JP2013212044A - Supply and demand control device - Google Patents

Supply and demand control device Download PDF

Info

Publication number
JP2013212044A
JP2013212044A JP2013038281A JP2013038281A JP2013212044A JP 2013212044 A JP2013212044 A JP 2013212044A JP 2013038281 A JP2013038281 A JP 2013038281A JP 2013038281 A JP2013038281 A JP 2013038281A JP 2013212044 A JP2013212044 A JP 2013212044A
Authority
JP
Japan
Prior art keywords
power
storage battery
command value
generator
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013038281A
Other languages
Japanese (ja)
Other versions
JP6075116B2 (en
Inventor
Yuichi Shimazaki
祐一 島崎
Tatsuya Iizaka
達也 飯坂
Takeshi Ono
健 大野
Masaki Hayashi
巨己 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013038281A priority Critical patent/JP6075116B2/en
Publication of JP2013212044A publication Critical patent/JP2013212044A/en
Application granted granted Critical
Publication of JP6075116B2 publication Critical patent/JP6075116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supply and demand control device which distributes a command value to a controlled generator and storage battery of load frequency control (LFC) so as to bring the residual capacity of the storage battery close to a target value, when calculating the control command value to the controlled generator and storage battery of LFC, in a power system.SOLUTION: The supply and demand control device includes area request amount calculation means for calculating power generation required for keeping a constant frequency of the power system, and power command value calculation means for calculating the output command value of the generator and the charge/discharge command value of the storage battery for bringing the residual capacity of the storage battery to a target value while satisfying the area request amount.

Description

本発明は、電力系統の電力の需給制御に係り、特に電力系統の発電機および蓄電池への制御指令値を算出し、その配分を行う需給制御装置に関する。   The present invention relates to power supply / demand control of a power system, and more particularly to a power supply / demand control apparatus that calculates and distributes control command values to generators and storage batteries of a power system.

電力系統は、電力発電量(供給)と電力消費量(需要)のバランス(需給バランス)を保つことにより、所定の定格周波数(50Hzまたは60Hz)を維持している。電力が供給不足となればタービン発電機の回転速度が低下して系統周波数は低下し、電力が供給過多となればタービン発電機の回転が上昇し、系統周波数は上昇してしまう。そのため、電力系統の周波数を定格周波数に制御するためには、電力発電量を電力消費量に追随させる必要がある。   The power system maintains a predetermined rated frequency (50 Hz or 60 Hz) by maintaining a balance (supply / demand balance) between power generation amount (supply) and power consumption (demand). If power is insufficiently supplied, the rotational speed of the turbine generator is reduced and the system frequency is reduced. If power is excessively supplied, the rotation of the turbine generator is increased and the system frequency is increased. Therefore, in order to control the frequency of the power system to the rated frequency, it is necessary to make the power generation amount follow the power consumption amount.

電力系統の負荷周波数制御(LFC:Load Frequency Control)とは、系統周波数の基準値(定格周波数)から周波数偏差を検出し、その周波数偏差を0に近づけるように指定された発電所に発電出力変化を割り当てるフィードバック制御のことである。   Load frequency control (LFC: Load Frequency Control) of an electric power system detects a frequency deviation from a reference value (rated frequency) of the system frequency, and changes the power generation output to a power plant that is designated to bring the frequency deviation closer to zero. It is the feedback control that assigns.

近年、CO2排出量削減等、環境問題への貢献を目的として、風力発電や太陽光発電等を用いた発電システムの普及が世界的に進んでいる。しかし、これらの発電システムは極めて短期間に発電量が変動する特徴がある。この変動は発電機の応答スピードよりも速い場合があるため、電力系統全体の需要と供給のバランスが崩れ、その結果、系統周波数の変動が引き起こされるという問題がある。この問題を解決するため、負荷周波数制御に発電機だけでなく二次電池(蓄電池)を利用してLFC調整容量を確保する手法が試みられている。例えば、負荷周波数制御に二次電池を利用する技術が下記の特許文献1、特許文献2、非特許文献1に記載されている。   In recent years, power generation systems using wind power generation, solar power generation, and the like have been promoted worldwide for the purpose of contributing to environmental problems such as CO2 emission reduction. However, these power generation systems are characterized in that the power generation amount fluctuates in a very short time. Since this fluctuation may be faster than the response speed of the generator, there is a problem that the balance between the supply and demand of the entire power system is disrupted, resulting in fluctuations in the system frequency. In order to solve this problem, an attempt has been made to secure an LFC adjustment capacity by using not only a generator but also a secondary battery (storage battery) for load frequency control. For example, the following patent document 1, patent document 2, and non-patent document 1 describe techniques that use a secondary battery for load frequency control.

特許文献1は、二次電池の残存容量の20〜30[%]まで放電されたとき、あるいは70〜80[%]まで充電されたときは二次電池の充放電を停止し、それ以後の負荷周波数制御は発電機だけで行なう技術について開示している。   In Patent Document 1, when the secondary battery is discharged to 20 to 30% of the remaining capacity or charged to 70 to 80%, charging and discharging of the secondary battery is stopped. A technique for performing load frequency control only by a generator is disclosed.

特許文献2は、二次電池の充電深度が50[%]になるように充電深度を補正する方法を開示している。
非特許文献1は、短周期の地域要求量(AR:Area Requirement)の変動を蓄電池に、長周期のARの変動を既存電源に分担させることで協調したLFCのロジックを開示している。また、非特許文献1は、複数の蓄電池を想定し蓄電池のロスを低減するために個々のNAS電池のSOC(State of Charge:残存容量)を均一化するように、蓄電池の充放電を制御する技術についても開示している。
Patent Document 2 discloses a method of correcting the charging depth so that the charging depth of the secondary battery is 50 [%].
Non-Patent Document 1 discloses an LFC logic that cooperates by sharing a short cycle AR requirement to a storage battery and a long cycle AR variation to an existing power source. In addition, Non-Patent Document 1 controls charging / discharging of storage batteries so as to equalize the SOC (state of charge) of each NAS battery in order to reduce storage battery loss assuming a plurality of storage batteries. The technology is also disclosed.

特開2001−37085号公報 (図2、図5 7頁)Japanese Patent Laid-Open No. 2001-37085 (pages 7 and 7 in FIG. 2) 特開2012−16077号公報 (図2 7頁)JP 2012-16077 A (Fig. 27, page 7) 「蓄電池の負荷周波数制御(LFC)への活用に関する研究―既存電源と協調した制御方式とLFC運転時のロス低減方式の提案―」、電力中央研究所報告、財団法人電力中央研究所、平成23年7月、R10018、p.1-19"Research on utilization of storage battery for load frequency control (LFC)-Proposal of control method in coordination with existing power source and loss reduction method during LFC operation-", Central Research Institute of Electric Power Industry, Central Research Institute of Electric Power Industry, 2011 July, R10018, p.1-19

しかしながら、特許文献1に記載された二次電池を含む電力系統の周波数制御方法およびその装置は、二次電池の残存容量の20〜30[%]まで放電されたとき、あるいは70〜80[%]まで充電されたときは二次電池の充放電を停止するため、二次電池が使用できない時間が存在する可能性がある。そのため、この文献に開示される発明は、電池が使用できない時間帯は発電機だけで自然エネルギーの大きな変動に対応しなければならず、需給バランスが取れなくなる可能性がある。   However, the frequency control method and apparatus for an electric power system including a secondary battery described in Patent Document 1 is discharged when 20 to 30% of the remaining capacity of the secondary battery is discharged, or 70 to 80%. When the battery is charged up to, the charging / discharging of the secondary battery is stopped, so there is a possibility that the secondary battery may not be used. For this reason, the invention disclosed in this document must cope with large fluctuations in natural energy using only the generator during a time period when the battery cannot be used, which may make it impossible to balance supply and demand.

また、特許文献2に記載された電力系統の周波数制御装置では、蓄電池の残存容量を50%に近づけるための制御を実施しているが、蓄電池の残存容量を制御するために、地域要求量を満足しない指令値を蓄電池に与えている。そのため、電力系統の周波数変動に少なからず影響を与えるという課題がある。   Moreover, in the frequency control apparatus of the electric power system described in patent document 2, although the control for approaching the remaining capacity of a storage battery to 50% is carried out, in order to control the remaining capacity of a storage battery, local requirement amount is controlled. An unsatisfactory command value is given to the storage battery. For this reason, there is a problem that the frequency fluctuation of the power system is affected not a little.

非特許文献1に開示される方式は、個々のNAS電池のSOC(残存容量)を均一化するよう蓄電池に充放電指令を与えているが、蓄電池システム全体として残存容量が0に近づいたとき、または満充電に近づいたときには、蓄電池システムは機能しなくなるという問題がある。その結果、この方式では、電力需給のバランスが保てなくなり、系統周波数が一定に保てなくなるという、特許文献1と同様の課題がある。   The method disclosed in Non-Patent Document 1 gives a charge / discharge command to the storage battery so as to equalize the SOC (remaining capacity) of each NAS battery, but when the remaining capacity approaches 0 as the entire storage battery system, Or when it approaches full charge, there exists a problem that a storage battery system stops functioning. As a result, this method has the same problem as Patent Document 1 in that the balance between power supply and demand cannot be maintained and the system frequency cannot be kept constant.

本発明は、上記課題を解決するためになされたもので、蓄電池の残存容量が0もしくは満充電とならないように、蓄電池の残存容量を所定の目標値に近づけると共に、地域要求量を満たすLFC対象発電機および蓄電池の指令値を制御する需給制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. In order to prevent the remaining capacity of the storage battery from being zero or fully charged, the remaining capacity of the storage battery is brought close to a predetermined target value and the LFC target satisfying the local requirement amount. It aims at providing the supply-and-demand control apparatus which controls the command value of a generator and a storage battery.

前述した課題を解決するために本発明の需給制御装置は、電力系統へ電力を供給する発電機および蓄電池をそれぞれ少なくとも一台以上を有する電力系統の負荷周波数を制御する需給制御装置であって、系統周波数と系統容量と基準周波数とを用いて地域要求量を算出する地域要求量算出手段と、前記地域要求量より前記発電機および前記蓄電池を制御する必要のある必要発電電力を計算する必要電力変換部と、前記蓄電池の残存容量を所定の目標値に近づけると共に、前記地域要求量を満たす前記発電機の出力指令値および前記蓄電池の充放電指令値を前記必要発電電力から計算する電力指令値配分量計算手段とを備えることを特徴とする。   In order to solve the above-described problem, the supply and demand control apparatus of the present invention is a supply and demand control apparatus that controls the load frequency of a power system having at least one generator and a storage battery each supplying power to the power system, A regional requirement amount calculating means for calculating a regional requirement amount using a system frequency, a system capacity, and a reference frequency, and a necessary power for calculating a necessary generated power necessary to control the generator and the storage battery from the regional requirement amount A power command value for calculating the output command value of the generator and the charge / discharge command value of the storage battery from the necessary generated power while bringing the remaining capacity of the storage battery close to a predetermined target value and satisfying the local requirement amount And a distribution amount calculation means.

また、前記電力指令値配分量計算手段は、前記蓄電池の残存容量が該残存容量の不感帯幅の内側である場合には、前記蓄電池の充放電量目標値に近づけるように前記出力指令値および前記充放電指令値を計算することを特徴とする。   Further, the power command value distribution amount calculation means, when the remaining capacity of the storage battery is inside the dead band width of the remaining capacity, the output command value and the charge / discharge amount target value so as to approach the storage battery charge / discharge amount target value. A charge / discharge command value is calculated.

本発明の需給制御システムによれば、地域要求量を満たし、且つ蓄電池の残存容量を目標値に近づける制御を行なうので、蓄電池の残存容量が0または満充電となることを回避し、蓄電池の充放電能力を最大限利用することができ、中断することなく負荷周波数制御を実施することが可能になる。   According to the supply and demand control system of the present invention, since the control is performed to satisfy the local requirement amount and bring the remaining capacity of the storage battery close to the target value, it is avoided that the remaining capacity of the storage battery becomes 0 or fully charged. The discharge capacity can be utilized to the maximum, and the load frequency control can be performed without interruption.

また、蓄電池の残存容量が不感帯幅の内側にある場合は、地域要求量を満たし、且つ蓄電池の充放電量目標値に近づけるように蓄電池および発電機を制御するので、より効果的に蓄電池の充放電能力を利用することが可能になる。   In addition, when the remaining capacity of the storage battery is within the dead band width, the storage battery and the generator are controlled so as to satisfy the local requirement and approach the target charge / discharge amount of the storage battery. It becomes possible to utilize the discharge capacity.

需給制御装置の概略構成(第1の実施形態)を示す図である。It is a figure which shows schematic structure (1st Embodiment) of a supply-and-demand control apparatus. 電力指令値配分量計算部の動作手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the operation | movement procedure of an electric power command value distribution amount calculation part. 電力指令値配分量計算部の動作手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the operation | movement procedure of an electric power command value distribution amount calculation part. シミュレーション諸条件(第1の実施形態)を示す図である。It is a figure which shows simulation conditions (1st Embodiment). シミュレーション条件(第1の実施形態)を表す図である。It is a figure showing simulation conditions (1st Embodiment). シミュレーション結果(第1の実施形態/その1)を表す図である。It is a figure showing a simulation result (1st Embodiment / the 1). シミュレーション結果(第1の実施形態/その2)を表す図である。It is a figure showing a simulation result (1st Embodiment / the 2). シミュレーション結果(第1の実施形態/その3)を表す図である。It is a figure showing a simulation result (1st Embodiment / the 3). シミュレーション結果(第1の実施形態/その4)を表す図である。It is a figure showing a simulation result (1st Embodiment / the 4). 需給制御装置の概略構成(第2の実施形態)を示す図である。It is a figure which shows schematic structure (2nd Embodiment) of a supply-and-demand control apparatus. 電力指令値配分量計算部の動作手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the operation | movement procedure of an electric power command value distribution amount calculation part. 電力指令値配分量計算部の動作手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the operation | movement procedure of an electric power command value distribution amount calculation part. シミュレーション諸条件(第2の実施形態)を示す図である。It is a figure which shows simulation conditions (2nd Embodiment). シミュレーション条件(第2の実施形態)を表す図である。It is a figure showing simulation conditions (2nd Embodiment). シミュレーション結果(第2の実施形態/その1)を表す図である。It is a figure showing a simulation result (2nd Embodiment / the 1). シミュレーション結果(第2の実施形態/その2)を表す図である。It is a figure showing a simulation result (2nd Embodiment / the 2).

以下、本発明の実施形態の一例について図面を参照しながら説明する。
尚、本発明の実施形態の説明においては、1秒毎に発電機および蓄電池に指令を与える。即ち1秒周期での制御を前提とする。但し、この1秒周期での制御は一例であり、例えば3秒毎の制御周期であってもよい。
<第1実施形態>
以下、図1〜図9を参照して、本発明の第1の実施形態における需給制御装置について説明する。また、本実施形態と従来技術とのシミュレーション結果の相違点についても説明する。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
In the description of the embodiment of the present invention, a command is given to the generator and the storage battery every second. That is, it is assumed that the control is performed at a cycle of 1 second. However, the control in this 1 second cycle is an example, and for example, a control cycle of every 3 seconds may be used.
<First Embodiment>
Hereinafter, with reference to FIGS. 1-9, the supply-and-demand control apparatus in the 1st Embodiment of this invention is demonstrated. Also, differences in simulation results between the present embodiment and the prior art will be described.

図1は需給制御装置とその周辺装置、制御対象である発電機および蓄電池等の関係を概略的に示した図である。
需給制御装置500は、周波数計測装置100、連系点潮流計測装置200、発電量計測装置300および蓄電池残存容量計測装置400から各種データを収集し、発電機600および蓄電池700への発電出力や充放電出力の指令を与える。需給制御装置500は、汎用コンピュータやPLC(プログラマブルロジックコントローラ)のような計算機であり、地域要求量算出部510、必要電力変換部520、電力指令値配分量計算部530によって構成される。需給制御装置500は、電力指令値配分量計算部530が蓄電池を残存容量の目標値に近づけるように、発電機および蓄電池への電力指令値を発電機指令値と蓄電池指令値とに配分する。尚、蓄電池の残存容量の目標値は、蓄電池の満充電容量に対する比率で表すことができ、例えば60[%]のように設定する。これに限らず、[kWh]等の単位を用いて表してもよい。
FIG. 1 is a diagram schematically showing a relationship between a supply and demand control device and its peripheral devices, a generator to be controlled, a storage battery, and the like.
The supply and demand control device 500 collects various data from the frequency measurement device 100, the interconnection point power flow measurement device 200, the power generation amount measurement device 300, and the storage battery remaining capacity measurement device 400, and generates and outputs power to the generator 600 and the storage battery 700. Gives the discharge output command. The supply and demand control device 500 is a computer such as a general-purpose computer or a PLC (programmable logic controller), and includes a regional requirement amount calculation unit 510, a necessary power conversion unit 520, and a power command value distribution amount calculation unit 530. The power supply / demand control apparatus 500 distributes the power command value to the generator and the storage battery to the generator command value and the storage battery command value so that the power command value distribution amount calculation unit 530 brings the storage battery closer to the target value of the remaining capacity. Note that the target value of the remaining capacity of the storage battery can be expressed as a ratio to the full charge capacity of the storage battery, and is set to 60 [%], for example. The present invention is not limited to this, and may be expressed using units such as [kWh].

以下に、図1に示す各装置及び、その機能について詳しく説明する。
周波数計測装置100は、電力系統の1点から周波数を計測する装置である。50Hzや60Hzの場合では、通常0.01Hz単位で周波数を収集する。複数点の周波数を計測する場合は、例えばその平均値等の代表値を需給制御装置500へ伝送する。
Hereinafter, each device shown in FIG. 1 and its function will be described in detail.
The frequency measuring device 100 is a device that measures a frequency from one point of the power system. In the case of 50 Hz or 60 Hz, the frequency is normally collected in units of 0.01 Hz. When measuring the frequency of several points, representative values, such as the average value, are transmitted to the supply-and-demand control apparatus 500, for example.

連系点潮流計測装置200は、連系している電力系統との連系点における潮流を計測する装置である。
発電量計測装置300は、発電機の発電量を計測する装置である。制御対象の発電機が複数台ある場合は、個別に計測し、個別に需給制御装置500へ伝送する。
The interconnection point power flow measuring device 200 is a device that measures a power flow at a connection point with a connected power system.
The power generation amount measuring device 300 is a device that measures the power generation amount of the generator. When there are a plurality of generators to be controlled, they are individually measured and individually transmitted to the supply and demand controller 500.

蓄電池残存容量計測装置400は、蓄電池の残存容量を計測する装置である。残存容量を満充電容量に対する0〜100[%]として計測してもよいし、[kWh]などの単位で計測してもよい。制御対象の蓄電池が複数台ある場合は、個別に計測し、需給制御装置500へ個別に伝送する。   The storage battery remaining capacity measuring device 400 is a device that measures the remaining capacity of the storage battery. The remaining capacity may be measured as 0 to 100% with respect to the full charge capacity, or may be measured in units such as [kWh]. When there are a plurality of storage batteries to be controlled, they are individually measured and transmitted to the supply and demand control device 500 individually.

尚、図1及び以降の説明においては、便宜上、発電量計測装置300や蓄電池残存容量計測装置400をそれぞれ一つとして示すが、複数の発電量計測装置や複数の蓄電池残存容量計測装置を具備する構成であっても構わない。需給制御装置500は、特に図示しないが内部にメモリ、CPUおよびLANなどの伝送装置が実装されている。需給制御装置500内に実装される地域要求量算出部510、必要電力変換部520、電力指令値配分量計算部530については、以下に説明する。   In FIG. 1 and the following description, for convenience, the power generation amount measuring device 300 and the storage battery remaining capacity measuring device 400 are shown as one, but a plurality of power generation amount measuring devices and a plurality of storage battery remaining capacity measuring devices are provided. It may be a configuration. Although the supply and demand control device 500 is not particularly illustrated, a transmission device such as a memory, a CPU, and a LAN is mounted therein. The regional requirement amount calculation unit 510, the required power conversion unit 520, and the power command value distribution amount calculation unit 530 implemented in the supply and demand control apparatus 500 will be described below.

地域要求量算出部510は、系統周波数、基準周波数(定格周波数)および連系点潮流などから地域要求量AR(需給インバランス)を算出する機能である。ここで、地域要求量ARは以下で定義され、以下3つの負荷周波数制御(LFC)の方式により導出方法が異なる。
1.定周波数制御方式(Flat Frequency Control,FFC)
AR[kW]=−系統定数[%/Hz]×系統容量[kW]×周波数偏差[Hz]
周波数偏差は系統周波数と基準周波数(定格周波数)との差分で定義される。基準周波数は、日本では50Hzまたは60Hzである。系統周波数は、周波数計測装置100にて計測された値である。系統定数および系統容量とは、対象の電力系統固有の定数である。
2.周波数偏倚連系線電力制御方式(Tie Line Load Frequency Control,TBC)
AR[kW]=−系統定数[%/Hz]×系統容量[kW]×周波数偏差[Hz]+連系点潮流偏差[kW]
連系点潮流偏差は連系点潮流と連系点潮流目標値との差分で定義される。潮流は連系している系統から自系統に流れる向きを正とする。連系点潮流は、連系点潮流計測装置200にて計測された値である。尚、連系点潮流目標値とは、連系する電力系統からの購入電力計画値もしくは電力系統への充電電力計画値である。
3.定連系線電力制御方式(Flat Tie Line Control,FTC)
AR[kW]=連系点潮流偏差[kW]
連系点潮流偏差は、上記のTBCと同様、連系点潮流と連系点潮流目標値との差分で定義される。
The regional requirement amount calculation unit 510 is a function for calculating the regional requirement amount AR (supply / demand imbalance) from the system frequency, the reference frequency (rated frequency), the interconnection point flow, and the like. Here, the regional requirement amount AR is defined below, and the derivation method differs depending on the following three load frequency control (LFC) schemes.
1. Constant frequency control system (Flat Frequency Control, FFC)
AR [kW] =-system constant [% / Hz] × system capacity [kW] × frequency deviation [Hz]
The frequency deviation is defined by the difference between the system frequency and the reference frequency (rated frequency). The reference frequency is 50 Hz or 60 Hz in Japan. The system frequency is a value measured by the frequency measuring device 100. The system constant and the system capacity are constants specific to the target power system.
2. Tie Line Load Frequency Control (TBC)
AR [kW] = − system constant [% / Hz] × system capacity [kW] × frequency deviation [Hz] + interconnection point power flow deviation [kW]
The linkage point tidal current deviation is defined by the difference between the linkage point tidal current and the linkage point tidal current target value. The tidal current is positive in the direction from the grid to the local grid. The interconnection point tidal current is a value measured by the interconnection point tidal current measuring apparatus 200. In addition, a connection point power flow target value is a purchased power plan value from a connected power system or a charging power plan value for the power system.
3. Constant Tie Line Control (FTC)
AR [kW] = Linkage point tidal current deviation [kW]
The interconnection point tidal current deviation is defined by the difference between the interconnection point tidal current and the interconnection point tidal current target value, as in the above TBC.

必要電力変換部520は、上記地域要求量算出部510で求めた地域要求量ARに制御係数を掛け、LFC対象発電機および蓄電池へ与える制御操作量(必要発電電力P)に変換する。例えば、負荷周波数制御をPID制御にて行っている場合は、以下の式のように必要発電電力Pを計算する。   The necessary power conversion unit 520 multiplies the regional requirement amount AR obtained by the regional requirement amount calculation unit 510 by a control coefficient, and converts it into a control operation amount (necessary generated power P) to be given to the LFC target generator and storage battery. For example, when the load frequency control is performed by PID control, the necessary generated power P is calculated as in the following equation.

必要発電電力P=制御係数(比例ゲインKp、積分ゲインKi、微分ゲインKd)×地域要求量AR
ここで必要発電電力Pは、発電機および蓄電池で必要となる電力の合計値とも言える。換言すれば、ここで言う“発電”は発電機の出力だけでなく、蓄電池の放電も一種の“発電”として扱うことを意味する。
Necessary generated power P = control coefficient (proportional gain Kp, integral gain Ki, differential gain Kd) × regional requirement AR
Here, it can be said that the necessary generated power P is a total value of power required for the generator and the storage battery. In other words, “power generation” here means not only the output of the generator but also the discharge of the storage battery as a kind of “power generation”.

電力指令値配分量計算部530は、上記必要電力変換部520にて計算された必要発電電力Pを、LFC対象発電機および蓄電池へどう配分するか、その配分量を計算する。発電機指令値/蓄電池指令値とは、発電機/蓄電池に与える出力を増減させる指令値であり、単位は[kW]とする。発電機指令値/蓄電池指令値が正の値の場合は、出力を何[kW]増加/充電させる指令値のことであり、発電機指令値/蓄電池指令値が負の値の場合は、出力を何[kW]減少/放電させる指令値であることを意味する。   The power command value distribution amount calculation unit 530 calculates how the required generated power P calculated by the required power conversion unit 520 is distributed to the LFC target generator and the storage battery. The generator command value / storage battery command value is a command value that increases or decreases the output given to the generator / storage battery, and its unit is [kW]. When the generator command value / battery command value is a positive value, it is a command value to increase / charge the output [kW], and when the generator command value / battery command value is a negative value, the output Is a command value that reduces / discharges [kW].

発電機/蓄電池を単位時間にどれだけ出力を変化させることができるかという出力変化率として、例えば1秒あたりに変化させることができる電力[kW]の場合、出力変化率の単位は[kW/s]と表す。また、制御周期内に出力を増加させられる上限を“上げ代”、出力を減少させられる上限を“下げ代”と呼ぶこととする。上げ代および下げ代の単位は[kW]である。ここで、1秒周期で制御を行う場合、出力変化率[kW/s]に1[s]を掛けることによって、上げ代または下げ代を計算することができる。また、出力変化率が発電機の定格出力に対する[%]で表されている場合は、出力変化率[%]に発電機の定格出力を掛けることにより、発電機の上げ代または下げ代を計算する。   For example, in the case of power [kW] that can be changed per second as the output change rate of how much the generator / storage battery can change the output per unit time, the unit of the output change rate is [kW / s]. In addition, the upper limit that can increase the output within the control cycle is referred to as “raising allowance”, and the upper limit that can decrease the output is referred to as “lowering allowance”. The unit of the raising allowance and the lowering allowance is [kW]. Here, when control is performed at a cycle of 1 second, the increase allowance or the decrease allowance can be calculated by multiplying the output change rate [kW / s] by 1 [s]. If the output change rate is expressed in [%] with respect to the rated output of the generator, calculate the generator up / down allowance by multiplying the output change rate [%] by the rated output of the generator. To do.

LFC対象発電機および蓄電池へ必要発電電力Pを配分する際には、発電機および蓄電池の上げ代、下げ代を考慮して処理を行う。以降の説明では、発電機上げ代の符号は正の値とし、発電機下げ代の符号は負の値とする。   When allocating the necessary generated power P to the LFC target generator and the storage battery, the processing is performed in consideration of the cost of raising and lowering the generator and the storage battery. In the following description, the sign of the generator raising allowance is a positive value, and the sign of the generator lowering allowance is a negative value.

次に、図2および図3を参照して、電力指令値配分量計算部530の動作手順について詳しく説明する。尚、電力指令値配分量計算部530は、必要電力変換部520から必要発電電力Pを受け取り処理を開始する。   Next, with reference to FIG. 2 and FIG. 3, the operation | movement procedure of the electric power command value distribution amount calculation part 530 is demonstrated in detail. The power command value distribution amount calculation unit 530 receives the necessary generated power P from the required power conversion unit 520 and starts processing.

まず、電力指令値配分量計算部530は、ステップS11にて必要発電電力Pが0以上の値か負の値かを判定し、必要発電電力Pが0以上の値の場合(ステップS11、Yes)は、ステップS12へ進む。必要発電電力Pが負の値の場合(ステップS11、No)は、ステップAへ進む。その後、後述する図3のフローチャートの処理を終えた後、ステップBから、図2のフローチャートに戻り、処理を終了する。   First, the power command value distribution amount calculation unit 530 determines whether the required generated power P is a value greater than or equal to 0 or a negative value in step S11. If the required generated power P is a value greater than 0 (step S11, Yes) ) Proceeds to step S12. If the required generated power P is a negative value (step S11, No), the process proceeds to step A. Then, after finishing the process of the flowchart of FIG. 3 mentioned later, it returns to the flowchart of FIG. 2 from step B, and complete | finishes a process.

ところで系統周波数を一定に保つためには、必要発電電力Pが0より大きい場合は発電機および蓄電池の合計出力を増加させる必要があり、必要発電電力Pが0より小さい場合は発電機および蓄電池の合計出力を減少させる必要がある。必要発電電力Pが0の場合は、系統周波数は一定に保たれているため、発電機および蓄電池の合計出力を変更する必要はない。尚、以下の本実施形態では必要発電電力Pが0の場合は、発電機および蓄電池の合計出力を変更することなく、蓄電池の残存容量を目標値に近づけるように発電機および蓄電池の出力配分を変更するものとする。   By the way, in order to keep the system frequency constant, it is necessary to increase the total output of the generator and the storage battery when the necessary generated power P is larger than 0, and when the necessary generated power P is smaller than 0, the generator and the storage battery The total output needs to be reduced. When the required generated power P is 0, the system frequency is kept constant, so there is no need to change the total output of the generator and the storage battery. In the following embodiment, when the required generated power P is 0, the output distribution of the generator and storage battery is distributed so that the remaining capacity of the storage battery approaches the target value without changing the total output of the generator and storage battery. Shall be changed.

次に、ステップS12にて、電力指令値配分量計算部530は、必要発電電力Pが発電機の上げ代以下か否かを判定する。必要発電電力Pが発電機の上げ代より大きい場合(ステップS12、No)は、ステップS13に進む。必要発電電力Pが発電機の上げ代以下の場合(ステップS12、Yes)、ステップS14へ進む。   Next, in step S12, the power command value distribution amount calculation unit 530 determines whether or not the required generated power P is equal to or less than the generator raising allowance. When the required generated power P is larger than the power generation cost of the generator (step S12, No), the process proceeds to step S13. When the necessary generated power P is equal to or less than the generator raising cost (step S12, Yes), the process proceeds to step S14.

ステップS13では、電力指令値配分量計算部530は、必要発電電力Pを以下のように配分し、処理を終了する。
発電機指令値=発電機上げ代
蓄電池指令値=発電機上げ代−必要発電電力P
ステップS14では、電力指令値配分量計算部530は、蓄電池の残存容量の計測値(SOC計測値)と蓄電池の残存容量の目標値(SOC目標値)との大小関係を判定する。SOC目標値は運用者が設定する場合や発電機起動停止計画(UC:Unit Commitment)や経済負荷配分制御(EDC:Economic load Dispatching Control)の計画値を用いてもよい。
In step S13, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows, and ends the process.
Generator command value = generator increase allowance Battery command value = generator increase allowance−necessary generated power P
In step S <b> 14, power command value distribution amount calculation unit 530 determines the magnitude relationship between the measured value (SOC measured value) of the remaining capacity of the storage battery and the target value (SOC target value) of the remaining capacity of the storage battery. The SOC target value may be set by an operator, or may be a plan value for a generator start / stop plan (UC: Unit Commitment) or economic load distribution control (EDC).

SOC計測値がSOC目標値より大きい場合(ステップS14、No)、ステップS15へ進み、電力指令値配分量計算部530は必要発電電力Pを以下のように配分し、処理を終了する。   When the SOC measurement value is larger than the SOC target value (No at Step S14), the process proceeds to Step S15, where the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows, and ends the process.

発電機指令値=必要発電電力P
蓄電池指令値=0
SOC計測値がSOC目標値以下の場合(ステップS14、Yes)、ステップS16へ進む。
Generator command value = Necessary generated power P
Battery command value = 0
When the SOC measurement value is equal to or less than the SOC target value (step S14, Yes), the process proceeds to step S16.

ステップS16では、電力指令値配分量計算部530は、SOC目標値になるための蓄電池の充電電力aを以下の式で計算する。
充電電力a[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
本実施例での充電電力は、1秒間でSOC目標値へ充電するために必要な電力という意味である。そのため、[kWh]から[kW]への単位変換のために3600を掛けている。
In step S <b> 16, power command value distribution amount calculation unit 530 calculates charging power a of the storage battery to become the SOC target value by the following formula.
Charging power a [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
The charging power in the present embodiment means power necessary for charging to the SOC target value in one second. Therefore, 3600 is multiplied for unit conversion from [kWh] to [kW].

尚、充電電力aは0以上の値(負の値にはならない)とする。以降の説明でSOC目標値およびSOC計測値が[%]で表されていた場合は、満充電時の容量[kWh]をSOC目標値およびSOC計測値に掛けることによって、[kWh]表示に変換している。   Note that the charging power a is 0 or more (not negative). In the following description, when the SOC target value and the SOC measurement value are expressed in [%], the capacity [kWh] at the time of full charge is multiplied by the SOC target value and the SOC measurement value to be converted into [kWh] display. doing.

次に、ステップS17では、電力指令値配分量計算部530は、必要発電電力Pと充電電力aの和と、発電機上げ代の大小関係を判定する。
発電機上げ代が必要発電電力Pと充電電力aの和以上の場合(ステップS17、Yes)、発電機上げ代で必要発電電力Pと充電電力aの和に相当する電力をまかなうことが可能である。そこで電力指令値配分量計算部530は必要発電電力Pを以下のように配分(ステップS18)し、処理を終了する。
Next, in step S <b> 17, the power command value distribution amount calculation unit 530 determines the magnitude relationship between the sum of the necessary generated power P and the charged power “a” and the generator raising cost.
If the power generation cost is equal to or greater than the sum of the necessary power generation P and the charging power a (Yes in step S17), it is possible to cover the power corresponding to the sum of the power generation power P and the charging power a with the power generation cost. is there. Therefore, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows (step S18) and ends the process.

発電機指令値=必要発電電力P+充電電力a
蓄電池指令値=充電電力a
発電機上げ代が必要発電電力Pと充電電力aの和より大きくなければ(ステップS17、No)、発電機上げ代で必要発電電力Pと充電電力aの和に相当する電力をまかなうことが不可能なので、電力指令値配分量計算部530は必要発電電力Pを以下のように配分(ステップS19)し、処理を終了する。
Generator command value = required generated power P + charged power a
Battery command value = charging power a
If the power generation cost is not larger than the sum of the necessary power generation P and the charging power a (No in step S17), it is impossible to cover the power corresponding to the sum of the power generation power P and the charging power a at the power generation cost. Since it is possible, the electric power command value distribution amount calculation part 530 distributes the required generated electric power P as follows (step S19), and complete | finishes a process.

発電機指令値=発電機上げ代
蓄電池指令値=発電機上げ代−必要発電電力P
ここで、図2のステップA(後述の図3)を説明する前に、ステップS13、15、16、18、19の各処理の数値例について説明する。
Generator command value = generator increase allowance Battery command value = generator increase allowance−necessary generated power P
Here, before describing step A in FIG. 2 (FIG. 3 to be described later), numerical examples of the processes in steps S13, 15, 16, 18, and 19 will be described.

図2のステップS13の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが100[kW]、発電機上げ代が必要発電電力Pを下回る90[kW]の場合は、発電機の出力には余裕がないので、蓄電池のSOC制御は行えない。この場合は、ステップS11のYes、ステップS12のNoを経て、電力指令値配分量計算部530はステップS13を以下のように計算する。   A numerical example in the case of step S13 in FIG. 2 will be described. When the required generated power P received by the power command value distribution amount calculation unit 530 from the required power conversion unit 520 is 100 [kW] and the generator raising cost is 90 [kW] below the required generated power P, the output of the generator Cannot afford SOC control of the storage battery. In this case, through step S11 Yes and step S12 No, the power command value distribution amount calculation unit 530 calculates step S13 as follows.

発電機指令値=発電機上げ代=90[kW]
蓄電池指令値=発電機上げ代−必要発電電力P=90−100=−10[kW]
(蓄電池は放電、SOC制御なし)
図2のステップS15の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが100[kW]、発電機上げ代が必要発電電力Pを上回る150[kW]、SOC目標値が50[%]、SOC計測値が60[%]であった場合は、ステップS11のYes、ステップS12のYes、ステップS14のNoを経て、電力指令値配分量計算部530はステップS15を以下のように計算する。
Generator command value = Generator raising cost = 90 [kW]
Storage battery command value = generator raising allowance-necessary generated power P = 90-100 = -10 [kW]
(Storage battery is not discharged and SOC controlled)
A numerical example in the case of step S15 in FIG. 2 will be described. The required generated power P received by the power command value distribution amount calculation unit 530 from the required power conversion unit 520 is 100 [kW], the generator raising cost is 150 [kW] exceeding the required generated power P, and the SOC target value is 50 [%] When the SOC measurement value is 60 [%], the power command value distribution amount calculation unit 530 calculates Step S15 as follows through Yes in Step S11, Yes in Step S12, and No in Step S14. To do.

発電機指令値=必要発電電力P=100[kW]
蓄電池指令値=0
(蓄電池に出力変化なし、SOC制御なし)
図2のステップS18の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが10[kW]、発電機上げ代が必要発電電力Pを上回る400[kW]、SOC目標値が50[%]、SOC計測値が49.9[%]、蓄電池の満充電容量が100[kWh]の場合は、発電機の出力には390[kW]の余裕がある。このとき、蓄電池残存容量が目標値より小さいので、残存容量を目標値に近づけるためには蓄電池に充電させる指令を出す必要がある。ステップS16にて蓄電池の残存容量が目標値となるためにどれだけ充電する必要があるか(充電電力a)を以下のように計算する。
Generator command value = required generated power P = 100 [kW]
Battery command value = 0
(No change in output of storage battery, no SOC control)
A numerical example in the case of step S18 in FIG. 2 will be described. The required generated power P received by the power command value distribution amount calculation unit 530 from the required power conversion unit 520 is 10 [kW], the generator raising cost is 400 [kW] exceeding the required generated power P, and the SOC target value is 50 [%] When the SOC measurement value is 49.9 [%] and the full charge capacity of the storage battery is 100 [kWh], the output of the generator has a margin of 390 [kW]. At this time, since the remaining capacity of the storage battery is smaller than the target value, it is necessary to issue a command for charging the storage battery in order to bring the remaining capacity close to the target value. In step S16, how much charging is necessary for the remaining capacity of the storage battery to reach the target value (charging power a) is calculated as follows.

充電電力a[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
=(0.5×100[kWh]−0.499×100[kWh])×3600
=360[kW]
このような場合、ステップS17にて必要発電電力P(10[kW])と充電電力a(360[kW])の和と、発電機上げ代(400[kW])の大小関係を判定し、発電機は必要発電電力Pと充電電力aの和に相当する電力をまかなうことが可能なので、ステップS18にて以下のように計算する。
Charging power a [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
= (0.5 × 100 [kWh] −0.499 × 100 [kWh]) × 3600
= 360 [kW]
In such a case, the magnitude relationship between the sum of the necessary generated power P (10 [kW]) and the charged power a (360 [kW]) and the generator raising cost (400 [kW]) is determined in step S17. Since the generator can cover the power corresponding to the sum of the required generated power P and the charging power a, the calculation is performed as follows in step S18.

発電機指令値=必要発電電力P+充電電力a
=10+360=370[kW]
蓄電池指令値=充電電力a=360[kW](蓄電池は充電、SOC制御あり)
上記のように図2のステップS18の場合は、発電機の出力増加量に余裕があるので、発電機の出力指令値を必要発電電力Pと蓄電池の充電電力aの和とすることにより、蓄電池の残存容量を目標値に近づけることができる。
Generator command value = required generated power P + charged power a
= 10 + 360 = 370 [kW]
Storage battery command value = charging power a = 360 [kW] (the storage battery is charged, with SOC control)
As described above, in the case of step S18 in FIG. 2, since there is a margin in the output increase amount of the generator, the storage battery can be obtained by setting the output command value of the generator as the sum of the necessary generated power P and the charging power a of the storage battery. Can be brought close to the target value.

図2のステップS19の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが100[kW]、発電機上げ代が必要発電電力Pを上回る150[kW]、SOC目標値が50[%]、SOC計測値が40[%]、蓄電池の満充電容量が100[kWh]の場合は、発電機の出力には50[kW]の余裕がある。このとき、蓄電池残存容量が目標値より小さいので、残存容量を目標値に近づけるためには蓄電池に充電させる指令を出す必要がある。ステップS16にて蓄電池の残存容量が目標値となるためにどれだけ充電する必要があるか(充電電力a)を以下のように計算する。   A numerical example in the case of step S19 in FIG. 2 will be described. The required generated power P received by the power command value distribution amount calculation unit 530 from the required power conversion unit 520 is 100 [kW], the generator raising cost is 150 [kW] exceeding the required generated power P, and the SOC target value is 50 [%] When the SOC measurement value is 40 [%] and the full charge capacity of the storage battery is 100 [kWh], the output of the generator has a margin of 50 [kW]. At this time, since the remaining capacity of the storage battery is smaller than the target value, it is necessary to issue a command for charging the storage battery in order to bring the remaining capacity close to the target value. In step S16, how much charging is necessary for the remaining capacity of the storage battery to reach the target value (charging power a) is calculated as follows.

充電電力a[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
=(0.5×100[kWh]−0.4×100[kWh])×3600
=36000[kW]
このような場合、ステップS17にて必要発電電力P(100[kW])と充電電力a(36000[kW])の和と、発電機上げ代(150[kW])の大小関係を判定し、発電機は必要発電電力Pと充電電力aの和に相当する電力をまかなうことが不可能なので、ステップS19にて以下のように計算する。
Charging power a [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
= (0.5 × 100 [kWh] −0.4 × 100 [kWh]) × 3600
= 36000 [kW]
In such a case, the magnitude relationship between the sum of the necessary generated power P (100 [kW]) and the charged power a (36000 [kW]) and the generator raising cost (150 [kW]) is determined in step S17. Since the generator cannot cover the power corresponding to the sum of the necessary generated power P and the charged power a, the calculation is performed as follows in step S19.

発電機指令値=発電機上げ代=150[kW]
蓄電池指令値=発電機上げ代−必要発電電力P=150−100
=50[kW](蓄電池は充電、SOC制御あり)
上記のように図2のステップS19の場合は、発電機の出力増加量に余裕があるので、発電機の出力指令値を必要発電電力Pと蓄電池の充電電力aの和とすることにより、蓄電池の残存容量を目標値に近づけることができる。
Generator command value = Generator raising cost = 150 [kW]
Battery command value = generator raising cost-necessary generated power P = 150-100
= 50 [kW] (The storage battery is charged and with SOC control)
As described above, in the case of step S19 in FIG. 2, since there is a margin in the output increase amount of the generator, the storage battery can be obtained by setting the output command value of the generator as the sum of the necessary generated power P and the charging power a of the storage battery. Can be brought close to the target value.

続けて、図2のステップA(図3)を説明する。図2において、電力指令値配分量計算部530は、ステップS11にて必要発電電力Pが負の値の場合(ステップS11、No)は、ステップA(図3)へ進む。図3に示す、ステップS21では、電力指令値配分量計算部530は、必要発電電力P(負の値)と発電機の下げ代(負の値)の大小関係を判定し、必要発電電力Pが発電機の下げ代より小さい場合(ステップS21、No)は、ステップS22に進む。必要発電電力Pが発電機の下げ代より大きい場合(ステップS21、Yes)、ステップS23へ進む。   Next, step A (FIG. 3) in FIG. 2 will be described. In FIG. 2, the power command value distribution amount calculation unit 530 proceeds to step A (FIG. 3) when the necessary generated power P is a negative value in step S11 (No in step S11). In step S21 shown in FIG. 3, the power command value distribution amount calculation unit 530 determines the magnitude relationship between the required generated power P (negative value) and the generator lowering allowance (negative value), and the required generated power P Is smaller than the generator lowering allowance (step S21, No), the process proceeds to step S22. When the required generated power P is larger than the generator lowering allowance (Yes in step S21), the process proceeds to step S23.

ステップS22では、電力指令値配分量計算部530は、必要発電電力Pを以下のように配分し、ステップBへ進み、図2の処理に戻り、その後処理を終了する。
発電機指令値=発電機下げ代
蓄電池指令値=発電機下げ代−必要発電電力P
ステップS23では、電力指令値配分量計算部530は、SOC計測値とSOC目標値の大小関係を判定する。
In step S22, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows, proceeds to step B, returns to the process in FIG. 2, and then ends the process.
Generator command value = Generator lowering allowance Storage battery command value = Generator lowering allowance-Necessary generated power P
In step S23, power command value distribution amount calculation unit 530 determines the magnitude relationship between the SOC measurement value and the SOC target value.

SOC計測値がSOC目標値より小さい場合(ステップS23、No)、ステップS24へ進み、電力指令値配分量計算部530は必要発電電力Pを以下のように配分し、ステップBへ進み、図2の処理に戻り、その後処理を終了する。   When the SOC measurement value is smaller than the SOC target value (No at Step S23), the process proceeds to Step S24, where the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows, proceeds to Step B, and FIG. Then, the process is terminated.

発電機指令値=必要発電電力P
蓄電池指令値=0
SOC計測値がSOC目標値より大きい場合(ステップS23、Yes)、ステップS25へ進む。
Generator command value = Necessary generated power P
Battery command value = 0
When the SOC measurement value is larger than the SOC target value (step S23, Yes), the process proceeds to step S25.

ステップS25では、電力指令値配分量計算部530は、SOC目標値になるための蓄電池の放電電力bを充電電力aと同様、以下の式にて計算する。
放電電力b[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
本実施形態での放電電力bは、1秒間でSOC目標値へ放電するために必要な電力という意味である。充電電力bが正の値であるのと逆に、充電電力bは負の値となる。
In step S25, the power command value distribution amount calculation unit 530 calculates the discharge power b of the storage battery to become the SOC target value by the following formula, similarly to the charging power a.
Discharge power b [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
The discharge power b in the present embodiment means the power necessary for discharging to the SOC target value in 1 second. In contrast to the charging power b having a positive value, the charging power b has a negative value.

ステップS26では、電力指令値配分量計算部530は、必要発電電力Pと放電電力bの和と、発電機下げ代の大小関係を判定する。
発電機下げ代が必要発電電力Pと放電電力bの和以下の場合(ステップS26、Yes)、必要発電電力Pと放電電力bの和に相当する電力の出力を減少することが発電機下げ代で可能である。そこで電力指令値配分量計算部530は必要発電電力Pを以下のように配分(ステップS27)し、ステップBへ進み、図2の処理に戻り、その後処理を終了する。
In step S <b> 26, the power command value distribution amount calculation unit 530 determines the magnitude relationship between the sum of the necessary generated power P and the discharged power b and the generator lowering allowance.
If the generator lowering allowance is less than or equal to the sum of the necessary generated power P and the discharged power b (step S26, Yes), the output of the power corresponding to the sum of the required generated power P and the discharged power b may be reduced. Is possible. Therefore, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows (step S27), proceeds to step B, returns to the process of FIG. 2, and then ends the process.

発電機指令値=必要発電電力P+放電電力b
蓄電池指令値=放電電力b
発電機下げ代が必要発電電力Pと放電電力bの和より大きければ(ステップS26、No)、必要発電電力Pと放電電力bの和に相当する電力の出力を減少することが発電機下げ代では不可能なので、電力指令値配分量計算部530は必要発電電力Pを以下のように配分(ステップS28)し、ステップBへ進み、図2の処理に戻り、その後処理を終了する。
Generator command value = required generated power P + discharge power b
Battery command value = discharge power b
If the generator lowering allowance is larger than the sum of the necessary generated power P and the discharged power b (No in step S26), the output of the power corresponding to the sum of the required generated power P and the discharged power b may be reduced. Therefore, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows (step S28), proceeds to step B, returns to the process of FIG. 2, and then ends the process.

発電機指令値=発電機下げ代
蓄電池指令値=発電機下げ代−必要発電電力P
ここで、ステップS22、24、27、28の各処理の数値例について説明する。
図3のステップS22の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが−100[kW]、発電機下げ代が必要発電電力Pを下回る−90[kW]の場合は、発電機の出力には余裕がないので、蓄電池のSOC制御は行えない。この場合は、ステップS21のNoを経て、電力指令値配分量計算部530はステップS22を以下のように計算する。
Generator command value = Generator lowering allowance Storage battery command value = Generator lowering allowance-Necessary generated power P
Here, numerical examples of the processes of steps S22, 24, 27, and 28 will be described.
A numerical example in the case of step S22 in FIG. 3 will be described. When the required generated power P received by the power command value distribution amount calculation unit 530 from the required power conversion unit 520 is −100 [kW] and the generator lowering cost is −90 [kW] below the required generated power P, the generator Since there is no margin in the output of the battery, SOC control of the storage battery cannot be performed. In this case, through No in step S21, the power command value distribution amount calculation unit 530 calculates step S22 as follows.

発電機指令値=発電機下げ代=−90[kW]
蓄電池指令値=発電機下げ代−必要発電電力P=−90−(−100)
=10[kW](蓄電池は充電、SOC制御なし)
図3のステップS24の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが−100[kW]、発電機下げ代が必要発電電力Pを上回る−150[kW]、SOC目標値が50[%]、SOC計測値が40[%]の場合は、ステップS21のYes、ステップS23のNoを経て、電力指令値配分量計算部530はステップS24を以下のように計算する。
Generator command value = Generator lowering allowance = −90 [kW]
Storage battery command value = generator lowering allowance−necessary generated power P = −90 − (− 100)
= 10 [kW] (Rechargeable battery is not charged and SOC control is not performed)
A numerical example in the case of step S24 in FIG. 3 will be described. The required generated power P received from the required power conversion unit 520 by the power command value distribution amount calculation unit 530 is −100 [kW], the generator lowering cost exceeds −150 [kW], and the SOC target value is 50 If the SOC measurement value is 40 [%], the power command value distribution amount calculation unit 530 calculates Step S24 as follows through Yes in Step S21 and No in Step S23.

発電機指令値=必要発電電力P=−100[kW]
蓄電池指令値=0(蓄電池に出力変化なし、SOC制御なし)
図3のステップS27の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが−10[kW]、発電機下げ代が必要発電電力Pを上回る−400[kW]、SOC目標値が50[%]、SOC計測値が50.1[%]、蓄電池の満充電容量が100[kWh]の場合は、発電機の出力には−390[kW]の余裕がある。このとき、蓄電池残存容量が目標値より大きいので、残存容量を目標値に近づけるためには蓄電池に放電の指令を出す必要がある。ステップS25にて蓄電池の残存容量が目標値となるためにどれだけ放電する必要があるか(放電電力b)を以下のように計算する。
Generator command value = required generated power P = −100 [kW]
Storage battery command value = 0 (no output change in storage battery, no SOC control)
A numerical example in the case of step S27 in FIG. 3 will be described. The required generated power P received from the required power conversion unit 520 by the power command value distribution amount calculation unit 530 is −10 [kW], the generator lowering cost exceeds −400 [kW], and the SOC target value is 50 [%], SOC measurement value is 50.1 [%], and the full charge capacity of the storage battery is 100 [kWh], the output of the generator has a margin of -390 [kW]. At this time, since the remaining capacity of the storage battery is larger than the target value, it is necessary to issue a discharge command to the storage battery in order to bring the remaining capacity close to the target value. In step S25, how much discharge is necessary for the remaining capacity of the storage battery to reach the target value (discharge power b) is calculated as follows.

放電電力b[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
=(0.5×100[kWh]−0.501×100[kWh])×3600
=−360[kW]
このような場合、ステップS26にて必要発電電力P(−10[kW])と放電電力b(−360[kW])の和と、発電機下げ代(−400[kW])の大小関係を判定し、発電機は必要発電電力Pと放電電力の和に相当する電力の出力を減少することが可能なので、ステップS27にて以下のように計算する。
Discharge power b [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
= (0.5 × 100 [kWh] −0.501 × 100 [kWh]) × 3600
= -360 [kW]
In such a case, the magnitude relationship between the sum of the necessary generated power P (−10 [kW]) and the discharged power b (−360 [kW]) and the generator lowering allowance (−400 [kW]) in step S26. The generator can reduce the output of the power corresponding to the sum of the necessary generated power P and the discharged power, and thus the calculation is performed as follows in step S27.

発電機指令値=必要発電電力P+放電電力b=−10+(−360)=−370[kW]
蓄電池指令値=放電電力b=−360[kW](蓄電池は放電、SOC制御あり)
上記のように図3のステップS27の場合は、発電機の出力減少量に余裕があるので、発電機の出力指令値を必要発電電力Pと蓄電池の放電電力bの和とすることにより、蓄電池の残存容量を目標値に近づけることができる。
Generator command value = required generated power P + discharge power b = −10 + (− 360) = − 370 [kW]
Storage battery command value = discharge power b = −360 [kW] (the storage battery is discharged and has SOC control)
As described above, in the case of step S27 in FIG. 3, since there is a margin in the output reduction amount of the generator, the storage battery can be obtained by setting the output command value of the generator as the sum of the necessary generated power P and the discharge power b of the storage battery. Can be brought close to the target value.

図3のステップS28の場合の数値例を説明する。電力指令値配分量計算部530が必要電力変換部520から受け取った必要発電電力Pが−100[kW]、発電機下げ代が必要発電電力Pを上回る−150[kW]、SOC目標値が50[%]、SOC計測値が60[%]、蓄電池の満充電容量が100[kWh]の場合は、発電機の出力には−50[kW]の余裕がある。このとき、蓄電池残存容量が目標値より大きいので、残存容量を目標値に近づけるためには蓄電池に放電の指令を出す必要がある。ステップS25にて蓄電池の残存容量が目標値となるためにどれだけ放電する必要があるか(放電電力b)を以下のように計算する。   A numerical example in the case of step S28 in FIG. 3 will be described. The required generated power P received from the required power conversion unit 520 by the power command value distribution amount calculation unit 530 is −100 [kW], the generator lowering cost exceeds −150 [kW], and the SOC target value is 50 When [%], the SOC measurement value is 60 [%], and the full charge capacity of the storage battery is 100 [kWh], the output of the generator has a margin of −50 [kW]. At this time, since the remaining capacity of the storage battery is larger than the target value, it is necessary to issue a discharge command to the storage battery in order to bring the remaining capacity close to the target value. In step S25, how much discharge is necessary for the remaining capacity of the storage battery to reach the target value (discharge power b) is calculated as follows.

放電電力b[kW]=(SOC目標値[kWh]−SOC計測値[kWh])×3600
=(0.5×100[kWh]−0.6×100[kWh])×3600
=−36000[kW]
このような場合、ステップS26にて必要発電電力P(−100[kW])と放電電力b(−36000[kW])の和と、発電機下げ代(−150[kW])の大小関係を判定し、発電機は必要発電電力Pと放電電力bの和に相当する電力の出力を減少することが不可能なので、ステップS28にて以下のように計算する。
Discharge power b [kW] = (SOC target value [kWh] −SOC measurement value [kWh]) × 3600
= (0.5 × 100 [kWh] −0.6 × 100 [kWh]) × 3600
= -36000 [kW]
In such a case, the magnitude relationship between the sum of the necessary generated power P (−100 [kW]) and the discharged power b (−36000 [kW]) and the generator lowering allowance (−150 [kW]) is determined in step S26. Since it is impossible to reduce the output of the power corresponding to the sum of the necessary generated power P and the discharged power b, the generator calculates as follows in step S28.

発電機指令値=発電機下げ代=−150[kW]
蓄電池指令値=発電機下げ代−必要発電電力P=−150−(−100)
=−50[kW](蓄電池は放電、SOC制御あり)
上記のように図3のステップS28の場合は、発電機の出力減少量に余裕があるので、発電機の出力指令値を必要発電電力Pと蓄電池の放電電力bの和とすることによって、蓄電池の残存容量を目標値に近づけることができる。
Generator command value = Generator lowering allowance = −150 [kW]
Battery command value = generator lowering allowance−necessary generated power P = −150 − (− 100)
= -50 [kW] (The storage battery has discharge and SOC control)
As described above, in the case of step S28 in FIG. 3, since there is a margin in the output reduction amount of the generator, the storage battery is obtained by setting the output command value of the generator as the sum of the necessary generated power P and the discharge power b of the storage battery. Can be brought close to the target value.

また、LFC対象の発電機が複数台ある場合は、発電機上げ代の算出方法と、発電機指令値を複数の発電機に振り分ける方法を考慮する必要がある。例えば、複数台の発電機上げ代の算出の仕方は、各発電機の上げ代を加算し、発電機群全体の上げ代とすればよい。また、電力指令値配分量計算部530で計算した発電機指令値を複数の発電機へ振り分ける方法としては、予め発電機に優先順位をつけておき、優先順位が上位の発電機から、出力の増減指令を与える方法が考えられる。   In addition, when there are a plurality of generators subject to LFC, it is necessary to consider a method for calculating a generator raising allowance and a method for distributing generator command values to a plurality of generators. For example, the method of calculating the allowance for raising a plurality of generators may be obtained by adding the allowance for each generator and making the allowance for the entire generator group. In addition, as a method of allocating the generator command value calculated by the power command value distribution amount calculation unit 530 to a plurality of generators, priorities are assigned to the generators in advance, and the output from the higher priority generator is output. A method of giving an increase / decrease command is conceivable.

LFC対象の蓄電池が複数台ある場合は、SOC計測値の算出方法と、蓄電池指令値をどう複数台の蓄電池に振り分けるかを考慮する必要がある。複数の蓄電池のSOC計測値の算出方法は、各蓄電池のSOC計測値を計測し、その総和をとることで蓄電池群全体のSOC計測値とすることができる。また、電力指令値配分量計算部530で計算した蓄電池指令値を複数の蓄電池へ振り分ける方法としては、予め蓄電池に優先順位をつけておき、優先順位が上位の蓄電池から充放電の指令を与える方法や、各蓄電池の残存容量とSOC目標値の大小関係を考慮し、より残存容量が目標値に近づくように指令を振り分ける方法が考えられる。   When there are a plurality of storage batteries subject to LFC, it is necessary to consider the calculation method of the SOC measurement value and how to distribute the storage battery command value to the plurality of storage batteries. The calculation method of the SOC measurement value of a some storage battery can be set as the SOC measurement value of the whole storage battery group by measuring the SOC measurement value of each storage battery, and taking the sum total. In addition, as a method of allocating storage battery command values calculated by the power command value distribution amount calculation unit 530 to a plurality of storage batteries, a method of assigning priorities to the storage batteries in advance and giving a charge / discharge command from a higher-order storage battery In addition, considering the magnitude relationship between the remaining capacity of each storage battery and the SOC target value, a method of allocating commands so that the remaining capacity approaches the target value can be considered.

次に図4〜図9では本実施形態の効果を検証したシミュレーションについて説明する。図4、図5はシミュレーションの条件を示したものである。図4に示すとおり、負荷周波数制御の定周波数制御方式を対象とし、系統容量は8000[kW]とした。設備台数は発電機3台(LFC対象発電機はそのうちの1台、EDC対象発電機はそのうちの2台)、LFC対象蓄電池1台とする。図4で示すシミュレーション諸条件の詳細な説明は省略する。尚、初期状態における蓄電池の容量は、最大貯蔵容量の70[%]まで充電されているものとしてシミュレーションを実施した。また、負荷変動、風力発電による出力変動として図5のデータを使用し、長周期成分(EDCの調整範囲)についてはEDC対象発電機1およびEDC対象発電機2によって、需給が完全に一致している状態であるとしている。   Next, simulations for verifying the effects of the present embodiment will be described with reference to FIGS. 4 and 5 show the simulation conditions. As shown in FIG. 4, the constant frequency control method for load frequency control was targeted, and the system capacity was set to 8000 [kW]. The number of facilities is three generators (one of which is an LFC target generator and two of which are EDC target generators) and one LFC target storage battery. Detailed description of the simulation conditions shown in FIG. 4 is omitted. The simulation was performed assuming that the capacity of the storage battery in the initial state is charged to 70% of the maximum storage capacity. Further, the data shown in FIG. 5 is used as load fluctuation and output fluctuation due to wind power generation, and the supply and demand of the long period component (EDC adjustment range) is completely matched by the EDC target generator 1 and the EDC target generator 2. It is said that it is in a state.

図6〜図9に、本実施形態のシミュレーション結果を示す。それぞれ上段(a)に本実施形態の結果を、下段(b)に従来技術(SOC制御を実施しない場合)の結果を示している。図6から明らかなように、(a)で示される本実施形態では系統周波数を60±0.1Hz以内に保てているが、(b)で示される従来技術では1450[s]近傍で系統周波数が60±0.1[Hz]から逸脱している。これは、図9(b)で示されるように従来技術は1450[s]近傍で蓄電池が満充電となり、その結果、図8(b)で示されるように蓄電池の出力が0となり機能を停止しているのが分る。一方で、本実施形態では、図9(a)で示されるように蓄電池のSOC(残存容量)が緩やかに50[%]に近づいているのが分る。また、図8(a)で示されるように蓄電池の出力が0で留まる時間帯もなく、常に機能しているのが分る。尚、図7においては、本実施形態と従来技術とにおける優劣は見当たらないが、発電機も連動して動作していることが分る。   6 to 9 show the simulation results of the present embodiment. The upper stage (a) shows the result of this embodiment, and the lower stage (b) shows the result of the conventional technique (when SOC control is not performed). As is clear from FIG. 6, in the present embodiment shown in (a), the system frequency is kept within 60 ± 0.1 Hz, but in the prior art shown in (b), the system is in the vicinity of 1450 [s]. The frequency deviates from 60 ± 0.1 [Hz]. As shown in FIG. 9 (b), in the conventional technology, the storage battery is fully charged in the vicinity of 1450 [s], and as a result, the output of the storage battery becomes 0 and the function is stopped as shown in FIG. 8 (b). You can see that On the other hand, in this embodiment, as shown in FIG. 9A, it can be seen that the SOC (remaining capacity) of the storage battery is gradually approaching 50 [%]. Further, as shown in FIG. 8A, it can be seen that the output of the storage battery is always functioning without the time zone where the output of the storage battery stays at zero. In FIG. 7, the superiority and inferiority of the present embodiment and the prior art are not found, but it can be seen that the generator is also operated in conjunction.

上記で説明した、需給制御装置500は以下に示す効果を奏する。
本発明の需給制御装置500によれば、蓄電池の残存容量を目標値に近づける制御を行なうことで、蓄電池残存容量が0[%]または100[%]になる可能性が低くなり、蓄電池の出力が急激に変化することがなくなるため、負荷周波数制御は中断することなく実施される。加えて、地域要求量を考慮した制御であるので、系統周波数の乱れは生じない。
The supply / demand control apparatus 500 described above has the following effects.
According to the supply and demand control apparatus 500 of the present invention, by controlling the remaining capacity of the storage battery to be close to the target value, the possibility that the remaining capacity of the storage battery becomes 0 [%] or 100 [%] is reduced, and the output of the storage battery is reduced. The load frequency control is performed without interruption because the change in the frequency does not change rapidly. In addition, the system frequency is not disturbed because the control is performed in consideration of the local requirement.

また、蓄電池の残存容量を制御しない場合と比べて、蓄電池の設備容量を小さくできるため、コスト低減や設置スペースの低減を図ることができる。
<第2実施形態>
以下、図10〜図16を参照して、本発明の第2の実施形態における需給制御装置、及びシミュレーション結果について説明する。
Moreover, since the installation capacity of a storage battery can be made small compared with the case where the remaining capacity of a storage battery is not controlled, cost reduction and reduction of installation space can be aimed at.
Second Embodiment
Hereinafter, with reference to FIGS. 10-16, the supply-and-demand control apparatus and simulation result in the 2nd Embodiment of this invention are demonstrated.

図10は図1と同様に、需給制御装置とその周辺装置、制御対象である発電機および蓄電池等の関係を概略的に示した図である。第1の実施形態との相違点は、蓄電池700の状態(情報)から充放電量を計測する蓄電池充放電量計測装置800を有している点と、充放電量を用いた制御方法にある。蓄電池充放電量計測装置800は、需給制御装置500aの電力指令値配分量計算部530aに充放電量を伝送する。需給制御装置500aは不図示のメモリ等に予め蓄電池充放電量目標値を設けており、電力指令値配分量計算部530aはこれを用いて電力指令値を計算する。電力指令値配分量計算部530aの具体的な動作手順は後述するが、電力指令値配分量計算部530aが電力指令値配分量計算部530と異なる点は、蓄電池の残存容量が目標値の不感帯幅に入っている場合は発電機に余力があっても、SOC制御を実施せず蓄電池充放電量計測値が蓄電池充放電量目標値に近づくように、発電機および蓄電池へ出力増減指令値を配分する点にある。ここで不感帯とは、制御においてハンチング等を生じさせないようにするための緩衝帯であり、本実施形態での例は後述の図16(b)にて示す。   FIG. 10 is a diagram schematically showing the relationship between the supply and demand control device and its peripheral devices, the generator to be controlled, the storage battery, and the like, as in FIG. The difference from the first embodiment is that it has a storage battery charge / discharge amount measuring device 800 that measures the charge / discharge amount from the state (information) of the storage battery 700 and a control method using the charge / discharge amount. . The storage battery charge / discharge amount measuring device 800 transmits the charge / discharge amount to the power command value distribution amount calculation unit 530a of the supply and demand control device 500a. The supply / demand control apparatus 500a has a storage battery charge / discharge amount target value provided in advance in a memory (not shown) or the like, and the power command value distribution amount calculation unit 530a calculates a power command value using this value. Although the specific operation procedure of the power command value distribution amount calculation unit 530a will be described later, the difference between the power command value distribution amount calculation unit 530a and the power command value distribution amount calculation unit 530 is that the remaining capacity of the storage battery is the dead zone of the target value. If it is within the range, even if the generator has surplus capacity, the output control command value is sent to the generator and storage battery so that the measured value of the storage battery charge / discharge amount approaches the storage battery charge / discharge amount target value without performing the SOC control. The point is to allocate. Here, the dead zone is a buffer zone for preventing hunting and the like from being generated in the control, and an example in this embodiment is shown in FIG.

次に図11および図12を参照して、電力指令値配分量計算部530aの動作手順について説明する。
電力指令値配分量計算部530aは、必要電力変換部520から必要発電電力Pを受け取り処理を開始する。第1の実施形態(電力指令値配分量計算部530)との相違点は、以下の通りである。
Next, with reference to FIG. 11 and FIG. 12, an operation procedure of the power command value distribution amount calculation unit 530a will be described.
The power command value distribution amount calculation unit 530a receives the necessary generated power P from the required power conversion unit 520 and starts processing. Differences from the first embodiment (power command value distribution amount calculation unit 530) are as follows.

・不感帯の処理を設けた点
・SOC計測値が不感帯幅の内側にある場合、充放電量目標値に近づけるような処理
具体的には、図11のステップS34〜ステップS37、図12のステップS43〜ステップS46が該当し、これ以外の処理は第1の実施形態の図2及び図3と同様なので、同一の処理に関しては同じ符号を付し説明を省略する。
A point provided with a dead band process A process for bringing the SOC measurement value closer to the target charge / discharge amount when the SOC measurement value is inside the dead band width. Specifically, step S34 to step S37 in FIG. 11, step S43 in FIG. Step S46 is applicable, and the other processes are the same as those in FIGS. 2 and 3 of the first embodiment. Therefore, the same processes are denoted by the same reference numerals and description thereof is omitted.

図11のステップS34〜ステップS37を説明する。
ステップS34では、電力指令値配分量計算部530aは、SOC計測値とSOC目標値の大小関係を判定する。さらに電力指令値配分量計算部530aは、SOC計測値が不感帯幅の外側であるか否かを判定する。尚、不感帯幅は任意に設定すればよく、例えば目標値±不感帯設定値[kWh]とする。或いは、目標値±不感帯設定値[%]としても構わない。また不感帯にはヒステリシスを設けても構わない。要は、ヒステリシスは一種の感度設計であり具体例は後述の図16(b)で示すが、不感帯幅の外側から内側にSOC計測値が戻る際の不感帯幅を定めるものである。例えば通常の不感帯幅を“目標値±不感帯設定値[kWh] ”とした場合、ヒステリシスは“目標値±不感帯設定値/2[kWh] ”のように設定する。或いは、“目標値±不感帯設定値/2[%] ”のように設定しても構わない。いずれにせよ、不感帯幅を狭める方向での設定となる。
Steps S34 to S37 in FIG. 11 will be described.
In step S34, power command value distribution amount calculation unit 530a determines the magnitude relationship between the SOC measurement value and the SOC target value. Furthermore, power command value distribution amount calculation unit 530a determines whether or not the SOC measurement value is outside the dead band width. The dead zone width may be set arbitrarily, for example, set to target value ± dead zone set value [kWh]. Alternatively, target value ± dead zone setting value [%] may be used. In addition, hysteresis may be provided in the dead zone. In short, hysteresis is a kind of sensitivity design, and a specific example is shown in FIG. 16B described later, and defines the dead band width when the SOC measurement value returns from the outside to the inside of the dead band width. For example, when the normal dead zone width is “target value ± dead zone setting value [kWh]”, the hysteresis is set as “target value ± dead zone setting value / 2 [kWh]”. Alternatively, it may be set as “target value ± dead zone setting value / 2 [%]”. In any case, the setting is made in the direction of narrowing the dead zone width.

SOC目標値は運用者が設定する場合や発電機起動停止計画(UC)や経済負荷配分制御(EDC)の計画値を用いてもよい。
SOC計測値がSOC目標値以下、且つSOC計測値が不感帯幅の外側である場合(ステップS34、Yes)、電力指令値配分量計算部530aはステップS16へ進み、SOC制御を実施する。また、それ以外の場合(ステップS34、No)、SOC制御を行わずステップS35へ進む。
The SOC target value may be set by an operator, or a generator start / stop plan (UC) or economic load distribution control (EDC) plan value may be used.
When the SOC measurement value is equal to or less than the SOC target value and the SOC measurement value is outside the dead zone width (step S34, Yes), the power command value distribution amount calculation unit 530a proceeds to step S16 and performs SOC control. In other cases (No in step S34), the process proceeds to step S35 without performing the SOC control.

ステップS35では、電力指令値配分量計算部530aは、蓄電池の充放電量目標値と蓄電池の充放電量実績値の大小関係を判定する。蓄電池の充放電量目標値が蓄電池の充放電量実績値より小さければ(ステップS35、Yes)、電力指令値配分量計算部530aはステップS36へ進み、蓄電池の充放電量目標値に近づけるために、蓄電池に放電方向となる出力増減指令値を与える。そこで、電力指令値配分量計算部530aは必要発電電力Pを以下のように配分し、処理を終了する。   In step S35, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the target charge / discharge amount of the storage battery and the actual charge / discharge amount of the storage battery. If the target charge / discharge amount of the storage battery is smaller than the actual charge / discharge amount of the storage battery (step S35, Yes), the power command value distribution amount calculation unit 530a proceeds to step S36 to approach the target charge / discharge amount of the storage battery. Then, an output increase / decrease command value in the discharge direction is given to the storage battery. Therefore, the power command value distribution amount calculation unit 530a distributes the necessary generated power P as follows, and ends the process.

発電機指令値=発電機下げ代
蓄電池指令値=発電機下げ代−必要発電電力P
電力指令値配分量計算部530aは、蓄電池の充放電量目標値が蓄電池の充放電量実績値より小さくなければ(ステップS35、No)、ステップS37へ進む。つまり、蓄電池の充放電量目標値に近づけるためには、蓄電池は充電方向に出力増減指令値を与える必要がある。そこで、電力指令値配分量計算部530は必要発電電力Pを以下のように配分し、処理を終了する。
Generator command value = Generator lowering allowance Storage battery command value = Generator lowering allowance-Necessary generated power P
If the charge / discharge amount target value of the storage battery is not smaller than the actual charge / discharge amount of the storage battery (No in step S35), the power command value distribution amount calculation unit 530a proceeds to step S37. That is, in order to approach the charge / discharge amount target value of the storage battery, the storage battery needs to give an output increase / decrease command value in the charging direction. Therefore, the power command value distribution amount calculation unit 530 distributes the necessary generated power P as follows, and ends the process.

発電機指令値=発電機上げ代
蓄電池指令値=発電機上げ代−必要発電電力P
ここで、図11のステップS36における電力指令値配分量計算部530aの処理について具体的な数値をあげて説明する。電力指令値配分量計算部530aが必要電力変換部520から受け取った必要発電電力Pが10[kW]、発電機上げ代が必要発電電力Pを上回る400[kW]、発電機下げ代が−400[kW]、SOC目標値が50[%]、SOC計測値が49.9[%]、不感帯幅は目標値±0.5[%]、蓄電池の満充電容量が100[kWh]、蓄電池の充放電量目標値が20[kW](充電)、蓄電池の充放電量実績値が50[kW](充電)の場合は、発電機の出力には390[kW]の余裕があるため、ステップS12のYes、を経て、ステップS34にてSOC制御の実施可否を判定する。SOC計測値は目標値−0.1[%]であるため、不感帯幅の内側である。そのため、ステップ34はNoとなり、電力指令値配分量計算部530aは、SOC制御が実施されないステップS35へと進む。このとき、蓄電池の充放電量実績値が蓄電池の充放電量目標値に近づくように発電機指令値と蓄電池指令値を算出する。
Generator command value = generator increase allowance Battery command value = generator increase allowance−necessary generated power P
Here, the processing of the power command value distribution amount calculation unit 530a in step S36 of FIG. 11 will be described with specific numerical values. The required generated power P received by the power command value distribution amount calculation unit 530a from the required power conversion unit 520 is 10 [kW], the generator raising cost exceeds 400 [kW], and the generator lowering cost is −400. [kW], SOC target value 50 [%], SOC measurement value 49.9 [%], dead band width target value ± 0.5 [%], full charge capacity of storage battery 100 [kWh] When the target charge / discharge amount is 20 [kW] (charge) and the actual charge / discharge amount of the storage battery is 50 [kW] (charge), the output of the generator has a margin of 390 [kW]. After Yes in S12, it is determined in step S34 whether or not the SOC control can be performed. Since the SOC measurement value is the target value −0.1 [%], it is inside the dead zone width. Therefore, step 34 is No, and the power command value distribution amount calculation unit 530a proceeds to step S35 where the SOC control is not performed. At this time, the generator command value and the storage battery command value are calculated so that the actual charge / discharge amount value of the storage battery approaches the target charge / discharge amount value of the storage battery.

次に、電力指令値配分量計算部530aは、ステップS35にて蓄電池の充放電量目標値(20[kW])と蓄電池の充放電量実績値(50[kW])の大小関係を判定する。この条件では蓄電池の充放電量目標値に近づけるためには、蓄電池に放電方向に出力増減指令を出す必要がある。そこで電力指令値配分量計算部530aは、ステップS36にて以下のように計算する。   Next, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the storage battery charge / discharge amount target value (20 [kW]) and the storage battery charge / discharge amount actual value (50 [kW]) in step S35. . Under this condition, it is necessary to issue an output increase / decrease command to the storage battery in the discharge direction in order to approach the charge / discharge amount target value of the storage battery. Therefore, the power command value distribution amount calculation unit 530a calculates in step S36 as follows.

発電機指令値=発電機下げ代=−400[kW]
蓄電池指令値=発電機下げ代−必要発電電力P=−400−10
=−410[kW](蓄電池は放電、SOC制御なし)
上記のように図11のステップS36の場合、SOC計測値が不感帯幅の内側であるため、電力指令値配分量計算部530aはSOC制御は実施しない。しかし、上記のように指令値を与えることにより蓄電池の充放電量実績値を蓄電池の充放電量目標値に近づけることができる。
Generator command value = Generator lowering allowance = −400 [kW]
Battery command value = generator lowering allowance-necessary generated power P = -400-10
= -410 [kW] (The storage battery is discharged without SOC control)
As described above, in the case of step S36 in FIG. 11, since the SOC measurement value is inside the dead band width, the power command value distribution amount calculation unit 530a does not perform the SOC control. However, by giving the command value as described above, the actual charge / discharge amount of the storage battery can be brought close to the target charge / discharge amount of the storage battery.

続いて図11のステップS37の場合における電力指令値配分量計算部530aの処理について、具体的に数値をあげて説明する。電力指令値配分量計算部530aが必要電力変換部520から受け取った必要発電電力Pが10[kW]、発電機上げ代が必要発電電力を上回る400[kW]、発電機下げ代が−400[kW]、SOC目標値が50[%]、SOC計測値が49.9[%]、不感帯幅は目標値±0.5[%]、蓄電池の満充電容量が100[kWh]、蓄電池の充放電量目標値が50[kW](充電)、蓄電池の充放電量実績値が20[kW](充電)の場合は、発電機の出力には390[kW]の余裕があるため、ステップS12のYes、を経て、ステップS34にてSOC制御の実施可否を判定する。まず、SOC計測値は目標値−0.1[%]であるため、不感帯幅の内側である。そのため、ステップ34はNoとなり、電力指令値配分量計算部530aはSOC制御を実施しないステップS35へと進む。このとき電力指令値配分量計算部530aは、蓄電池の充放電量実績値が蓄電池の充放電量目標値に近づくように発電機指令値と蓄電池指令値を算出する。   Next, the process of the power command value distribution amount calculation unit 530a in the case of step S37 in FIG. 11 will be described with specific numerical values. The required generated power P received by the power command value distribution amount calculation unit 530a from the required power conversion unit 520 is 10 [kW], the generator raising cost is 400 [kW] exceeding the necessary generated power, and the generator lowering cost is −400 [ kW], SOC target value 50 [%], SOC measurement value 49.9 [%], dead band width target value ± 0.5 [%], battery full charge capacity 100 [kWh], battery charge When the discharge amount target value is 50 [kW] (charge) and the actual charge / discharge amount of the storage battery is 20 [kW] (charge), the output of the generator has a margin of 390 [kW], so step S12 In step S34, it is determined whether or not the SOC control can be performed. First, since the SOC measurement value is the target value −0.1 [%], it is inside the dead zone width. Therefore, step 34 is No, and the power command value distribution amount calculation unit 530a proceeds to step S35 where the SOC control is not performed. At this time, the power command value distribution amount calculation unit 530a calculates the generator command value and the storage battery command value so that the actual charge / discharge amount value of the storage battery approaches the target charge / discharge amount value of the storage battery.

次に電力指令値配分量計算部530aは、ステップS35にて蓄電池の充放電量目標値(50[kW])と蓄電池の充放電量実績値(20[kW])の大小関係を判定する。この条件では蓄電池の充放電量目標値に近づけるためには、蓄電池に充電方向に出力増減指令を出す必要がある。そこで電力指令値配分量計算部530aは、ステップS37にて以下のように計算する。   Next, in step S35, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the storage battery charge / discharge amount target value (50 [kW]) and the storage battery charge / discharge amount actual value (20 [kW]). Under this condition, it is necessary to issue an output increase / decrease command to the storage battery in the charging direction in order to approach the target charge / discharge amount of the storage battery. Therefore, the power command value distribution amount calculation unit 530a calculates in step S37 as follows.

発電機指令値=発電機上げ代=400[kW]
蓄電池指令値=発電機下げ代−必要発電電力P=400−10
=390[kW](蓄電池は放電、SOC制御なし)
上記のように図11のステップS37の場合は、SOC計測値が不感帯幅の内側である。このため電力指令値配分量計算部530aは、SOC制御を実施しない。しかし、上記のように指令値を与えることにより蓄電池の充放電量実績値を蓄電池の充放電量目標値に近づけることができる。
Generator command value = Generator raising cost = 400 [kW]
Storage battery command value = generator lowering allowance-necessary generated power P = 400-10
= 390 [kW] (The storage battery is discharged without SOC control)
As described above, in the case of step S37 in FIG. 11, the SOC measurement value is inside the dead zone width. For this reason, the electric power command value distribution amount calculation unit 530a does not perform the SOC control. However, by giving the command value as described above, the actual charge / discharge amount of the storage battery can be brought close to the target charge / discharge amount of the storage battery.

続けて図12のステップS43〜ステップS46を説明する。
ステップS43で電力指令値配分量計算部530aは、電力指令値配分量計算部530aは、SOC計測値とSOC目標値の大小関係を判定する。さらに、電力指令値配分量計算部530aは、SOC計測値が目標値±不感帯設定値[kWh]外であるか否かを判定する。SOC計測値がSOC目標値より大きくかつSOC計測値が目標値±不感帯設定値[kWh]外である場合(ステップS43、Yes)、電力指令値配分量計算部530aはステップS25へ進み、SOC制御を実施する。また、それ以外の場合(ステップS43、No)、SOC制御を行わず、電力指令値配分量計算部530aはステップS44を経て、蓄電池の充放電量目標値に近づけるように、発電機および蓄電池へ電力指令値を配分する。
Next, step S43 to step S46 in FIG. 12 will be described.
In step S43, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the SOC measurement value and the SOC target value. Further, power command value distribution amount calculation unit 530a determines whether or not the SOC measurement value is outside the target value ± dead zone setting value [kWh]. When the SOC measurement value is larger than the SOC target value and the SOC measurement value is outside the target value ± dead zone setting value [kWh] (step S43, Yes), the power command value distribution amount calculation unit 530a proceeds to step S25, and performs SOC control. To implement. In other cases (step S43, No), the SOC control is not performed, and the power command value distribution amount calculation unit 530a passes the step S44 to the generator and the storage battery so as to approach the charge / discharge amount target value of the storage battery. Allocate power command value.

ステップS44で電力指令値配分量計算部530aは、蓄電池の充放電量目標値と蓄電池の充放電量実績値の大小関係を判定する。蓄電池の充放電量目標値が蓄電池の充放電量実績値より小さいと電力指令値配分量計算部530aが判定したとき(ステップS44、Yes)、電力指令値配分量計算部530aは蓄電池の充放電量目標値に近づけるため、蓄電池に対して放電方向に出力増減指令値を与える必要がある。そこで、電力指令値配分量計算部530aは、必要発電電力Pを以下のように配分(ステップS45)し、ステップBへ進み、図11の処理に戻り、その後処理を終了する。   In step S44, the power command value distribution amount calculation unit 530a determines the magnitude relation between the target charge / discharge amount of the storage battery and the actual charge / discharge amount of the storage battery. When the power command value distribution amount calculation unit 530a determines that the charge / discharge amount target value of the storage battery is smaller than the actual charge / discharge amount value of the storage battery (Yes in step S44), the power command value distribution amount calculation unit 530a performs charge / discharge of the storage battery. In order to approach the quantity target value, it is necessary to give an output increase / decrease command value in the discharge direction to the storage battery. Therefore, the power command value distribution amount calculation unit 530a distributes the necessary generated power P as follows (step S45), proceeds to step B, returns to the process of FIG. 11, and then ends the process.

発電機指令値=発電機下げ代
蓄電池指令値=発電機下げ代−必要発電電力P
蓄電池の充放電量目標値が蓄電池の充放電量実績値より小さくなければ(ステップS44、No)、電力指令値配分量計算部530aは、蓄電池の充放電量目標値に近づけるため蓄電池に対して充電方向に出力増減指令値を与える必要がある。そこで、電力指令値配分量計算部530aは必要発電電力Pを以下のように配分(ステップS46)し、ステップBへ進み、図11の処理に戻り、その後処理を終了する。
Generator command value = Generator lowering allowance Storage battery command value = Generator lowering allowance-Necessary generated power P
If the charge / discharge amount target value of the storage battery is not smaller than the charge / discharge amount actual value of the storage battery (No in step S44), the power command value distribution amount calculation unit 530a is close to the charge / discharge amount target value of the storage battery. It is necessary to give an output increase / decrease command value in the charging direction. Therefore, the power command value distribution amount calculation unit 530a distributes the necessary generated power P as follows (step S46), proceeds to step B, returns to the process of FIG. 11, and then ends the process.

発電機指令値=発電機上げ代
蓄電池指令値=発電機上げ代−必要発電電力P
ここで、図12のステップS45における電力指令値配分量計算部530aの処理について、具体的に数値をあげて説明する。電力指令値配分量計算部530aが必要電力変換部520から受け取った必要発電電力Pが−10[kW]、発電機下げ代が必要発電電力Pを上回る−400[kW]、発電機上げ代が400[kW]、SOC目標値が50[%]、SOC計測値が50.1[%]、不感帯幅は目標値±0.5[%]、蓄電池の満充電容量が100[kWh]、蓄電池の充放電量目標値が20[kW](充電)、蓄電池の充放電量実績値が50[kW](充電)の場合は、発電機の出力には−390[kW]の余裕がある。このため電力指令値配分量計算部530aは、ステップS21のYes、を経て、ステップS43にてSOC制御の実施可否を判定する。
Generator command value = generator increase allowance Battery command value = generator increase allowance−necessary generated power P
Here, the process of the power command value distribution amount calculation unit 530a in step S45 of FIG. 12 will be described with specific numerical values. The required generated power P received from the required power conversion unit 520 by the power command value distribution amount calculation unit 530a is −10 [kW], the generator lowering cost exceeds −400 [kW], and the generator raising cost is 400 [kW], SOC target value 50 [%], SOC measured value 50.1 [%], dead band width target value ± 0.5 [%], full charge capacity of storage battery 100 [kWh], storage battery When the target charge / discharge amount is 20 [kW] (charge) and the actual charge / discharge amount of the storage battery is 50 [kW] (charge), the generator output has a margin of -390 [kW]. Therefore, power command value distribution amount calculation unit 530a determines whether or not the SOC control can be performed in step S43 through Yes in step S21.

まず、SOC計測値は目標値+0.1[%]であるため、不感帯幅の内側である。そのため電力指令値配分量計算部530aは、ステップ43はNoとなり、SOC制御が実施されないステップS44へと進む。このとき電力指令値配分量計算部530aは、蓄電池の充放電量実績値が蓄電池の充放電量目標値に近づくように発電機指令値と蓄電池指令値を算出する。   First, since the SOC measurement value is the target value +0.1 [%], it is inside the dead zone width. Therefore, the power command value distribution amount calculation unit 530a proceeds to step S44 where step 43 is No and SOC control is not performed. At this time, the power command value distribution amount calculation unit 530a calculates the generator command value and the storage battery command value so that the actual charge / discharge amount value of the storage battery approaches the target charge / discharge amount value of the storage battery.

次に、電力指令値配分量計算部530aは、ステップS44にて蓄電池の充放電量目標値(20[kW])と蓄電池の充放電量実績値(50[kW])の大小関係を判定する。この条件では蓄電池の充放電量目標値に近づけるため蓄電池に対して放電方向に出力増減指令を出す必要がある。電力指令値配分量計算部530aは、ステップS45にて以下のように計算する。   Next, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the storage battery charge / discharge amount target value (20 [kW]) and the storage battery charge / discharge amount actual value (50 [kW]) in step S44. . Under this condition, it is necessary to issue an output increase / decrease command in the discharge direction to the storage battery in order to approach the target charge / discharge amount of the storage battery. The power command value distribution amount calculation unit 530a calculates in step S45 as follows.

発電機指令値=発電機下げ代=−400[kW]
蓄電池指令値=発電機下げ代−必要発電電力P=−400+10
=−390[kW](蓄電池は放電、SOC制御なし)
上記のように図12のステップS45の場合は、SOC計測値が不感帯幅の内側である。このため電力指令値配分量計算部530aは、SOC制御は実施しない。しかしながら、上記のように指令値を与えることにより蓄電池の充放電量実績値を蓄電池の充放電量目標値に近づけることができる。
Generator command value = Generator lowering allowance = −400 [kW]
Battery command value = generator lowering allowance-necessary generated power P = -400 + 10
= -390 [kW] (The storage battery is discharged without SOC control)
As described above, in the case of step S45 in FIG. 12, the SOC measurement value is inside the dead zone width. For this reason, the power command value distribution amount calculation unit 530a does not perform the SOC control. However, by giving the command value as described above, the actual charge / discharge amount value of the storage battery can be brought close to the target charge / discharge amount value of the storage battery.

続いて図12のステップS46における電力指令値配分量計算部530aの処理について、具体的似数値をあげて説明する。電力指令値配分量計算部530aが必要電力変換部520から受け取った必要発電電力Pが−10[kW]、発電機下げ代が必要発電電力Pを上回る−400[kW]、発電機上げ代が400[kW]、SOC目標値が50[%]、SOC計測値が50.1[%]、不感帯幅は目標値±0.5[%]、蓄電池の満充電容量が100[kWh]、蓄電池の充放電量目標値が50[kW](充電)、蓄電池の充放電量実績値が20[kW](充電)の場合は、発電機の出力には−390[kW]の余裕がある。このため電力指令値配分量計算部530aは、ステップS21のYes、を経て、ステップS43にてSOC制御の実施可否を判定する。   Next, the process of the power command value distribution amount calculation unit 530a in step S46 of FIG. 12 will be described with specific similar numerical values. The required generated power P received from the required power conversion unit 520 by the power command value distribution amount calculation unit 530a is −10 [kW], the generator lowering cost exceeds −400 [kW], and the generator raising cost is 400 [kW], SOC target value 50 [%], SOC measured value 50.1 [%], dead band width target value ± 0.5 [%], full charge capacity of storage battery 100 [kWh], storage battery When the target charge / discharge amount is 50 [kW] (charge) and the actual charge / discharge amount of the storage battery is 20 [kW] (charge), the output of the generator has a margin of -390 [kW]. Therefore, power command value distribution amount calculation unit 530a determines whether or not the SOC control can be performed in step S43 through Yes in step S21.

まず、SOC計測値は目標値+0.1[%]であるため、不感帯幅の内側である。そのため、ステップ43はNoとなり、電力指令値配分量計算部530aは、SOC制御が実施されないステップS44へと進む。このとき、電力指令値配分量計算部530aは、蓄電池の充放電量実績値が蓄電池の充放電量目標値に近づくように発電機指令値と蓄電池指令値を算出する。   First, since the SOC measurement value is the target value +0.1 [%], it is inside the dead zone width. Therefore, Step 43 is No, and the power command value distribution amount calculation unit 530a proceeds to Step S44 where the SOC control is not performed. At this time, the power command value distribution amount calculation unit 530a calculates the generator command value and the storage battery command value so that the actual charge / discharge amount value of the storage battery approaches the target charge / discharge amount value of the storage battery.

次に電力指令値配分量計算部530aは、ステップS44にて蓄電池の充放電量目標値(50[kW])と蓄電池の充放電量実績値(20[kW])の大小関係を判定する。この条件では蓄電池の充放電量目標値に近づけるため蓄電池に対して充電方向に出力増減指令を出す必要がある。このため、電力指令値配分量計算部530aは、ステップS46にて以下のように計算する。   Next, the power command value distribution amount calculation unit 530a determines the magnitude relationship between the storage battery charge / discharge amount target value (50 [kW]) and the storage battery charge / discharge amount actual value (20 [kW]) in step S44. Under this condition, it is necessary to issue an output increase / decrease command in the charging direction to the storage battery in order to approach the target charge / discharge amount of the storage battery. For this reason, the power command value distribution amount calculation unit 530a calculates in step S46 as follows.

発電機指令値=発電機上げ代=400[kW]
蓄電池指令値=発電機上げ代−必要発電電力P=400+10
=410[kW](蓄電池は放電、SOC制御なし)
上記のように図12のステップS46の場合は、SOC計測値が不感帯幅の内側である。このため電力指令値配分量計算部530aは、SOC制御は実施しない。しかしながら、上記のように指令値を与えることにより蓄電池の充放電量実績値を蓄電池の充放電量目標値に近づけることができる。
Generator command value = Generator raising cost = 400 [kW]
Storage battery command value = generator raising cost−necessary generated power P = 400 + 10
= 410 [kW] (The storage battery is discharged, without SOC control)
As described above, in the case of step S46 in FIG. 12, the SOC measurement value is inside the dead zone width. For this reason, the power command value distribution amount calculation unit 530a does not perform the SOC control. However, by giving the command value as described above, the actual charge / discharge amount value of the storage battery can be brought close to the target charge / discharge amount value of the storage battery.

また、LFC対象の発電機やLFC対象の蓄電池が複数台ある場合の動作も第1の実施形態と同様に考えることができる。
次に図13〜図16では本実施形態の効果を検証したシミュレーションについて説明する。図13、図14はシミュレーションの条件を示したものである。図13に示すとおり、負荷周波数制御の定周波数制御方式を対象とし、系統容量は500[kW]とした。設備台数は発電機3台(LFC対象発電機はそのうちの2台、EDC対象発電機はそのうちの1台)、LFC対象蓄電池1台とする。図13で示すシミュレーション諸条件の詳細な説明は省略する。
The operation when there are a plurality of LFC-targeted generators and LFC-targeted storage batteries can also be considered as in the first embodiment.
Next, simulations for verifying the effects of the present embodiment will be described with reference to FIGS. 13 and 14 show simulation conditions. As shown in FIG. 13, the constant frequency control method of load frequency control was targeted, and the system capacity was 500 [kW]. The number of facilities is three generators (two of which are LFC target generators and one of which is an EDC target generator) and one LFC target storage battery. Detailed description of the simulation conditions shown in FIG. 13 is omitted.

尚、初期状態における蓄電池の容量は、最大貯蔵容量の60[%]まで充電されているものとしてシミュレーションを実施した。また、負荷変動、太陽光発電による出力変動として図14のデータを使用した。尚、本実施形態では第1の実施形態における検証と異なり、長周期成分(EDCの調整範囲)についても考慮した検証となっている。   The simulation was performed assuming that the capacity of the storage battery in the initial state is charged to 60% of the maximum storage capacity. Moreover, the data of FIG. 14 was used as load fluctuation | variation and the output fluctuation | variation by photovoltaic power generation. In this embodiment, unlike the verification in the first embodiment, the verification is performed in consideration of a long-period component (EDC adjustment range).

図15〜図16に、本実施形態のシミュレーション結果を示す。本実施形態では蓄電池のSOCの目標値を60[%]とし,不感帯幅は一段目が±2[%]、二段目が±1[%]とヒステリシスをつけた設定としている。また、蓄電池の充放電量目標値は0[kW]と設定した。図15(a)から明らかなように、本実施形態では系統周波数を60±0.1[Hz]以内にほぼ保てている。図15(b)は、各発電機の出力の様態を示している。本発明の特徴に直接的には関係しないが、発電コストを考慮した出力となっている。図16(a)、(b)から、蓄電池のSOC(残存容量)が不感帯の内側となっている時間帯は蓄電池の充放電量を目標値の0[kW]付近に制御していることが確認できる。   15 to 16 show simulation results of the present embodiment. In this embodiment, the SOC target value of the storage battery is set to 60 [%], and the dead zone width is set to have a hysteresis of ± 2 [%] in the first stage and ± 1 [%] in the second stage. Further, the target charge / discharge amount of the storage battery was set to 0 [kW]. As is apparent from FIG. 15A, in this embodiment, the system frequency is substantially kept within 60 ± 0.1 [Hz]. FIG. 15B shows the output state of each generator. Although not directly related to the characteristics of the present invention, the output is in consideration of the power generation cost. 16 (a) and 16 (b), the charge / discharge amount of the storage battery is controlled to be close to the target value of 0 [kW] during the time period in which the SOC (remaining capacity) of the storage battery is inside the dead zone. I can confirm.

上記で説明した、需給制御装置500aは以下に示す効果を奏する。
本発明の需給制御装置500aによれば、第1の実施形態と同様に、蓄電池の残存容量を目標値に近づける制御を行なうことで、蓄電池残存容量が0[%]または100[%]になる可能性が低くなり、蓄電池の出力が急激に変化することがなくなるため、負荷周波数制御は中断することなく実施される。さらに、SOCが不感帯の内側となっている場合に、蓄電池の充放電量を目標値に近づくように発電機および蓄電池に出力増減指令を与えるため、単に地域要求量を満たした制御では無く、UCやEDCなどの長周期成分の制御と協調した制御を実施することが可能となる。
The supply / demand control apparatus 500a described above has the following effects.
According to the supply and demand control apparatus 500a of the present invention, the storage battery remaining capacity becomes 0 [%] or 100 [%] by performing control to bring the remaining capacity of the storage battery close to the target value, as in the first embodiment. Since the possibility decreases and the output of the storage battery does not change rapidly, the load frequency control is performed without interruption. Furthermore, when the SOC is inside the dead zone, an output increase / decrease command is given to the generator and the storage battery so that the charge / discharge amount of the storage battery approaches the target value. It is possible to perform control in cooperation with control of long-period components such as EDC and EDC.

100 周波数計測装置
200 連系点潮流計測装置
300 発電量計測装置
400 蓄電池残存容量計測装置
500、500a 需給制御装置
510 地域要求量算出部
520 必要電力変換部
530、530a 電力指令値配分量計算部
600 発電機
700 蓄電池
800 蓄電池充放電量計測装置
DESCRIPTION OF SYMBOLS 100 Frequency measuring device 200 Connection point tidal current measuring device 300 Electric power generation amount measuring device 400 Storage battery remaining capacity measuring device 500, 500a Supply / demand control device 510 Local demand amount calculation part 520 Necessary power conversion part 530, 530a Power command value distribution amount calculation part 600 Generator 700 Storage battery 800 Storage battery charge / discharge measuring device

Claims (8)

電力系統へ電力を供給する発電機および蓄電池をそれぞれ少なくとも一台以上を有する 電力系統の負荷周波数を制御する需給制御装置であって、
系統周波数と系統容量と基準周波数とを用いて地域要求量を算出する地域要求量算出手 段と、
前記地域要求量から前記発電機および前記蓄電池を制御する必要のある必要発電電力を 計算する必要電力変換部と、
前記蓄電池の残存容量を所定の目標値に近づけると共に、前記地域要求量を満たす前記 発電機の出力指令値および前記蓄電池の充放電指令値を前記必要発電電力から計算する 電力指令値配分量計算手段と、
を備えることを特徴とする需給制御装置。
A supply and demand control device for controlling a load frequency of a power system having at least one generator and a storage battery each supplying power to the power system,
A regional requirement calculation means for calculating regional requirements using the system frequency, system capacity, and reference frequency;
A required power conversion unit that calculates necessary generated power that needs to control the generator and the storage battery from the regional requirement amount;
Power command value distribution amount calculating means for calculating the output command value of the generator and the charge / discharge command value of the storage battery satisfying the local requirement amount from the necessary generated power while bringing the remaining capacity of the storage battery close to a predetermined target value When,
A supply and demand control device comprising:
前記電力指令値配分量計算手段は、前記発電機の出力が前記必要発電電力に対して余裕 がある場合には、前記蓄電池の残存容量を所定の目標値に近づけるように前記出力指令 値および前記充放電指令値を計算することを特徴とする請求項1に記載の需給制御装 置。   When the output of the generator has a margin with respect to the required generated power, the power command value distribution amount calculation means is configured to cause the remaining capacity of the storage battery to approach a predetermined target value and The supply / demand control apparatus according to claim 1, wherein a charge / discharge command value is calculated. 前記電力指令値配分量計算手段は、前記地域要求量が正のとき、かつ、前記蓄電池の残 存容量が前記所定の目標値より低い場合、かつ、前記発電機の出力増加量に余力がある 場合に、前記出力指令値を前記必要発電電力と前記蓄電池の充電電力の和を用いること を特徴とする請求項1または2に記載の需給制御装置。   The power command value distribution amount calculating means has a margin for the output increase amount of the generator when the regional requirement amount is positive and the remaining capacity of the storage battery is lower than the predetermined target value. The supply / demand control apparatus according to claim 1, wherein the output command value is a sum of the required generated power and the charging power of the storage battery. 前記電力指令値配分量計算手段は、前記地域要求量が負のとき、かつ、前記蓄電池の残 存容量が目標値より高い場合、かつ、前記発電機の出力減少量に余力がある場合に、需 給出力指令値を前記必要発電電力と前記蓄電池の放電電力の和を用いることを特徴とす る請求項1または2に記載の需給数制御装置。   The power command value distribution amount calculation means, when the regional requirement amount is negative, when the remaining capacity of the storage battery is higher than a target value, and when the output reduction amount of the generator has a surplus, The supply and demand number control apparatus according to claim 1 or 2, wherein the supply and demand output command value uses a sum of the necessary generated power and the discharge power of the storage battery. 前記地域要求量算出手段は、系統定数と前記系統容量と前記系統周波数及び前記基準周 波数の周波数偏差との積から前記地域要求量を求めることを特徴とする請求項1〜4の いずれか一項に記載の需給制御装置。   The regional requirement amount calculation means obtains the regional requirement amount from a product of a system constant, the system capacity, the system frequency, and a frequency deviation of the reference frequency. Supply and demand control device according to item. 前記地域要求量算出手段は、系統定数と前記系統容量と前記系統周波数及び前記基準周 波数の周波数偏差の積とを連系点潮流偏差から引くことにより前記地域要求量を求める ことを特徴とする請求項1〜4のいずれか一項に記載の需給制御装置。   The regional requirement amount calculating means obtains the regional requirement amount by subtracting a product of a system constant, a system capacity, a frequency deviation of the system frequency and the reference frequency from an interconnection point power flow deviation. The supply-and-demand control apparatus as described in any one of Claims 1-4. 電力系統へ電力を供給する発電機および蓄電池をそれぞれ少なくとも一台以上を有する 電力系統の連系点潮流を制御する需給制御装置であって、
前記連系点潮流から地域要求量を算出する地域要求量算出手段と、
前記地域要求量より前記発電機および前記蓄電池を制御する必要のある必要発電電力を 計算する必要電力変換部と、
前記蓄電池の残存容量を所定の目標値に近づけると共に、前記地域要求量を満たす前記 発電機の出力指令値および前記蓄電池の充放電指令値を前記必要発電電力から計算する 電力指令値配分量計算手段と、
を備えることを特徴とする需給制御装置。
A supply and demand control device for controlling a power flow at an interconnection point of a power system having at least one generator and a storage battery each supplying power to the power system,
A regional requirement amount calculating means for calculating a regional requirement amount from the interconnection point tide;
A required power conversion unit that calculates necessary generated power that needs to control the generator and the storage battery from the regional requirement amount; and
Power command value distribution amount calculating means for calculating the output command value of the generator and the charge / discharge command value of the storage battery satisfying the local requirement amount from the necessary generated power while bringing the remaining capacity of the storage battery close to a predetermined target value When,
A supply and demand control device comprising:
前記電力指令値配分量計算手段は、前記蓄電池の残存容量が該残存容量の目標値に対す る不感帯幅の内側である場合には、前記蓄電池の充放電量目標値に近づけるように前記 出力指令値および前記充放電指令値を計算することを特徴とする請求項1または7に記 載の需給制御装置。   When the remaining capacity of the storage battery is inside the dead band width with respect to the target value of the remaining capacity, the power command value distribution amount calculating means is configured to approach the output command so as to approach the charge / discharge amount target value of the storage battery. The supply / demand control apparatus according to claim 1, wherein a value and the charge / discharge command value are calculated.
JP2013038281A 2012-02-29 2013-02-28 Supply and demand control device Active JP6075116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038281A JP6075116B2 (en) 2012-02-29 2013-02-28 Supply and demand control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012043577 2012-02-29
JP2012043577 2012-02-29
JP2013038281A JP6075116B2 (en) 2012-02-29 2013-02-28 Supply and demand control device

Publications (2)

Publication Number Publication Date
JP2013212044A true JP2013212044A (en) 2013-10-10
JP6075116B2 JP6075116B2 (en) 2017-02-08

Family

ID=49529401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038281A Active JP6075116B2 (en) 2012-02-29 2013-02-28 Supply and demand control device

Country Status (1)

Country Link
JP (1) JP6075116B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098083A1 (en) * 2013-12-27 2015-07-02 川崎重工業株式会社 Power supply/demand control device
JP2015186308A (en) * 2014-03-20 2015-10-22 株式会社東芝 Power system stabilizer
JP2016082679A (en) * 2014-10-15 2016-05-16 三菱重工業株式会社 Frequency control device for power system, frequency control system with the same, frequency control method and frequency control program
JP6183576B1 (en) * 2016-05-10 2017-08-23 日本電気株式会社 Supply and demand adjustment system, control device, control method, and program
WO2017195391A1 (en) * 2016-05-10 2017-11-16 日本電気株式会社 Supply/demand adjustment system, control device, control method, and program
JP2020089175A (en) * 2018-11-29 2020-06-04 株式会社日立製作所 Frequency controller and frequency controlling method
JP2020183658A (en) * 2019-05-08 2020-11-12 シンフォニアテクノロジー株式会社 Wave power generating system and wave power generation method
JP2020202623A (en) * 2019-06-06 2020-12-17 株式会社日立ビルシステム Power management system
WO2021260958A1 (en) * 2020-06-22 2021-12-30 株式会社東芝 Power storage control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388007A (en) * 1989-08-31 1991-04-12 Toshiba Corp Automatic frequency control system
JP2001177992A (en) * 1999-12-10 2001-06-29 Toshiba Corp Power system monitoring control system, and record medium for storing program for operating the same
JP2002305842A (en) * 2001-04-03 2002-10-18 Ennet Corp Surplus power control system
JP2008178215A (en) * 2007-01-18 2008-07-31 Toshiba Corp Frequency regulation system and method
JP2011050133A (en) * 2009-08-25 2011-03-10 Toshiba Corp Device for controlling demand-supply of power system, demand-supply control program, and recording medium therefor
JP2011114900A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Apparatus and method for controlling supply and demand of micro-grid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388007A (en) * 1989-08-31 1991-04-12 Toshiba Corp Automatic frequency control system
JP2001177992A (en) * 1999-12-10 2001-06-29 Toshiba Corp Power system monitoring control system, and record medium for storing program for operating the same
JP2002305842A (en) * 2001-04-03 2002-10-18 Ennet Corp Surplus power control system
JP2008178215A (en) * 2007-01-18 2008-07-31 Toshiba Corp Frequency regulation system and method
JP2011050133A (en) * 2009-08-25 2011-03-10 Toshiba Corp Device for controlling demand-supply of power system, demand-supply control program, and recording medium therefor
JP2011114900A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Apparatus and method for controlling supply and demand of micro-grid

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015098083A1 (en) * 2013-12-27 2017-03-23 川崎重工業株式会社 Electricity supply and demand control device
WO2015098083A1 (en) * 2013-12-27 2015-07-02 川崎重工業株式会社 Power supply/demand control device
JP2015186308A (en) * 2014-03-20 2015-10-22 株式会社東芝 Power system stabilizer
JP2016082679A (en) * 2014-10-15 2016-05-16 三菱重工業株式会社 Frequency control device for power system, frequency control system with the same, frequency control method and frequency control program
US10916945B2 (en) 2016-05-10 2021-02-09 Nec Corporation Demand and supply adjustment system, control apparatus, control method, and program
JP6183576B1 (en) * 2016-05-10 2017-08-23 日本電気株式会社 Supply and demand adjustment system, control device, control method, and program
WO2017195391A1 (en) * 2016-05-10 2017-11-16 日本電気株式会社 Supply/demand adjustment system, control device, control method, and program
JP2017205010A (en) * 2016-05-10 2017-11-16 日本電気株式会社 Demand adjustment controller, its control method and program
JP2018161056A (en) * 2016-05-10 2018-10-11 日本電気株式会社 Control device, control method therefor, and program
JP2020089175A (en) * 2018-11-29 2020-06-04 株式会社日立製作所 Frequency controller and frequency controlling method
JP7240862B2 (en) 2018-11-29 2023-03-16 株式会社日立製作所 Frequency control device and frequency control method
JP2020183658A (en) * 2019-05-08 2020-11-12 シンフォニアテクノロジー株式会社 Wave power generating system and wave power generation method
JP2020202623A (en) * 2019-06-06 2020-12-17 株式会社日立ビルシステム Power management system
JP7326031B2 (en) 2019-06-06 2023-08-15 株式会社日立ビルシステム power management system
WO2021260958A1 (en) * 2020-06-22 2021-12-30 株式会社東芝 Power storage control system
JP7463204B2 (en) 2020-06-22 2024-04-08 株式会社東芝 Energy storage control system

Also Published As

Publication number Publication date
JP6075116B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075116B2 (en) Supply and demand control device
Chen et al. Improving the grid power quality using virtual synchronous machines
US9559520B2 (en) Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system
Howlader et al. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system
JP5800771B2 (en) Wind power generation system, wind power generation control device, and wind power generation control method
US9184626B2 (en) Photovoltaic system and power supply system
JP5076157B2 (en) Distributed power supply system and system voltage stabilization method using this system
JP6225553B2 (en) Supply and demand control device
JP2015523048A (en) How to control wind park
JP2010084545A (en) Control device and control method for wind turbine generator group
CN104967138A (en) Energy storage power station
JP5998046B2 (en) Power suppression control system and power suppression control method
JP2013126260A (en) Operation apparatus and method of natural variation power supply
JP5576826B2 (en) Wind power generator group control system and control method
US9871377B2 (en) Device and method for cooperation control of EMS and DMS
AU2021340055B2 (en) Power regulation method and power regulation device
JP2013150473A (en) System, device and program for controlling supply and demand for power system
US20190288516A1 (en) System and method for operating a mains power grid
JPWO2014167830A1 (en) Power control system
WO2022054441A1 (en) Power adjustment method and power adjustment device
JP6474017B2 (en) Frequency control method and frequency control system in power system
KR101299269B1 (en) Battery Energy Storage System
JP2020090932A (en) Control device for wind power generation plant, and control method therefor
WO2023157360A1 (en) Power system adjusting device and power system adjusting program
WO2023145069A1 (en) Distributed-power-source control system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250