JP2011117606A - Manufacturing method for seal ring of shell-type needle roller bearing with seal ring - Google Patents

Manufacturing method for seal ring of shell-type needle roller bearing with seal ring Download PDF

Info

Publication number
JP2011117606A
JP2011117606A JP2011029434A JP2011029434A JP2011117606A JP 2011117606 A JP2011117606 A JP 2011117606A JP 2011029434 A JP2011029434 A JP 2011029434A JP 2011029434 A JP2011029434 A JP 2011029434A JP 2011117606 A JP2011117606 A JP 2011117606A
Authority
JP
Japan
Prior art keywords
seal ring
shell
type needle
metal plate
intermediate cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011029434A
Other languages
Japanese (ja)
Other versions
JP4941599B2 (en
Inventor
Takehiro Kudo
丈洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011029434A priority Critical patent/JP4941599B2/en
Publication of JP2011117606A publication Critical patent/JP2011117606A/en
Application granted granted Critical
Publication of JP4941599B2 publication Critical patent/JP4941599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/466Needle bearings with one row or needles comprising needle rollers and an outer ring, i.e. subunit without inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7803Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings
    • F16C33/7809Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings for needle roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7836Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members floating with respect to both races

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for seal rings of a shell-type needle roller bearing with a seal ring which can easily be assembled by dispensing with direction property of the bearing and control an amount of penetrated lubricant at an approximately equal level in spite of flow directions of the lubricant. <P>SOLUTION: The shell-type needle roller bearing 30 with a seal ring includes a shell 31 having a raceway 31a on the inner peripheral surface and a pair of inward flange sections 31b, 31b on both ends, respectively, a retainer 32 having a plurality of pockets 32a in the circumference, a plurality of needle rollers 33 retained in respective pockets 32a to be freely rotatable along the raceway 31a, and a pair of seal rings 34, 34 with a cylindrical shape arranged between both end faces 32b, 32b of the retainer 32 in the axial direction and the pair of inward flange sections 31b, 31b inside the shell 31. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、シールリング付シェル型ニードル軸受のシールリングの製造方法に関する。   The present invention relates to a method for manufacturing a seal ring of a shell type needle bearing with a seal ring.

従来、オートマチックトランスミッションには、すべり軸受(ブッシュ)が多数使用されているが、ブッシュの焼き付き対策や低トルク化のため、シェル型ニードル軸受が代用されつつある。   Conventionally, many slide bearings (bushes) are used in automatic transmissions, but shell type needle bearings are being substituted for measures against seizure of bushes and lower torque.

ブッシュからシェル型ニードル軸受に置き換えるに際しては、ブッシュと同レベルの潤滑剤の貫通油量となるようにシェル型ニードル軸受にシールリングを組み込んだものが知られている(例えば、特許文献1〜3参照)。   When replacing a bush with a shell type needle bearing, there is known a structure in which a seal ring is incorporated in a shell type needle bearing so that the amount of lubricant penetrating oil is the same level as the bush (for example, Patent Documents 1 to 3). reference).

具体的に、図10に示すように、シェル型ニードル軸受100では、シェル101内に保持器102に案内された複数のニードル103が配置されると共に、シェル101のフランジ部101aと保持器102の端面との間に貫通油量を制御するシールリング104が設けられている。   Specifically, as shown in FIG. 10, in the shell type needle bearing 100, a plurality of needles 103 guided by the cage 102 are arranged in the shell 101, and the flange portion 101 a of the shell 101 and the cage 102 are arranged. A seal ring 104 for controlling the amount of oil penetrating is provided between the end face and the end face.

特開平6−294418号公報JP-A-6-294418 特開2000−291669号公報JP 2000-291669 A 実公平6−23776号公報Japanese Utility Model Publication No.6-23776

ところで、図10に記載のシェル型ニードル軸受100では、シールリング104が軸受100の片側にのみ組み込まれているため、軸受に方向性が生じてしまう。このため、シェル型ニードル軸受100をハウジングに組込む際に軸受の方向を確認する必要がある。また、図11に示すように、図10の矢印A方向から潤滑油が流れた場合と、矢印B方向から潤滑油が流れた場合とでは、貫通油量に大きな差が生じてしまうという課題がある。   By the way, in the shell type needle bearing 100 illustrated in FIG. 10, the seal ring 104 is incorporated only on one side of the bearing 100, so that the bearing is directional. For this reason, it is necessary to confirm the direction of the bearing when the shell type needle bearing 100 is assembled into the housing. Further, as shown in FIG. 11, there is a problem that a large difference occurs in the amount of penetrating oil between the case where the lubricating oil flows from the direction of arrow A in FIG. 10 and the case where the lubricating oil flows from the direction of arrow B. is there.

本発明は、上述の様な事情に鑑みて為されたものであり、その目的は、軸受の方向性をなくすことで、組込みが容易で、且つ、潤滑油の流れる方向に関わらず貫通油量を略等しく制御することができるシールリング付シェル型ニードル軸受のシールリングの製造方法を提供することにある。   The present invention has been made in view of the circumstances as described above. The purpose of the present invention is to eliminate the directionality of the bearing, so that the assembly is easy and the amount of through oil regardless of the direction in which the lubricating oil flows. It is an object of the present invention to provide a method for manufacturing a seal ring of a shell-type needle bearing with a seal ring that can control the pressure approximately equally.

(1) 内周面或は外周面に軌道面を、両端部に一対のフランジ部を、それぞれ有するシェルと、円周方向に亙って複数のポケットを有する保持器と、前記軌道面に沿って転動自在となるように、前記各ポケット内に保持される複数のニードルと、前記シェルの内側或は外側で、前記保持器の軸方向両端面と前記一対のフランジ部との間に設けられる円筒形状の一対のシールリングと、を備えるシールリング付シェル型ニードル軸受のシールリングの製造方法であって、
長尺な金属板に円孔を形成するピアス加工工程と、
前記素材の前記円孔の周囲を全周に亘って折り曲げて、円筒状部を形成するバーリング加工工程と、
前記円筒状部の外周面を拘束した状態で、前記円筒状部を軸方向に圧縮し、前記円筒状部の外径及び軸方向寸法を規制した、第一中間円筒状素材とする寸法規制工程と、
前記第1中間円筒状素材の外周面を拘束した状態で、内径側に前記シールリングの内径寸法と一致する外径寸法を有する扱きパンチを押し込むことで、内向フランジ状の余肉鍔部を有する第二中間円筒状素材とする扱き工程と、
前記シールリングの内径寸法と一致する外径寸法を有する打ち抜きパンチを挿入することにより、前記余肉鍔部を除去して前記シールリングを得る余肉除去工程と、
前記バーリング加工工程後のいずれかの工程の前に行われ、前記第一または第二中間円筒状素材若しくは前記シールリングを前記金属板から切り離す工程と、
前記いずれかの工程の後に行われ、前記切り離された前記第一または第二中間円筒状素材若しくは前記シールリングを前記金属板に嵌め戻して、次の加工工程に送る嵌め戻し工程と、
を有することを特徴とするシールリング付シェル型ニードル軸受のシールリングの製造方法。
(2) 前記シールリングの軸受断面高さが1〜2.5mmであることを特徴とする(1)に記載のシールリング付シェル型ニードル軸受のシールリングの製造方法。
(3) 前記シールリングは、前記ピアス加工工程、バーリング加工工程、寸法規制工程、扱き工程、余肉除去工程、切り離し工程、嵌め戻し工程によって、熱処理を行わずに成形されることを特徴とする(1)または(2)に記載のシールリング付シェル型ニードル軸受のシールリングの製造方法。
(1) A shell having a raceway surface on an inner peripheral surface or an outer peripheral surface and a pair of flange portions at both ends, a cage having a plurality of pockets in the circumferential direction, and along the raceway surface A plurality of needles held in the respective pockets so as to be freely rollable, and provided between the axially opposite end faces of the cage and the pair of flange portions inside or outside the shell. A cylindrical ring-shaped seal ring, and a manufacturing method of a seal ring of a shell-type needle bearing with a seal ring comprising:
A piercing process for forming a circular hole in a long metal plate;
A burring process for forming a cylindrical portion by bending the circumference of the circular hole of the material over the entire circumference;
A dimension regulating step of forming a first intermediate cylindrical material in which the cylindrical part is compressed in the axial direction with the outer peripheral surface of the cylindrical part being constrained to regulate the outer diameter and axial dimension of the cylindrical part. When,
In a state where the outer peripheral surface of the first intermediate cylindrical material is constrained, a handling punch having an outer diameter that matches the inner diameter of the seal ring is pushed into the inner diameter side, thereby having an inward flange-shaped surplus flange portion. A handling process for a second intermediate cylindrical material;
By inserting a punching punch having an outer diameter that matches the inner diameter of the seal ring, a surplus removal step for removing the surplus ribs and obtaining the seal ring;
Performed before any step after the burring step, and the step of separating the first or second intermediate cylindrical material or the seal ring from the metal plate;
A fitting back step that is performed after any one of the steps, and that the separated first or second intermediate cylindrical material or the seal ring is fitted back to the metal plate and is sent to the next processing step;
A method for manufacturing a seal ring of a shell-type needle bearing with a seal ring, comprising:
(2) The method for producing a seal ring for a shell type needle bearing with a seal ring according to (1), wherein a bearing cross-sectional height of the seal ring is 1 to 2.5 mm.
(3) The seal ring is formed without heat treatment by the piercing process, the burring process, the dimension regulating process, the handling process, the surplus removal process, the separation process, and the fitting back process. (1) The manufacturing method of the seal ring of the shell type needle bearing with a seal ring as described in (2).

本発明のシールリング付シェル型ニードル軸受のシールリングの製造方法によれば、熱処理による変形を生じない良好な寸法精度を持ったシールリングを成形することができると共に、工業的に大量生産が可能で、しかも運搬経費が嵩む事もない連続加工装置により造れる。また、得られたシールリング付シェル型ニードル軸受は、保持器の軸方向両端面とシェルの一対のフランジ部との間に一対のシールリングを設けたので、軸受の方向性がなくなり、ハウジング等への組込みが容易になるとともに、潤滑油の流れる方向に関わらず貫通油量を略等しく制御することができる。   According to the method for manufacturing a seal-type needle bearing with a seal ring of the present invention, it is possible to form a seal ring with good dimensional accuracy that does not cause deformation due to heat treatment, and industrially mass production is possible. In addition, it can be made by a continuous processing apparatus that does not increase the transportation cost. In addition, the obtained shell type needle bearing with seal ring is provided with a pair of seal rings between both axial end faces of the cage and the pair of flange portions of the shell, so that the directionality of the bearing is lost and the housing, etc. As a result, the amount of penetrating oil can be controlled to be approximately equal regardless of the direction in which the lubricating oil flows.

本発明の一実施形態に係るシールリング付シェル型ニードル軸受の断面図である。It is sectional drawing of the shell type needle bearing with a seal ring which concerns on one Embodiment of this invention. シールリングの第1例の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 1st example of a seal ring. シールリングの第2例の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 2nd example of a seal ring. 第2例で、切り離し工程とそれに続く嵌め戻し工程とに使用するプレス装置の断面図である。In a 2nd example, it is sectional drawing of the press apparatus used for a cutting-off process and the subsequent fitting back process. 切り離し工程とそれに続く嵌め戻し工程とを加工の進行順に示す断面図である。It is sectional drawing which shows a cutting-off process and the subsequent fitting back process in order of progress of a process. 第2例で、扱き工程とそれに続く嵌め戻し工程とに使用するプレス装置の断面図である。In a 2nd example, it is sectional drawing of the press apparatus used for a handling process and the subsequent fitting back process. 扱き工程とそれに続く嵌め戻し工程とを加工の進行順に示す断面図である。It is sectional drawing which shows a handling process and the subsequent fitting back process in order of progress of a process. シールリングの第3例の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 3rd example of a seal ring. シールリングの第4例の加工工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the 4th example of a seal ring. 従来のシェル型ニードル軸受を示す断面図である。It is sectional drawing which shows the conventional shell type needle bearing. 従来のシェル型ニードル軸受の油の流れの向きと貫通油量との関係を示すグラフである。It is a graph which shows the relationship between the direction of the oil flow of a conventional shell type needle bearing, and the amount of penetration oil.

以下、本発明の一実施形態に係るシールリング付シェル型ニードル軸受について図面を参照して詳細に説明する。   Hereinafter, a shell type needle bearing with a seal ring according to an embodiment of the present invention will be described in detail with reference to the drawings.

シールリング付シェル型ニードル軸受30は、オートマチックトランスミッション内のギアトレイン間、ギア軸とハウジングとの間、或は、オイルポンプギアの側方等に配置される。このシェル型ニードル軸受30は、図1に示すように、シェル(鍔付外輪)31と、保持器32と、複数のニードル33と、円筒形状の一対のシールリング34,34と、を備え、図示しない軸(或は内輪部材)を回転自在に支持している。   The shell type needle bearing 30 with seal ring is disposed between the gear trains in the automatic transmission, between the gear shaft and the housing, or on the side of the oil pump gear. As shown in FIG. 1, the shell type needle bearing 30 includes a shell (a flanged outer ring) 31, a cage 32, a plurality of needles 33, and a pair of cylindrical seal rings 34, 34. A shaft (or inner ring member) (not shown) is rotatably supported.

シェル31は、内周面に軌道面31aを、両端部に一対の内向きフランジ部31b,31bを、それぞれ有する。   The shell 31 has a raceway surface 31a on the inner peripheral surface and a pair of inward flange portions 31b and 31b on both ends.

保持器32は、SPCC、S10C、AISI−1010、SCM415、SK5、SUJ2等の鋼製、或はポリアミド46、ポリアミド66、PPS等の樹脂製であり、円周方向に亙って複数のポケット32aを有する。ここで、鋼製の保持器32は、溶接保持器かプレス保持器、或は削り出しによって加工される。また、鋼製の保持器32は、従来のような浸炭窒化や塩浴軟窒化処理(タフトライド)の熱処理が施されてもよいが、40mm以上の軸径のニードル軸受に適用される板厚の薄い保持器の場合、保持器32の熱処理変形によりニードル33が軌道面31aと保持器32の外径面との間に潜り込む可能性がある。このため、このような熱処理変形を抑えるため、保持器32は、タフトライドSQ(single quench)処理、NV窒化処理等が採用されている。   The cage 32 is made of steel such as SPCC, S10C, AISI-1010, SCM415, SK5, SUJ2, or a resin such as polyamide 46, polyamide 66, PPS, etc., and has a plurality of pockets 32a extending in the circumferential direction. Have Here, the steel cage 32 is processed by a welding cage, a press cage, or machining. Further, the steel cage 32 may be subjected to conventional carbonitriding or salt bath soft nitriding (tuftride) heat treatment, but with a plate thickness applied to a needle bearing having a shaft diameter of 40 mm or more. In the case of a thin cage, the needle 33 may sink between the raceway surface 31 a and the outer diameter surface of the cage 32 due to heat treatment deformation of the cage 32. For this reason, in order to suppress such heat treatment deformation, the cage 32 employs tuftride SQ (single quench) processing, NV nitriding processing, or the like.

ニードル33は、シェル31の軌道面31aに沿って転動自在となるように、保持器32の各ポケット32a内に転動自在に保持され、また、その両端部にはクラウニング加工が施されている。   The needle 33 is rotatably held in each pocket 32a of the retainer 32 so as to be freely rollable along the raceway surface 31a of the shell 31, and both ends thereof are crowned. Yes.

一対のシールリング34,34は、シェル31の内側で、潤滑油の流れの下流側となる保持器32の軸方向両端面32b,32bと内向きフランジ部31b,31bとの間に、軸に案内された状態で配置され、潤滑油の流れる方向に関わらずこのニードル軸受30を貫通する潤滑油の量を略等しく規制する。一対のシールリング34,34は、S10C,S35C等の炭素鋼、SPCC、SPCE、SUJ2等の鋼製であってもよいし、ポリアミド46、ポリアミド66、PPS等の樹脂製であってもよい。また、一対のシールリング34は、同一構成のものを使用したほうがより方向性がなくなり好ましい。   The pair of seal rings 34, 34 are arranged on the inner side of the shell 31 between the axially opposite end faces 32 b, 32 b of the cage 32 and the inward flange portions 31 b, 31 b on the downstream side of the lubricating oil flow. Arranged in a guided state, the amount of lubricating oil passing through the needle bearing 30 is regulated substantially equally regardless of the direction in which the lubricating oil flows. The pair of seal rings 34 and 34 may be made of carbon steel such as S10C and S35C, steel such as SPCC, SPCE, and SUJ2, or may be made of resin such as polyamide 46, polyamide 66, and PPS. In addition, it is preferable that the pair of seal rings 34 have the same configuration because the directionality is less.

また、シールリング34は、軸の外径よりも僅かに大きく、シェル31の内径よりも僅かに小さな外径を有するフローティングシールである。例えば、軸の外径が45mmで寸法公差を+0.003〜+0.019とするのに対して、シールリング34の内径は45mmで寸法公差を+0.049〜+0.065としている。従って、軸の外径とシールリング34の内径との間には、シールリング34と軸間で摩耗を防止し、且つ、貫通油量を規制するように、互いに同心に配置された場合、0.03〜0.06mm程度の隙間が設けられている。   The seal ring 34 is a floating seal having an outer diameter slightly larger than the outer diameter of the shaft and slightly smaller than the inner diameter of the shell 31. For example, the outer diameter of the shaft is 45 mm and the dimensional tolerance is +0.003 to +0.019, whereas the inner diameter of the seal ring 34 is 45 mm and the dimensional tolerance is +0.049 to +0.065. Therefore, when arranged between the outer diameter of the shaft and the inner diameter of the seal ring 34 concentrically so as to prevent wear between the seal ring 34 and the shaft and to regulate the amount of oil penetrating, 0 A gap of about 0.03 to 0.06 mm is provided.

本実施形態のシェル型ニードル軸受30は、10〜100mm以下の軸径、10〜30mmの幅、1〜5mmの軸受断面高さ、を有するものが使用されるが、薄肉化したシェル型ニードル軸受30(例えば、軸受断面高さ1〜2.5mm)では、シールリング34も薄肉化される。このため、上述した鋼製からなるシールリング34では、プレス加工(本実施形態では、後述する寸法規制工程、抜き工程、再抜き工程)が施されて、加工硬化により表面硬さが向上することから、後工程で熱処理を行わずに成形することができ、熱処理による変形を生じない良好な寸法精度を持ったものとなる。   The shell type needle bearing 30 of the present embodiment has a shaft diameter of 10 to 100 mm or less, a width of 10 to 30 mm, and a bearing cross-sectional height of 1 to 5 mm. At 30 (for example, bearing cross-section height of 1 to 2.5 mm), the seal ring 34 is also thinned. For this reason, the seal ring 34 made of steel described above is subjected to press work (in this embodiment, a dimension regulating process, a punching process, and a re-pulling process described later), and the surface hardness is improved by work hardening. Therefore, it can be formed without performing heat treatment in the subsequent process, and has good dimensional accuracy without causing deformation due to heat treatment.

具体的に、鋼製のシールリング34は、例えば、以下の4つの例の加工方法によって形成される。   Specifically, the steel seal ring 34 is formed by, for example, the following four examples of processing methods.

[第1例の加工方法]
この加工方法の場合には、先ず、図2の(A)に示す様な、素材となる、軟鋼板、ステンレス鋼板等の金属板1にピアス加工を施して、図2の(B)に示す様な、円孔2を有する第一予備中間素材3を得る。次いで、この第一予備中間素材3に、この円孔2の周囲を上記金属板1に対し直角に、全周に亙って折り曲げるバーリング加工を施す事により、図2の(C)に示す様な、円筒状部4を有する第二予備中間素材5とする。この円筒状部4の容積、特に軸方向長さは、造るべきシールリングの容積、特に軸方向長さよりも大きくしている。
[Processing method of the first example]
In the case of this processing method, first, as shown in FIG. 2A, a metal plate 1 such as a mild steel plate or a stainless steel plate, which is a material, is subjected to piercing, and shown in FIG. Thus, a first preliminary intermediate material 3 having a circular hole 2 is obtained. Next, the first preliminary intermediate material 3 is subjected to a burring process in which the periphery of the circular hole 2 is bent over the entire circumference at right angles to the metal plate 1 as shown in FIG. The second preliminary intermediate material 5 having the cylindrical portion 4 is used. The volume of the cylindrical portion 4, particularly the axial length, is larger than the volume of the seal ring to be manufactured, particularly the axial length.

上記第二予備中間素材5の円筒状部4には、続く寸法規制工程で塑性加工を施して、この円筒状部4を、図2の(D)に示した、第一中間円筒状素材6とする。上記寸法規制工程では、所定の内径を有する円筒状の内周面を有する、図示しない金型により上記円筒状部4の外周面を拘束すると共に、この円筒状部4の内周面を拘束しない状態で、互いに同心に配置されて軸方向に遠近動する1対の平坦面同士の間(例えば、上記金型の端部内周面に形成した受段部と、この金型に内嵌した押型の先端面との間)で、上記円筒状部4を軸方向に、所望寸法、即ち、得るべきシールリングの軸方向寸法にまで押圧(塑性変形しつつ軸方向に圧縮)する。この様にして行なう、軸方向に圧縮される塑性変形に伴って、上記円筒状部4の外径及び軸方向寸法が所定値に規制されると共に、余肉が径方向内方に膨出して、上記第一中間円筒状素材6となる。この第一中間円筒状素材6の内径寸法は、得るべきシールリングの内径寸法よりも小さい。   The cylindrical portion 4 of the second preliminary intermediate material 5 is subjected to plastic working in a subsequent dimension regulating step, and this cylindrical portion 4 is converted into the first intermediate cylindrical material 6 shown in FIG. And In the dimension regulating step, the outer peripheral surface of the cylindrical portion 4 is constrained by a mold (not shown) having a cylindrical inner peripheral surface having a predetermined inner diameter, and the inner peripheral surface of the cylindrical portion 4 is not constrained. In the state, between a pair of flat surfaces that are arranged concentrically and move in the axial direction (for example, a receiving step formed on the inner peripheral surface of the end of the mold and a pressing mold fitted in the mold) The cylindrical portion 4 is pressed (compressed in the axial direction while being plastically deformed) to a desired dimension, that is, the axial dimension of the seal ring to be obtained. With the plastic deformation that is compressed in the axial direction in this way, the outer diameter and axial dimension of the cylindrical portion 4 are regulated to predetermined values, and the surplus wall bulges inward in the radial direction. The first intermediate cylindrical material 6 is obtained. The inner diameter of the first intermediate cylindrical material 6 is smaller than the inner diameter of the seal ring to be obtained.

図2に示した実施の形態の場合には、図2の(E)に示す様に、上記第一中間円筒状素材6を形成した後に切り離し工程を行なって、この第一中間円筒状素材6を上記金属板1から切り離す。この切り離し工程は、プレス機を使用した打ち抜き加工により行なう。
この様にして、上記金属板1から切り離した、上記第一中間円筒状素材6には、続いて、内径寸法を適正値(得るべきシールリングの内径寸法)にまで拡げる、扱き加工を施す。この扱き加工を施す工程では、上記第一中間円筒状素材6の外周面を、外径が拡がらない様に拘束しつつ、この第一中間円筒状素材6の内径側に適切な(得るべきシールリングの内径寸法に一致する)外径寸法を有する扱きパンチを、軸方向一端側{図2の(F)の上側}から押し込む。この様な扱きパンチの押し込みにより、上記第一中間円筒状素材6の内周面部分に存在する余肉を軸方向他端側{図2の(F)の下側}に集めて、図2の(F)に示す様な、この軸方向他端部内周面に内向フランジ状の余肉鍔部7を有する、第二中間円筒状素材8とする。
In the case of the embodiment shown in FIG. 2, as shown in FIG. 2E, after the first intermediate cylindrical material 6 is formed, a separation step is performed, and the first intermediate cylindrical material 6 is formed. Is separated from the metal plate 1. This separation step is performed by punching using a press machine.
In this manner, the first intermediate cylindrical material 6 separated from the metal plate 1 is subsequently subjected to a handling process that expands the inner diameter dimension to an appropriate value (the inner diameter dimension of the seal ring to be obtained). In this handling process, the outer peripheral surface of the first intermediate cylindrical material 6 is restrained so that the outer diameter does not expand, while being appropriate (to be obtained) on the inner diameter side of the first intermediate cylindrical material 6. A handling punch having an outer diameter dimension (corresponding to the inner diameter dimension of the seal ring) is pushed in from one axial end side (upper side of FIG. 2F). By pushing the handling punch in such a manner, the surplus thickness present on the inner peripheral surface portion of the first intermediate cylindrical material 6 is collected on the other axial end side {lower side of (F) in FIG. 2}. As shown in (F), a second intermediate cylindrical material 8 having an inward flange-shaped surplus flange portion 7 on the inner peripheral surface of the other axial end portion is provided.

この第二中間円筒状素材8は、次の余肉除去工程に送り、上記余肉鍔部7を除去する。この余肉除去工程では、この第二中間円筒状素材8の内側に適切な(得るべきシールリングの内径寸法に一致する)外径寸法を有する打ち抜きパンチを挿入する事により、上記余肉鍔部7を除去して、図2の(G)に示す様なシールリング34とする。
尚、このシールリング34の加工作業は、上記図2の(G)の段階で終了する事もできるが、この図2の(G)の段階で、上記シールリング34の内周面の内径或いは性状を所望通りにする事が難しければ、図2の(H)に示す様に、上記シールリング34の内周面を扱き治具により擦る、再扱きを行なっても良い。
This second intermediate cylindrical material 8 is sent to the next surplus removal process to remove the surplus rib portion 7. In this surplus thickness removing step, by inserting a punching punch having an appropriate outer diameter dimension (corresponding to the inner diameter dimension of the seal ring to be obtained) inside the second intermediate cylindrical material 8, 7 is removed to obtain a seal ring 34 as shown in FIG.
The processing operation of the seal ring 34 can be completed at the stage shown in FIG. 2G, but at the stage shown in FIG. 2G, the inner diameter of the inner peripheral surface of the seal ring 34 or If it is difficult to make the properties as desired, as shown in FIG. 2H, the inner peripheral surface of the seal ring 34 may be rubbed with a handling jig and re-handled.

何れにしても、得られたシールリング34は、このシールリング34に所定の加工を施す、本発明とは別の工程に送る。この様に別の工程に送られる、このシールリング34は、外径及び軸方向寸法と内径寸法とを、それぞれ適正値に規制されているので、軸方向端部を旋削等により削り取る必要がない。又、押し出し加工のような大きな加工力を必要とする加工を行なう必要がなく、上記シールリング34の製造コストを低く抑えられる。   In any case, the obtained seal ring 34 is sent to a process different from the present invention in which the seal ring 34 is subjected to predetermined processing. In this way, the seal ring 34, which is sent to another process, has an outer diameter, an axial dimension, and an inner diameter dimension regulated to appropriate values, so there is no need to scrape the axial end by turning or the like. . In addition, it is not necessary to perform processing that requires a large processing force such as extrusion processing, and the manufacturing cost of the seal ring 34 can be kept low.

このような第1例の加工方法は、内径、外径、軸方向寸法を適正値に規制したシールリング34を、工業的に大量生産が可能で、しかも低コストで構成でき、且つ、運転経費が嵩む事もない加工装置により造れる。即ち、得られるシールリング34は、寸法規制工程で外径及び軸方向寸法を、扱き工程と余肉除去工程とにより内径寸法を、それぞれ適正値に規制されるので、軸方向端部を旋削等により削り取る事なく、これら各寸法を何れも適正値とした、高精度な円筒状のシールリング34を得られる。   In the first example of the processing method, the seal ring 34 in which the inner diameter, the outer diameter, and the axial dimension are regulated to appropriate values can be industrially mass-produced, and can be configured at low cost, and the operation cost can be reduced. Can be made with a processing device that does not bulk up. In other words, the obtained seal ring 34 is controlled to have an outer diameter and an axial dimension in the dimension regulating process, and an inner diameter dimension is adjusted to an appropriate value by the handling process and the surplus removal process. Thus, a highly accurate cylindrical seal ring 34 in which each of these dimensions is set to an appropriate value can be obtained without scraping.

[第2例の加工方法]
図3〜7は、第2例の加工方法を示している。本例の場合、図3の(A)→(G)に示す工程を順次行なう事で、金属板1をシールリング34に加工する。この工程に就いては、第1例の加工方法の場合と実質的に同じである。又、本例の場合も、上述した図2の(H)に示した様な、再扱き工程を行なう事もできる。本例の特徴は、上記金属板1として、図示しないアンコイラから送り出されて、やはり図示しないリコイラに巻き取られる、長尺なものを使用し、上記図3の(A)→(G)に示す工程を、順送により行なえる様にした点にある。即ち、上記長尺な金属板1を、加工の進行に同期させて、各工程を行なう為に隣接して配置した加工装置同士の間隔に見合うピッチで(間隔/ピッチ=整数)間欠的に送りつつ、上記図3の(A)→(G)に示す工程を順次行なう様にしている。
[Processing method of the second example]
3-7 has shown the processing method of the 2nd example. In the case of this example, the metal plate 1 is processed into the seal ring 34 by sequentially performing the steps shown in FIGS. This process is substantially the same as in the case of the processing method of the first example. Also in the case of this example, the re-handling process as shown in FIG. The feature of this example is that the metal plate 1 is a long sheet that is fed from an uncoiler (not shown) and wound around a recoiler (not shown), and is shown in FIGS. The point is that the process can be carried out in order. That is, the long metal plate 1 is intermittently fed in synchronization with the progress of the processing at a pitch (interval / pitch = integer) corresponding to the interval between adjacent processing devices for performing each process. However, the steps shown in FIGS. 3A to 3G are sequentially performed.

この為に本例の場合には、上記図3の(A)→(G)に示す何れの工程でも、上記長尺な金属板1を、全幅に亙って切断する事なく、シールリング34の加工作業に進行に伴って順次送る。そして、アンコイラから引き出した上記長尺な金属板1に、図3の(E)に示した切り離し工程で、図3の(B)に示した円孔2よりも大きな第二の円孔10を形成した状態でも、この金属板1の幅方向両端部は互いに連結されたままとなる様に、この金属板1の幅寸法を確保する(「幅寸法>第二の円孔10の直径」とする)。そして、上記切り離し工程で上記第二の円孔10の内側から打ち抜いた、第一中間円筒状素材6(及び以下の工程で造られる第二中間円筒状素材8)を、所定の加工を施した後、再び上記第二の円孔10の内側に嵌め戻してから、上記金属板1の送りに伴って、次の工程を行なう加工装置に送り込む様にしている。上記図3の(A)→(G)に示す工程に就いては、上述した通り、前述の図2の(A)→(G)に示した工程と同じであるから、重複する説明は省略し、以下、上記図3の(A)→(G)に示す工程を順送により行なえる様にすべく、上記嵌め戻しを行なえる様にした点を中心に説明する。   Therefore, in the case of this example, the seal ring 34 is cut without cutting the long metal plate 1 over the entire width in any of the steps shown in FIGS. Sequentially send as processing progresses. Then, a second circular hole 10 larger than the circular hole 2 shown in FIG. 3B is formed on the long metal plate 1 drawn out from the uncoiler by the cutting step shown in FIG. Even in the formed state, the width dimension of the metal plate 1 is secured so that both ends in the width direction of the metal plate 1 remain connected to each other (“width dimension> diameter of the second circular hole 10”). To do). And the predetermined | prescribed process was given to the 1st intermediate cylindrical raw material 6 (and the 2nd intermediate cylindrical raw material 8 produced at the following processes) punched out from the inner side of the said 2nd circular hole 10 at the said cutting-off process. Then, after fitting back into the second circular hole 10 again, the metal plate 1 is fed into a processing apparatus that performs the next step as the metal plate 1 is fed. 3A to 3G is the same as the process shown in FIG. 2A to FIG. 2G as described above, and therefore, redundant description is omitted. In the following, the description will be focused on the point that the above-described fitting back can be performed so that the process shown in FIGS.

図3の(E)に示した切り離し工程及び嵌め戻し工程は、図4に示した加工装置により行なう。この図4に示した加工装置では、円筒状のダイス14の上面と、下方に向いた弾力を付与された状態で昇降する抑え型12の下面との間で上記金属板1を抑えつつ、パンチ13により上記第一中間円筒状素材6を、上記ダイス14内に押し込み、この第一中間円筒状素材6を、上記金属板1から切り離す様に構成している。又、上記ダイス14の内径側に、上方に向いた弾力を付与された押し戻し型15を設けて、上記第一中間円筒状素材6に上方に向く弾力を付与できる様にしている。但し、上記押し戻し型15は、上面中央部に設けた衝合ブロック16と上記パンチ13の下端面との衝合に基づき、このパンチ13の下降時には、下方に退避する様にしている。   The separation process and the fitting back process shown in FIG. 3E are performed by the processing apparatus shown in FIG. In the processing apparatus shown in FIG. 4, the metal plate 1 is restrained between the upper surface of the cylindrical die 14 and the lower surface of the restraining die 12 that moves up and down in the state of being given downward elasticity. 13, the first intermediate cylindrical material 6 is pushed into the die 14, and the first intermediate cylindrical material 6 is separated from the metal plate 1. Further, a push-back die 15 provided with an upward elastic force is provided on the inner diameter side of the die 14 so that an upward elastic force can be applied to the first intermediate cylindrical material 6. However, the push-back die 15 is retracted downward when the punch 13 is lowered based on the abutment between the abutting block 16 provided at the center of the upper surface and the lower end surface of the punch 13.

上述の図4に示した様な加工装置を使用する、図3の(E)に示した切り離し工程及び嵌め戻し工程は、図5の(A)→(C)に示した順番に行なう。先ず、図5の(A)に示す様に、未だ上記金属板1に結合されたままの、上記第一中間円筒状素材6を、上記ダイス14の上端部に内嵌する。次いで、上記加工機を構成するラム17と共に、上記抑え型12及び上記パンチ13を下降させて、図5の(B)に示す様に、この抑え型12の下面と上記ダイス14の上面との間で上記金属板1を抑えつつ、上記パンチ13により、上記第一中間円筒状素材6を上記ダイス14内に押し込む。この結果、この第一中間円筒状素材6が上記金属板1から切り離されると同時に、上記金属板1に第二の円孔10が形成される。この切り離し後、上記ラム17と共に、上記抑え型12及び上記パンチ13を上昇させると、図5の(C)に示す様に、このパンチ13に押されて下降していた、上記押し戻し型15が上昇する。この結果、この押し戻し型15により、上記第一中間円筒状素材6が上記第二の円孔10内に押し込まれ、この第二の円孔10の内側に保持される。そこで、上記金属板1を移動させる事により、上記第一中間円筒状素材6を、図3の(F)に示した、次の扱き工程及び戻し工程に送る。   3 using the machining apparatus as shown in FIG. 4 is performed in the order shown in FIGS. 5A to 5C. First, as shown in FIG. 5A, the first intermediate cylindrical material 6 that is still coupled to the metal plate 1 is fitted into the upper end of the die 14. Next, together with the ram 17 constituting the processing machine, the holding die 12 and the punch 13 are lowered, and the lower surface of the holding die 12 and the upper surface of the die 14 are moved as shown in FIG. The first intermediate cylindrical material 6 is pushed into the die 14 by the punch 13 while holding the metal plate 1 in between. As a result, the first intermediate cylindrical material 6 is separated from the metal plate 1, and at the same time, the second circular hole 10 is formed in the metal plate 1. After the separation, when the holding die 12 and the punch 13 are raised together with the ram 17, the push-back die 15 that has been pushed down by the punch 13 is lowered as shown in FIG. To rise. As a result, the first intermediate cylindrical material 6 is pushed into the second circular hole 10 by the push-back die 15 and is held inside the second circular hole 10. Therefore, by moving the metal plate 1, the first intermediate cylindrical material 6 is sent to the next handling process and the returning process shown in FIG.

この図3の(F)に示した扱き工程及び嵌め戻し工程は、図6に示した加工装置により行なう。この図6に示した加工装置では、上方に向いた弾力を付与された受型18の上面と、昇降する円筒状の扱きダイス20の下面との間で上記金属板1を抑えると共に、リングパンチ19により上記第一中間円筒状素材6を、上記扱きダイス20内に押し込む。上記リングパンチ19は、上記受型18の内径側に、この受型18とは独立した昇降を可能に、且つ、上方に向いた弾力を付与された状態で設けられている。又、上記リングパンチ19の内径側には、上記第一中間円筒状素材6の内周面を扱いて第二中間円筒状素材8とする為の、扱きパンチ21を固定している。上記リングパンチ19は、この扱きパンチ21の周囲に昇降可能に設置されているが、最大上昇量は、その内周面とこの扱きパンチ21の外周面との係合により制限されている。具体的には、上記最大上昇量は、図6及び図7の(A)に示した様に、上記受型18が最も上昇している状態で、上記リングパンチ19の上端縁がこの受型18の上面よりも少し下方に位置する状態としている。更に、上記ダイス20の内径側には、下方に向いた弾力を付与された、押し戻し型22を設置している。   The handling process and the fitting back process shown in FIG. 3F are performed by the processing apparatus shown in FIG. In the processing apparatus shown in FIG. 6, the metal plate 1 is restrained between the upper surface of the receiving die 18 provided with upward elasticity and the lower surface of the cylindrical handling die 20 that moves up and down. The first intermediate cylindrical material 6 is pushed into the handling die 20 by 19. The ring punch 19 is provided on the inner diameter side of the receiving die 18 so as to be able to move up and down independently of the receiving die 18 and with an upward elasticity. Further, on the inner diameter side of the ring punch 19, a handling punch 21 for fixing the second intermediate cylindrical material 8 by handling the inner peripheral surface of the first intermediate cylindrical material 6 is fixed. The ring punch 19 is installed to be movable up and down around the handling punch 21, but the maximum rising amount is limited by the engagement between the inner peripheral surface of the ring punch 19 and the outer peripheral surface of the handling punch 21. Specifically, as shown in FIG. 6 and FIG. 7 (A), the maximum rising amount is such that the upper edge of the ring punch 19 is the receiving die when the receiving die 18 is most elevated. 18 is positioned slightly below the upper surface. Further, on the inner diameter side of the die 20, a push-back die 22 provided with downward elasticity is provided.

上述の図6に示した様な加工装置を使用する、図3の(F)に示した扱き工程及び嵌め戻し工程は、図7の(A)→(C)に示した順番に行なう。先ず、図7の(A)に示す様に、前記第二の円孔10の内側に保持された状態の上記第一中間円筒状素材6を上記受型18の上端部内側に内嵌し、その下端面を上記リングパンチ19の上端縁に突き当てる。次いで、図7の(B)に示す様に、上記加工機を構成するラム23と共に、上記扱きダイス20と、上記押し戻し型22とを下降させて、この扱きダイス20の下面で上記金属板1を下方に押し下げ、上記第一中間円筒状素材6を上記第二の円孔10から上方に抜き出し、上記リングパンチ19により、上記扱きダイス20の内径側に送り込む。この様にして扱きダイス20の内径側に送り込まれた上記第一中間円筒状素材6の内径側には、上記ラム23と共にこの扱きダイス20が更に下降するのに伴って、上記扱きパンチ21が押し込まれる。この結果、上記第一中間円筒状素材6の内径が所定寸法に規制されると共に、余肉部が内周面上端部に集められて、内周面上端部に余肉鍔部7{図3(F)}を形成した、上記第二中間円筒状素材8とされる。この様にしてこの第二中間円筒状素材8を形成した後、上記ラム23と共に上記扱きダイス20を上昇させると、この扱きダイス20に押されて下降していた上記金属板1が、上記受型18と共に上昇すると同時に、上記押し戻し型22が上記扱きダイス20に対して下降する。この際にこの押し戻し型22は、上記第二中間円筒状素材8の上端部内周面に形成されたばかりの、前記余肉鍔部7{図3の(F)参照}を下方に押圧するので、上記第二中間円筒状素材8が上記第二の円孔10内に押し込まれ、この第二の円孔10の内側に保持される。   The handling process and the fitting back process shown in FIG. 3 (F) using the processing apparatus as shown in FIG. 6 are performed in the order shown in FIG. 7 (A) → (C). First, as shown in FIG. 7A, the first intermediate cylindrical material 6 held inside the second circular hole 10 is fitted inside the upper end of the receiving mold 18, The lower end surface is abutted against the upper end edge of the ring punch 19. Next, as shown in FIG. 7B, the handling die 20 and the push-back die 22 are lowered together with the ram 23 constituting the processing machine, and the metal plate 1 is formed on the lower surface of the handling die 20. Is pushed down, the first intermediate cylindrical material 6 is extracted upward from the second circular hole 10, and is fed into the inner diameter side of the handling die 20 by the ring punch 19. As the handling die 20 is further lowered along with the ram 23, the handling punch 21 is moved to the inner diameter side of the first intermediate cylindrical material 6 fed to the inner diameter side of the handling die 20 in this way. Pushed in. As a result, the inner diameter of the first intermediate cylindrical material 6 is restricted to a predetermined size, and the surplus portion is collected at the upper end portion of the inner peripheral surface, and the surplus rib portion 7 {FIG. (F)} is formed as the second intermediate cylindrical material 8. After the second intermediate cylindrical material 8 is formed in this way, when the handling die 20 is lifted together with the ram 23, the metal plate 1 pushed down by the handling die 20 is lowered. At the same time as the mold 18 is raised, the push-back mold 22 is lowered with respect to the handling die 20. At this time, the push-back die 22 presses the surplus rib portion 7 {see FIG. 3F) just formed on the inner peripheral surface of the upper end portion of the second intermediate cylindrical material 8 downward. The second intermediate cylindrical material 8 is pushed into the second circular hole 10 and is held inside the second circular hole 10.

そこで、上記金属板1を移動させる事により、上記第二中間円筒状素材8を、図3の(G)に示した、次の余肉除去工程及び戻し工程に送る。尚、この図3の(G)に示した余肉除去工程の後に、前述の図2の(H)に示した再扱き工程を行なうのであれば、この余肉除去工程により得られたシールリング34を金属板1の第二の円孔10内に押し込む戻し工程を行なう。これに対して、上記余肉除去工程により得られたシールリング34を、そのまま、本発明とは別の、このシールリング34に所定の加工を施す工程に送るのであれば、上記戻し工程を省略する{図3の(G)で金属板から分離したシールリング34を、そのまま取り出す}事もできる。   Therefore, by moving the metal plate 1, the second intermediate cylindrical material 8 is sent to the next surplus removal process and the return process shown in FIG. If the re-handling process shown in FIG. 2H is performed after the surplus removing process shown in FIG. 3G, the seal ring obtained by the surplus removing process is performed. A returning step of pushing 34 into the second circular hole 10 of the metal plate 1 is performed. On the other hand, if the seal ring 34 obtained in the surplus removal process is sent to a process for performing a predetermined process on the seal ring 34, which is different from the present invention, the return process is omitted. It is also possible to {take out the seal ring 34 separated from the metal plate in FIG. 3G as it is}.

上述の様に構成する本例の場合には、第1例により得られる作用・効果に加えて、工業的に大量生産が可能で、しかも運転経費が嵩む事もない連続加工装置によりに造れると言った、作用・効果を得られる。即ち、本例の場合には、上記金属板1として、アンコイラから送り出されてリコイラに巻き取られる長尺な金属板1を使用し、切り離し工程に伴ってこの金属板1から切り離されて所定の加工を施された第一、第二の円筒状中間素材6、8を再びこの金属板1の第二の円孔10の内側に押し込むので、これら各中間素材6、8を、この金属板1と共に、次の加工工程に送れる。即ち、トランスファ加工に比べて、設備投資が安く済み、しかも加工能率が良い(加工サイクルが短い)、順送加工を行なえる。この為、上記シールリング34の加工コストを、より一層低減できる。   In the case of this example configured as described above, in addition to the operations and effects obtained by the first example, it can be manufactured by a continuous processing apparatus that can be industrially mass-produced and that does not increase operating costs. You can get the action and effect. That is, in the case of this example, a long metal plate 1 sent out from an uncoiler and wound up by a recoiler is used as the metal plate 1, and the metal plate 1 is separated from the metal plate 1 in accordance with a separation step and is predetermined. Since the processed first and second cylindrical intermediate materials 6 and 8 are pushed into the second circular hole 10 of the metal plate 1 again, the intermediate materials 6 and 8 are inserted into the metal plate 1. At the same time, it can be sent to the next processing step. That is, compared with transfer processing, the capital investment is low, and the processing efficiency is good (the processing cycle is short), so that progressive processing can be performed. For this reason, the processing cost of the seal ring 34 can be further reduced.

[第3例の加工方法]
図8は、第3例の加工方法を示している。本例の場合には、図8の(F)に示した扱き工程及び嵌め戻し工程で、第二円筒状中間素材8を金属板1の第二の円孔10から抜き出して再び嵌め込む方向が、この金属板1に対して、上述した第2例の加工方法の場合とは、上下逆になっている。この方向を逆にするのに伴って、図6〜7に示した加工装置の構成を異ならせる事は勿論である。その他の部分の構成に就いては、上述した第2例の加工方法と同様であるから、重複する説明は省略する。
[Processing method of the third example]
FIG. 8 shows a processing method of the third example. In the case of this example, there is a direction in which the second cylindrical intermediate material 8 is extracted from the second circular hole 10 of the metal plate 1 and fitted again in the handling step and the fitting back step shown in FIG. The metal plate 1 is upside down from the case of the processing method of the second example described above. It goes without saying that the configuration of the processing apparatus shown in FIGS. About the structure of another part, since it is the same as that of the processing method of the 2nd example mentioned above, the overlapping description is abbreviate | omitted.

[第4例の加工方法]
図9は、第4例の加工方法を示している。本例の場合には、図9の(C)に示したバーリング加工工程の次に、図9の(D)に示した、切り離し工程及び戻し工程を設定している。その他の部分の構成に就いては、上述した第2例の加工方法と同様であるから、重複する説明は省略する。要するに、本発明を実施する場合に、切り離し工程は、上記バーリング加工工程の後であれば、加工作業の容易さ、加工精度の確保等を考慮して、任意のタイミングに設定できる。
[Fourth Example Processing Method]
FIG. 9 shows a processing method of the fourth example. In the case of this example, the detaching step and the returning step shown in FIG. 9D are set after the burring step shown in FIG. About the structure of another part, since it is the same as that of the processing method of the 2nd example mentioned above, the overlapping description is abbreviate | omitted. In short, when carrying out the present invention, the separation step can be set at an arbitrary timing after the burring step, taking into consideration the ease of the processing operation, ensuring the processing accuracy, and the like.

上述した様に、本実施形態のシールリング付シェル型ニードル軸受30は、保持器32の軸方向両端面32b,32bとシェル31の一対のフランジ部31b,31bとの間に一対のシールリング34,34を設けたので、軸受の方向性がなくなり、ハウジング等への組込みが容易になるとともに、潤滑油の流れる方向に関わらず貫通油量を略等しく制御することができる。従って、本実施形態では、いずれの方向から潤滑油が流れた場合でも、上流側のシールリング34は潤滑油をほとんど堰き止めることはなく、図11のA方向から潤滑油が流れた場合とほぼ同等の貫通油量となる。   As described above, the shell type needle bearing 30 with seal ring of the present embodiment has a pair of seal rings 34 between the axial end faces 32b, 32b of the cage 32 and the pair of flange portions 31b, 31b of the shell 31. , 34 is eliminated, the directionality of the bearing is lost, and the assembly into the housing or the like is facilitated, and the amount of penetrating oil can be controlled to be substantially equal regardless of the direction in which the lubricating oil flows. Accordingly, in this embodiment, the upstream side seal ring 34 hardly dams the lubricating oil regardless of which direction the lubricating oil flows, and is almost the same as when the lubricating oil flows from the direction A in FIG. Equivalent penetrating oil amount.

また、鋼製のシールリング34は、熱処理を行わずプレス加工によって成形できるので、薄肉化が図られると共に、シールリング34には良好な寸法精度が得られ、加工硬化により所定の硬度を有することができる。また、シールリング34は相手部材である軸や内輪部材と同心に配置した状態で微小隙間を有するフローティングシールであるので、接触式シールに比べて低トルク化が図られる。   Further, since the steel seal ring 34 can be formed by press work without performing heat treatment, the thickness of the seal ring 34 can be reduced, and the seal ring 34 can have good dimensional accuracy and have a predetermined hardness by work hardening. Can do. Further, since the seal ring 34 is a floating seal having a minute gap in a state of being concentrically arranged with a shaft or an inner ring member which is a counterpart member, torque can be reduced as compared with the contact type seal.

なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
本実施形態は、内周面に軌道面31a、両端部に内向きフランジ部31b,31cをそれぞれ有する外輪シェル31を使用しているが、外周面に軌道面、両端部に外向きフランジ部をそれぞれ有する内輪シェルを使用してもよく、この場合、一対のシールリングはシェルの外側で、保持器の軸方向両端面と一対の外向きフランジ部との間に設けられる。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
In this embodiment, the outer ring shell 31 having the raceway surface 31a on the inner peripheral surface and the inward flange portions 31b and 31c on both ends is used, but the raceway surface is provided on the outer peripheral surface and the outward flange portions are provided on both ends. Each of the inner ring shells may be used. In this case, the pair of seal rings are provided on the outside of the shell between the both axial end surfaces of the cage and the pair of outward flange portions.

30 シールリング付シェル型ニードル軸受
31 シェル
31a 軌道面
31b 内向きフランジ部(フランジ部)
32 保持器
33 ニードル
34 シールリング
30 Shell-type needle bearing with seal ring 31 Shell 31a Raceway surface 31b Inward flange (flange)
32 Cage 33 Needle 34 Seal ring

Claims (3)

内周面或は外周面に軌道面を、両端部に一対のフランジ部を、それぞれ有するシェルと、円周方向に亙って複数のポケットを有する保持器と、前記軌道面に沿って転動自在となるように、前記各ポケット内に保持される複数のニードルと、前記シェルの内側或は外側で、前記保持器の軸方向両端面と前記一対のフランジ部との間に設けられる円筒形状の一対のシールリングと、を備えるシールリング付シェル型ニードル軸受のシールリングの製造方法であって、
長尺な金属板に円孔を形成するピアス加工工程と、
前記素材の前記円孔の周囲を全周に亘って折り曲げて、円筒状部を形成するバーリング加工工程と、
前記円筒状部の外周面を拘束した状態で、前記円筒状部を軸方向に圧縮し、前記円筒状部の外径及び軸方向寸法を規制した、第一中間円筒状素材とする寸法規制工程と、
前記第1中間円筒状素材の外周面を拘束した状態で、内径側に前記シールリングの内径寸法と一致する外径寸法を有する扱きパンチを押し込むことで、内向フランジ状の余肉鍔部を有する第二中間円筒状素材とする扱き工程と、
前記シールリングの内径寸法と一致する外径寸法を有する打ち抜きパンチを挿入することにより、前記余肉鍔部を除去して前記シールリングを得る余肉除去工程と、
前記バーリング加工工程後のいずれかの工程の前に行われ、前記第一または第二中間円筒状素材若しくは前記シールリングを前記金属板から切り離す工程と、
前記いずれかの工程の後に行われ、前記切り離された前記第一または第二中間円筒状素材若しくは前記シールリングを前記金属板に嵌め戻して、次の加工工程に送る嵌め戻し工程と、
を有することを特徴とするシールリング付シェル型ニードル軸受のシールリングの製造方法。
A shell having a raceway surface on the inner or outer peripheral surface and a pair of flange portions on both ends, a cage having a plurality of pockets in the circumferential direction, and rolling along the raceway surface A plurality of needles held in the respective pockets, and a cylindrical shape provided between the axial end faces of the cage and the pair of flange portions inside or outside the shell so as to be freely A pair of seal rings, and a manufacturing method of a seal ring of a shell type needle bearing with a seal ring, comprising:
A piercing process for forming a circular hole in a long metal plate;
A burring process for forming a cylindrical portion by bending the circumference of the circular hole of the material over the entire circumference;
A dimension regulating step of forming a first intermediate cylindrical material in which the cylindrical part is compressed in the axial direction with the outer peripheral surface of the cylindrical part being constrained to regulate the outer diameter and axial dimension of the cylindrical part. When,
In a state where the outer peripheral surface of the first intermediate cylindrical material is constrained, a handling punch having an outer diameter that matches the inner diameter of the seal ring is pushed into the inner diameter side, thereby having an inward flange-shaped surplus flange portion. A handling process for a second intermediate cylindrical material;
By inserting a punching punch having an outer diameter that matches the inner diameter of the seal ring, a surplus removal step for removing the surplus ribs and obtaining the seal ring;
Performed before any step after the burring step, and the step of separating the first or second intermediate cylindrical material or the seal ring from the metal plate;
A fitting back step that is performed after any one of the steps, and that the separated first or second intermediate cylindrical material or the seal ring is fitted back to the metal plate and is sent to the next processing step;
A method for manufacturing a seal ring of a shell-type needle bearing with a seal ring, comprising:
前記シールリングの軸受断面高さが1〜2.5mmであることを特徴とする請求項1に記載のシールリング付シェル型ニードル軸受のシールリングの製造方法。   The method for producing a seal ring of a shell type needle bearing with a seal ring according to claim 1, wherein a bearing cross-sectional height of the seal ring is 1 to 2.5 mm. 前記シールリングは、前記ピアス加工工程、バーリング加工工程、寸法規制工程、扱き工程、余肉除去工程、切り離し工程、嵌め戻し工程によって、熱処理を行わずに成形されることを特徴とする請求項1または2に記載のシールリング付シェル型ニードル軸受のシールリングの製造方法。

The said seal ring is shape | molded without performing heat processing by the said piercing process, a burring process, a dimension control process, a handling process, a surplus removal process, a cutting process, and a fitting process. Or the manufacturing method of the seal ring of the shell type needle roller bearing with a seal ring of 2.

JP2011029434A 2011-02-15 2011-02-15 Method for manufacturing seal ring of shell needle bearing with seal ring Active JP4941599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029434A JP4941599B2 (en) 2011-02-15 2011-02-15 Method for manufacturing seal ring of shell needle bearing with seal ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029434A JP4941599B2 (en) 2011-02-15 2011-02-15 Method for manufacturing seal ring of shell needle bearing with seal ring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006282673A Division JP2008101647A (en) 2006-10-17 2006-10-17 Shell type needle bearing with sealing ring

Publications (2)

Publication Number Publication Date
JP2011117606A true JP2011117606A (en) 2011-06-16
JP4941599B2 JP4941599B2 (en) 2012-05-30

Family

ID=44283144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029434A Active JP4941599B2 (en) 2011-02-15 2011-02-15 Method for manufacturing seal ring of shell needle bearing with seal ring

Country Status (1)

Country Link
JP (1) JP4941599B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149033A (en) * 2013-02-01 2014-08-21 Nsk Ltd Shell-shaped needle bearing
KR20150124788A (en) * 2014-04-29 2015-11-06 주식회사 만도 Electric actuator for turbocharger wastegate
CN110206816A (en) * 2018-02-28 2019-09-06 斯凯孚公司 Bearing
CN114413005A (en) * 2022-01-22 2022-04-29 开维喜阀门集团有限公司 Double-eccentric butterfly valve and manufacturing method of valve body sealing ring thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297353A (en) * 1985-08-06 1987-05-06 テキサス インスツルメンツ インコ−ポレイテツド Mutual connection of planar metal for vlsi device
JPS6483920A (en) * 1987-09-25 1989-03-29 Hitachi Ltd Magnetic fluid bearing device
JPH0623776Y2 (en) * 1987-11-27 1994-06-22 日本精工株式会社 Floating seal for roller bearing
JPH06294418A (en) * 1993-02-10 1994-10-21 Nippon Seiko Kk Radial needle bearing
JPH07124672A (en) * 1993-11-08 1995-05-16 Sakurai Seisakusho:Kk Production of pipe ring
JP2000291669A (en) * 1999-04-01 2000-10-20 Nsk Ltd Shell type needle bearing with seal ring
JP2000326032A (en) * 2000-01-01 2000-11-28 Hidaka Seiki Kk Method for producing heat exchanger fin and die for heat exchanger fin
JP2005297009A (en) * 2004-04-13 2005-10-27 Misuzu Kogyo:Kk Ring-shaped part manufacturing method by progressive press, and ring-shaped part

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297353A (en) * 1985-08-06 1987-05-06 テキサス インスツルメンツ インコ−ポレイテツド Mutual connection of planar metal for vlsi device
JPS6483920A (en) * 1987-09-25 1989-03-29 Hitachi Ltd Magnetic fluid bearing device
JPH0623776Y2 (en) * 1987-11-27 1994-06-22 日本精工株式会社 Floating seal for roller bearing
JPH06294418A (en) * 1993-02-10 1994-10-21 Nippon Seiko Kk Radial needle bearing
JPH07124672A (en) * 1993-11-08 1995-05-16 Sakurai Seisakusho:Kk Production of pipe ring
JP2000291669A (en) * 1999-04-01 2000-10-20 Nsk Ltd Shell type needle bearing with seal ring
JP2000326032A (en) * 2000-01-01 2000-11-28 Hidaka Seiki Kk Method for producing heat exchanger fin and die for heat exchanger fin
JP2005297009A (en) * 2004-04-13 2005-10-27 Misuzu Kogyo:Kk Ring-shaped part manufacturing method by progressive press, and ring-shaped part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149033A (en) * 2013-02-01 2014-08-21 Nsk Ltd Shell-shaped needle bearing
KR20150124788A (en) * 2014-04-29 2015-11-06 주식회사 만도 Electric actuator for turbocharger wastegate
KR101923950B1 (en) * 2014-04-29 2018-11-30 주식회사 세종에이티티 Electric actuator for turbocharger wastegate
CN110206816A (en) * 2018-02-28 2019-09-06 斯凯孚公司 Bearing
CN110206816B (en) * 2018-02-28 2022-09-06 斯凯孚公司 Bearing assembly
CN114413005A (en) * 2022-01-22 2022-04-29 开维喜阀门集团有限公司 Double-eccentric butterfly valve and manufacturing method of valve body sealing ring thereof
CN114413005B (en) * 2022-01-22 2024-04-16 开维喜阀门集团有限公司 Double-eccentric butterfly valve and manufacturing method of valve body sealing ring thereof

Also Published As

Publication number Publication date
JP4941599B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US8177435B2 (en) Manufacturing method of a drawn cup needle roller bearing having seal ring
US9056375B2 (en) Manufacturing method for bearing outer ring
EP2602501B1 (en) Manufacturing method for bearing outer ring
JP5408226B2 (en) Method for manufacturing shell needle bearing with seal ring
JP4941599B2 (en) Method for manufacturing seal ring of shell needle bearing with seal ring
JP4320599B2 (en) Method for manufacturing cage for radial needle bearing
WO2007067303A2 (en) Method of forming a part
JP2008101647A (en) Shell type needle bearing with sealing ring
JP4978318B2 (en) Method for manufacturing shell needle bearing with seal ring
JP5040401B2 (en) Method for manufacturing cage for radial needle bearing
JP2013024377A (en) Resin-made retainer for tapered roller bearing, and tapered roller bearing
US20130205593A1 (en) Manufacturing method for bearing outer ring
JP2005325895A (en) Roller bearing and manufacturing method for its cage
JP4835119B2 (en) Manufacturing method of high precision ring
JP4928331B2 (en) Shell outer ring manufacturing method and shell needle roller bearing
EP3628413A1 (en) Mold device for manufacturing columnar rolling element, method for manufacturing columnar rolling element, method for manufacturing rolling bearing, method for manufacturing vehicle, and method for manufacturing machine device
JP2007016828A (en) Method of manufacturing cage for needle bearing and method of manufacturing needle bearing
JP6252179B2 (en) Manufacturing method of bearing outer ring
JP6464946B2 (en) Method for removing surplus portion of cylindrical metal member, method for manufacturing raceway ring, and method for manufacturing radial rolling bearing
JP2016107325A5 (en)
JP2016125652A (en) Manufacturing method for split type raceway ring
JP2016107325A (en) Manufacturing method and manufacturing apparatus of ring-shaped member
JP2017013111A5 (en)
JP2008256004A (en) Manufacturing method for drawn cup and shell-type needle roller bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250