JP2011114900A - Apparatus and method for controlling supply and demand of micro-grid - Google Patents

Apparatus and method for controlling supply and demand of micro-grid Download PDF

Info

Publication number
JP2011114900A
JP2011114900A JP2009267398A JP2009267398A JP2011114900A JP 2011114900 A JP2011114900 A JP 2011114900A JP 2009267398 A JP2009267398 A JP 2009267398A JP 2009267398 A JP2009267398 A JP 2009267398A JP 2011114900 A JP2011114900 A JP 2011114900A
Authority
JP
Japan
Prior art keywords
output
internal combustion
power generation
demand
generation facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267398A
Other languages
Japanese (ja)
Other versions
JP5402566B2 (en
Inventor
Chikashi Nakazawa
親志 中沢
Tatsuya Iizaka
達也 飯坂
Hideyuki Ito
秀之 伊藤
Masaki Hayashi
巨己 林
Masaya Murakami
賢哉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009267398A priority Critical patent/JP5402566B2/en
Publication of JP2011114900A publication Critical patent/JP2011114900A/en
Application granted granted Critical
Publication of JP5402566B2 publication Critical patent/JP5402566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supply and demand technique of a micro-grid, which is capable of improving the stability in frequency of the micro-grid in a power unserved area or an isolated island. <P>SOLUTION: The micro-grid 100 connects a recycle energy utilizing power generating facility 150, and an internal combustion power generating facility 130 for compensating the facility 150 and a power storage device 140 to a power transmission network 110 and supplies power to a load 120. The micro-grid executes power supply and demand control while maintaining a stable system frequency f by adding control using the system frequency f by a load frequency control unit 240 and an interlinking line flow ΔP<SB>T</SB>to the control of an internal combustion power generator output 231 and a storage battery output 232 by a predictive function unit 210, a supply and demand scheduling unit 220 and an economic load distribution control unit 230. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マイクログリッドの需給制御装置およびマイクログリッドの需給制御方法に関する。   The present invention relates to a microgrid supply and demand control apparatus and a microgrid supply and demand control method.

電力系統においては、負荷と発電のバランス(需給バランス)が崩れると周波数変動が生じる。そのため、負荷変動の変動周期に応じた各種周波数制御によって、時々刻々変化する負荷と発電を常にバランスさせるように内燃力発電設備の発電機の出力増減調整を実施している。   In an electric power system, frequency fluctuations occur when the balance between load and power generation (supply-demand balance) is lost. For this reason, the output increase / decrease adjustment of the generator of the internal combustion power generation facility is performed so as to always balance the load and the power generation that change every moment by various frequency control according to the fluctuation cycle of the load fluctuation.

負荷変動の変動周期に応じて、変動周期が1分程度の負荷変動に対しては、発電機の回転数をガバナフリー運転することにより制御を行う。
変動周期が20分程度の負荷変動に対しては、負荷周波数制御(LFC: Load Frequency Control)により制御を行う。
Depending on the fluctuation cycle of the load fluctuation, the load fluctuation whose fluctuation cycle is about 1 minute is controlled by performing a governor-free operation on the rotational speed of the generator.
For load fluctuations with a fluctuation period of about 20 minutes, control is performed by load frequency control (LFC).

変動周期が60分程度の変動に対しては、経済負荷配分制御(EDC: Economic Dispatching Control)で上下限制約、出力変化率制約などの発電機の特性を考慮した上で経済性を考慮した制御を行う。   For fluctuations with a fluctuation period of about 60 minutes, economic load distribution control (EDC) takes into account economic characteristics after taking into account generator characteristics such as upper and lower limit constraints and output change rate constraints. I do.

近年、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備(以下、再生可能エネルギ利用発電設備と記す)を含むマイクログリッドの開発が増加している。   In recent years, the development of microgrids including power generation facilities using renewable energy such as solar power generation facilities and wind power generation facilities (hereinafter referred to as power generation facilities using renewable energy) is increasing.

太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備は、日射量、風速などの自然条件に応じて時々刻々と出力が変動するため、特に電力過疎地域や離島など、脆弱な電力系統では系統の周波数や電圧の変動が生じ、運用上の技術的課題となることが想定される。   Power generation facilities that use renewable energy, such as solar power generation facilities and wind power generation facilities, are fragile, especially in areas where power is sparse and remote islands, because their output fluctuates momentarily according to natural conditions such as solar radiation and wind speed. In the electric power system, fluctuations in the system frequency and voltage occur, which are assumed to be technical problems in operation.

これに対し例えば、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備による出力変動を、電力貯蔵装置に充放電を行わせることで、ローカルに電力系統を安定化させる電力安定化装置として非特許文献1があげられる。   On the other hand, for example, power stability that stabilizes the power system locally by causing the power storage device to charge and discharge output fluctuations due to power generation facilities that use renewable energy such as solar power generation facilities and wind power generation facilities. Nonpatent literature 1 is mention | raise | lifted as a conversion apparatus.

株式会社オーム社、2008年11月12日発行、「OHM」、第95巻、第11号、P37〜42、「風力発電用電力安定化装置の開発」。OHM Co., Ltd., issued on November 12, 2008, “OHM”, Vol. 95, No. 11, P37-42, “Development of power stabilization device for wind power generation”.

しかしながら、上述の非特許文献1の電力安定化装置はローカル制御であり、広範囲な周波数補償はできていなかった。
本発明の目的は、電力過疎地域や離島などのマイクログリッドの周波数の安定性を向上させることが可能なマイクログリッドの需給制御技術を提供することにある。
However, the power stabilization device of Non-Patent Document 1 described above is local control, and a wide range of frequency compensation has not been achieved.
An object of the present invention is to provide a microgrid supply and demand control technology capable of improving the frequency stability of a microgrid such as a power depopulated area or a remote island.

本発明の第1の観点は、内燃力発電設備と、再生可能エネルギ利用発電設備と、電力貯
蔵装置と、電力を消費する負荷と、を含むマイクログリッドの需給制御装置において、
気象予報値および需要実績から、長期需要予測値および短期需要予測値を演算する予測手段と、
前記長期需要予測値から、前記内燃力発電設備の起動・停止状態、前記内燃力発電設備の出力、前記電力貯蔵装置の蓄電出力を演算する需給計画手段と、
前記短期需要予測値から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する経済負荷配分制御手段と、
前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力、系統周波数、および外部の電力系統との連系線潮流から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する負荷周波数制御手段と、
を備えるマイクログリッドの需給制御装置を提供する。
A first aspect of the present invention is a supply and demand control device for a microgrid including an internal combustion power generation facility, a renewable energy utilization power generation facility, a power storage device, and a load that consumes power.
A forecasting means for calculating long-term demand forecast values and short-term demand forecast values from weather forecast values and demand results;
From the long-term demand forecast value, the supply / demand planning means for calculating the start / stop state of the internal combustion power generation facility, the output of the internal combustion power generation facility, the storage output of the power storage device,
Economic load distribution control means for calculating the output of the internal combustion power generation facility, the power storage output of the power storage device from the short-term demand forecast value,
From the output of the internal combustion power generation facility, the power storage output of the power storage device, the grid frequency, and the interconnection power flow with an external power system, the output of the internal combustion power generation facility, the power storage output of the power storage device Load frequency control means for calculating;
A supply and demand control device for a microgrid comprising:

本発明の第2の観点は、内燃力発電設備と、再生可能エネルギ利用発電設備と、電力貯蔵装置と、電力を消費する負荷と、を含むマイクログリッドの需給制御方法において、
気象予報値および需要実績から、長期需要予測値および短期需要予測値を演算する予測ステップと、
前記長期需要予測値から、前記内燃力発電設備の起動・停止状態、前記内燃力発電設備の出力、前記電力貯蔵装置の蓄電出力を演算する需給計画ステップと、
前記短期需要予測値から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する経済負荷配分制御ステップと、
前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力、系統周波数、および外部の電力系統との連系線潮流から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する負荷周波数制御ステップと、
を含むマイクログリッドの需給制御方法を提供する。
According to a second aspect of the present invention, there is provided a microgrid supply and demand control method including an internal combustion power generation facility, a renewable energy utilization power generation facility, a power storage device, and a load that consumes power.
A forecasting step for calculating a long-term demand forecast value and a short-term demand forecast value from the weather forecast value and the demand record;
From the long-term demand forecast value, the supply / demand planning step of calculating the start / stop state of the internal combustion power generation facility, the output of the internal combustion power generation facility, the storage output of the power storage device,
From the short-term demand forecast value, an economic load distribution control step of calculating the output of the internal combustion power generation facility and the storage output of the power storage device;
From the output of the internal combustion power generation facility, the power storage output of the power storage device, the grid frequency, and the interconnection power flow with an external power system, the output of the internal combustion power generation facility, the power storage output of the power storage device A load frequency control step to be calculated;
A supply and demand control method for a microgrid including

本発明によれば、電力過疎地域や離島などのマイクログリッドの周波数の安定性を向上させることが可能なマイクログリッドの需給制御技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the supply-and-demand control technique of the microgrid which can improve the stability of the frequency of microgrids, such as a power depopulated area and a remote island, can be provided.

本発明の一実施の形態であるマイクログリッドの需給制御方法を実施するマイクログリッドの需給制御装置の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of the supply-and-demand control apparatus of the microgrid which implements the supply-and-demand control method of the microgrid which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムにおける需給制御機能の構成例を示すブロック図である。It is a block diagram which shows the structural example of the supply-and-demand control function in the microgrid supply-and-demand control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する予測機能部の作用の一例を説明する概念図である。It is a conceptual diagram explaining an example of an effect | action of the prediction function part which comprises the microgrid demand-and-supply control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する予測機能部の作用の一例を説明するグラフである。It is a graph explaining an example of an effect | action of the prediction function part which comprises the microgrid demand-and-supply control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する予測機能部の作用の一例を説明するグラフである。It is a graph explaining an example of an effect | action of the prediction function part which comprises the microgrid demand-and-supply control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する需給計画部の作用の一例を説明する概念図である。It is a conceptual diagram explaining an example of an effect | action of the demand-and-supply planning part which comprises the microgrid demand-and-supply control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する経済負荷配分制御部の作用の一例を説明する概念図である。It is a conceptual diagram explaining an example of an effect | action of the economic load distribution control part which comprises the microgrid demand-and-supply control system which is one embodiment of this invention. 本発明の一実施の形態であるマイクログリッド需給制御システムを構成する負荷周波数制御部の構成例をさらに詳細に例示したブロック図である。It is the block diagram which illustrated further the example of composition of the load frequency control part which constitutes the microgrid demand-and-supply control system which is one embodiment of the present invention in detail. 本発明の一実施の形態であるマイクログリッド需給制御システムにおける負荷周波数制御部における系統周波数判定機能の制御領域の一例を示す制御領域マップである。It is a control area map which shows an example of the control area | region of the system frequency determination function in the load frequency control part in the microgrid demand-and-supply control system which is one embodiment of this invention.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は、本発明の一実施の形態であるマイクログリッドの需給制御方法を実施するマイクログリッドの需給制御装置の構成の一例を示す概念図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of a configuration of a microgrid supply and demand control apparatus that implements a microgrid supply and demand control method according to an embodiment of the present invention.

この図1に例示されるように、本実施の形態のマイクログリッド100は、送電網110と、これに接続される複数の負荷120、内燃力発電設備130、電力貯蔵装置140、再生可能エネルギ利用発電設備150で構成されている。   As illustrated in FIG. 1, the microgrid 100 of the present embodiment includes a power transmission network 110, a plurality of loads 120 connected thereto, an internal combustion power generation facility 130, a power storage device 140, and use of renewable energy. The power generation facility 150 is configured.

本実施の形態のマイクログリッド100は、例えば、離島や、特定地域等に設定される比較的小規模な電力網である。
そして、マイクログリッド100の送電網110には、外部の他のマイクログリッドや、商用電力網等の外部電力系統180が、連携線111を介して接続されており、必要に応じて、外部電力系統180から電力の融通を受けることが可能になっている。
The microgrid 100 according to the present embodiment is a relatively small-scale power network set in, for example, a remote island or a specific area.
The power grid 110 of the microgrid 100 is connected to another external microgrid or an external power system 180 such as a commercial power network via a link line 111. The external power system 180 is used as necessary. It is possible to receive power interchange from

電力貯蔵装置140は、例えば、充放電可能な二次電池やキャパシタで構成される。本実施の形態では、一例として二次電池で構成されるものとする。
再生可能エネルギ利用発電設備150は、例えば、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備である。
The power storage device 140 is composed of, for example, a chargeable / dischargeable secondary battery or a capacitor. In this embodiment, it is assumed that the battery is constituted by a secondary battery as an example.
The renewable energy utilization power generation facility 150 is a power generation facility using renewable energy such as a solar power generation facility or a wind power generation facility.

この再生可能エネルギ利用発電設備150の出力は、天候や季節等に影響されて変動するため、電力貯蔵装置140に対する充電、放電を行って出力を可能な限り平準化するとともに、必要に応じて内燃力発電設備130を起動して補うことにより、負荷120による電力需要と、再生可能エネルギ利用発電設備150等の出力との需給バランスを保つ必要がある。   Since the output of the renewable energy utilizing power generation facility 150 fluctuates depending on the weather, season, etc., the power storage device 140 is charged and discharged to equalize the output as much as possible, and if necessary, the internal combustion engine It is necessary to maintain the supply and demand balance between the power demand by the load 120 and the output of the renewable energy utilizing power generation facility 150 and the like by starting up and supplementing the power generation facility 130.

そこで、本実施の形態の場合には、再生可能エネルギ利用発電設備150の出力の変動や、負荷120の消費電力の変動に応じて、マイクログリッド100の平常の基準周波数f(例えば、50Hzまたは60Hz)を可能な限り変化させることなく、内燃力発電設備130および電力貯蔵装置140の動作を制御するために、マイクログリッド需給制御システム200が設けられている。 Therefore, in the case of the present embodiment, the normal reference frequency f 0 of the microgrid 100 (for example, 50 Hz or In order to control the operation of the internal combustion power generation facility 130 and the power storage device 140 without changing the frequency as much as possible, a microgrid supply and demand control system 200 is provided.

このマイクログリッド需給制御システム200は、予測機能部210、需給計画部220、経済負荷配分制御部230、負荷周波数制御部240、実績データベース250、を備えている。   The microgrid supply and demand control system 200 includes a prediction function unit 210, a supply and demand planning unit 220, an economic load distribution control unit 230, a load frequency control unit 240, and a performance database 250.

マイクログリッド需給制御システム200は、例えば、コンピュータシステムで構成され、予測機能部210〜経済負荷配分制御部230、および負荷周波数制御部240の一部の機能は、コンピュータシステムの図示しないマイクロプロセッサ等で実行されるソフトウェアで実現される。また、負荷周波数制御部240の他の一部の機能は、コントローラ等のハードウェア回路で構成することができる。   The microgrid supply and demand control system 200 is configured by a computer system, for example, and some functions of the prediction function unit 210 to the economic load distribution control unit 230 and the load frequency control unit 240 are performed by a microprocessor (not shown) of the computer system. Realized with executed software. Also, some other functions of the load frequency control unit 240 can be configured by a hardware circuit such as a controller.

また、実績データベース250は、マイクログリッド需給制御システム200の内部に設けられた記憶装置、または、マイクログリッド需給制御システム200の外部に設けられた専用のデータベースシステム等で構成することができる。   The performance database 250 can be configured by a storage device provided inside the microgrid supply and demand control system 200, a dedicated database system provided outside the microgrid supply and demand control system 200, or the like.

マイクログリッド需給制御システム200の負荷周波数制御部240には、送電網110に接続された周波数検出器160で測定された当該送電網110の系統周波数fが入力される。   The system frequency f of the power transmission network 110 measured by the frequency detector 160 connected to the power transmission network 110 is input to the load frequency control unit 240 of the microgrid supply and demand control system 200.

同様に、連携線111には、有効電力演算器170が設けられ、測定結果である連系線潮流ΔPがマイクログリッド需給制御システム200に入力される。
図2は、本実施の形態のマイクログリッド需給制御システムにおける需給制御機能の構成例を示すブロック図である。
Similarly, the linkage line 111 is provided with an active power calculator 170, and the interconnected line power flow ΔP T as a measurement result is input to the microgrid supply and demand control system 200.
FIG. 2 is a block diagram showing a configuration example of the supply and demand control function in the microgrid supply and demand control system of the present embodiment.

図2に例示されるように、本実施の形態のマイクログリッド需給制御システム200では、マイクログリッド需給制御機能は、予測機能部210、需給計画部220、経済負荷配分制御部230、負荷周波数制御部240で構成されている。   As illustrated in FIG. 2, in the microgrid supply and demand control system 200 of the present embodiment, the microgrid demand and supply control function includes a prediction function unit 210, a supply and demand planning unit 220, an economic load distribution control unit 230, and a load frequency control unit. 240.

予測機能部210は、気象予報値211、需要実績251から長期需要予測値212、短期需要予測値213を演算する。
需給計画部220は、長期需要予測値212から内燃力発電設備130の起動・停止状態である内燃力発電機起動・停止状態223、内燃力発電設備の出力である内燃力発電機出力221、電力貯蔵装置140の蓄電池出力222を演算する。
The prediction function unit 210 calculates a long-term demand forecast value 212 and a short-term demand forecast value 213 from the weather forecast value 211 and the demand record 251.
The supply and demand planning unit 220 includes an internal combustion power generator start / stop state 223 that is the start / stop state of the internal combustion power generation facility 130, an internal combustion power generator output 221 that is the output of the internal combustion power generation facility, The storage battery output 222 of the storage device 140 is calculated.

経済負荷配分制御部230は、需給計画部220から得られる内燃力発電機起動・停止状態223、内燃力発電機出力221、蓄電池出力222と、予測機能部210から得られる短期需要予測値213に基づいて、内燃力発電設備の出力である内燃力発電機出力231、電力貯蔵装置140の蓄電池出力232を演算する。   The economic load distribution control unit 230 sets the internal combustion power generator start / stop state 223 obtained from the supply / demand planning unit 220, the internal combustion power generator output 221, the storage battery output 222, and the short-term demand forecast value 213 obtained from the prediction function unit 210. Based on this, the internal combustion power generator output 231 that is the output of the internal combustion power generation facility and the storage battery output 232 of the power storage device 140 are calculated.

負荷周波数制御部240は、経済負荷配分制御部230から得られる内燃力発電機出力231、蓄電池出力232と、系統周波数f、外部電力系統180との連携線111から得られる連系線潮流ΔPから、内燃力発電設備130の出力である内燃力発電機出力241、電力貯蔵装置140の蓄電池出力242を演算して、内燃力発電設備130および電力貯蔵装置140の動作を制御する。 The load frequency control unit 240 is connected to the internal power generator output 231 and the storage battery output 232 obtained from the economic load distribution control unit 230, the grid frequency f, and the interconnection line flow ΔP T obtained from the linkage line 111 with the external power system 180. Then, the internal combustion power generator output 241 that is the output of the internal combustion power generation facility 130 and the storage battery output 242 of the power storage device 140 are calculated, and the operations of the internal combustion power generation facility 130 and the power storage device 140 are controlled.

図3Aは、本実施の形態のマイクログリッド需給制御システムを構成する予測機能部の構成および作用の一例を説明する概念図である。
図3Bおよび図3Cは、本実施の形態のマイクログリッド需給制御システムを構成する予測機能部の作用の一例を説明するグラフである。
FIG. 3A is a conceptual diagram illustrating an example of the configuration and operation of the prediction function unit that configures the microgrid supply and demand control system of the present embodiment.
FIG. 3B and FIG. 3C are graphs for explaining an example of the operation of the prediction function unit constituting the microgrid supply and demand control system of the present embodiment.

図3B、図3Cを参照して、本実施の形態のマイクログリッド需給制御システム200における予測機能部210によって、気象予報値211、需要実績251から演算された長期需要予測値212、短期需要予測値213の一例を示す。   With reference to FIG. 3B and FIG. 3C, the forecast function part 210 in the microgrid demand-and-supply control system 200 of this Embodiment WHEREIN: The long-term demand forecast value 212 calculated from the weather forecast value 211 and the demand track record 251 and the short-term demand forecast value An example of 213 is shown.

図3Bにおける長期需要予測値212の例は、現在を起点とし未来24時間先まで30分刻みの需要予測値を表す。
図3Cにおける短期需要予測値213の例は、現在を起点とし未来15分先まで1分刻みの需要予測値を表す。
The example of the long-term demand forecast value 212 in FIG. 3B represents the demand forecast value in increments of 30 minutes from the present to the future 24 hours ahead.
The example of the short-term demand forecast value 213 in FIG. 3C represents the demand forecast value in increments of 1 minute from the present to the future 15 minutes ahead.

図4は、本実施の形態のマイクログリッド需給制御システムを構成する需給計画部の作用の一例を説明する概念図である。
図4では、需給計画部220が、長期需要予測値212から内燃力発電設備の起動・停止状態である内燃力発電機起動・停止状態223、内燃力発電設備の出力である内燃力発電機出力221、電力貯蔵装置140の蓄電池出力222を演算する例を示している。
FIG. 4 is a conceptual diagram illustrating an example of the operation of the supply and demand planning unit that constitutes the microgrid supply and demand control system of the present embodiment.
In FIG. 4, the supply and demand planning unit 220 determines that the internal combustion power generator start / stop state 223 that is the start / stop state of the internal combustion power generation facility from the long-term demand forecast value 212, and the internal combustion power generator output that is the output of the internal combustion power generation facility. 221, the example which calculates the storage battery output 222 of the electric power storage apparatus 140 is shown.

需給計画部220は内燃力発電機出力上下限制約(すなわち、内燃力発電機出力上限制約311、内燃力発電機出力下限制約312)、内燃力発電機出力変化率制約320、蓄電池出力上下限制約(すなわち、蓄電池出力上限制約331、蓄電池出力下限制約332)、蓄電池出力変化率制約340、蓄電池電力量上下限制約(蓄電量制約、すなわち、蓄
電池電力量上限制約351、蓄電池電力量下限制約352)、需給バランス制約360の制約条件のもと、内燃力発電設備130の燃料費と起動費を最小化する演算を行う。
The supply and demand planning unit 220 includes an internal combustion power generator output upper and lower limit constraint (that is, an internal combustion power generator output upper limit constraint 311 and an internal combustion power generator output lower limit constraint 312), an internal combustion power generator output change rate constraint 320, and a storage battery output upper and lower limit constraint. (Ie, storage battery output upper limit constraint 331, storage battery output lower limit constraint 332), storage battery output change rate constraint 340, storage battery power upper / lower limit constraint (storage amount constraint, ie, storage battery power amount upper limit constraint 351, storage battery power amount lower limit constraint 352) Then, under the constraint condition of supply and demand balance constraint 360, an operation for minimizing the fuel cost and the startup cost of the internal combustion power generation facility 130 is performed.

すなわち、一例として、需給計画部220は、以下の式(1)および式(2)に例示される目的関数Fにて、燃料費と起動費を最小化する演算を行う。   That is, as an example, the supply and demand planning unit 220 performs an operation for minimizing the fuel cost and the start-up cost with the objective function F exemplified in the following equations (1) and (2).

この式(1)、式(2)において、
F(t):時刻tの燃料費
:内燃力発電機kの起動費
δ:内燃力発電機kの起動の有無
M:評価区間(時間)
N:内燃力,蓄電池の総台数
,b,c:コスト係数
(t):時刻tでの内燃力出力(内燃力発電機出力221),蓄電池出力(蓄電池出力222)
である。
In this formula (1) and formula (2),
F (t): Fuel cost at time t C k : Startup cost of internal combustion power generator k δ k : Presence or absence of startup of internal combustion power generator k M: Evaluation section (time)
N: internal combustion power, total number of storage batteries a k , b k , c k : cost coefficient P k (t): internal combustion power output at time t (internal combustion power generator output 221), storage battery output (storage battery output 222)
It is.

また、制約条件として、一例として、以下の式(3)〜式(6)で示される制約がある。
式(3)は、P(t)に関する内燃力・蓄電池出力上下限制約(すなわち、内燃力発電機出力上限制約311、内燃力発電機出力下限制約312)を示している。
Further, as an example of the constraint condition, there are constraints represented by the following formulas (3) to (6).
Equation (3) shows the internal / combustion power / storage battery output upper and lower limit constraints (that is, the internal combustion power generator output upper limit constraint 311 and the internal combustion power generator output lower limit constraint 312) relating to P k (t).

この式(3)において、
k_L:内燃力,蓄電池出力の下限制約値
k_U:内燃力,蓄電池出力の上限制約値
である。
In this equation (3),
P k_L : Lower limit constraint value of internal combustion force and storage battery output P k_U : Upper limit constraint value of internal combustion force and storage battery output

式(4)は、内燃力・蓄電池出力変化率制約(内燃力発電機出力変化率制約320、蓄電池出力変化率制約340)を示している。   Formula (4) shows the internal combustion power / storage battery output change rate constraint (internal combustion power generator output change rate constraint 320, storage battery output change rate constraint 340).

この式(4)において、
ΔP(t) :時刻tの内燃力・蓄電池出力変化率
ΔPk_L:内燃力・蓄電池出力変化率の下限制約値
ΔPk_U:内燃力・蓄電池出力変化率の上限制約値
である。
In this equation (4),
ΔP k (t): Internal combustion force / battery output change rate at time t ΔP k_L : Lower limit constraint value of internal combustion force / battery output change rate ΔP k_U : Upper limit constraint value of internal combustion force / battery output change rate

式(5)は、電池電力量制約を示している。   Equation (5) shows the battery power amount constraint.

この式(5)において、
(t):時刻tの蓄電池電力量
k_L:蓄電池電力量の下限制約値
k_U:蓄電池電力量の上限制約値
0k:蓄電池電力量の初期値
である。
In this formula (5),
W k (t): time t of battery power amount W k_L: battery power amount of the lower limit constraint value W k_U: battery power amount of the upper limit constraint value W 0k: is the initial value of the battery power consumption.

式(6)は、需給バランスの制約を示している。   Equation (6) shows the constraint on the supply and demand balance.

ここで、
(t):時刻tでの総負荷
である。
here,
P L (t): Total load at time t.

なお、上述の式(1)の目的関数Fによる燃料費と起動費を最小化する問題の求解としては、例えば、数理手法,メタヒューリスティク手法を用いることができる。具体的には、分枝限定法,遺伝的アルゴリズム(GA)とその改良手法、シミュレーティッドアニーリング(SA)とその改良手法、タブサーチ(以下TSと記す)とその改良手法およびParticle
Swarm Optimization(以下PSOと記す)とその改良手法などが用いることができる。
In addition, as a solution for the problem of minimizing the fuel cost and the start-up cost by the objective function F of the above equation (1), for example, a mathematical method or a metaheuristic method can be used. Specifically, branch and bound method, genetic algorithm (GA) and its improved method, simulated annealing (SA) and its improved method, tab search (hereinafter referred to as TS) and its improved method and Particle
Swarm Optimization (hereinafter referred to as PSO) and its improved methods can be used.

図5は、本実施の形態のマイクログリッド需給制御システムを構成する経済負荷配分制御部の作用の一例を説明する概念図である。
図5に例示されるように、本実施の形態の経済負荷配分制御部230は、予測機能部210から得られる短期需要予測値213と、需給計画部220から得られる内燃力発電機出力221、蓄電池出力222、内燃力発電機起動・停止状態223と、から内燃力発電設備の出力(内燃力発電機出力231)、電力貯蔵装置の蓄電池出力232を演算する。
FIG. 5 is a conceptual diagram illustrating an example of the operation of the economic load distribution control unit constituting the microgrid supply and demand control system of the present embodiment.
As illustrated in FIG. 5, the economic load distribution control unit 230 of the present embodiment includes a short-term demand prediction value 213 obtained from the prediction function unit 210, an internal combustion power generator output 221 obtained from the supply and demand planning unit 220, From the storage battery output 222 and the internal combustion power generator start / stop state 223, the output of the internal combustion power generation facility (internal combustion power generator output 231) and the storage battery output 232 of the power storage device are calculated.

すなわち、本実施の形態の場合、一例として、経済負荷配分制御部230は、内燃力発電機出力上下限制約(内燃力発電機出力上限制約311、内燃力発電機出力下限制約312)、内燃力発電機出力変化率制約320、蓄電池出力上下限制約(蓄電池出力上限制約331、蓄電池出力下限制約332)、蓄電池出力変化率制約340、蓄電池電力量上下限制約(蓄電量制約:蓄電池電力量上限制約351、蓄電池電力量下限制約352)、需給バランス制約360の制約条件のもと、内燃力発電設備130の燃料費を最小化する。   That is, in the case of the present embodiment, as an example, the economic load distribution control unit 230 includes the internal combustion power generator output upper and lower limit constraints (the internal combustion power generator output upper limit constraint 311 and the internal combustion power generator output lower limit constraint 312), and the internal combustion force. Generator output change rate constraint 320, storage battery output upper / lower limit constraint (storage battery output upper limit constraint 331, storage battery output lower limit constraint 332), storage battery output change rate constraint 340, storage battery power upper / lower limit constraint (storage amount constraint: storage battery power amount upper limit constraint 351, storage battery power lower limit constraint 352) and supply / demand balance constraint 360, the fuel cost of internal combustion power generation facility 130 is minimized.

本実施の形態の場合、経済負荷配分制御部230は、一例として、以下の式(7)に例示される目的関数Fを用いて内燃力発電設備130の燃料費を最小化する。
なお、この式(7)は、上述の式(1)における内燃力発電設備130の起動費に関する第2項を省略したものであり、制約条件等は、式(1)の場合と同様である。
In the case of the present embodiment, as an example, the economic load distribution control unit 230 minimizes the fuel cost of the internal combustion power generation facility 130 by using an objective function F exemplified in the following equation (7).
In addition, this formula (7) is obtained by omitting the second term relating to the start-up cost of the internal combustion power generation facility 130 in the above-described formula (1), and the constraints and the like are the same as in the case of formula (1). .

なお、上述の式(7)の目的関数Fによる燃料費を最小化する問題の求解としては、例えば、数理手法を用いることができる。具体的には、内点法,有効制約法などの二次計画法を用いることができる。 For example, a mathematical method can be used as a solution to the problem of minimizing the fuel cost by the objective function F of the above equation (7). Specifically, a quadratic programming method such as an interior point method or an effective constraint method can be used.

図6は、本実施の形態のマイクログリッド需給制御システムを構成する負荷周波数制御部の構成例をさらに詳細に例示したブロック図である。
図6に例示されるように、本実施の形態の負荷周波数制御部240は、経済負荷配分制御部230から得られる内燃力発電機出力231および蓄電池出力232と、周波数検出器160から得られる系統周波数fと、外部電力系統180との連系線潮流ΔPと、に基づいて、内燃力発電設備の出力(内燃力発電機出力241)、電力貯蔵装置140の蓄電池出力242を制御する。
FIG. 6 is a block diagram illustrating in more detail a configuration example of a load frequency control unit constituting the microgrid supply and demand control system of the present embodiment.
As illustrated in FIG. 6, the load frequency control unit 240 of the present embodiment includes an internal combustion power generator output 231 and a storage battery output 232 obtained from the economic load distribution control unit 230, and a system obtained from the frequency detector 160. and frequency f, and the tie line power flow [Delta] P T with the external electric power system 180, based on the output of the internal combustion power generation facilities (internal combustion power generator output 241), controls the battery output 242 of the power storage device 140.

すなわち、本実施の形態の負荷周波数制御部240は、系統周波数判定機能243、LPF(ローパスフィルタ)244a、LPF244b、加算器245a、加算器245b、加算器245c、不感帯設定器246a、不感帯設定器246b、系統定数器246c、リミッタ付きPI制御器247、負荷周波数制御出力配分器248(KG1,・・・KGN、およびKB1,・・,KBN)、変化率リミッタ249から構成される。 That is, the load frequency control unit 240 according to the present embodiment includes a system frequency determination function 243, an LPF (low pass filter) 244a, an LPF 244b, an adder 245a, an adder 245b, an adder 245c, a dead band setter 246a, and a dead band setter 246b. , System constant unit 246c, PI controller 247 with limiter, load frequency control output distributor 248 (K G1 ,... K GN , and K B1 ,..., K BN ), and change rate limiter 249.

基準周波数fの入力経路には、加算器245a、不感帯設定器246a、系統定数器246c、加算器245bが配置され、加算器245bの出力が、リミッタ付きPI制御器247への入力となっている。 The input path of the reference frequency f 0, the adder 245a, the dead zone setting unit 246a, system constants unit 246c, adder 245b is arranged, the output of the adder 245b is, it becomes the input to the limiter PI controller 247 Yes.

系統定数器246cには、不感帯設定器246aからの出力に乗算される系統定数(K)が設定される。
そして、基準周波数fは、加算器245aの加算入力となり、系統定数器246cの出力が加算器245bの減算入力となっている。
In the system constant unit 246c, a system constant (K) to be multiplied by the output from the dead band setting unit 246a is set.
Then, the reference frequency f 0 becomes a sum input of adder 245a, the output of the system constant unit 246c is a subtraction input of the adder 245b.

系統周波数fの入力経路には、LPF244a、系統周波数判定機能243、が配置され、系統周波数判定機能243のLFC常時制御出力243aが、加算器245aの減算入力となっている。   An LPF 244a and a system frequency determination function 243 are arranged on the input path of the system frequency f, and the LFC constant control output 243a of the system frequency determination function 243 is a subtraction input of the adder 245a.

系統周波数判定機能243は、周波数−継続時間定義テーブル243tを備えており、入力される系統周波数fを、周波数−継続時間定義テーブル243tで判別することにより、LFC常時制御出力243a、風力/太陽光発電出力抑制243b、風力/太陽光発電解列243c、負荷出力抑制243d、負荷遮断243eを出力する判定機能を備えている。   The system frequency determination function 243 includes a frequency-duration definition table 243t, and by determining the input system frequency f using the frequency-duration definition table 243t, the LFC constant control output 243a, wind power / solar power The power generation output suppression 243b, the wind / solar electrolysis column 243c, the load output suppression 243d, and the determination function for outputting the load cutoff 243e are provided.

連系線潮流ΔPの入力経路には、LPF244a、不感帯設定器246bが設けられ、不感帯設定器246bの出力が、加算器245bの加算入力となっている。
リミッタ付きPI制御器247の出力側には、内燃力発電設備130の数(G1〜GN)と、電力貯蔵装置140の数(B1〜BN)の数だけ、負荷周波数制御出力配分器248、変化率リミッタ249、加算器245cが並列に接続されている。
The input path tie-line power flow ΔP T, LPF244a, dead band setting unit 246b is provided, the output of the dead band setting unit 246b has a summing input of the adder 245b.
On the output side of the PI controller 247 with limiter, the load frequency control output distributor 248, the number of the internal combustion power generation facilities 130 (G1 to GN) and the number of the power storage devices 140 (B1 to BN) are changed. A rate limiter 249 and an adder 245c are connected in parallel.

変化率リミッタ249の各々の出力は、加算器245cにおける加算入力となっている。
そして、負荷周波数制御出力配分器248の各々には、対応する内燃力発電設備130および電力貯蔵装置140の各々の内燃力発電機出力231および蓄電池出力232が接続され、同様に、加算器245cには、対応する内燃力発電機出力231および蓄電池出力232が加算入力として接続されている。
Each output of the change rate limiter 249 is an addition input in the adder 245c.
Each load frequency control output distributor 248 is connected to each internal combustion power generator output 231 and storage battery output 232 of the corresponding internal combustion power generation facility 130 and power storage device 140, and similarly to the adder 245c. The corresponding internal combustion power generator output 231 and storage battery output 232 are connected as addition inputs.

そして、負荷周波数制御部240において、系統周波数判定機能243は、基準周波数fに対して、系統周波数fが所定の変動範囲の場合には、LFC常時制御出力243aを加算器245aに出力し、偏差が不感帯を逸脱する大きさになると、系統定数器246cを介して加算器245bに減算入力され、連系線潮流ΔP側の加算入力の和がリミッタ付きPI制御器247に入力される。 Then, the load frequency control unit 240, the system frequency determination function 243, the reference frequency f 0, if the system frequency f is in a predetermined variation range, and outputs the LFC constantly control output 243a to the adder 245a, When the deviation deviates from the dead zone, it is subtracted and input to the adder 245b via the system constant unit 246c, and the sum of the addition inputs on the interconnection power flow ΔP T side is input to the PI controller with limiter 247.

リミッタ付きPI制御器247は、比例・積分制御によって、個々の負荷周波数制御出力配分器248による内燃力発電機出力231および蓄電池出力232の配分率を制御する。   The PI controller 247 with limiter controls the distribution ratio of the internal combustion power generator output 231 and the storage battery output 232 by the individual load frequency control output distributor 248 by proportional / integral control.

これにより、変化率リミッタ249によって変化の上限および下限が既定される範囲で、個々の内燃力発電設備130および電力貯蔵装置140の各々に対応して設けられた負荷設定器G1〜GNおよび負荷設定器B1〜BNの各々に対して、内燃力発電機出力241および蓄電池出力242を出力することで、個々の内燃力発電設備130および電力貯蔵装置140の動作を、が基準周波数fからの系統周波数fの逸脱量が所定の許容範囲に収まるように制御する。 Thus, the load setting devices G1 to GN and the load setting provided corresponding to each of the internal combustion power generation equipment 130 and the power storage device 140 within a range in which the upper limit and the lower limit of the change are defined by the change rate limiter 249. for each vessel Bl to BN, strains by outputting an internal combustion power generator output 241 and accumulators output 242, the operation of individual internal combustion power generation facility 130 and power storage device 140, from but the reference frequency f 0 Control is performed so that the deviation amount of the frequency f falls within a predetermined allowable range.

また、系統周波数判定機能243は、系統周波数fが基準周波数fから所定の継続時間以上にわたって許容範囲を逸脱して変化した場合には、周波数−継続時間定義テーブル243tに基づいて、風力/太陽光発電出力抑制243b、風力/太陽光発電解列243c、負荷出力抑制243d、負荷遮断243eの各制御を行う。 Further, the system frequency determining function 243, if the change deviates from the allowable range from the reference frequency f 0 system frequency f is over the predetermined duration, frequency - based on the duration definition table 243T, wind / solar Each control of the photovoltaic power generation output suppression 243b, the wind / solar electrolysis column 243c, the load output suppression 243d, and the load cutoff 243e is performed.

以下、本実施の形態のマイクログリッド100を制御するマイクログリッド需給制御システム200の作用を説明する。
図2に例示されるように、まず、予測機能部210は、実績データベース250から読み出される過去の需要実績251および気象予報値211等の情報に基づいて、長期需要予測値212および短期需要予測値213を、需給計画部220および経済負荷配分制御部230に出力する。
Hereinafter, the operation of the microgrid supply and demand control system 200 that controls the microgrid 100 of the present embodiment will be described.
As illustrated in FIG. 2, first, the prediction function unit 210 determines the long-term demand forecast value 212 and the short-term demand forecast value based on information such as the past demand record 251 and the weather forecast value 211 read from the record database 250. 213 is output to the supply and demand planning unit 220 and the economic load distribution control unit 230.

需給計画部220では、長期需要予測値212に基づいて内燃力発電機出力221、蓄電池出力222、内燃力発電機起動・停止状態223の情報を経済負荷配分制御部230に出力する。   The supply and demand planning unit 220 outputs information on the internal combustion power generator output 221, the storage battery output 222, and the internal combustion power generator start / stop state 223 to the economic load distribution control unit 230 based on the long-term demand prediction value 212.

経済負荷配分制御部230は、予測機能部210から得られる短期需要予測値213と、需給計画部220から得られた内燃力発電機出力221、蓄電池出力222、内燃力発電機起動・停止状態223に基づいて、内燃力発電機出力231および蓄電池出力232の情報を負荷周波数制御部240に出力する。   The economic load distribution control unit 230 includes a short-term demand prediction value 213 obtained from the prediction function unit 210, an internal combustion power generator output 221 and a storage battery output 222 obtained from the supply and demand planning unit 220, and an internal combustion power generator start / stop state 223. Based on the above, information on the internal combustion power generator output 231 and the storage battery output 232 is output to the load frequency control unit 240.

負荷周波数制御部240は、経済負荷配分制御部230から得られる内燃力発電機出力231および蓄電池出力232に対して、マイクログリッド100の現在の系統周波数fと、外部電力系統180の連系線潮流ΔPに基づいて、マイクログリッド100の系統周波数fの変動を所定の範囲に抑制して安定させつつ、内燃力発電設備130、電力貯蔵
装置140および再生可能エネルギ利用発電設備150と、負荷120との需給バランスを制御する。
The load frequency control unit 240 uses the internal grid power output 231 and the storage battery output 232 obtained from the economic load distribution control unit 230 and the current grid frequency f of the microgrid 100 and the grid line flow of the external power grid 180. Based on ΔP T , the fluctuation of the system frequency f of the microgrid 100 is controlled to be stabilized within a predetermined range, and the internal combustion power generation facility 130, the power storage device 140, the renewable energy utilization power generation facility 150, the load 120, Control the supply-demand balance.

図7は、本実施の形態のマイクログリッド需給制御システムにおける負荷周波数制御部における系統周波数判定機能の制御領域の一例を示す制御領域マップである。
すなわち、負荷周波数制御部240おいて、系統周波数判定機能243は、周波数−継続時間定義テーブル243tに基づいて、マイクログリッド100の系統周波数fの基準周波数fに対する変動が所定の小さな範囲では、リミッタ付きPI制御器247の制御系列により、負荷設定器G1〜GNおよび負荷設定器B1〜BNの各々に対する内燃力発電機出力241および蓄電池出力242の出力を制御する。
FIG. 7 is a control region map showing an example of a control region of the system frequency determination function in the load frequency control unit in the microgrid supply and demand control system of the present embodiment.
That is, the load frequency control unit 240 Oite, system frequency determination function 243, frequency - based on the duration definition table 243T, a small range variation is predetermined with respect to the reference frequency f 0 of the system frequency f of the micro grid 100, limiter The output of the internal combustion power generator output 241 and the storage battery output 242 for each of the load setting devices G1 to GN and the load setting devices B1 to BN is controlled by the control series of the attached PI controller 247.

これが、図7の負荷周波数常時制御(領域I)である。
また、系統周波数判定機能243は、周波数−継続時間定義テーブル243tに基づいて、系統周波数fが、上述の領域Iよりも所定の継続時間以上および所定値以上増大側に変動した場合には、風力/太陽光発電出力抑制243bを再生可能エネルギ利用発電設備150に出力して、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備の出力抑制を行う(領域IIO)。
This is the constant load frequency control (region I) in FIG.
Further, the system frequency determination function 243 determines the wind power when the system frequency f fluctuates more than a predetermined duration and a predetermined value or more from the above-described region I based on the frequency-duration definition table 243t. / Solar power generation output suppression 243b is output to the renewable energy utilization power generation facility 150 to suppress output of the power generation facility using renewable energy such as solar power generation facility or wind power generation facility (region IIO).

また、系統周波数判定機能243は、領域IIOよりもさらに、系統周波数fが、所定の継続時間以上および所定値以上増大側に変動した場合には、再生可能エネルギ利用発電設備150に対して風力/太陽光発電解列243cを出力し、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した発電設備のマイクログリッド100からの解列を行う(領域IIIO)。   Further, the system frequency determination function 243 further increases the wind power / power generation facility 150 with respect to the wind power / power generation facility 150 when the system frequency f fluctuates more than a predetermined duration and more than a predetermined value. The solar electrolysis column 243c is output, and the power generation facility using the renewable energy such as the solar power generation facility or the wind power generation facility is disconnected from the microgrid 100 (area IIIO).

また、系統周波数判定機能243は、周波数−継続時間定義テーブル243tに基づいて、系統周波数fが、上述の領域Iよりも所定の継続時間以上および所定値以上減少側に変動した場合には、負荷120に対して負荷出力抑制243dを出力することにより、負荷出力抑制を行う(領域IIU)。   In addition, the system frequency determination function 243 determines that the load is applied when the system frequency f changes to a decreasing side more than a predetermined duration and a predetermined value or more than the above-described region I based on the frequency-duration definition table 243t. The load output is suppressed by outputting the load output suppression 243d to 120 (area IIU).

また、系統周波数判定機能243は、系統周波数fが、領域IIUよりもさらに所定の継続時間以上および所定値以上減少側に変動した場合には、負荷120に対して負荷遮断243eを出力して、負荷120をマイクログリッド100から切り離す負荷遮断(領域IIIU)を行う。   Further, the system frequency determination function 243 outputs a load cutoff 243e to the load 120 when the system frequency f further fluctuates more than a predetermined duration and a predetermined value or more than the region IIU, A load interruption (area IIIU) for separating the load 120 from the microgrid 100 is performed.

このように、本実施の形態の場合には、例えば、電力過疎地域や離島などのマイクログリッド100において、周波数の安定性を向上させつつ、マイクログリッドの需給制御を実現できる、という効果が得られる。   As described above, in the case of the present embodiment, for example, in the microgrid 100 such as a sparsely populated area or a remote island, there is an effect that the supply and demand control of the microgrid can be realized while improving the frequency stability. .

すなわち、本実施の形態によれば、内燃力発電設備130と、太陽光発電設備や風力発電設備などの再生可能エネルギを利用した再生可能エネルギ利用発電設備150、電力貯蔵装置140で構成されるマイクログリッド100において、太陽光発電設備における日射量変動、風力発電設備における風速変動等による出力変動に対してマイクログリッド100の周波数を安定化し、電力品質を向上させることが可能となる。   That is, according to the present embodiment, the internal combustion power generation facility 130, the renewable energy utilization power generation facility 150 using the renewable energy such as the solar power generation facility and the wind power generation facility, and the power storage device 140 are used. In the grid 100, it is possible to stabilize the frequency of the microgrid 100 against output fluctuations due to fluctuations in solar radiation in the solar power generation equipment, wind speed fluctuations in the wind power generation equipment, etc., and improve power quality.

換言すれば、周波数変動等の電力品質の低下を懸念することなく、マイクログリッド100に対する再生可能エネルギ利用発電設備150の接続数を増やして、自然エネルギ等の再生可能エネルギを利用した発電の割合を大きくすることにより、発電コストを引き下げることが可能になる。   In other words, the percentage of power generation using renewable energy such as natural energy can be increased by increasing the number of connected renewable energy power generation facilities 150 to the microgrid 100 without worrying about power quality degradation such as frequency fluctuations. By increasing the power generation cost, it becomes possible to reduce the power generation cost.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範
囲で種々変更可能であることは言うまでもない。
例えば、再生可能エネルギとしては、太陽光や風力に限らず、廃棄物やバイオマス等の燃焼エネルギ等も含むことができる。
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the renewable energy is not limited to sunlight and wind power, but can also include combustion energy such as waste and biomass.

100 マイクログリッド
110 送電網
111 連携線
120 負荷
130 内燃力発電設備
140 電力貯蔵装置
150 再生可能エネルギ利用発電設備
160 周波数検出器
170 有効電力演算器
180 外部電力系統
200 マイクログリッド需給制御システム
210 予測機能部
211 気象予報値
212 長期需要予測値
213 短期需要予測値
220 需給計画部
221 内燃力発電機出力
222 蓄電池出力
223 内燃力発電機起動・停止状態
230 経済負荷配分制御部
231 内燃力発電機出力
232 蓄電池出力
240 負荷周波数制御部
241 内燃力発電機出力
242 蓄電池出力
243 系統周波数判定機能
243a LFC常時制御出力
243b 風力/太陽光発電出力抑制
243c 風力/太陽光発電解列
243d 負荷出力抑制
243e 負荷遮断
243t 周波数−継続時間定義テーブル
244a LPF
244b LPF
245a 加算器
245b 加算器
245c 加算器
246a 不感帯設定器
246b 不感帯設定器
246c 系統定数器
247 リミッタ付きPI制御器
248 負荷周波数制御出力配分器
249 変化率リミッタ
250 実績データベース
251 需要実績
311 内燃力発電機出力上限制約
312 内燃力発電機出力下限制約
320 内燃力発電機出力変化率制約
331 蓄電池出力上限制約
332 蓄電池出力下限制約
340 蓄電池出力変化率制約
351 蓄電池電力量上限制約
352 蓄電池電力量下限制約
360 需給バランス制約
f 系統周波数
基準周波数
ΔP 連系線潮流
DESCRIPTION OF SYMBOLS 100 Micro grid 110 Power transmission network 111 Cooperation line 120 Load 130 Internal combustion power generation equipment 140 Electric power storage apparatus 150 Renewable energy utilization power generation equipment 160 Frequency detector 170 Active power calculator 180 External power system 200 Micro grid supply and demand control system 210 Prediction function part 211 Weather forecast value 212 Long-term demand forecast value 213 Short-term demand forecast value 220 Supply and demand planning section 221 Internal combustion power generator output 222 Storage battery output 223 Internal combustion power generator start / stop state 230 Economic load distribution control section 231 Internal combustion power generator output 232 Storage battery Output 240 Load frequency control unit 241 Internal power generator output 242 Storage battery output 243 System frequency determination function 243a LFC constant control output 243b Wind / solar power generation output suppression 243c Wind / solar electrolysis column 243d Load output suppression 243e Load interception 243t Frequency-duration definition table 244a LPF
244b LPF
245a Adder 245b Adder 245c Adder 246a Dead band setter 246b Dead band setter 246c System constant unit 247 PI controller with limiter 248 Load frequency control output distributor 249 Change rate limiter 250 Result database 251 Demand record 311 Internal combustion power generator output Upper limit constraint 312 Internal combustion power generator output lower limit constraint 320 Internal combustion power generator output change rate constraint 331 Storage battery output upper limit constraint 332 Storage battery output lower limit constraint 340 Storage battery output change rate constraint 351 Storage battery power upper limit constraint 352 Storage battery power lower limit constraint 360 Supply / demand balance Constraint f System frequency f 0 Reference frequency ΔP T- connected line power flow

Claims (9)

内燃力発電設備と、再生可能エネルギ利用発電設備と、電力貯蔵装置と、電力を消費する負荷と、を含むマイクログリッドの需給制御装置において、
気象予報値および需要実績から、長期需要予測値および短期需要予測値を演算する予測手段と、
前記長期需要予測値から、前記内燃力発電設備の起動・停止状態、前記内燃力発電設備の出力、前記電力貯蔵装置の蓄電出力を演算する需給計画手段と、
前記短期需要予測値から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する経済負荷配分制御手段と、
前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力、系統周波数、および外部の電力系統との連系線潮流から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する負荷周波数制御手段と、
を備えることを特徴とするマイクログリッドの需給制御装置。
In a microgrid supply and demand control device including an internal combustion power generation facility, a renewable energy utilization power generation facility, a power storage device, and a load that consumes power,
A forecasting means for calculating long-term demand forecast values and short-term demand forecast values from weather forecast values and demand results;
From the long-term demand forecast value, the supply / demand planning means for calculating the start / stop state of the internal combustion power generation facility, the output of the internal combustion power generation facility, the storage output of the power storage device,
Economic load distribution control means for calculating the output of the internal combustion power generation facility, the power storage output of the power storage device from the short-term demand forecast value,
From the output of the internal combustion power generation facility, the power storage output of the power storage device, the grid frequency, and the interconnection power flow with an external power system, the output of the internal combustion power generation facility, the power storage output of the power storage device Load frequency control means for calculating;
A supply and demand control device for a microgrid characterized by comprising:
請求項1記載のマイクログリッドの需給制御装置において、
前記需給計画手段は、目的関数として前記内燃力発電設備の燃料費および起動費を用い、
前記目的関数の制約条件として、
前記内燃力発電設備の前記出力の上限制約および下限制約、
前記内燃力発電設備の前記出力の変化率制約、
前記電力貯蔵装置の前記出力の上限制約および下限制約、
前記電力貯蔵装置の前記蓄電出力の変化率制約、
前記電力貯蔵装置の蓄電量の上限制約および下限制約、
前記内燃力発電設備の前記出力および前記電力貯蔵装置の前記蓄電出力の和と前記負荷との需給バランス制約、
を用いることを特徴とするマイクログリッドの需給制御装置。
The supply and demand control device for a microgrid according to claim 1,
The supply and demand planning means uses the fuel cost and start-up cost of the internal combustion power generation facility as an objective function,
As a constraint condition of the objective function,
Upper limit and lower limit constraints on the output of the internal combustion power generation facility,
The rate of change restriction of the output of the internal combustion power generation facility,
Upper limit and lower limit constraints on the output of the power storage device,
Change rate constraint of the electricity storage output of the power storage device,
Upper limit and lower limit constraints on the amount of electricity stored in the power storage device,
Supply and demand balance constraint between the load and the sum of the output of the internal combustion power generation facility and the storage output of the power storage device;
A supply and demand control device for a microgrid characterized in that
請求項1記載のマイクログリッドの需給制御装置において、
前記経済負荷配分制御手段の目的関数に前記内燃力発電設備の燃料費を用い、
制約条件に前記内燃力発電設備の前記出力の上限制約および下限制約、
前記内燃力発電設備の前記出力の変化率制約、
前記電力貯蔵装置の前記蓄電出力の上限制約および下限制約、
前記電力貯蔵装置の前記蓄電出力の変化率制約、
前記電力貯蔵装置の蓄電量の上限制約および下限制約、
前記内燃力発電設備の前記出力および前記電力貯蔵装置の前記蓄電出力の和と前記負荷との需給バランス制約、
を用いることを特徴とするマイクログリッドの需給制御装置。
The supply and demand control device for a microgrid according to claim 1,
Using the fuel cost of the internal combustion power generation facility as an objective function of the economic load distribution control means,
An upper limit constraint and a lower limit constraint of the output of the internal combustion power generation facility as a constraint condition,
The rate of change restriction of the output of the internal combustion power generation facility,
An upper limit constraint and a lower limit constraint for the electricity storage output of the power storage device;
Change rate constraint of the electricity storage output of the power storage device;
Upper limit and lower limit constraints on the amount of electricity stored in the power storage device,
Supply and demand balance constraint between the load and the sum of the output of the internal combustion power generation facility and the storage output of the power storage device;
A supply and demand control device for a microgrid characterized in that
請求項1記載のマイクログリッドの需給制御装置において、
前記負荷周波数制御手段は、系統周波数判定手段と、PI(比例・積分)制御手段を含むことを特徴とするマイクログリッドの需給制御装置。
The supply and demand control device for a microgrid according to claim 1,
The load frequency control means includes a system frequency determination means and a PI (proportional / integral) control means.
請求項4記載のマイクログリッドの需給制御装置において、
前記系統周波数判定手段は、系統周波数と、予め決められた前記系統周波数と継続時間の関係を定義したテーブルとから、前記再生可能エネルギ利用発電設備の出力抑制、前記再生可能エネルギ利用発電設備の解列、負荷出力抑制、負荷遮断を判別することを特徴とするマイクログリッドの需給制御装置。
In the microgrid supply and demand control device according to claim 4,
The system frequency determination means is configured to suppress output of the renewable energy-based power generation facility and solve the renewable energy-based power generation facility from a system frequency and a table that defines a predetermined relationship between the system frequency and a duration. A supply and demand control device for a microgrid characterized by discriminating a row, load output suppression, and load interruption.
内燃力発電設備と、再生可能エネルギ利用発電設備と、電力貯蔵装置と、電力を消費す
る負荷と、を含むマイクログリッドの需給制御方法において、
気象予報値および需要実績から、長期需要予測値および短期需要予測値を演算する予測ステップと、
前記長期需要予測値から、前記内燃力発電設備の起動・停止状態、前記内燃力発電設備の出力、前記電力貯蔵装置の蓄電出力を演算する需給計画ステップと、
前記短期需要予測値から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する経済負荷配分制御ステップと、
前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力、系統周波数、および外部の電力系統との連系線潮流から、前記内燃力発電設備の出力、前記電力貯蔵装置の前記蓄電出力を演算する負荷周波数制御ステップと、
を含むことを特徴とするマイクログリッドの需給制御方法。
In a power supply and demand control method for a microgrid including an internal combustion power generation facility, a renewable energy utilization power generation facility, a power storage device, and a load that consumes power,
A forecasting step for calculating a long-term demand forecast value and a short-term demand forecast value from the weather forecast value and the demand record;
From the long-term demand forecast value, the supply / demand planning step of calculating the start / stop state of the internal combustion power generation facility, the output of the internal combustion power generation facility, the storage output of the power storage device,
From the short-term demand forecast value, an economic load distribution control step of calculating the output of the internal combustion power generation facility and the storage output of the power storage device;
From the output of the internal combustion power generation facility, the power storage output of the power storage device, the grid frequency, and the interconnection power flow with an external power system, the output of the internal combustion power generation facility, the power storage output of the power storage device A load frequency control step to be calculated;
A supply and demand control method for a microgrid characterized by comprising:
請求項6記載のマイクログリッドの需給制御方法において、
前記需給計画ステップでは目的関数として前記内燃力発電設備の燃料費および起動費を用い、
前記目的関数の制約条件として、
前記内燃力発電設備の前記出力の上限制約および下限制約、
前記内燃力発電設備の前記出力の変化率制約、
前記電力貯蔵装置の前記出力の上限制約および下限制約、
前記電力貯蔵装置の前記蓄電出力の変化率制約、
前記電力貯蔵装置の蓄電量の上限制約および下限制約、
前記内燃力発電設備の前記出力および前記電力貯蔵装置の前記蓄電出力の和と前記負荷との需給バランス制約、
を用いることを特徴とするマイクログリッドの需給制御方法。
In the microgrid supply and demand control method according to claim 6,
In the supply and demand planning step, the fuel cost and start-up cost of the internal combustion power generation facility are used as an objective function,
As a constraint condition of the objective function,
Upper limit and lower limit constraints on the output of the internal combustion power generation facility,
The rate of change restriction of the output of the internal combustion power generation facility,
Upper limit and lower limit constraints on the output of the power storage device,
Change rate constraint of the electricity storage output of the power storage device,
Upper limit and lower limit constraints on the amount of electricity stored in the power storage device,
Supply and demand balance constraint between the load and the sum of the output of the internal combustion power generation facility and the storage output of the power storage device;
A method for controlling supply and demand of a microgrid characterized by using the
請求項6記載のマイクログリッドの需給制御方法において、
前記経済負荷配分制御ステップでは、目的関数として前記内燃力発電設備の燃料費を用い、
制約条件に前記内燃力発電設備の前記出力の上限制約および下限制約、
前記内燃力発電設備の前記出力の変化率制約、
前記電力貯蔵装置の前記蓄電出力の上限制約および下限制約、
前記電力貯蔵装置の前記蓄電出力の変化率制約、
前記電力貯蔵装置の蓄電量の上限制約および下限制約、
前記内燃力発電設備の前記出力および前記電力貯蔵装置の前記蓄電出力の和と前記負荷との需給バランス制約、
を用いることを特徴とするマイクログリッドの需給制御方法。
In the microgrid supply and demand control method according to claim 6,
In the economic load distribution control step, the fuel cost of the internal combustion power generation facility is used as an objective function,
An upper limit constraint and a lower limit constraint of the output of the internal combustion power generation facility as a constraint condition,
The rate of change restriction of the output of the internal combustion power generation facility,
An upper limit constraint and a lower limit constraint for the electricity storage output of the power storage device;
Change rate constraint of the electricity storage output of the power storage device,
Upper limit and lower limit constraints on the amount of electricity stored in the power storage device,
Supply and demand balance constraint between the load and the sum of the output of the internal combustion power generation facility and the storage output of the power storage device;
A method for controlling supply and demand of a microgrid characterized by using the
請求項6記載のマイクログリッドの需給制御方法において、
前記負荷周波数制御ステップは、
系統周波数と、予め決められた前記系統周波数と継続時間の関係を定義したテーブルとから、前記再生可能エネルギ利用発電設備の出力抑制、前記再生可能エネルギ利用発電設備の解列、負荷出力抑制、負荷遮断を演算する系統周波数判定ステップを含むことを特徴とするマイクログリッドの需給制御方法。
In the microgrid supply and demand control method according to claim 6,
The load frequency control step includes
From a system frequency and a table that defines a predetermined relationship between the system frequency and the duration, output suppression of the renewable energy-use power generation facility, disconnection of the renewable energy-use power generation facility, load output suppression, load A method for controlling supply and demand of a microgrid, comprising a system frequency determination step for calculating a cutoff.
JP2009267398A 2009-11-25 2009-11-25 Microgrid supply and demand control device and microgrid supply and demand control method Active JP5402566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267398A JP5402566B2 (en) 2009-11-25 2009-11-25 Microgrid supply and demand control device and microgrid supply and demand control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267398A JP5402566B2 (en) 2009-11-25 2009-11-25 Microgrid supply and demand control device and microgrid supply and demand control method

Publications (2)

Publication Number Publication Date
JP2011114900A true JP2011114900A (en) 2011-06-09
JP5402566B2 JP5402566B2 (en) 2014-01-29

Family

ID=44236848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267398A Active JP5402566B2 (en) 2009-11-25 2009-11-25 Microgrid supply and demand control device and microgrid supply and demand control method

Country Status (1)

Country Link
JP (1) JP5402566B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270852A (en) * 2011-07-27 2011-12-07 上海电力学院 Method for analyzing operating mode set after accessing renewable energy to isolated power grid
CN102664408A (en) * 2012-05-12 2012-09-12 山东鲁冶瑞宝电气自动化有限公司 Network reconfiguration technology of power supply and distribution network based on multiple generator sets
CN102832698A (en) * 2012-09-05 2012-12-19 南京航空航天大学 Novel software phaselock technique applicable to micro-grid master-slave control
WO2012172616A1 (en) * 2011-06-17 2012-12-20 株式会社日立製作所 Microgrid control system
JP2013093933A (en) * 2011-10-24 2013-05-16 Chugoku Electric Power Co Inc:The Internal combustion power generator operation control apparatus and method
WO2013095625A1 (en) * 2011-12-23 2013-06-27 Hewlett-Packard Development Company, L.P. Managing a facility
WO2013095624A1 (en) * 2011-12-23 2013-06-27 Hewlett-Packard Development Company, L.P. Generating a capacity schedule for a facility
JP2013169089A (en) * 2012-02-16 2013-08-29 Hitachi Ltd Operation method, operation apparatus of power system, and storage battery management device
CN103326395A (en) * 2013-05-23 2013-09-25 国家电网公司 Microgrid coordinated control system based on various distributed power sources
WO2013140916A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 System stabilization device
JP2013212044A (en) * 2012-02-29 2013-10-10 Fuji Electric Co Ltd Supply and demand control device
WO2014092195A1 (en) * 2012-12-10 2014-06-19 日本電気株式会社 Distributed power generation system, control station, and control method therefor
JP2014128139A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Optimal control apparatus for composite energy system and method thereof
JP2014128137A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power system monitoring control device
WO2014132659A1 (en) 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2014161175A (en) * 2013-02-20 2014-09-04 Kitami Institute Of Technology Power supply system
JP2014166132A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Method for optimizing power flows in electric power networks
CN105162167A (en) * 2015-09-30 2015-12-16 国网山东省电力公司电力科学研究院 Adaptive-droop-control-based wind-photovoltaic-energy-storage micro-grid frequency modulation method
WO2016027379A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method
WO2016027380A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
JP2016032336A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system and power demand plan optimization method
JP2016040997A (en) * 2014-08-13 2016-03-24 株式会社Ihi Energy management system, power supply and demand plan optimization method, and power supply and demand plan optimization program
CN105552902A (en) * 2016-01-25 2016-05-04 中国电力科学研究院 Super-short-term forecasting method for load of terminal of power distribution network based on real-time measurement of feeder end
JP2016093050A (en) * 2014-11-10 2016-05-23 株式会社東光高岳 Supply-and-demand control apparatus, power supply system, and supply-and-demand control method
JP2016093049A (en) * 2014-11-10 2016-05-23 東京電力株式会社 Supply-demand control device and supply-demand control method
CN105720596A (en) * 2014-12-02 2016-06-29 国家电网公司 Frequency modulation method and frequency modulation device for power energy storage system
CN103729697B (en) * 2014-01-14 2016-09-21 国家电网公司 A kind of power grid multilink interaction system improving intermittent new energy digestion capability
JP2016178736A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Frequency control method
KR20160145707A (en) * 2014-04-15 2016-12-20 리액티브 테크놀로지스 리미티드 Frequency response
WO2017029756A1 (en) * 2015-08-20 2017-02-23 シャープ株式会社 Power supply system, output control device, output control method, and recording medium
JP2017079507A (en) * 2015-10-19 2017-04-27 株式会社日立製作所 Power-supply system of distribution power supply
CN107317361A (en) * 2017-08-18 2017-11-03 华北电力大学 A kind of active distribution network global optimization dispatching method for considering regional autonomy ability
CN107612024A (en) * 2017-09-12 2018-01-19 国网吉林省电力有限公司 A kind of grid-connected dispatching method of new energy power station
JP2018183034A (en) * 2017-04-17 2018-11-15 日新電機株式会社 Protector for power supply system and system comprising the same
CN108879728A (en) * 2018-07-17 2018-11-23 湖南大学 A kind of multi-source micro-capacitance sensor frequency control method for coordinating
JP2019527023A (en) * 2016-09-13 2019-09-19 コリア エレクトリック パワー コーポレイション Microgrid operation apparatus and operation method considering PCS efficiency
JP2020108193A (en) * 2018-12-26 2020-07-09 川崎重工業株式会社 Power system stabilizer
US10734812B2 (en) 2015-07-08 2020-08-04 Nec Corporation Renewable power system and sizing method for controllable plant associated with renewable power system
JP2021072734A (en) * 2019-10-31 2021-05-06 株式会社東芝 Power control device and power control method
CN114123249A (en) * 2021-12-13 2022-03-01 华能(浙江)能源开发有限公司清洁能源分公司 Load frequency control method of wind power interconnection-containing power system based on battery energy storage active response
JP2022047022A (en) * 2020-09-11 2022-03-24 三菱重工業株式会社 Power system stabilization system and power system stabilization method
JP7438029B2 (en) 2020-06-08 2024-02-26 三菱重工業株式会社 energy management system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017003022T5 (en) 2016-06-17 2019-03-07 Panasonic Intellectual Property Management Co., Ltd. Management system for electric power
CN111490516B (en) * 2019-01-29 2022-06-28 国家电网公司西南分部 Classification method for power system looped network analytic layering

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103525A (en) * 1982-12-03 1984-06-15 株式会社日立製作所 Interlocking power controlling method
JPS6051420A (en) * 1983-08-30 1985-03-22 株式会社日立製作所 Load distributing method of power system
JP2005102357A (en) * 2003-09-22 2005-04-14 Meidensha Corp Method and device for preparing start/stop plan of generator, recording medium for recording process program thereof
JP2007060742A (en) * 2005-08-22 2007-03-08 Toshiba Corp Control system for electric power network
JP2008263706A (en) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The Controller for regulating demand and supply of power in microgrid
JP2011050133A (en) * 2009-08-25 2011-03-10 Toshiba Corp Device for controlling demand-supply of power system, demand-supply control program, and recording medium therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103525A (en) * 1982-12-03 1984-06-15 株式会社日立製作所 Interlocking power controlling method
JPS6051420A (en) * 1983-08-30 1985-03-22 株式会社日立製作所 Load distributing method of power system
JP2005102357A (en) * 2003-09-22 2005-04-14 Meidensha Corp Method and device for preparing start/stop plan of generator, recording medium for recording process program thereof
JP2007060742A (en) * 2005-08-22 2007-03-08 Toshiba Corp Control system for electric power network
JP2008263706A (en) * 2007-04-11 2008-10-30 Chugoku Electric Power Co Inc:The Controller for regulating demand and supply of power in microgrid
JP2011050133A (en) * 2009-08-25 2011-03-10 Toshiba Corp Device for controlling demand-supply of power system, demand-supply control program, and recording medium therefor

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742189B2 (en) 2011-06-17 2017-08-22 Hitachi, Ltd. Microgrid control system
JPWO2012172616A1 (en) * 2011-06-17 2015-02-23 株式会社日立製作所 Micro grid control system
WO2012172616A1 (en) * 2011-06-17 2012-12-20 株式会社日立製作所 Microgrid control system
CN102270852A (en) * 2011-07-27 2011-12-07 上海电力学院 Method for analyzing operating mode set after accessing renewable energy to isolated power grid
JP2013093933A (en) * 2011-10-24 2013-05-16 Chugoku Electric Power Co Inc:The Internal combustion power generator operation control apparatus and method
WO2013095624A1 (en) * 2011-12-23 2013-06-27 Hewlett-Packard Development Company, L.P. Generating a capacity schedule for a facility
CN103959190A (en) * 2011-12-23 2014-07-30 惠普发展公司,有限责任合伙企业 Managing a facility
WO2013095625A1 (en) * 2011-12-23 2013-06-27 Hewlett-Packard Development Company, L.P. Managing a facility
CN103959190B (en) * 2011-12-23 2015-09-30 惠普发展公司,有限责任合伙企业 Facilities management
GB2511707A (en) * 2011-12-23 2014-09-10 Hewlett Packard Development Co Managing a facility
US9792568B2 (en) 2011-12-23 2017-10-17 Hewlett Packard Enterprise Development Lp Generating a capacity schedule for a facility
JP2013169089A (en) * 2012-02-16 2013-08-29 Hitachi Ltd Operation method, operation apparatus of power system, and storage battery management device
US10291034B2 (en) 2012-02-16 2019-05-14 Hitachi, Ltd. Method and device for operating power system, and rechargeable-battery management device
CN104170201A (en) * 2012-02-16 2014-11-26 株式会社日立制作所 Method and device for operating power system, and rechargeable-battery management device
JP2013212044A (en) * 2012-02-29 2013-10-10 Fuji Electric Co Ltd Supply and demand control device
US9640999B2 (en) 2012-03-19 2017-05-02 Mitsubishi Electric Corporation Power system stabilizer
WO2013140916A1 (en) * 2012-03-19 2013-09-26 三菱電機株式会社 System stabilization device
JPWO2013140916A1 (en) * 2012-03-19 2015-08-03 三菱電機株式会社 System stabilization device
CN104205548A (en) * 2012-03-19 2014-12-10 三菱电机株式会社 System stabilization device
CN102664408A (en) * 2012-05-12 2012-09-12 山东鲁冶瑞宝电气自动化有限公司 Network reconfiguration technology of power supply and distribution network based on multiple generator sets
CN102832698A (en) * 2012-09-05 2012-12-19 南京航空航天大学 Novel software phaselock technique applicable to micro-grid master-slave control
US10389116B2 (en) 2012-12-10 2019-08-20 Nec Corporation Distributed electric power generation system, control station, and method of controlling the same
JPWO2014092195A1 (en) * 2012-12-10 2017-01-12 日本電気株式会社 Distributed power generation system, control station, and control method thereof
WO2014092195A1 (en) * 2012-12-10 2014-06-19 日本電気株式会社 Distributed power generation system, control station, and control method therefor
JP2014128137A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power system monitoring control device
JP2014128139A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Optimal control apparatus for composite energy system and method thereof
JP2014161175A (en) * 2013-02-20 2014-09-04 Kitami Institute Of Technology Power supply system
JP2014166132A (en) * 2013-02-27 2014-09-08 Mitsubishi Electric Corp Method for optimizing power flows in electric power networks
US9859735B2 (en) 2013-03-01 2018-01-02 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
WO2014132659A1 (en) 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
US10181737B2 (en) 2013-03-01 2019-01-15 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
CN103326395A (en) * 2013-05-23 2013-09-25 国家电网公司 Microgrid coordinated control system based on various distributed power sources
CN103326395B (en) * 2013-05-23 2015-12-09 国家电网公司 A kind of microgrid coordination control system based on multiple distributed power source
CN103729697B (en) * 2014-01-14 2016-09-21 国家电网公司 A kind of power grid multilink interaction system improving intermittent new energy digestion capability
KR20160145707A (en) * 2014-04-15 2016-12-20 리액티브 테크놀로지스 리미티드 Frequency response
KR102499505B1 (en) * 2014-04-15 2023-02-13 리액티브 테크놀로지스 리미티드 Frequency response
JP2016032336A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system and power demand plan optimization method
JP2016040997A (en) * 2014-08-13 2016-03-24 株式会社Ihi Energy management system, power supply and demand plan optimization method, and power supply and demand plan optimization program
JP5946983B1 (en) * 2014-08-22 2016-07-06 中国電力株式会社 Supply and demand control device, supply and demand control method
WO2016027380A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
WO2016027379A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device and supply and demand control method
JP6090532B2 (en) * 2014-08-22 2017-03-08 中国電力株式会社 Supply and demand control device, supply and demand control method
JPWO2016027380A1 (en) * 2014-08-22 2017-04-27 中国電力株式会社 Supply and demand control device, supply and demand control method
JPWO2016027379A1 (en) * 2014-08-22 2017-04-27 中国電力株式会社 Supply and demand control device, supply and demand control method
WO2016027378A1 (en) * 2014-08-22 2016-02-25 中国電力株式会社 Supply and demand control device, supply and demand control method
JP2016093050A (en) * 2014-11-10 2016-05-23 株式会社東光高岳 Supply-and-demand control apparatus, power supply system, and supply-and-demand control method
JP2016093049A (en) * 2014-11-10 2016-05-23 東京電力株式会社 Supply-demand control device and supply-demand control method
CN105720596A (en) * 2014-12-02 2016-06-29 国家电网公司 Frequency modulation method and frequency modulation device for power energy storage system
JP2016178736A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Frequency control method
US10734812B2 (en) 2015-07-08 2020-08-04 Nec Corporation Renewable power system and sizing method for controllable plant associated with renewable power system
WO2017029756A1 (en) * 2015-08-20 2017-02-23 シャープ株式会社 Power supply system, output control device, output control method, and recording medium
CN105162167A (en) * 2015-09-30 2015-12-16 国网山东省电力公司电力科学研究院 Adaptive-droop-control-based wind-photovoltaic-energy-storage micro-grid frequency modulation method
JP2017079507A (en) * 2015-10-19 2017-04-27 株式会社日立製作所 Power-supply system of distribution power supply
CN105552902A (en) * 2016-01-25 2016-05-04 中国电力科学研究院 Super-short-term forecasting method for load of terminal of power distribution network based on real-time measurement of feeder end
CN105552902B (en) * 2016-01-25 2021-01-12 中国电力科学研究院 Ultra-short-term load prediction method for power distribution network terminal based on real-time measurement of feeder terminal
JP2019527023A (en) * 2016-09-13 2019-09-19 コリア エレクトリック パワー コーポレイション Microgrid operation apparatus and operation method considering PCS efficiency
US10879701B2 (en) 2016-09-13 2020-12-29 Korea Electric Power Corporation PCS efficiency-considered microgrid operation device and operation method
JP2018183034A (en) * 2017-04-17 2018-11-15 日新電機株式会社 Protector for power supply system and system comprising the same
JP7006237B2 (en) 2017-04-17 2022-01-24 日新電機株式会社 A system with a protective device for the power supply system
CN107317361A (en) * 2017-08-18 2017-11-03 华北电力大学 A kind of active distribution network global optimization dispatching method for considering regional autonomy ability
CN107317361B (en) * 2017-08-18 2019-12-10 华北电力大学 active power distribution network global optimization scheduling method considering regional autonomous capacity
CN107612024B (en) * 2017-09-12 2021-05-14 国网吉林省电力有限公司 New energy power station grid-connected scheduling method
CN107612024A (en) * 2017-09-12 2018-01-19 国网吉林省电力有限公司 A kind of grid-connected dispatching method of new energy power station
CN108879728A (en) * 2018-07-17 2018-11-23 湖南大学 A kind of multi-source micro-capacitance sensor frequency control method for coordinating
JP7365116B2 (en) 2018-12-26 2023-10-19 川崎重工業株式会社 Power system stabilizer
JP2020108193A (en) * 2018-12-26 2020-07-09 川崎重工業株式会社 Power system stabilizer
JP2021072734A (en) * 2019-10-31 2021-05-06 株式会社東芝 Power control device and power control method
JP7374720B2 (en) 2019-10-31 2023-11-07 株式会社東芝 Power control device and power control method
JP7438029B2 (en) 2020-06-08 2024-02-26 三菱重工業株式会社 energy management system
JP2022047022A (en) * 2020-09-11 2022-03-24 三菱重工業株式会社 Power system stabilization system and power system stabilization method
JP7308177B2 (en) 2020-09-11 2023-07-13 三菱重工業株式会社 Power system stabilization system and power system stabilization method
US11990754B2 (en) 2020-09-11 2024-05-21 Mitsubishi Heavy Industries, Ltd. Power-system stabilization system and power-system stabilization method
CN114123249B (en) * 2021-12-13 2023-07-14 华能(浙江)能源开发有限公司清洁能源分公司 Wind power interconnection-containing power system load frequency control method based on active response of battery energy storage
CN114123249A (en) * 2021-12-13 2022-03-01 华能(浙江)能源开发有限公司清洁能源分公司 Load frequency control method of wind power interconnection-containing power system based on battery energy storage active response

Also Published As

Publication number Publication date
JP5402566B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402566B2 (en) Microgrid supply and demand control device and microgrid supply and demand control method
Shivashankar et al. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review
Safari et al. Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage
Liu et al. Multi‐objective restoration optimisation of power systems with battery energy storage systems
Chen et al. Optimal allocation and economic analysis of energy storage system in microgrids
Koutroulis et al. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms
JP5800771B2 (en) Wind power generation system, wind power generation control device, and wind power generation control method
WO2017000853A1 (en) Active power distribution network multi-time scale coordinated optimization scheduling method and storage medium
Abadlia et al. Energy management strategy based on fuzzy logic for compound RES/ESS used in stand-alone application
Bogaraj et al. Intelligent energy management control for independent microgrid
Luu Control and management strategies for a microgrid
JP2015080401A (en) Methods and systems for controlling electric network
Cheng et al. A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint
JP2014132827A (en) Consumer terminal
Sridhar et al. Enhancement of power management in micro grid system using adaptive ALO technique
Hamdi et al. The value of diurnal and seasonal energy storage in baseload renewable energy systems: A case study of Ras Ghareb–Egypt
Eltamaly A novel energy storage and demand side management for entire green smart grid system for NEOM city in Saudi Arabia
Suzuki et al. Determination method of optimal planning and operation for residential PV system and storage battery based on weather forecast
Zarei et al. Optimal demand response-based AC OPF over smart grid platform considering solar and wind power plants and ESSs with short-term load forecasts using LSTM
Molu et al. Optimization-based energy management system for grid-connected photovoltaic/battery microgrids under uncertainty
Khan et al. Techno-economic analysis and predictive operation of a power-to-hydrogen for renewable microgrids
WO2014167830A1 (en) Power control system
JP6543167B2 (en) Renewable energy power generation system, controller of renewable energy power generation system, and control method of renewable energy power generation system
JP6398439B2 (en) Operation plan generation device, operation plan generation method and program
Ibrahim et al. Optimal sizing of microgrid system using hybrid firefly and particle swarm optimization algorithm

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250