℃での製膜が可能である。
ここで、シート製膜時のシート温度とは、シート表面温度のことを言い、例えば、OPTEX THERMO−HUNTER(MODEL PT−7LD)レーザー温度計を用いて測定することができる。
次に、上記シート状に押出された溶融物を一旦冷却固化する。冷却方法としては、冷風や冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロールやプレス機に接触させる方法等が挙げられるが、冷媒で冷却したロールやプレス機に接触させる方法が、膜厚制御に優れる点で好ましい。
冷却固化時の温度としては、特に制限はないが、シートの材料として用いられる樹脂の融点−5℃以下であることが好ましく、より好ましくは室温〜融点−5℃、さらに好ましくは室温〜融点−10℃である。この際にシートの収縮率を抑える目的で、製膜時の流動配向を緩和させるためにゆっくりと冷却させること(徐冷)が好ましい。冷却方法としては直接水等の冷媒中に一気に浸して冷却する方法でもよいが、シートの収縮率低減の観点から、温調したロールにより徐々に冷却する方法や空冷で徐々に冷却する方法が好ましく、冷媒を使用する場合でも、ミスト状の霧を噴霧して徐冷する方法が好ましい。ここで、シートが多層構造を有する場合等、シートの材料として複数の樹脂を用いる場合の「融点」とは、シートを構成する樹脂のうち最も多く含まれる樹脂成分の融点を意味する。樹脂の融点は、示差走査熱量計を用いて測定することができる。
次いで、上記冷却固化した樹脂シートを加熱して軟質化した後、シート表面に深さ100μm以上のエンボス加工を施す。ここで「軟質化」(以下、「軟化」ともいう。)とは、エンボスロールを押し付けて賦形できる状態のことを言い、通常、樹脂の融点よりも10℃程度高い温度で加熱されることで軟質化される。
樹脂シートを軟質化するための加熱方法としては、特に限定されず、例えば、赤外線加熱、加熱ロール、熱風加熱等が挙げられる。中でも、赤外線加熱は、シートの中心まで効率よく加熱することができ、深いエンボスを入れ易い点で優れている。また、加熱ロール、熱風加熱は、エンボスを施す表面の温度を一気に上昇させることができ、シートの延伸を防止して収縮率を抑制しつつエンボス形状を作成できる点で有利である。赤外線加熱としては、遠赤外、近赤外等が挙げられ、所望の温度にするための最適な赤外波長を選択すればよい。上記加熱方法は、単独で用いても、2種以上を併用してもよい。
樹脂シートを加熱して軟質化する際の加熱温度としては、特に制限はないが、用いる樹脂の融点近傍であることが深いエンボスを入れる際には好ましい。また、収縮率を低く抑えるためには残存応力を小さくするために、軟化させるときに機械流れ方向にシートを引き伸ばさないことが重要であるが、加熱温度が融点+20℃を超える高温であると、シートが機械流れ方向に引き伸ばされる傾向にある。従って、軟質化する際の加熱温度としては、好ましくは融点−5℃〜融点+20℃、より好ましくは融点−3℃〜融点+20℃である。
また、加熱方法としては、まず加熱ロール等に密着させて予熱した後、赤外線加熱等により本加熱してもよい。予熱した後に、より高い温度で本加熱することにより、十分にエンボスを賦形できる軟化状態を速やかに達成できるという利点を有する。予熱しない場合には、なかなか温度が上昇しないため、賦形し難かったり、温度が均一にならずに斑になったりするおそれがある。また、予熱は、シートの粘度が極端に落ちることがないため、シートが引き伸ばされて収縮率が高くなることを防ぐという利点がある。加熱方法としては、融点よりも比較的低温の加熱ロールにより予熱を施した後、エンボスロール直前に、熱風や特定の赤外線波長の加熱により表面を軟化させ、エンボスロールにて加圧プレスしてエンボス形状を賦形することが好ましい。予熱の温度としては、好ましくは樹脂の融点−20℃〜融点、より好ましくは融点−20℃〜融点−3℃である。
また、予熱ロールは、非粘着の表面であることが軟化したシートを引き剥がす際に伸びを生じ難くなり、低収縮率になる傾向にあるため好ましい。非粘着加工はフッ素系、シリコン系、ガラス系のコーティングや表面塗布により行うことができる。
また、予熱ロールとエンボスロールの長さは、より短い方が、シートの収縮率が低減する傾向にあるため好ましい。さらに、予熱ロールから軟質化したシートを引き剥がす際に細い回転ロール(引き離しロール)を設置することで、シートを引き伸ばさずに予熱ロールからシートを引き剥がすことができるため、収縮率がより低減する傾向にある。この際、引き離しロールも予熱ロールと同様に非粘着加工されていることが好ましい。
加熱することにより軟質化した樹脂シートの表面には、最終的に目的とする樹脂封止シートの形態に応じてエンボス加工処理を施す。例えば、両面にエンボス加工処理を行う場合には少なくとも1対以上の2本のエンボスロール間に、片面にエンボス加工処理を行う場合には少なくとも1対以上のエンボスロールとバックアップロールの間に、軟質化した樹脂シートを加圧状態で通過させることにより、エンボスロールの形状をシート表面に転写することができる。
本実施の形態の樹脂封止シートは、表面に深さ100μm以上のエンボス加工が施されている。エンボス深さが100μm以上であると、高温高湿等の過酷な条件下であっても耐ブロッキング性を維持することができる。さらに、エンボス深さが100μm以上であるとクッション性が向上するため、太陽電池セル等の被封止物へのダメージが緩和し、シートの圧迫によりセル等が破損するリスクが低減する傾向にある。ここで、エンボスの「深さ」とは、樹脂封止シートのエンボス加工された表面を断面視した際の、エンボス凸部からエンボス凹部までの深さ(図3中のD1、図5中のD2)をいい、複数の形状(或いは大きさ)のエンボスが施されている場合には、その最も深いエンボスの深さをいう。
エンボス加工時におけるシート温度は、好ましくは樹脂の融点−10℃〜融点+40℃であり、より好ましくは樹脂の融点−10℃〜融点+30℃、さらに好ましくは融点−10℃〜融点+20℃である。本実施の形態の樹脂封止シートは有機過酸化物を含有しないため、上述したシート製膜時と同様にエンボス加工時における温度の制約がない。従って、エンボス加工時におけるシート温度を上げることが可能であり、その結果、エンボス加工速度が向上する。
ここで、エンボス加工時のシート温度とは、シート表面温度のことを言い、例えば、日油技研工業社のサーモラベル5Eシリーズを用いて測定することができる。
エンボス加工部のエンボスの形状や大きさなどは特に限定されず、樹脂封止シートの用途等に基づいて好適な条件を選択できる。エンボスの形状(模様)としては特に限定されないが、例えば、縞、布目、梨地、皮紋、ダイヤ格子、合成皮革様しぼ模様、ピラミッド模様(四角錘)、台形模様等が挙げられる。エンボス加工部は平面部が少ないことが好ましく、エンボス加工部の全面積におけるエンボスによる凸部の面積の比率は5〜50%であることがより好ましい。
エンボス加工部は、樹脂封止シートの少なくとも片面にエンボス加工が施されていればよいが、樹脂封止シートの両面にエンボス加工が施されていてもよい。
また、本実施の形態においては、冷却固化した樹脂シートを加熱して軟質化する工程の前後に、軟質化した樹脂シートが延伸しないようにテンションコントロールされていてもよい。テンションコントロールを行うことにより、軟質化したシートの引き伸ばしが抑制され、より低い収縮率を達成できる傾向にある。テンションコントールの際のテンションとしては、シート幅1mに対して0.1〜80N、より好ましくは0.1〜70N、さらに好ましくは0.1〜60Nである。
テンションコントロールの方法としては、例えば、冷却固化した樹脂シートを加熱して軟質化する工程の前後に、少なくとも1対以上のピンチロールと、少なくとも1対以上のバックアップロールとエンボスロールによりピンチして拘束する方法等が挙げられる。
図1は、冷却固化した樹脂シートを加熱して軟質化した後、エンボス加工を施す工程における装置の一例を概念的に示したものである。図1に示す装置においては、冷却固化された樹脂シート1は蒸気加熱式の予熱ロール2に密着した状態で予熱され、さらに、赤外線ヒーター3により本加熱されて軟質化される。次いで、軟質化された樹脂シートはシリコンゴム製のバックアップロール5により加圧された状態で、金属製のエンボスロール6によりシート表面にエンボス加工が施される。図1に示す装置においては、樹脂シートを加熱して軟質化する工程の前後に、ピンチロール4と、バックアップロール5及びエンボスロール6により、軟質化した樹脂シートが延伸しないようにテンションコントロールされている。
さらに、エンボス加工が施された樹脂封止シートには、後処理として、例えば、寸法安定化のためのヒートセット、アニール、コロナ処理、プラズマ処理、他種樹脂封止シート等とのラミネーションを行ってもよい。
また、後述する樹脂封止シートを構成する樹脂に対する電離性放射線照射による架橋処理は、それぞれの場合に応じてエンボス加工処理の前工程又は後工程として行うか選定することができる。
本実施の形態の太陽電池樹脂封止シートは、従来法により得られる樹脂封止シートと比較して、残存応力が小さく収縮が起こり難いという特徴を有する。樹脂封止シートの収縮率は、好ましくは30%以下、より好ましくは25%、さらに好ましくは5%以下、特に好ましくは実質的に0%である。ここで、収縮率とは、樹脂封止シートを70℃の温水に5分間浸した後、シートの機械流れ方向の長さの変化を定規で測定することにより求めた値である。
また、樹脂封止シートは、太陽電池の封止材として用いた場合に、実用上十分な発電効率を確保するために、樹脂封止シート全体の全光線透過率が85%以上であることが好ましく、87%以上であることがより好ましく、88%以上であることが更に好ましい。ここで、全光線透過率は、ASTM D−1003に準拠して測定することができる。
本実施の形態の樹脂封止シートは架橋処理されていることが好ましい。架橋することにより、被封止物(太陽電池セル等)を封止する際に、耐クリープ性や隙間埋め性がより良好となる傾向にある。樹脂封止シートの架橋方法としては、電離性放射線(電子線、γ線、紫外線等)の照射による架橋処理が挙げられる。電離性放射線照射による架橋処理により、従来のように有機過酸化物を用いる必要がないため、シート製膜時及びエンボス加工時における温度の制約がなく、その結果、シートの生産効率を大幅に向上させることができる。また、電離性放射線の照射による架橋処理は、有機過酸化物の熱分解によるガスが発生しないため、真空ポンプの腐食ダメージ及びオイルの汚れを低減できる傾向にある。さらに、有機過酸化物を用いた架橋方法は、ラミネーション工程において有機過酸化物を分解させ、樹脂封止シートの架橋を促進させるための長時間のキュア工程が必要であるため、太陽電池モジュールの生産を高速化しにくいが、電離性放射線の照射による架橋方法の場合は長時間のキュア工程を必要とせず、太陽電池モジュールの生産性を向上させることができる点においても優れている。
樹脂封止シートが「架橋されている」とは、公知の方法によって樹脂を構成する高分子を物理的、化学的に架橋した結果、ゲル分率が好ましくは1質量%以上となった状態をいう。例えば、成分が同じ樹脂封止シート2枚を用いて太陽電池セル等の被封止物を封止する場合、樹脂封止シートのゲル分率は、好ましくは1〜90質量%、より好ましくは2〜85質量%、さらに好ましくは2〜65質量%である。例えば、成分が異なる樹脂封止シートを用いる場合は、一方の樹脂封止シートが未架橋であり、他方の樹脂封止シートのゲル分率が90質量%以下であってもよい。
ゲル分率が1質量%以上であると、耐熱性が向上する傾向にあり、65質量%以下であると、被封止物に対する封止性(隙間埋め性)が良好となる傾向にある。なお、樹脂封止シートが後述する単層構造又は多層構造のいずれの構造を有する場合であっても、上記ゲル分率は、樹脂封止シート全体の平均のゲル分率(全層ゲル分率)の値を意味する。樹脂封止シートのゲル分率を上記範囲に調整する手段としては、シートに適度に架橋処理を施すことが挙げられる。
樹脂封止シートのゲル分率は、沸騰p−キシレン中で樹脂封止シートを12時間抽出し、不溶解部分の割合から下記式により求めることができる。
ゲル分率(質量%)=(抽出後の試料質量/抽出前の試料質量)×100
電離性放射線による架橋は、照射強度(加速電圧)と照射密度によって厚さ減少率を調整することができる。照射強度(加速電圧)はシートの厚さ方向にどれだけ深く電子を届かせるかを示すものであり、照射密度は単位面積当たりどれだけ多くの電子を照射するかを示すものである。また、樹脂の種類による架橋度合いの違いや、転移化剤等による架橋促進又は架橋抑制の効果を利用してもよい。
電離性放射線の照射による架橋としては、α線、β線、γ線、中性子線、電子線等の電離性放射線を樹脂封止シートに照射し、架橋させる方法が挙げられる。電子線等の電離性放射線の加速電圧は、樹脂封止シートの厚さにより選択すればよく、例えば、500μmの厚さの場合、樹脂封止シート全体を架橋するときには、加速電圧として300kV以上が必要である。
電子線等の電離性放射線の加速電圧は、架橋処理を施す樹脂層に応じて適宜調節が可能であり、電離性放射線の照射線量は使用される樹脂によって異なるが、一般的に3kGy未満の場合、樹脂封止シート全体を均一に架橋することが困難となる傾向にある。
樹脂封止シートを構成する樹脂としては、特に限定されないが、良好な透明性、柔軟性、被接着物の接着性や取り扱い性を確保する観点から、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物、グリシジルメタクリレートを含むエチレン共重合体、及びポリオレフィン系樹脂からなる群から選択される少なくとも1種の樹脂を含有することが好ましい。
エチレン−酢酸ビニル共重合体とは、エチレンモノマーと酢酸ビニルとの共重合により得られる共重合体を示す。また、エチレン−脂肪族不飽和カルボン酸共重合体とは、エチレンモノマーと、脂肪族不飽和カルボン酸から選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。さらに、エチレン−脂肪族不飽和カルボン酸エステル共重合体とは、エチレンモノマーと、脂肪族不飽和カルボン酸エステルから選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。
上記共重合は、高圧法、溶融法等の公知の方法により行うことができ、重合反応の触媒としてマルチサイト触媒やシングルサイト触媒等を用いることができる。また、上記共重合体において、各モノマーの結合形状は特に限定されず、ランダム結合、ブロック結合等の結合形状を有するポリマーを使用することができる。なお、光学特性の観点から、上記共重合体としては、高圧法を用いてランダム結合により重合した共重合体が好ましい。
上記エチレン−酢酸ビニル共重合体は、光学特性、接着性、柔軟性の観点から、共重合体を構成する全モノマー中の酢酸ビニルの割合が、10〜40質量%であることが好ましく、13〜35質量%であることがより好ましく、15〜30質量%であることが更に好ましい。また、樹脂封止シートの加工性の観点より、JIS−K−7210に準じて測定されるメルトフローレートの値(以下、「MFR」とも略記される。)(190℃、2.16kg)が0.3g/10min〜30g/10minであることが好ましく、0.5g/min〜30g/minであることがより好ましく、0.8g/min〜25g/minであることが更に好ましい。
上記エチレン−脂肪族不飽和カルボン酸共重合体としては、例えば、エチレン−アクリル酸共重合体(以下、「EAA」とも略記される。)、エチレン−メタクリル酸共重合体(以下、「EMAA」とも略記される。)等が挙げられる。また、上記エチレン−脂肪族不飽和カルボン酸エステル共重合体としては、例えば、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸エステル共重合体等が挙げられる。ここで、アクリル酸エステル及びメタクリル酸エステルとしては、メタノール、エタノール等の炭素数1〜8のアルコールとのエステルが好適に使用される。
これらの共重合体は、3成分以上のモノマーを共重合してなる多元共重合体であってもよい。上記多元共重合体としては、例えば、エチレン、脂肪族不飽和カルボン酸及び脂肪族不飽和カルボン酸エステルから選ばれる少なくとも3種類のモノマーを共重合してなる共重合体が挙げられる。
上記エチレン−脂肪族不飽和カルボン酸共重合体は、共重合体を構成する全モノマー中の脂肪族不飽和カルボン酸の割合が、3〜35質量%であることが好ましい。また、MFR(190℃、2.16kg)は、0.3g/10min〜30g/10minであることが好ましく、0.5g/10min〜30g/10minであることがより好ましく、0.8g/10min〜25g/10minであることが更に好ましい。
上記エチレン−酢酸ビニル共重合体ケン化物としては、例えば、エチレン−酢酸ビニル共重合体の部分或いは完全ケン化物が挙げられ、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物としては、エチレン−酢酸ビニル−アクリル酸エステル共重合体の部分或いは完全ケン化物等が挙げられる。
上記各ケン化物中の水酸基の割合は、樹脂封止シートを構成する樹脂中において、0.1質量%〜15質量%であることが好ましく、より好ましくは0.1質量%〜10質量%、更に好ましくは0.1質量%〜7質量%である。水酸基の割合が0.1質量%以上であると接着性が良好となる傾向にあり、15質量%以下であると相溶性が良好となる傾向にあり、最終的に得られる樹脂封止シートが白濁化するリスクを低減することができる。
水酸基の割合は、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物の元のオレフィン系重合体樹脂と、この樹脂のVA%(NMR測定による酢酸ビニル共重合比)と、そのケン化度と、樹脂中における配合割合とから算出することができる。
ケン化前のエチレン−酢酸ビニル共重合体及びエチレン−酢酸ビニル−アクリル酸エステル共重合体中の酢酸ビニルの含有量は、良好な光学特性、接着性、及び柔軟性を得る観点から、共重合体全体に対して、10〜40質量%であることが好ましく、13〜35質量%であることがより好ましく、15〜30質量%であることが更に好ましい。また、エチレン−酢酸ビニル共重合体ケン化物及びエチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物のケン化度は、良好な透明性及び接着性を得る観点から、10〜70%であることが好ましく、15〜65%であることがより好ましく、20〜60%であることが更に好ましい。
ケン化方法としては、例えば、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル−アクリル酸エステル共重合体のペレット或いは粉末をメタノール等の低級アルコール中でアルカリ触媒を用いてケン化する方法、トルエン、キシレン、ヘキサンのような溶媒を用いて予め共重合体を溶解した後、少量のアルコールとアルカリ触媒を用いてケン化する方法等が挙げられる。また、ケン化した共重合体に水酸基以外の官能基を含有するモノマーをグラフト重合してもよい。
上記各ケン化物は、側鎖に水酸基を有しているため、ケン化前の共重合体と比較して接着性が向上している。また、水酸基の量(ケン化度)を調整することにより、透明性や接着性を制御することができる。
グリシジルメタクリレートを含むエチレン共重合体とは、反応サイトとしてエポキシ基を有するグリシジルメタクリレートとのエチレンコポリマー及びエチレンターポリマーを示し、例えば、エチレン−グリシジルメタクリレート共重合体、エチレン−グリシジルメタクリレート−酢酸ビニル共重合体、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体等が挙げられる。上記化合物は、グリシジルメタクリレートの反応性が高いため安定した接着性を発揮でき、また、ガラス転移温度が低く柔軟性が良好となる傾向にある。
上記ポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂が好ましい。ここでポリエチレン系樹脂とは、エチレンの単独重合体又はエチレンと他の1種若しくは2種以上のモノマーとの共重合体を示す。また、ポリプロピレン系樹脂とは、プロピレンの単独重合体又はプロピレンと他の1種若しくは2種以上のモノマーとの共重合体を示す。
上記ポリエチレン系樹脂としては、ポリエチレン、エチレン−α−オレフィン共重合体等が挙げられる。
上記ポリエチレンとしては、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(「VLDPE」、「ULDPE」と称される。)等が挙げられる。
ポリエチレン系樹脂は、従来から用いられているエチレン−酢酸ビニル共重合体(EVA)等のように側鎖部分が解離して酢酸等の酸が発生することがないため、太陽電池セルや金属等の腐食が抑制される傾向にある。また、ポリエチレン系樹脂は、EVA等の樹脂と比較して水蒸気透過度が小さいため、長期間経過後の水分の浸入によりセル等が劣化するのを防止できるという利点も有する。
ポリエチレン系樹脂の密度は、好ましくは0.92g/cm3以下であり、より好ましくは0.91g/cm3以下である。密度が0.92g/cm3以下であると、クッション性が良好となる傾向にある。一方、密度が0.92g/cm3を超えると透明性が悪化するおそれがある。密度の下限値としては、特に限定されないが、ポリエチレン系樹脂の製造性の観点から、0.86g/cm3以上であることが好ましく、0.87g/cm3以上であることがより好ましい。ポリエチレン系樹脂は、密度が0.86〜0.92g/cm3であることがより好ましく、0.87〜0.915g/cm3であることがさらに好ましく、0.87〜0.91g/cm3であることが特に好ましい。また、高密度のポリエチレン系樹脂を用いる場合には、低密度のポリエチレン系樹脂を、例えば、30質量%程度の割合で添加することで透明性を改善することもできる。
上記エチレン−α−オレフィン共重合体は、エチレンと、炭素数3〜20のα−オレフィンから選ばれる少なくとも1種とからなる共重合体であることが好ましく、エチレンと、炭素数3〜12のα−オレフィンから選ばれる少なくとも1種とからなる共重合体であることがより好ましい。上記α−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−へキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコサン等が挙げられ、これらを1種又は2種以上を併用することができる。また、共重合体を構成する全モノマー中のα−オレフィンの割合(仕込みモノマー基準)は、6〜30質量%であることが好ましい。さらに、上記エチレン−α−オレフィン共重合体は、軟質の共重合体であることが好ましく、X線法による結晶化度が30%以下であることが好ましい。
また、上記エチレン−α−オレフィン共重合体としては、エチレンと、プロピレンコモノマー、ブテンコモノマー、ヘキセンコモノマー及びオクテンコモノマーから選ばれる少なくとも1種のコモノマーとの共重合体が、一般に入手が容易であり、好適に使用できる。
上記ポリエチレン系樹脂は、シングルサイト系触媒、マルチサイト系触媒等の公知の触媒を用いて重合することができ、シングルサイト系触媒を用いて重合することが好ましい。
上記ポリエチレン系樹脂は、樹脂封止シートの加工性の観点から、MFR(190℃、2.16kg)が0.5g/10min〜30g/10minであることが好ましく、0.8g/10min〜30g/10minであることがより好ましく、1.0g/10min〜25g/10minであることが更に好ましい。
上記ポリエチレン系樹脂としては、結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したポリエチレン系共重合体を使用することもできる。
上記ポリプロピレン系樹脂としては、ポリプロピレン、プロピレン−α−オレフィン共重合体、プロピレンとエチレンとα−オレフィンとの3元共重合体等が挙げられる。
上記プロピレン−α−オレフィン共重合体とは、プロピレンとα−オレフィンから選ばれる少なくとも1種とからなる共重合体を示す。上記プロピレン−α−オレフィン共重合体は、プロピレンと、エチレン及び炭素数4〜20のα−オレフィンから選ばれる少なくとも1種とからなる共重合体が好ましく、プロピレンと、エチレン及び炭素数4〜8のα−オレフィンから選ばれる少なくとも1種からなる共重合体がより好ましい。ここで炭素数4〜20のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−へキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコサン等が挙げられ、これらを1種又は2種以上を併用することができる。また、上記プロピレン−α−オレフィン共重合体を構成する全モノマー中のエチレン及び/又はα−オレフィンの含有割合(仕込みモノマー基準)は、6〜30質量%であることが好ましい。さらに、上記プロピレン−α−オレフィン共重合体は、軟質の共重合体であることが好ましく、X線法による結晶化度が30%以下であることが好ましい。
上記プロピレン−α−オレフィン共重合体としては、プロピレンと、エチレンコモノマー、ブテンコモノマー、ヘキセンコモノマー及びオクテンコモノマーから選ばれる少なくとも1種類のコモノマーとの共重合体が、一般に入手が容易であり、好適に使用できる。
上記ポリプロピレン系樹脂は、シングルサイト系触媒、マルチサイト系触媒等の公知の触媒を用いて重合することができ、シングルサイト系触媒を用いて重合することが好ましい。また上記ポリプロピレン系樹脂は、クッション性の観点から、密度が0.860〜0.920g/cm3であることが好ましく、0.870〜0.915g/cm3であることがより好ましく、0.870〜0.910g/cm3であることが更に好ましい。密度が0.920g/cm3以下であると、クッション性が良好となる傾向にある。なお、密度が0.920g/cm3を超えると透明性が悪化するおそれがある。
上記ポリプロピレン系樹脂は、樹脂封止シートの加工性の観点から、MFR(230℃、2.16kgf)が0.3g/10min〜15.0g/10minであることが好ましく、0.5g/10min〜12g/10minであることがより好ましく、0.8g/10min〜10g/10minであることが更に好ましい。
上記ポリプロピレン系樹脂としては、結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したポリプロピレン系共重合体を使用することもできる。
上記ポリプロピレン系樹脂としては、プロピレンと、エチレン、ブテン、ヘキセン、オクテン等のα−オレフィンとの共重合体、又は、プロピレンと、エチレンと、ブテン、ヘキセン、オクテン等のα−オレフィンとの3元共重合体等が好適に使用できる。これらの共重合体は、ブロック共重合体、ランダム共重合体等のいずれの形態でもよく、好ましくはプロピレンとエチレンとのランダム共重合体、又は、プロピレンとエチレンとブテンとのランダム共重合体である。
上記ポリプロピレン系樹脂は、チーグラー・ナッタ触媒のような触媒で重合された樹脂だけでなく、メタロセン系触媒等で重合された樹脂でよく、例えば、シンジオタクチックポリプロピレンや、アイソタクティックポリプロピレン等も使用できる。また、ポリプロピレン系樹脂を構成する全モノマー中のプロピレンの割合(仕込みモノマー基準)は、60〜80質量%であることが好ましい。さらに、熱収縮性が優れるという観点から、ポリプロピレン系樹脂を構成する全モノマー中のプロピレン含有割合(仕込みモノマー基準)が60〜80質量%であり、エチレン含有割合(仕込みモノマー基準)が10〜30質量%であり、ブテン含有割合(仕込みモノマー基準)が5〜20質量%である3元共重合体が好ましい。
また上記ポリプロピレン系樹脂としては、ポリプロピレン系樹脂の総量に対して50質量%以下の高濃度のゴム成分を均一微分散させてなる樹脂を用いることもできる。
樹脂封止シートを構成する樹脂が上記ポリプロピレン系樹脂を含有することで、硬さ、耐熱性等の特性が一層向上する傾向にある。
また、ポリブテン系樹脂は、ポリプロピレン系樹脂との相溶性が特に優れるため、樹脂封止シートの硬さや腰の調整を目的として、上記ポリプロピレン系樹脂と併用することが好ましい。上記ポリブテン系樹脂としては、結晶性であり、ブテンと、エチレン、プロピレン及び炭素数5〜8のオレフィン系化合物から選ばれる少なくとも1種からなる共重合体であり、かつ、ポリブテン系樹脂を構成する全モノマー中のブテンの含有量が70モル%以上である高分子量のポリブテン系樹脂が好適に使用できる。
上記ポリブテン系樹脂は、MFR(190℃、2.16kg)が0.1g/10min〜10g/10minであることが好ましい。また、ビカット軟化点が40〜100℃であることが好ましい。ここで、ビカット軟化点はJIS K7206−1982に従って測定される値である。
本実施の形態の樹脂封止シートは、単層構造、多層構造のいずれの構造を有していてもよい。以下、各構造について説明する。
[単層構造]
樹脂封止シートが単層構造を有する場合、良好な透明性、柔軟性、被接着物の接着性や取扱性を確保する観点から、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族不飽和カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物、及びポリオレフィン系樹脂よりなる群から選ばれる少なくとも1種の樹脂からなる層であることが好ましい。
樹脂封止シートを構成する樹脂層に、接着性樹脂としてエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物が含有されている場合は、そのケン化度及び含有量は適宜調整でき、これにより被封止物との接着性を制御できる。接着性と光学特性の観点から、樹脂層中のエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物の含有量は、3〜60質量%であることが好ましく、3〜55質量%であることがより好ましく、5〜50質量%であることが更に好ましい。
[多層構造]
本実施の形態における樹脂封止シートは、表面層と、前記表面層に積層された内層とを含む少なくとも2層以上の多層構造を有していてもよい。ここで、樹脂封止シートの両表面を形成する2層を「表面層」といい、それ以外を「内層」という。
多層構造を有する場合には、接着性樹脂としてエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物を含有する樹脂層が被封止物と接触する層(表面層の少なくとも1層)として形成されていることが好ましい。また、表面層としては、上述したケン化物のみからなる層でもよいが、良好な透明性、柔軟性、被接着物の接着性や取扱性を確保する観点から、ケン化物と、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族不飽和カルボン酸エステル共重合体、及びポリオレフィン系樹脂よりなる群から選ばれる少なくとも1種の樹脂との混合樹脂からなる層であることが好ましい。
被封止物と接触する表面層の層比率は、良好な接着性を確保する観点から、樹脂封止シートの全厚に対し、少なくとも5%以上の厚さを有していることが好ましい。厚さが5%以上であると、上述した単層構造の場合と同等の接着性が得られる傾向にある。
内層を構成する樹脂としては、特に限定されず、上述した表面層に含まれる樹脂を用いることもできるし、他のいかなる樹脂を用いてもよい。内層には、他の機能を付与することを目的として、樹脂材料、混合物、添加物等を適宜選定できる。例えば、新たにクッション性を付与する目的として、内層として熱可塑性樹脂を含有する層を設けてもよい。
内層として用いられる熱可塑性樹脂としては、ポリオレフィン系樹脂、スチレン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、塩素系エチレンポリマー系樹脂、ポリアミド系樹脂等が挙げられ、生分解性を有したものや植物由来原料系のもの等も含まれる。上記の中でも、結晶性ポリプロピレン系樹脂との相溶性がよく、透明性が良好な水素添加ブロック共重合体樹脂、プロピレン系共重合樹脂、エチレン系共重合体樹脂が好ましく、水素添加ブロック共重合体樹脂及びプロピレン系共重合樹脂がより好ましい。
水素添加ブロック共重合体樹脂としては、ビニル芳香族炭化水素と共役ジエンのブロック共重合体が好ましい。ビニル芳香族炭化水素としては、スチレン、o−メチルスチレン、p−メチルスチレン、p−tert−ブチルスチレン、1,3−ジメチルスチレン、α−メチルスチレン、ビニルナフタレン、ビニルアントラセン、1,1−ジフェニルエチレン、N,N−ジメチル−p−アミノエチルスチレン、N,N−ジエチル−p−アミノエチルスチレン等が挙げられ、特にスチレンが好ましい。これらは単独で用いてもよく、2種以上を混合して用いてもよい。共役ジエンとは、1対の共役二重結合を有するジオレフィンであり、例えば、1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等が挙げられる。これらは単独で用いてもよく2種以上を混合して用いてもよい。
プロピレン系共重合体樹脂としては、プロピレンとエチレン又は炭素原子数4〜20のα−オレフィンとから得られる共重合体が好ましい。そのエチレン又は炭素原子数4〜20のα−オレフィンの含有量は6〜30質量%が好ましい。この炭素原子数4〜20のα−オレフィンとしては、1−ブテン、1−ペンテン、1−へキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコサン等が挙げられる。
プロピレン系共重合体樹脂は、マルチサイト系触媒、シングルサイト系触媒、その他、いずれの触媒を用いて重合されたものでもよい。さらにポリマーの結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したプロピレン系共重合体を使用できる。
エチレン系共重合体樹脂は、マルチサイト系触媒、シングルサイト系触媒、その他、いずれの触媒で重合されたものでもよい。また、ポリマーの結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したエチレン系共重合体を使用できる。
内層の材料としてポリエチレン系樹脂を用いる場合、ポリエチレン系樹脂の密度は、適度なクッション性を得る観点から、0.860〜0.920g/cm3であることが好ましく、0.870〜0.915g/cm3であることがより好ましく、0.870〜0.910g/cm3であることが更に好ましい。密度が0.920g/cm3以上の樹脂層を被封止物と接触しない層(内層)として形成した場合、透明性が悪化する傾向にある。
また、樹脂封止シートは、中央層の両面に、中央層に対して対称の配置となるように同一成分の層が1又は2以上積層された構造を有していてもよい。このような樹脂封止シートとしては、例えば、2層の表面層(以下、「スキン層」と記載する場合がある。)と3層の内層からなる樹脂封止シートであって、2層の表面層が同一成分からなり、表面層に隣接する2層の内層(以下、「ベース層」と記載する場合がある。)が同一成分からなる樹脂封止シートが挙げられる。
上記構造を有する樹脂封止シートにおいて、表面層の膜厚は、樹脂封止シート全体の膜厚に対して5〜40%であることが好ましく、上記ベース層の膜厚は、樹脂封止シート全体の膜圧に対して50〜90%であることが好ましく、ベース層に挟まれた内層(以下、「コア層」と記載する場合がある。)の膜厚は、樹脂封止シート全体の膜厚に対して5〜40%であることが好ましい。
次に、樹脂封止シート加工性の観点について検討する。樹脂封止シートを構成する樹脂のMFR(190℃、2.16kg)は、良好な加工性を確保する観点から、0.5〜30g/10minであることが好ましく、0.8〜30g/10minであることがより好ましく、1.0〜25g/10minであることが更に好ましい。樹脂封止シートが2層以上の多層構造の場合、内層(ベース層やコア層)を構成する樹脂のMFRは、樹脂封止シート加工性の観点から、表面層のMFRより低いことが好ましい。
本実施の形態における樹脂封止シートには、特性を損なわない範囲で、各種添加剤、例えば、カップリング剤、防曇剤、可塑剤、酸化防止剤、界面活性剤、着色剤、紫外線吸収剤、帯電防止剤、結晶核剤、滑剤、アンチブロッキング剤、無機フィラー、架橋調整剤等を添加してもよい。
樹脂封止シートには、安定した接着性を確保する目的でカップリング剤を添加してもよい。上記カップリング剤の添加量及び種類は、所望の接着性の度合いや被接着物の種類によって適宜選択できる。上記カップリング剤の添加量としては、カップリング剤を添加する樹脂層の全質量基準で、0.01〜5質量%であることが好ましく、0.03〜4質量%であることがより好ましく、0.05〜3質量%であることが更に好ましい。上記カップリング剤の種類としては、樹脂層に、太陽電池セルやガラスへの良好な接着性を付与する物質が好ましく、例えば、有機シラン化合物、有機シラン過酸化物、有機チタネート化合物等が挙げられる。また、これらのカップリング剤は、押出機内にて樹脂に注入混合する、押出機ホッパー内に混合して導入する、マスターバッチ化して混合して添加する等の公知の添加方法で添加することができる。ただし、押出機を経由する場合、押出機内の熱や圧力等によりカップリング剤の機能が阻害されることがあるため、カップリング剤の種類によっては添加量を適宜調整する必要がある。また、カップリング剤の種類は、樹脂封止シートの透明性や分散具合の観点、押出機への腐食や押出安定性の観点等を考慮して、適宜選択すればよい。好ましいカップリング剤としては、γ−クロロプロピルメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラングリシドキシプロピルトリエトキシシラン等の不飽和基やエポキシ基を有するものが挙げられる。
また、樹脂封止シートには、紫外線吸収剤、酸化防止剤、変色防止剤等を添加することができる。特に長期に渡って透明性や接着性を維持する必要がある場合、紫外線吸収剤、酸化防止剤、変色防止剤等を添加することが好ましい。これらの添加剤を樹脂に添加する場合、その添加量は、添加する樹脂の総量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
紫外線吸収剤としては、例えば、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−5−スルホベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2'−ジヒドロキシ−4,4'−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2'−ジヒドロキシ−4−メトキシベンゾフェノン等が挙げられる。酸化防止剤としては、フェノール系、イオウ系、リン系、アミン系、ヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系等の酸化防止剤が挙げられる。
これらの紫外線吸収剤、酸化防止剤、変色防止剤等は樹脂封止シートを構成する樹脂中に、好ましくは0〜10質量%、より好ましくは0〜5質量%を添加する。エチレン系樹脂に添加する場合、シラノール基を有する樹脂をマスターバッチ化して混合することで、さらに接着性を付与することもできる。添加方法としては、特に限定されず、液体の状態で溶融樹脂に添加する、直接対象樹脂層に練り込み添加する、シーティング後に塗布する等の方法が挙げられる。
樹脂封止シートは、厚さが50〜1500μmであることが好ましく、100〜1000μmであることがより好ましく、150〜800μmであることが更に好ましい。厚さが50μm未満であると、構造的にクッション性が乏しい場合や、作業性の観点で、耐久性や強度に問題が生ずる傾向にある。一方、厚さが1500μmを超えると、生産性の低下や密着性の低下を招来するという問題が生じる傾向にある。
[樹脂封止シートの用途]
本実施の形態における樹脂封止シートは、太陽電池を構成する素子等の部材を保護するための太陽電池用の封止材として有用であり、太陽電池を構成するガラス板や、アクリルやポリカーボネート等の樹脂板に対しても安定的に強固な接着性を発揮する。本実施の形態における樹脂封止シートを用いることにより、太陽電池用ガラス自身や各種配線や発電素子等、凹凸を有している各種部材を確実に隙間なく封止できる。
また、本実施の形態のおける樹脂封止シートは、太陽電池用の封止シートとして使用できる他、LEDの封緘、合わせガラスや防犯ガラスの中間膜等、プラスチックとガラス、プラスチック同士、ガラス同士の接着等にも使用することができる。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。各実施例及び比較例において樹脂封止シート及び太陽電池モジュールを作製し、その物性を評価した。なお、使用した材料及び評価方法等は以下のとおりである。
<樹脂>
(1)エチレン−酢酸ビニル共重合体(EVA)
ARUKEMA社製 2805
東ソー社製 ウルトラセン751
(2)エチレン−アクリル酸共重合体(EAA)
三井デュポン社製 2116C
(3)エチレン−酢酸ビニル−グリシジルメタクリレート共重合体(EVA−GMA共重合体)
住友化学社製 ボンドファースト7B
住友化学社製 ボンドファースト7E
(4)線状超低密度ポリエチレン(VL)
ダウケミカル社製 EG8100
ダウケミカル社製 EG8200
ダウケミカル社製 EG8400
ダウケミカル社製 1140G
(5)線状低密度ポリエチレン(LL)
住友化学社製 FZ201
<シランカップリング剤>
信越化学社製 KBM−503
<有機過酸化物>
アルケマ吉富社製 ルパゾール101
<透光性絶縁基板>
AGC社製、太陽電池用ガラス 白板ガラスエンボス付き厚さ3.2mm
<裏面絶縁基板(バックシート)>
三菱アルミパッケージング社製バックシート
ポリフッ化ビニル(商品名:テドラー)/PET/ポリフッ化ビニルの3層構造を有するバックシート
<太陽電池セル>
E−TON社製、結晶性シリコンセル厚さ250μm
<照射処理>
樹脂封止シートに、EPS−300又はEPS−800の電子線照射装置(日新ハイボルテージ社製)を用いて、表1〜3に示す加速電圧及び照射密度にて電子線処理を行った。
<ゲル分率>
ゲル分率については、沸騰p−キシレン中で、樹脂封止シートを12時間抽出し、不溶解部分の割合を下記式により求めた。
ゲル分率(質量%)=(抽出後の試料質量/抽出前の試料質量)×100
多層の場合は、あらかじめ同方法にて厚さ、樹脂組成が同一のシートを採取し、そのシートに同条件にて照射をしたものをゲル分率測定サンプルとして用いた。
<シート製膜時のシート温度>
OPTEX THERMO−HUNTER(MODEL PT−7LD)レーザー温度計を用いてシート表面の温度を測定した。
<エンボス加工時のシート温度>
日油技研工業社製サーモラベル5Eシリーズを用いてシート表面の温度を測定した。
<収縮率>
樹脂封止シートに一辺10cmの四角をマジックで書き、70℃の温水に5分間浸漬した後、その四角の機械流れの方向に平行な辺の長さ(変化)を定規で測定した。
<エンボス転写後の深さ>
樹脂封止シートの切断し、その断面をオリンパス社製光学顕微鏡を用いて観察することにより求めた。なお、表中のエンボス形状の「深さ(μm)」とはエンボスの型の深さ(長さ)を示し、「転写後の深さ」とはエンボス加工を行った後の、実際にシートに転写されたエンボスの深さ(長さ)を示す。
<耐ブロッキング性>
エンボス面と非エンボス面のシートを重ね、2日間40℃の環境に1cm2あたり100gの分銅を載せて静置した後、シート間のくっつき具合を観察した。上面のシートを持ち上げたときにくっつきがないものを良好(耐ブロッキング性を有する)と判断した。
<エチレン系重合体の密度>
JIS−K−7112に準拠して測定した。
<エチレン系重合体のMFR(メルトフローレート)>
JIS−K−7210に準拠して測定した。
<樹脂の融点(mp)>
ティーエイインスツルメント社製の示差走査熱量計「MDSC2920型」を使用し、樹脂約8〜12mgを0℃から200℃まで10℃/分の速度で昇温させ、200℃で5分間溶融保持した後に−50℃以下まで10℃/分の速度で降温し、再度0℃から200℃まで10℃/分で昇温させた際に得られる融解に伴う吸熱ピークの温度を融点とした。
以下、実施例1〜12及び比較例1〜3の樹脂封止シートの製造方法について示す。
<実施例1〜11>
表1〜3に示す材料及び組成比(単位は質量部)で樹脂封止シートを製造した。
3台の押出機(表面層押出機、内層押出機、表面層押出機)を使用して樹脂を溶融し、その押出機に接続されたサーキュラーダイから樹脂をチューブ状に溶融押出し、溶融押出にて形成されたチューブを上向きのダイレクトインフレ方法により製膜し、溶融した樹脂シートを20℃の冷風を用いて冷却固化することにより樹脂シートを得た。次いで、冷却固化した樹脂シートを、50℃に設定された予熱ロールに密着させることで予熱し、さらに、シート温度が70℃に設定された赤外線ヒーターにより本加熱して軟質化した。次いで、軟質化された樹脂シートをバックアップロールとエンボスロールの間に通過させることによりエンボス加工を施した。ここで、実施例1〜7及び11においては、図2及び3に示すピラミッド模様のエンボス加工を、実施例8〜10においては、図4及び5に示す台形模様のエンボス加工を施した。
また、樹脂シートを加熱して軟質化する工程の前後には、1対のピンチロールと、1対のバックアップロール及びエンボスロールにより、軟質化した樹脂シートが延伸しないようにテンションコントロールを行った。ここで、表中の「Aピンチ:Bピンチ比(速度比)」とは、予熱ロール前のピンチ部(Aピンチ)の速度を1としたときの、エンボスロールとバックアップロールによってピンチされる部分(Bピンチ)の速度比を言う。
シランカップリング剤を導入するにあたっては導入する樹脂にあらかじめ5質量%程度の濃度のマスターバッチを作成し、配合したい量に希釈して使用した。
<実施例12>
製法A:サーキュラーダイの代わりにTダイを用いたこと以外は実施例1〜11と同様の方法により樹脂封止シートを製造した。ここで、Tダイは幅800mm、開口0.8mmのものを使用し、樹脂シートの冷却固化は50℃に設定されたキャスティングロールを用いて行った。
<比較例1>
製法B:溶融押出したシートを、一旦冷却固化することなく、軟化状態のままエンボス加工を施す方法により、樹脂封止シートを製造した。
具体的には、3台の押出機(表面層押出機、内層押出機、表面層押出機)を使用して樹脂を溶融し、その押出機に接続されたTダイから樹脂をシート状に溶融押出しするのと同時に、溶融した樹脂シートをバックアップロールとエンボスロールの間に通過させることによりエンボス加工を施した。次いで、エンボス加工が施された樹脂シートを、10本のアニールロールに通過させてアニーリングを行った。
<比較例2>
有機過酸化物を配合したこと以外は実施例1〜11と同様の方法により樹脂封止シートを製造した。有機過酸化物を導入するにあたっては導入する樹脂にあらかじめ5質量%程度の濃度のマスターバッチを作成し、配合したい量に希釈して使用した。
得られた実施例1〜12及び比較例1〜2の樹脂封止シートの、ゲル分率、収縮率、エンボス転写後のエンボス深さ、耐ブロッキング性等を評価した。評価結果を表1〜3に示す。
また、得られた樹脂封止シートを用いて、表1〜3に示す各条件に従って太陽電池モジュールを製造した。
太陽電池用ガラス板(AGC社製白板ガラス5cm×10cm角:厚さ3.2mm)/樹脂封止シート/発電部分(多結晶シリコンセル、厚さ250μm、大きさ2cmx3cmにカットしたものを使用)/樹脂封止シート/バックシートの順に積層し、LM50型真空ラミネート装置(NPC社)を用いて、150℃、15分間の条件で真空ラミネートすることにより太陽電池モジュールを製造した。
得られた太陽電池モジュールについて、封止結果(ラミネート結果)を外観により評価した。セルの段差を完全に封止できていないものは不良とし、外観上問題のないものは良好と判断した。評価結果を表1〜3に示す。
Figure 2011119358
Figure 2011119358
Figure 2011119358
表1〜3の結果から明らかなように、本実施の形態の樹脂封止シートは(実施例1〜12)は、従来法で得られた樹脂封止シート(比較例1)と比較して、収縮率が低かった。
また、本実施の形態の樹脂封止シートは、シート製膜時及びエンボス加工時の温度を上げることによってシート製膜速度及びエンボス加工速度が上がり、シートの生産性を向上させることができた。
さらに、本実施の形態の樹脂封止シートは、100μm以上の深いエンボスが施されているため、耐ブロッキング性に優れていた。
比較例1はシートの製膜とエンボス加工を同時に行う従来法であり、シートの収縮率が高く、また、12m/minのエンボス速度ではきれいなエンボスを作成することができなかった。また、100μm以上の深いエンボスが施されていないため、耐ブロッキング性に劣っていた。
比較例2は、150℃のシート温度で製膜(押し出し)したため、ラミネート前に有機過酸化物が分解して架橋が促進され、封止シートによる隙間埋めが不良となった。比較例2のラミネート前の封止シートの架橋度は78%であった。
本発明の樹脂封止シートは、太陽電池を構成する素子等の部材を保護するための封止材
としての産業上利用可能性を有する。
1 :樹脂シート
2 :予熱ロール(蒸気加熱式)
3 :赤外線ヒーター
4 :ピンチロール
5 :バックアップロール(シリコンゴム)
6 :エンボスロール(金属製)

Claims (12)

  1. 樹脂を軟化させて密着させる太陽電池樹脂封止シートであって、
    樹脂をシート状に製膜した後一旦冷却固化させ、前記冷却固化した樹脂シートを加熱して軟質化した後、深さ100μm以上のエンボス加工を施すことにより得られ、且つ、有機過酸化物を含有しない太陽電池樹脂封止シート。
  2. シート状に製膜する方法が、Tダイ法、サーキュラーダイ法、カレンダー法からなる群から選ばれる少なくとも1種以上である、請求項1記載の太陽電池樹脂封止シート。
  3. シート製膜時のシート温度が120〜230℃である、請求項1又は2記載の太陽電池樹脂封止シート。
  4. 冷却固化した樹脂シートの加熱方法が、赤外線加熱、加熱ロール、熱風加熱からなる群から選ばれる少なくとも1種以上である、請求項1〜3のいずれか1項記載の太陽電池樹脂封止シート。
  5. エンボス加工の方法が、少なくとも1対以上のエンボスロールとバックアップロールにより加圧することでエンボスロールの形状をシート表面に転写する方法である、請求項1〜4のいずれか1項記載の太陽電池樹脂封止シート。
  6. エンボス加工時のシート温度が樹脂の融点−10〜融点+40℃である、請求項1〜5のいずれか1項記載の太陽電池樹脂封止シート。
  7. 冷却固化した樹脂シートを加熱して軟質化する工程の前後に、少なくとも1対以上のピンチロールと、少なくとも1対以上のバックアップロールとエンボスロールにより、軟質化した樹脂シートが延伸しないようにテンションコントロールすることを含む、請求項1〜6のいずれか1項記載の太陽電池樹脂封止シート。
  8. 前記樹脂は、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物、グリシジルメタクリレートを含むエチレン共重合体、及びポリオレフィン系樹脂からなる群から選択される少なくとも1種の樹脂を含有する、請求項1〜7のいずれか1項記載の太陽電池樹脂封止シート。
  9. 前記樹脂はポリエチレン系樹脂を含む、請求項1〜8のいずれか1項記載の太陽電池樹脂封止シート。
  10. 前記ポリエチレン系樹脂の密度が0.92g/cm3以下である、請求項9記載の太陽電池樹脂封止シート。
  11. 電離性放射線照射により架橋処理が施された、請求項1〜10のいずれか1項記載の太陽電池樹脂封止シート。
  12. 請求項1〜11のいずれか1項記載の太陽電池樹脂封止シートを用いた太陽電池モジュール。
JP2009273829A 2009-12-01 2009-12-01 太陽電池樹脂封止シート Pending JP2011119358A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273829A JP2011119358A (ja) 2009-12-01 2009-12-01 太陽電池樹脂封止シート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273829A JP2011119358A (ja) 2009-12-01 2009-12-01 太陽電池樹脂封止シート

Publications (1)

Publication Number Publication Date
JP2011119358A true JP2011119358A (ja) 2011-06-16

Family

ID=44284368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273829A Pending JP2011119358A (ja) 2009-12-01 2009-12-01 太陽電池樹脂封止シート

Country Status (1)

Country Link
JP (1) JP2011119358A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175722A (ja) * 2012-01-27 2013-09-05 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
JP2013175721A (ja) * 2012-01-27 2013-09-05 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175722A (ja) * 2012-01-27 2013-09-05 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
JP2013175721A (ja) * 2012-01-27 2013-09-05 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池

Similar Documents

Publication Publication Date Title
JP5289263B2 (ja) 樹脂封止シート及びそれを用いた太陽電池モジュール
JP4755667B2 (ja) 樹脂封止シート
JP2011073337A (ja) 樹脂封止シート
WO2009125685A1 (ja) 樹脂封止シート
JP5334253B2 (ja) 樹脂封止シート、これを用いた太陽電池モジュール及び複合材
JP2010226044A (ja) 樹脂封止シートの製造方法
JP2011077360A (ja) 樹脂封止シート及びこれを用いた太陽電池モジュール
JP2010226052A (ja) 太陽電池モジュール
JP5273860B2 (ja) 太陽電池モジュール
JP2010226046A (ja) 樹脂封止シート
JP2010222541A (ja) 樹脂封止シート
JP2014216345A (ja) 太陽電池用樹脂封止シート
JP2011119475A (ja) 太陽電池モジュールの製造方法
JP5190999B2 (ja) 樹脂封止シート
JP5330178B2 (ja) 樹脂封止シート及びそれを用いた太陽電池モジュール
JP5219293B2 (ja) 樹脂封止シート
JP5058197B2 (ja) 太陽電池用樹脂封止シート
JP5295922B2 (ja) 樹脂封止シート
JP5226572B2 (ja) 太陽電池用樹脂封止シート
JP2011077358A (ja) 樹脂封止シート、これを用いた太陽電池モジュール及び複合材
JP2011119358A (ja) 太陽電池樹脂封止シート
JP2011119406A (ja) 太陽電池封止シートの製造方法及び太陽電池封止シート
JP2011115987A (ja) 太陽電池樹脂封止シート
JP2011116014A (ja) 太陽電池封止シートの製造方法
JP5349107B2 (ja) 樹脂封止シートの製造方法及び樹脂封止シート