WO2017029756A1 - Power supply system, output control device, output control method, and recording medium - Google Patents

Power supply system, output control device, output control method, and recording medium Download PDF

Info

Publication number
WO2017029756A1
WO2017029756A1 PCT/JP2015/073364 JP2015073364W WO2017029756A1 WO 2017029756 A1 WO2017029756 A1 WO 2017029756A1 JP 2015073364 W JP2015073364 W JP 2015073364W WO 2017029756 A1 WO2017029756 A1 WO 2017029756A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
output
power supply
upper limit
supply system
Prior art date
Application number
PCT/JP2015/073364
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 克彦
梅本 哲正
沖田 真大
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2015/073364 priority Critical patent/WO2017029756A1/en
Publication of WO2017029756A1 publication Critical patent/WO2017029756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a power supply system, an output control device, an output control method, and a recording medium.
  • the present invention relates to a technique suitable for a hybrid system in which a power generator using natural energy is linked to a diesel generator.
  • Patent Document 1 discloses a self-supporting power supply device that includes a distributed power source and a diesel generator using natural energy and is disconnected from a commercial power source.
  • a distributed power source using natural energy is configured to use, for example, solar power generation or wind power generation.
  • the DC / AC converter whose DC side is connected to the power storage device always operates independently.
  • the diesel generator is connected to the power storage device via an AC / DC converter.
  • a start / stop command and a power command to be output from the generator are sent from the control device to the diesel generator.
  • the hybrid system When a configuration in which a power storage device is included in a hybrid system as in Patent Document 1, the installation cost and operating cost of the system increase. For this reason, for example, when it is desired to reduce costs, the hybrid system preferably does not include a power storage device.
  • an output upper limit value may be set in a power conditioner (hereinafter referred to as PCS) so that the diesel generator does not become a light load.
  • PCS power conditioner
  • the output upper limit value given to each PCS may be the same.
  • the signal line in the hybrid system can be prevented from becoming complicated.
  • the output upper limit value is uniformly set to the same value, the output is restricted more than necessary, and natural energy may not be effectively used.
  • an object of the present invention is to improve energy utilization efficiency when power is supplied to a load by linking a first power supply unit and a plurality of second power supply units. Is to provide.
  • a power supply system of the present invention is a power supply system that supplies power to a load by linking a first power supply unit and a plurality of second power supply units, A control unit configured to be able to acquire a power value of the load and a total output value of the plurality of second power supply units, and to set the same output upper limit value to the plurality of second power supply units; The control unit is obtained according to the total output value to an output upper limit calculation value calculated based on a power value of the load and a first value derived from the first power supply unit. A value obtained by adding an adjustment value is used as the output upper limit value.
  • an output control device is an output control device that controls outputs of a plurality of second power supply units that supply power to a load in cooperation with a first power supply unit.
  • a power management unit provided to be able to obtain a power value of the load and a total output value of the plurality of second power supply units, and an output upper limit value that is the same for the plurality of second power supply units
  • An upper limit value setting unit that sets the output upper limit calculation value calculated based on a power value of the load and a value derived from the first power supply unit, A value obtained by adding an adjustment value obtained according to the total output value is used as the output upper limit value.
  • the output control method of the present invention is an output control method for controlling outputs of a plurality of second power supply units that supply power to a load in cooperation with the first power supply unit. Then, an output upper limit calculation value is calculated based on the step of obtaining the total output value of the plurality of second power supply units, and the power value of the load and the value derived from the first power supply unit. A step of adding an adjustment value obtained according to the total output value to the output upper limit calculated value as an output upper limit value, and the output upper limit that is the same for each of the plurality of second power supply units And a step of transmitting a value.
  • a recording medium of the present invention is a computer-readable recording medium in which a computer-executable program is recorded non-temporarily, and causes the computer to execute the output control method. It is characterized by the fact that a program is recorded.
  • the present invention when the first power supply unit and the plurality of second power supply units are linked to supply power to the load, it is possible to improve energy use efficiency.
  • the block diagram which shows schematic structure of the electric power supply system which concerns on embodiment of this invention The schematic diagram for demonstrating the subject which the electric power supply system which concerns on embodiment of this invention solves
  • the block diagram which shows the structure of the electric power supply system which concerns on 1st Embodiment of this invention The block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 1st Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 1st Embodiment of this invention is provided.
  • the flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 1st Embodiment of this invention.
  • FIG. 1 Schematic diagram showing numerical examples that facilitate understanding of the output upper limit setting flow shown in FIG.
  • the block diagram which shows the structure of the electric power supply system which concerns on 2nd Embodiment of this invention.
  • the block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 2nd Embodiment of this invention is provided.
  • the flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 2nd Embodiment of this invention.
  • the block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 3rd Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 3rd Embodiment of this invention is provided.
  • the flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 3rd Embodiment of this invention The flowchart which shows the process B added in the electric power supply system which concerns on 3rd Embodiment of this invention.
  • the block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 4th Embodiment of this invention is provided.
  • the block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 4th Embodiment of this invention is provided.
  • the flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 4th Embodiment of this invention The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 5th Embodiment of this invention is provided.
  • the block diagram which shows the structure of the electric power supply system which concerns on 6th Embodiment of this invention.
  • the block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 6th Embodiment of this invention is provided.
  • FIG. 1 is a block diagram showing a schematic configuration of a power supply system 1 according to an embodiment of the present invention.
  • the power supply system 1 includes a first power supply unit 2, a plurality of second power supply units 3a to 3c, and a controller 4.
  • the first power supply unit 2 and the plurality of second power supply units 3a to 3c cooperate to supply power to the load 5.
  • the controller 4 includes a computer and functions as an output control device for the plurality of second power supply units 3a to 3c.
  • the controller 4 performs output control of the plurality of second power supply units 3a to 3c in accordance with an output control program executed by the computer.
  • the output control program may be stored in a storage unit provided in the controller 4.
  • the output control program may be recorded on the recording medium 6 that non-temporarily records a program executable by the computer.
  • the recording medium 6 may be an optical disk, a magnetic disk, a flash memory, or the like, for example.
  • the controller 4 is an example of a control unit of the present invention.
  • the power supply system 1 may be a system that supplies power in a single phase or a system that supplies power in three phases. Further, the controller 4 may control the first power supply unit 2. The control unit that controls the first power supply unit 2 may be provided separately from the controller 4.
  • the same output upper limit value is set for each of the plurality of second power supply units 3a to 3c.
  • the number of second power supply units is three, but this is only an example.
  • the number of the second power supply units may be plural, and the number may be changed as appropriate.
  • FIG. 2 is a schematic diagram for explaining a problem to be solved by the power supply system 1 according to the embodiment of the present invention.
  • the diesel generator 2 includes a diesel generator and operates as a main power source.
  • the diesel power generator 2 may include a plurality of diesel generators.
  • Each of the solar power generation devices 3a to 3c includes a solar panel and a PCS.
  • the PCS converts DC power generated by the solar panel into AC power and outputs the AC power to the load 5.
  • the diesel generator 2 When the diesel generator 2 is operated with a light load of about 50% or less of the rated value, unburned gas is likely to be generated. As a result, oil that has not burned from the exhaust pipe may drip or a large amount of black smoke may be generated. In order to prevent such a situation from occurring, a generator having a smaller rated output is selected. Moreover, in order to avoid a light load driving
  • the PCS of each of the solar power generation devices 3a to 3c normally outputs the maximum power generated by sunlight by MPPT (Maximum Power Point Tracking) control.
  • MPPT Maximum Power Point Tracking
  • an output upper limit value is set by an external signal.
  • the PCS can prevent the output in accordance with the MPPT control.
  • the rated output of each PCS is 100 kW.
  • the plurality of solar power generation devices 3a to 3c are installed with different installation angles (directions). When installed in this way, the peak time of power generation differs for each photovoltaic power generation device.
  • the power required by the load 5 is 320 kW.
  • the total output of the three PCSs is 130 kW.
  • the output of the diesel generator 2 is 190 kW, which is lower than the minimum output (200 kW). Therefore, an output upper limit value is given to the three PCSs so that the output is suppressed.
  • the output upper limit values of the three PCSs are set to be the same. Therefore, it is conceivable to simply divide the total output value (120 kW) allowed for the three PCS into three equal parts and set the output upper limit value of each PCS to 40 kW.
  • the output upper limit value is set in this way, actually, the first PCS outputs 40 kW, the second PCS outputs 40 kW, and the third PCS outputs 20 kW. That is, the total output value of the three PCSs is 100 kW.
  • the controller 4 controls the output of each PCS so that such an unnecessary limit is not added. Thereby, solar power generation can be used effectively.
  • the power supply system of the present invention will be described in more detail by dividing it into a plurality of embodiments. ⁇ First Embodiment>
  • FIG. 3 is a block diagram showing the configuration of the power supply system according to the first embodiment of the present invention.
  • the first power supply unit shown in FIG. In the power supply system of the first embodiment, the plurality of second power supply units shown in FIG. 1 are realized as a plurality of solar power generation devices 3a to 3b.
  • the power supply system of the first embodiment includes a first wattmeter 7 that measures the power of the load 5 and a second wattmeter that measures the total of output values output from the three solar power generation devices 3a to 3c. 8 and.
  • a first wattmeter 7 that measures the power of the load 5
  • a second wattmeter that measures the total of output values output from the three solar power generation devices 3a to 3c. 8 and.
  • an ammeter and a voltmeter may be arranged.
  • a wattmeter that measures the output of the diesel power generator 2 may be provided.
  • the second wattmeter 8 is not disposed, and the total output of the three solar power generation devices 3a to 3c (three PCS) is obtained by using signals from the PCS included in the solar power generation devices 3a to 3c. A value may be obtained.
  • FIG. 4 is a block diagram showing a configuration of the solar power generation device 3a included in the power supply system according to the first embodiment of the present invention.
  • the three solar power generation devices 3a to 3c have the same configuration. Therefore, here, the solar power generation device 3a will be described as a representative example, and description of the other solar power generation devices 3b and 3c will be omitted.
  • the solar power generation device 3 a includes a solar panel 31 and a PCS 32.
  • the PCS 32 includes an output upper limit value acquisition unit 321 that acquires an output upper limit value from the outside.
  • the PCS 32 includes an output control unit 322 that controls the output of the PCS based on an output upper limit value acquired from the outside.
  • FIG. 5 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the first embodiment of the present invention.
  • the controller 4 includes a power management unit 41.
  • the power management unit 41 acquires the load power value (Pld) from the first wattmeter 7 and the total output value (Ppv) of the three PCSs 32 from the second wattmeter 8.
  • the controller 4 includes an upper limit setting unit 42 that sets the same output upper limit for each PCS 32.
  • the upper limit setting unit 42 includes an upper limit calculated value calculation unit 421, an adjustment value calculation unit 422, and an output upper limit value transmission unit 423.
  • the upper limit calculation value calculation unit 421 is provided so that information can be acquired from the power management unit 41.
  • the adjustment value calculation unit 422 is provided so that information can be acquired from the power management unit 41 and the upper limit calculation value calculation unit 421.
  • the output upper limit value transmission unit 423 is provided so that information can be acquired from the upper limit calculation value calculation unit 421 and the adjustment value calculation unit 422. Detailed functions of the respective functional units will be clarified in the contents described later.
  • FIG. 6 is a flowchart showing an output upper limit setting flow in the power supply system according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a numerical example that facilitates understanding of the output upper limit value setting flow illustrated in FIG. 6.
  • P_offset an initial value of an adjustment value
  • the controller 4 acquires the load power value (Pld) from the first wattmeter 7 and the total output value (Ppv) of the three PCSs 32 from the second wattmeter 8 ( Step S1).
  • Pld load power value
  • Ppv total output value
  • the controller 4 calculates the power value (Pld-Pdg_min) that can be output by the three PCSs 32 from the power value (Pld) of the load and the minimum output value (Pdg_min) of the diesel power generator 2.
  • the minimum output value (Pdg_min) of the diesel power generator 2 may be stored in a storage unit (not shown) included in the controller 4, for example.
  • the minimum output value (Pdg_min) is transmitted from the control unit to the controller 4. Also good.
  • the minimum output value (Pdg_min) changes according to the total rated capacity of the generator in operation.
  • the controller 4 compares the magnitude relationship between the power value (Pld-Pdg_min) that can be output by the three PCSs 32 and the total value (Ppv_rtd ⁇ N) of the rated output values of the three PCSs 32 (step S2).
  • the minimum output value (Pdg_min) of the diesel power generator 2 is an example of the first value and the output limit value of the present invention.
  • a value (Pld-Pdg_min) obtained by subtracting the minimum output value (Pdg_min) of the diesel power generator 2 from the power value (Pld) of the load is an example of the second value of the present invention.
  • the controller 4 calculates, as an upper limit calculation value (Ppv_max) of each PCS 32, a value obtained by dividing the power value (Pld-Pdg_min) that can be output by the three PCSs 32 into three equal parts (step S4).
  • the adjustment value (P_offset) may be increased by a predetermined value such as 1% of the rated output value of each PCS 32 (corresponding to 1 kW in the example of FIG. 7).
  • the adjustment value (P_offset) is the difference between the total value (Ppv_max ⁇ N) of the upper limit calculation value and the current total output value (Ppv) of the three PCSs 32 in the number of PCSs 32 (N). It may be increased by the divided value.
  • the controller 4 determines whether or not the adjustment value (P_offset) is greater than 0 (step S7). When the adjustment value (P_offset) is greater than 0 (Yes in step S7), the controller 4 decreases the adjustment value (P_offset) (step S8). If the adjustment value (P_offset) is not greater than 0 (No in step S7), the controller 4 sets the adjustment value (P_offset) to 0 (step S9). Note that, when the adjustment value (P_offset) is decreased, the determination method of the value is not particularly limited. For example, it may be reduced by 1% of the rated output value.
  • the output upper limit value (Ppv_lmt) is notified to each PCS 32 (step S10). In the example illustrated in FIG. 7, for example, an output upper limit value 41 kW (or 46 kW) is transmitted. After performing the process of step S10, the controller 4 returns to step S1 and repeats the above process. Each PCS 32 that has acquired the output upper limit value controls the output so as not to exceed the acquired output upper limit value.
  • the output upper limit (Ppv_lmt) is updated as appropriate.
  • the adjustment value (P_offset) is immediately increased or decreased after the determination in step S5.
  • the adjustment value (P_offset) may be increased or decreased when the state determined in step S5 continues for a certain period of time.
  • the following configuration may be employed.
  • the output upper limit value is not simply set according to the power value of the load 5, the minimum output set in the diesel power generator 2, and the number of PCSs 32.
  • the output upper limit value is set in consideration of the total output value of the three PCSs 32. For this reason, according to the power supply system of 1st Embodiment, it can prevent that the electric power output from each PCS32 is suppressed more than necessary, for example. For this reason, according to the electric power supply system of 1st Embodiment, the electric power of solar power generation can be used effectively.
  • the total output value of the plurality of PCSs 32 is targeted. It can be close to the power value. For this reason, according to the electric power supply system of 1st Embodiment, the electric power of solar power generation can be used effectively.
  • the target power value is a value obtained by subtracting the minimum output of the diesel generator 2 from the power value of the load 5.
  • FIG. 8 is a block diagram showing a configuration of a power supply system according to the second embodiment of the present invention.
  • the power supply system of the second embodiment has generally the same configuration as the power supply system of the first embodiment.
  • the difference from the first embodiment is that three second wattmeters 8a to 8c are arranged so that output values of the three solar power generation devices 3a to 3c can be separately measured.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted unless particularly necessary.
  • FIG. 9 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the second embodiment of the present invention.
  • the configuration of the first embodiment is different in that the output value (Ppvi) of each PCS 32 is input to the power management unit 41 separately.
  • the power management unit 41 can sum the output values of the PCSs 32 to obtain a total output value (Ppv) of the three PCSs 32.
  • FIG. 10 is a flowchart showing an output upper limit setting flow in the power supply system according to the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a numerical example that facilitates understanding of the setting flow of the output upper limit value illustrated in FIG. 10.
  • P_offset the initial value of the adjustment value
  • the controller 4 acquires the output value (Pvi) of each PCS 32 using the second wattmeters 8a to 8c together with the load power value (Pld). Further, the controller 4 adds the output values (Pvi) of the PCSs 32 to obtain the total output value (Ppv) of the three PCSs 32 (step S11).
  • Pld 320 kW
  • Ppv1 70 kW
  • Ppv2 40 kW
  • Ppv3 20 kW
  • Ppv 130 kW.
  • Step S11 Steps S2 to S5 are executed as in the first embodiment.
  • (Pld ⁇ Pdg_min) 120 kW
  • Ppv_max 40 kW
  • (Ppv_max ⁇ N) 120 kW.
  • Ppv> (Ppv_max ⁇ N) is satisfied in the determination in step S5 (No in step S5).
  • the controller 4 performs process A (step 12).
  • the process A specifically corresponds to steps S7 to S9 of the first embodiment (FIG. 6).
  • Each PCS 32 performs output according to the output upper limit value.
  • Step S13 is a loop process, and the controller 4 repeats the processes of steps S14 and 15 until i becomes N while increasing i by 1. That is, the controller 4 determines whether or not the output value (Ppvi) is smaller than the output upper limit value (Ppv_lmt) for each PCS (step S14).
  • the output upper limit (Ppv_lmt) is a value obtained by adding Ppv_max obtained in step S4 and the initial value of P_offset when the output upper limit is determined for the first time.
  • the output upper limit value (Ppv_lmt) is the value obtained in the most recent step S10.
  • the controller 4 increases the count value (P_lmt_cnt) by one (step S15).
  • step S16 determines whether or not the count value (P_lmt_cnt) is 0 (step S16). If the count value (P_lmt_cnt) is 0 (Yes in step S16), it is determined that each PCS 32 cannot increase the output any more. For this purpose, the controller 4 maintains the adjustment value (P_offset) at the current value (step S17), and proceeds to step S10.
  • the PCS 32 compares the output value of each PCS 32 with the output upper limit value when determining whether the PCS 32 can output an output larger than the current output upper limit value.
  • this is only an example. For example, it is determined whether or not the PCS 32 can output an output larger than the current output upper limit value depending on whether or not the output value of each PCS 32 is within a certain range set based on the output upper limit value. Also good.
  • the power supply system of the second embodiment can obtain the same effects as those of the first embodiment, for example. Further, in the power supply system of the second embodiment, when obtaining the adjustment value (P_offset), the number of PCSs 32 that are determined to be output-suppressed is determined, and the adjustment value (P_offset) is determined using the determination result. Have decided. For this reason, in the power supply system of the second embodiment, for example, the power generated by the solar power generation device can be more appropriately used than in the case of the first embodiment. Moreover, in the electric power supply system of 2nd Embodiment, the electric power generated by the solar power generation device can be used effectively, for example, following quickly the load fluctuation and the solar radiation fluctuation. ⁇ Third Embodiment>
  • FIG. 12 is a block diagram illustrating a configuration of a solar power generation device 3a included in the power supply system according to the third embodiment of the present invention.
  • the three solar power generation devices 3a to 3c have the same configuration.
  • the solar power generation device 3a is shown here as a representative example, and illustration of the other solar power generation devices 3b and 3c is omitted.
  • FIG. 13 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the third embodiment of the present invention.
  • the controller 4 includes a PCS management unit 43 that manages each PCS 32.
  • the PCS management unit 43 instructs each PCS 32 to stop operation and resume operation.
  • the power supply system includes a signal line for instructing the output control unit 322 of each PCS 32 to stop operation and resume operation, as shown in FIGS. 12 and 13. It has been.
  • the adjustment value calculation unit 422 determines whether to stop the operation of the PCS 32 and restart the operation.
  • the operation stop may be commanded by setting the output upper limit value to 0 kW, for example.
  • the operation restart command may be determined when the output upper limit value is set to a value larger than 0 kW.
  • FIG. 14 is a flowchart showing an output upper limit setting flow in the power supply system according to the third embodiment of the present invention.
  • the output upper limit setting flow in the third embodiment is substantially the same as in the second embodiment.
  • the number of PCSs is not the number (N) of PCSs included in the system but the number (n) of operating PCSs. Is different.
  • process B is added after steps S17 and S18.
  • n is a value of N or less.
  • the number (n) of operating PCSs 32 is managed by the PCS management unit 43.
  • FIG. 15 is a flowchart showing the added process B in the power supply system according to the third embodiment of the present invention.
  • the controller 4 determines whether or not to stop the PCS 32 having the smallest output value. In the previous procedure, it is determined that there is at least one PCS 32 that may be able to produce an output that is larger than the current output upper limit. When the output can be supplemented by the at least one PCS 32, the PCS 32 having a small output value is stopped.
  • the controller 4 determines whether or not to stop the PCS 32 having the smallest output by the following equation (1) (step S19).
  • Ppv_x the output value of the Xth PCS 32 with the smallest output
  • Pth the constant threshold value Pth
  • step S19 If the expression (1) is satisfied (Yes in step S19), the controller 4 stops the operation of the Xth PCS 32 and decreases n by 1 (step S20). From the next loop, the new n value is used. On the other hand, if the expression (1) is not satisfied (No in step S19), the controller 4 does not stop the operation of any PCS 32.
  • Equation (1) it is not necessary to use Equation (1) to determine whether to stop the PCS 32 having the smallest output. For example, the determination may be made based on whether or not the output value (Ppv_x) of the PCS 32 having the smallest output is equal to or less than a certain output value.
  • the power supply system of the third embodiment can obtain the same effects as those of the second embodiment, for example. Further, in the power supply system of the third embodiment, for example, the operation of the PCS in the solar power generation device with extremely low output can be stopped, and the solar power generation device can be maintained. Moreover, in the electric power supply system of 3rd Embodiment, the solar power generation device with a big output can be selected appropriately, for example, and the electric power generated with the solar power generation device can be used efficiently. ⁇ Fourth embodiment>
  • the power supply system of the fourth embodiment has generally the same configuration as the power supply system of the first embodiment (see, for example, FIG. 3). The description of the same configuration as in the first embodiment is omitted.
  • FIG. 16 is a block diagram which shows the structure of the solar power generation device 3a with which the electric power supply system which concerns on 4th Embodiment of this invention is provided. The three solar power generation devices 3a to 3c have the same configuration. For this reason, the solar power generation device 3a is shown here as a representative example, and the illustration of the other solar power generation devices 3b and 3c is omitted.
  • FIG. 17 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the fourth embodiment of the present invention.
  • each of the solar power generation devices 3a to 3c includes a solar radiation meter 33. This point is different from the configuration of the first embodiment.
  • the pyranometer 33 is arranged in parallel with the solar panel 31 so as to coincide with the light receiving surface of the solar panel 31. Due to the presence of the pyranometer 33, the maximum output power of each PCS 32 can be predicted.
  • the pyranometer 33 is an example of the measurement unit of the present invention.
  • the adjustment value calculation unit 422 calculates the maximum output power predicted value in each PCS 32 by the following equation (2).
  • P_est_i H (i) ⁇ Ppv_rtd ⁇ K
  • P_est_i Maximum output power predicted value of i-th PCS 32
  • Ppv_rtd Maximum rated output value of PCS 32
  • Ppv_rtd has the same value for all PCSs 32.
  • FIG. 18 is a flowchart showing an output upper limit value setting flow in the power supply system according to the fourth embodiment of the present invention.
  • the output upper limit setting flow in the power supply system according to the fourth embodiment is generally the same as the output upper limit setting flow of the second embodiment shown in FIG.
  • the total output value of the three PCSs 32 can be measured, but the output value of each PCS 32 cannot be measured.
  • a pyranometer 33 is provided. Due to the difference of these matters, the following points are different from the flowchart of the second embodiment.
  • Step 11 in the second embodiment is the same as step S1 (FIG. 6) in the first embodiment. Moreover, step S14 of the second embodiment is changed to step S23.
  • the number of PCSs 32 that may be able to output larger than the current output upper limit value is counted.
  • the number of PCSs 32 is counted based on the output value of each PCS 32 measured by the second wattmeters 8a to 8c.
  • the number of PCSs 32 that may be able to output larger than the current output upper limit value is counted based on the predicted maximum output power value (P_est).
  • the predicted maximum output power value (P_est) and the current output upper limit value (Ppv_lmt) are compared. As a result of the comparison, if the predicted maximum output power value (P_est) is smaller than the current output upper limit value (Ppv_lmt), the count value of the number is not increased. On the other hand, if the predicted maximum output power value (P_est) is equal to or greater than the current output upper limit value (Ppv_lmt), the count value of the number is increased.
  • the solar power generators 3a to 3c are provided with the solar radiation meter 33, but this is only an example.
  • the pyranometer 33 may be shared by a plurality of solar power generation devices.
  • the solar radiation meter 33 may be shared by a plurality of solar power generation devices in which the solar panels 31 face the same direction.
  • the same effects as those of the second embodiment can be obtained.
  • the pyranometer 33 since the pyranometer 33 is used, it is easy to perform output control reflecting the actual weather condition. In addition, it is good also as a structure provided with the wattmeter which measures the output of each PCS32 similarly to 2nd Embodiment. In this case, for example, the output measurement result of each PCS 32 may be added to the measurement result of the pyranometer 33 to determine the number of PCSs 32 that can possibly output larger than the current output upper limit value.
  • FIG. 19 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the fifth embodiment of the present invention.
  • the controller 4 includes a PCS management data storage unit 44.
  • the PCS management data storage unit 44 stores, for example, direction information, number information, past solar radiation amount information, past use history information, and the like of the solar panel 31. Information stored in the PCS management data storage unit 44 can be transmitted to the adjustment value calculation unit 422.
  • the PCS management data storage unit 44 is an example of the storage unit of the present invention.
  • the adjustment value calculation unit 422 predicts the output of each PCS 32 based on, for example, the current season and time, direction information and number information of the solar panels 31 obtained from the PCS management data storage unit 44, past solar radiation amount information, and the like. To do.
  • the adjustment value calculation unit 422 obtains an output predicted value (P_est) of each PCS 32 based on, for example, the current time, usage history information stored in the PCS management data storage unit 44, and the like.
  • the PCS management data storage unit 44 stores a table as shown in FIG.
  • the table shown in FIG. 20 is a table created from the past usage history, and includes the predicted output value of each PCS 32 for each time. If the current time is 10:00, the predicted output value of each PCS 32 is 70 kW for the first PCS, 40 kW for the second PCS, and 20 kW for the third PCS.
  • the output upper limit setting flow in the power supply system according to the fifth embodiment can be the same as the output upper limit setting flow of the fourth embodiment shown in FIG. However, the method of acquiring the predicted output value (P_est) used in step S23 is different.
  • the predicted output value is obtained using the measurement value of the pyranometer 33.
  • an output predicted value is obtained using information obtained from the PCS management data unit 44.
  • the controller 4 appropriately updates the output upper limit value to approach 60 kW.
  • FIG. 21 is a block diagram showing a configuration of a power supply system according to the sixth embodiment of the present invention.
  • the first power supply unit shown in FIG. 1 is realized as a power system 2 configured by a power company.
  • a plurality of second power supply units shown in FIG. 1 are realized as a plurality of solar power generation devices 3a to 3b.
  • the power supply system of the sixth embodiment includes a first wattmeter 7 that measures the power of the load 5 and a second wattmeter that measures the sum of output values output from the three solar power generation devices 3a to 3c. 8 and. This is the same as the power supply system of the first embodiment.
  • the configuration of the solar power generation devices 3a to 3c of the sixth embodiment is the same as that of the first embodiment.
  • FIG. 22 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the sixth embodiment of the present invention.
  • the configuration of the controller 4 is substantially the same as that of the power supply system of the first embodiment.
  • the controller 4 includes a system command acquisition unit 45. This point is different from the first embodiment.
  • the system command acquisition unit 45 acquires a system command value (Pgrd) issued by the power system 2.
  • the system command value (Pgrd) is a command value for purchased power.
  • System command value (Pgrd) 0 means that reverse power flow is impossible. Further, when the system command value (Pgrd) is a negative value, the value indicates the allowable power value of reverse power flow.
  • FIG. 23 is a flowchart showing an output upper limit value setting flow in the power supply system according to the sixth embodiment of the present invention.
  • the output upper limit value setting flow of the sixth embodiment is generally the same as the output upper limit value setting flow of the first embodiment.
  • steps S2 and S4 of the first embodiment are changed to steps S24 and S25, respectively.
  • Pdg_min in the first embodiment is replaced with Pgrd. Since it is the same except for the point, detailed description is abbreviate
  • each embodiment described above is merely an example of the present invention.
  • the configuration of each embodiment may be changed as appropriate without departing from the technical idea of the present invention.
  • Each embodiment and the fine modification in embodiment can also be implemented combining in the possible range.
  • the second power supply unit is configured by a solar power generation device
  • the second power supply unit may be a device that generates power using other natural energy such as a wind power generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A power supply system 1 supplies power to a load 5 through connection between a first power supply section 2 and a plurality of second supply sections 3a-3c. The power supply system 1 is provided with a control unit 4, which is provided to be able to obtain a power value for the load 5 and the total output value for the plurality of second power supply sections 3a-3c, and to set the same output upper limit value for the plurality of second power supply section 3a-3c. The control section 4 sets, as the output upper limit value, a value obtained by adding an adjustment value obtained in accordance with the total output value to an output upper limit calculation value calculated on the basis of the power value for the load 5 and a first value derived from the first power supply section 2.

Description

電力供給システム、出力制御装置、出力制御方法、及び、記録媒体POWER SUPPLY SYSTEM, OUTPUT CONTROL DEVICE, OUTPUT CONTROL METHOD, AND RECORDING MEDIUM
 本発明は、電力供給システム、出力制御装置、出力制御方法、及び、記録媒体に関する。本発明は、ディーゼル発電機に自然エネルギーを用いた発電装置を連係させるハイブリッドシステムに好適な技術に関する。 The present invention relates to a power supply system, an output control device, an output control method, and a recording medium. The present invention relates to a technique suitable for a hybrid system in which a power generator using natural energy is linked to a diesel generator.
 従来、電力系統が無い場所では、主電源として安価なディーゼル発電機が用いられている。また、近年においては、燃料の削減等を目的として、自然エネルギーを用いた発電装置をディーゼル発電機に連係させるハイブリッドシステムが提案されている。例えば、特許文献1には、自然エネルギーを利用した分散電源及びディーゼル発電機を備え、商用電源から切り離された自立電源装置が開示されている。なお、自然エネルギーを利用した分散電源は、例えば太陽光発電や風力発電等を利用する構成になっている。 Conventionally, an inexpensive diesel generator is used as a main power source in a place where there is no power system. In recent years, hybrid systems have been proposed in which a power generator using natural energy is linked to a diesel generator for the purpose of reducing fuel. For example, Patent Document 1 discloses a self-supporting power supply device that includes a distributed power source and a diesel generator using natural energy and is disconnected from a commercial power source. Note that a distributed power source using natural energy is configured to use, for example, solar power generation or wind power generation.
 特許文献1の自立電源装置においては、蓄電装置に直流側が接続されたDC/AC変換器は常時自立運転をする。ディーゼル発電機は、AC/DC変換器を介して前記蓄電装置に接続される。制御装置からディーゼル発電機に、起動・停止指令と、発電機が出力するべき電力指令とが送出される。当該構成により、出力端の周波数変動がなく、ディーゼル発電機の容易な運転が可能になる。 In the self-supporting power supply device of Patent Document 1, the DC / AC converter whose DC side is connected to the power storage device always operates independently. The diesel generator is connected to the power storage device via an AC / DC converter. A start / stop command and a power command to be output from the generator are sent from the control device to the diesel generator. With this configuration, there is no frequency fluctuation at the output end, and the diesel generator can be easily operated.
特開2013-13176号公報JP 2013-13176 A
 特許文献1のように、ハイブリッドシステムに蓄電装置が含まれる構成を採用すると、システムの設置コスト及び運転コストが上昇する。このために、例えばコストを抑制したい場合、ハイブリッドシステムは、蓄電装置を含まない構成とするのが好ましい。 When a configuration in which a power storage device is included in a hybrid system as in Patent Document 1, the installation cost and operating cost of the system increase. For this reason, for example, when it is desired to reduce costs, the hybrid system preferably does not include a power storage device.
 ハイブリッドシステムにおいては、ディーゼル発電機の出力が低下した場合に、発電効率が悪くなったり、ディーゼル発電機の故障が発生したりする。このために、蓄電装置を含まないハイブリッドシステム等においては、ディーゼル発電機が軽負荷にならないように、パワーコンディショナ(以下、PCSと記載する)に出力上限値が設定されることがある。 In the hybrid system, when the output of the diesel generator decreases, the power generation efficiency deteriorates or the diesel generator fails. For this reason, in a hybrid system or the like that does not include a power storage device, an output upper limit value may be set in a power conditioner (hereinafter referred to as PCS) so that the diesel generator does not become a light load.
 複数台のPCSが含まれるハイブリッドシステムにおいて、各PCSに与える出力上限値が同じとされることがある。このように構成すると、例えば、ハイブリッドシステムにおける信号線が複雑になることを避けられる。しかし、出力上限値が一律に同じ値とされる場合、必要以上に出力制限がかかって、自然エネルギーの有効活用が図れなくことがある。 In a hybrid system including a plurality of PCSs, the output upper limit value given to each PCS may be the same. With this configuration, for example, the signal line in the hybrid system can be prevented from becoming complicated. However, if the output upper limit value is uniformly set to the same value, the output is restricted more than necessary, and natural energy may not be effectively used.
 以上の点に鑑みて、本発明の目的は、第1の電力供給部と複数の第2の電力供給部とを連係して負荷に電力を供給する場合に、エネルギーの利用効率を向上できる技術を提供することである。 In view of the above points, an object of the present invention is to improve energy utilization efficiency when power is supplied to a load by linking a first power supply unit and a plurality of second power supply units. Is to provide.
 上記目的を達成するために本発明の電力供給システムは、第1の電力供給部と、複数の第2の電力供給部と、を連係して負荷に電力を供給する電力供給システムであって、前記負荷の電力値、及び、前記複数の第2の電力供給部の合計出力値を取得可能に設けられるとともに、前記複数の第2の電力供給部に同一の出力上限値を設定する制御部を備え、前記制御部は、前記負荷の電力値と、前記第1の電力供給部に由来する第1の値とに基づいて算出される出力上限計算値に、前記合計出力値に応じて得られる調整値を加えた値を前記出力上限値とすることを特徴としている。 To achieve the above object, a power supply system of the present invention is a power supply system that supplies power to a load by linking a first power supply unit and a plurality of second power supply units, A control unit configured to be able to acquire a power value of the load and a total output value of the plurality of second power supply units, and to set the same output upper limit value to the plurality of second power supply units; The control unit is obtained according to the total output value to an output upper limit calculation value calculated based on a power value of the load and a first value derived from the first power supply unit. A value obtained by adding an adjustment value is used as the output upper limit value.
 また、上記目的を達成するために本発明の出力制御装置は、第1の電力供給部と連係して負荷に電力を供給する複数の第2の電力供給部の出力を制御する出力制御装置であって、前記負荷の電力値、及び、前記複数の第2の電力供給部の合計出力値を取得可能に設けられる電力管理部と、前記複数の第2の電力供給部に同一の出力上限値を設定する上限値設定部と、を備え、前記上限値設定部は、前記負荷の電力値と前記第1の電力供給部に由来する値とに基づいて算出される出力上限計算値に、前記合計出力値に応じて得られる調整値を加えた値を前記出力上限値とすることを特徴としている。 In order to achieve the above object, an output control device according to the present invention is an output control device that controls outputs of a plurality of second power supply units that supply power to a load in cooperation with a first power supply unit. A power management unit provided to be able to obtain a power value of the load and a total output value of the plurality of second power supply units, and an output upper limit value that is the same for the plurality of second power supply units An upper limit value setting unit that sets the output upper limit calculation value calculated based on a power value of the load and a value derived from the first power supply unit, A value obtained by adding an adjustment value obtained according to the total output value is used as the output upper limit value.
 また、上記目的を達成するために本発明の出力制御方法は、第1の電力供給部と連係して負荷に電力を供給する複数の第2の電力供給部の出力を制御する出力制御方法であって、前記複数の第2の電力供給部の合計出力値を取得するステップと、前記負荷の電力値と前記第1の電力供給部に由来する値とに基づいて出力上限計算値を算出するステップと、前記合計出力値に応じて得られる調整値を前記出力上限計算値に加えた値を出力上限値とするステップと、前記複数の第2の電力供給部のそれぞれに同一の前記出力上限値を送信するステップと、を備えることを特徴としている。 In order to achieve the above object, the output control method of the present invention is an output control method for controlling outputs of a plurality of second power supply units that supply power to a load in cooperation with the first power supply unit. Then, an output upper limit calculation value is calculated based on the step of obtaining the total output value of the plurality of second power supply units, and the power value of the load and the value derived from the first power supply unit. A step of adding an adjustment value obtained according to the total output value to the output upper limit calculated value as an output upper limit value, and the output upper limit that is the same for each of the plurality of second power supply units And a step of transmitting a value.
 また、上記目的を達成するために本発明の記録媒体は、コンピュータが実行可能なプログラムを非一時的に記録したコンピュータ読取可能な記録媒体であって、上記出力制御方法をコンピュータに実行させる出力制御用プログラムが記録されることを特徴としている。 In order to achieve the above object, a recording medium of the present invention is a computer-readable recording medium in which a computer-executable program is recorded non-temporarily, and causes the computer to execute the output control method. It is characterized by the fact that a program is recorded.
 本発明によると、第1の電力供給部と複数の第2の電力供給部とを連係して負荷に電力を供給する場合に、エネルギーの利用効率を向上することが可能になる。 According to the present invention, when the first power supply unit and the plurality of second power supply units are linked to supply power to the load, it is possible to improve energy use efficiency.
本発明の実施形態に係る電力供給システムの概略構成を示すブロック図The block diagram which shows schematic structure of the electric power supply system which concerns on embodiment of this invention 本発明の実施形態に係る電力供給システムが解決する課題を説明するための模式図The schematic diagram for demonstrating the subject which the electric power supply system which concerns on embodiment of this invention solves 本発明の第1実施形態に係る電力供給システムの構成を示すブロック図The block diagram which shows the structure of the electric power supply system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電力供給システムが備える太陽光発電装置の構成を示すブロック図The block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 1st Embodiment of this invention is provided. 本発明の第1実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 1st Embodiment of this invention is provided. 本発明の第1実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートThe flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 1st Embodiment of this invention. 図6に示す出力上限値の設定フローの理解を容易とする数値例を示す模式図Schematic diagram showing numerical examples that facilitate understanding of the output upper limit setting flow shown in FIG. 本発明の第2実施形態に係る電力供給システムの構成を示すブロック図The block diagram which shows the structure of the electric power supply system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 2nd Embodiment of this invention is provided. 本発明の第2実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートThe flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 2nd Embodiment of this invention. 図10に示す出力上限値の設定フローの理解を容易とする数値例を示す模式図Schematic diagram showing a numerical example that facilitates understanding of the output upper limit setting flow shown in FIG. 本発明の第3実施形態に係る電力供給システムが備える太陽光発電装置の構成を示すブロック図The block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 3rd Embodiment of this invention is provided. 本発明の第3実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 3rd Embodiment of this invention is provided. 本発明の第3実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートThe flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る電力供給システムにおいて、追加された処理Bを示すフローチャートThe flowchart which shows the process B added in the electric power supply system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る電力供給システムが備える太陽光発電装置の構成を示すブロック図The block diagram which shows the structure of the solar power generation device with which the electric power supply system which concerns on 4th Embodiment of this invention is provided. 本発明の第4実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 4th Embodiment of this invention is provided. 本発明の第4実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートThe flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 5th Embodiment of this invention is provided. 本発明の第5実施形態に係る電力供給システムに備えられるPCS管理データ記憶部に記憶されるテーブルの一例を示す図The figure which shows an example of the table memorize | stored in the PCS management data storage part with which the electric power supply system which concerns on 5th Embodiment of this invention is equipped. 本発明の第6実施形態に係る電力供給システムの構成を示すブロック図The block diagram which shows the structure of the electric power supply system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る電力供給システムが備えるコントローラの機能構成を示すブロック図The block diagram which shows the function structure of the controller with which the electric power supply system which concerns on 6th Embodiment of this invention is provided. 本発明の第6実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートThe flowchart which shows the setting flow of the output upper limit in the electric power supply system which concerns on 6th Embodiment of this invention.
 以下、本発明の実施形態に係る電力供給システム、出力制御装置、出力制御方法、及び、記録媒体について、図面を参照しながら詳細に説明する。なお、ブロック図を示す図面において、実線は電力線を示し、破線は信号線を示す。
<電力供給システムの概要>
Hereinafter, a power supply system, an output control device, an output control method, and a recording medium according to embodiments of the present invention will be described in detail with reference to the drawings. Note that in the drawings showing the block diagrams, a solid line indicates a power line, and a broken line indicates a signal line.
<Outline of power supply system>
 まず、本発明の実施形態に係る電力供給システムの概要について説明する。図1は、本発明の実施形態に係る電力供給システム1の概略構成を示すブロック図である。図1に示すように、電力供給システム1は、第1の電力供給部2と、複数の第2の電力供給部3a~3cと、コントローラ4と、を備える。第1の電力供給部2と、複数の第2の電力供給部3a~3cとは、連係して負荷5に電力を供給する。 First, an outline of a power supply system according to an embodiment of the present invention will be described. FIG. 1 is a block diagram showing a schematic configuration of a power supply system 1 according to an embodiment of the present invention. As shown in FIG. 1, the power supply system 1 includes a first power supply unit 2, a plurality of second power supply units 3a to 3c, and a controller 4. The first power supply unit 2 and the plurality of second power supply units 3a to 3c cooperate to supply power to the load 5.
 コントローラ4は、コンピュータを備え、複数の第2の電力供給部3a~3cの出力制御装置として機能する。コントローラ4は、コンピュータに実行させる出力制御用プログラムにしたがって、複数の第2の電力供給部3a~3cの出力制御を行う。出力制御用プログラムは、コントローラ4に備えられる記憶部に記憶される構成であってよい。また、別の構成として、例えば、出力制御用プログラムは、コンピュータが実行可能なプログラムを非一時的に記録する記録媒体6に記録されてもよい。記録媒体6は、例えば光ディスク、磁気ディスク、フラッシュメモリ等であってよい。なお、コントローラ4は、本発明の制御部の一例である。 The controller 4 includes a computer and functions as an output control device for the plurality of second power supply units 3a to 3c. The controller 4 performs output control of the plurality of second power supply units 3a to 3c in accordance with an output control program executed by the computer. The output control program may be stored in a storage unit provided in the controller 4. As another configuration, for example, the output control program may be recorded on the recording medium 6 that non-temporarily records a program executable by the computer. The recording medium 6 may be an optical disk, a magnetic disk, a flash memory, or the like, for example. The controller 4 is an example of a control unit of the present invention.
 電力供給システム1は、単相で電力を供給するシステムであってもよいし、三相で電力を供給するシステムであってもよい。また、コントローラ4は、第1の電力供給部2を制御してもよい。第1の電力供給部2を制御する制御部は、コントローラ4とは別に設けられてもよい。 The power supply system 1 may be a system that supplies power in a single phase or a system that supplies power in three phases. Further, the controller 4 may control the first power supply unit 2. The control unit that controls the first power supply unit 2 may be provided separately from the controller 4.
 複数の第2の電力供給部3a~3cには、いずれも同一の出力上限値が設定される。このような構成を採用する理由として、例えばシステムにおける信号線が複雑になる事態を避けること等が挙げられる。なお、図1においては、第2の電力供給部の数を3つとしているが、これは一例にすぎない。第2の電力供給部の数は複数であればよく、その数は適宜変更されてよい。 The same output upper limit value is set for each of the plurality of second power supply units 3a to 3c. As a reason for adopting such a configuration, for example, avoiding a situation where a signal line in the system becomes complicated. In FIG. 1, the number of second power supply units is three, but this is only an example. The number of the second power supply units may be plural, and the number may be changed as appropriate.
 図2は、本発明の実施形態に係る電力供給システム1が解決する課題を説明するための模式図である。ここでは、第1の電力供給部2がディーゼル発電装置で、第2の電力供給部3a~3cが太陽光発電装置である場合を例に説明を行う。ディーゼル発電装置2は、ディーゼル発電機を含み、主電源として動作する。なお、ディーゼル発電装置2には複数台のディーゼル発電機が含まれてよい。各太陽光発電装置3a~3cは、太陽光パネルとPCSとを含む。PCSは、太陽光パネルで発電された直流電力を交流電力に変換して負荷5に出力する。 FIG. 2 is a schematic diagram for explaining a problem to be solved by the power supply system 1 according to the embodiment of the present invention. Here, the case where the first power supply unit 2 is a diesel power generation device and the second power supply units 3a to 3c are solar power generation devices will be described as an example. The diesel generator 2 includes a diesel generator and operates as a main power source. The diesel power generator 2 may include a plurality of diesel generators. Each of the solar power generation devices 3a to 3c includes a solar panel and a PCS. The PCS converts DC power generated by the solar panel into AC power and outputs the AC power to the load 5.
 ディーゼル発電装置2は、定格の50%程度以下の軽負荷で運転すると、未燃焼ガスが発生し易くなる。この結果、排気管から燃焼しなかったオイルが滴ることや、黒煙が多量に発生することがある。このような事態が生じないように、小さ目の定格出力を有する発電機が選定される。また、ディーゼル発電装置2には、軽負荷運転を避けるために、最低出力(出力下限値)が設定される。図2に示す例では、ディーゼル発電装置2の定格出力は500kWで、最低出力は定格出力の40%(200kW)になっている。 When the diesel generator 2 is operated with a light load of about 50% or less of the rated value, unburned gas is likely to be generated. As a result, oil that has not burned from the exhaust pipe may drip or a large amount of black smoke may be generated. In order to prevent such a situation from occurring, a generator having a smaller rated output is selected. Moreover, in order to avoid a light load driving | operation, the minimum output (output lower limit) is set to the diesel generator 2. In the example shown in FIG. 2, the rated output of the diesel power generator 2 is 500 kW, and the minimum output is 40% (200 kW) of the rated output.
 各太陽光発電装置3a~3cのPCSは、通常時は、MPPT(Maximum Power Point Tracking)制御により、太陽光による発電を最大限出力する。また、PCSには、外部からの信号によって出力上限値が設定される。PCSは、出力上限値によって出力を抑制する必要がある場合、MPPT制御にしたがった出力を行わないようにできる。図2に示す例では、各PCSの定格出力(太陽光発電装置の最大出力)は100kWになっている。 The PCS of each of the solar power generation devices 3a to 3c normally outputs the maximum power generated by sunlight by MPPT (Maximum Power Point Tracking) control. In the PCS, an output upper limit value is set by an external signal. When it is necessary to suppress the output by the output upper limit value, the PCS can prevent the output in accordance with the MPPT control. In the example shown in FIG. 2, the rated output of each PCS (the maximum output of the solar power generation device) is 100 kW.
 図2においては、複数の太陽光発電装置3a~3cは、設置角度(方角)を変えて設置されている。このように設置すると、発電のピーク時間が太陽光発電装置ごとに異なる。図2に示す例では、出力の抑制がなければ、第1PCSは70kW、第2PCSは40kW、第3PCSは20kWの電力を出力する。 In FIG. 2, the plurality of solar power generation devices 3a to 3c are installed with different installation angles (directions). When installed in this way, the peak time of power generation differs for each photovoltaic power generation device. In the example shown in FIG. 2, if the output is not suppressed, the first PCS outputs 70 kW, the second PCS outputs 40 kW, and the third PCS outputs 20 kW.
 図2に示す例では、負荷5が必要とする電力は320kWである。各PCSの出力抑制が行われない場合、3つのPCSの出力合計が130kWになる。この場合、ディーゼル発電装置2の出力は、190kWになってしまい、最低出力(200kW)を下回る。そこで、3つのPCSには、出力が抑制されるように、出力上限値が与えられる。この例では、3つのPCSの合計出力値が120kW(=320kW-200kW)以下になるように、出力上限値が与えられる。 In the example shown in FIG. 2, the power required by the load 5 is 320 kW. When the output suppression of each PCS is not performed, the total output of the three PCSs is 130 kW. In this case, the output of the diesel generator 2 is 190 kW, which is lower than the minimum output (200 kW). Therefore, an output upper limit value is given to the three PCSs so that the output is suppressed. In this example, the output upper limit value is given so that the total output value of the three PCSs is 120 kW (= 320 kW−200 kW) or less.
 上述のように、3つのPCSの出力上限値は同一に設定される。そこで、3つのPCSに許容される合計出力値(120kW)を単純に三等分して、各PCSの出力上限値を40kWに設定することが考えられる。このように出力上限値を設定した場合、実際には、第1のPCSは40kW、第2のPCSは40kW、第3のPCSは20kWの電力を出力する。すなわち、3つのPCSの合計出力値は100kWになる。3つのPCSの合計出力値は120kWまで許容されているにもかかわらず、必要以上の制限が加えられていることになる。このような必要以上の制限が加わらないように、コントローラ4は各PCSの出力制御を行う。これにより、太陽光発電を有効活用することができる。以下、複数の実施形態に分けて、本発明の電力供給システムを更に詳細に説明する。
<第1実施形態>
As described above, the output upper limit values of the three PCSs are set to be the same. Therefore, it is conceivable to simply divide the total output value (120 kW) allowed for the three PCS into three equal parts and set the output upper limit value of each PCS to 40 kW. When the output upper limit value is set in this way, actually, the first PCS outputs 40 kW, the second PCS outputs 40 kW, and the third PCS outputs 20 kW. That is, the total output value of the three PCSs is 100 kW. Although the total output value of the three PCSs is allowed up to 120 kW, the limit is more than necessary. The controller 4 controls the output of each PCS so that such an unnecessary limit is not added. Thereby, solar power generation can be used effectively. Hereinafter, the power supply system of the present invention will be described in more detail by dividing it into a plurality of embodiments.
<First Embodiment>
 図3は、本発明の第1実施形態に係る電力供給システムの構成を示すブロック図である。第1実施形態の電力供給システムにおいては、図1に示す第1の電力供給部がディーゼル発電装置2として実現されている。また、第1実施形態の電力供給システムにおいては、図1に示す複数の第2の電力供給部が複数の太陽光発電装置3a~3bとして実現されている。 FIG. 3 is a block diagram showing the configuration of the power supply system according to the first embodiment of the present invention. In the power supply system of the first embodiment, the first power supply unit shown in FIG. In the power supply system of the first embodiment, the plurality of second power supply units shown in FIG. 1 are realized as a plurality of solar power generation devices 3a to 3b.
 第1実施形態の電力供給システムは、負荷5の電力を計測する第1の電力計7と、3つの太陽光発電装置3a~3cから出力される出力値の合計を計測する第2の電力計8と、を備えている。なお、電力計7、8の代わりに、電流計及び電圧計が配置されてもよい。また、第2の電力計8に代えて、ディーゼル発電装置2の出力を計測する電力計が備えられる構成としてもよい。また、第2の電力計8は配置せず、太陽光発電装置3a~3cに含まれる各PCSからの信号を利用して、3つの太陽光発電装置3a~3c(3つのPCS)の合計出力値が得られてもよい。 The power supply system of the first embodiment includes a first wattmeter 7 that measures the power of the load 5 and a second wattmeter that measures the total of output values output from the three solar power generation devices 3a to 3c. 8 and. Instead of the wattmeters 7 and 8, an ammeter and a voltmeter may be arranged. Further, instead of the second wattmeter 8, a wattmeter that measures the output of the diesel power generator 2 may be provided. Further, the second wattmeter 8 is not disposed, and the total output of the three solar power generation devices 3a to 3c (three PCS) is obtained by using signals from the PCS included in the solar power generation devices 3a to 3c. A value may be obtained.
 図4は、本発明の第1実施形態に係る電力供給システムが備える太陽光発電装置3aの構成を示すブロック図である。なお、3つの太陽光発電装置3a~3cは同様の構成を備える。このために、ここでは、太陽光発電装置3aを代表例として説明し、他の太陽光発電装置3b、3cについては説明を省略する。太陽光発電装置3aは、太陽光パネル31とPCS32とを備えている。PCS32は、外部から出力上限値を取得する出力上限値取得部321を備える。また、PCS32は、外部から取得した出力上限値に基づいて当該PCSの出力を制御する出力制御部322を備える。 FIG. 4 is a block diagram showing a configuration of the solar power generation device 3a included in the power supply system according to the first embodiment of the present invention. The three solar power generation devices 3a to 3c have the same configuration. Therefore, here, the solar power generation device 3a will be described as a representative example, and description of the other solar power generation devices 3b and 3c will be omitted. The solar power generation device 3 a includes a solar panel 31 and a PCS 32. The PCS 32 includes an output upper limit value acquisition unit 321 that acquires an output upper limit value from the outside. The PCS 32 includes an output control unit 322 that controls the output of the PCS based on an output upper limit value acquired from the outside.
 図5は、本発明の第1実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。コントローラ4は電力管理部41を備える。電力管理部41は、第1の電力計7から負荷電力値(Pld)を取得するとともに、第2の電力計8から3つのPCS32の合計出力値(Ppv)を取得する。 FIG. 5 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the first embodiment of the present invention. The controller 4 includes a power management unit 41. The power management unit 41 acquires the load power value (Pld) from the first wattmeter 7 and the total output value (Ppv) of the three PCSs 32 from the second wattmeter 8.
 コントローラ4は、各PCS32に同一の出力上限値を設定する上限値設定部42を備える。上限値設定部42には、上限計算値算出部421と、調整値算出部422と、出力上限値送信部423とが含まれる。上限計算値算出部421は、電力管理部41から情報を取得可能に設けられる。調整値算出部422は、電力管理部41及び上限計算値算出部421から情報を取得可能に設けられる。出力上限値送信部423は、上限計算値算出部421、及び、調整値算出部422から情報を取得可能に設けられる。各機能部の詳細な機能は、後述の内容で明らかになる。 The controller 4 includes an upper limit setting unit 42 that sets the same output upper limit for each PCS 32. The upper limit setting unit 42 includes an upper limit calculated value calculation unit 421, an adjustment value calculation unit 422, and an output upper limit value transmission unit 423. The upper limit calculation value calculation unit 421 is provided so that information can be acquired from the power management unit 41. The adjustment value calculation unit 422 is provided so that information can be acquired from the power management unit 41 and the upper limit calculation value calculation unit 421. The output upper limit value transmission unit 423 is provided so that information can be acquired from the upper limit calculation value calculation unit 421 and the adjustment value calculation unit 422. Detailed functions of the respective functional units will be clarified in the contents described later.
 図6は、本発明の第1実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートである。図7は、図6に示す出力上限値の設定フローの理解を容易とする数値例を示す模式図である。以下、図6のフローチャートの説明にあたって、図7を参照して、具体的な数値例についても説明する。なお、後述の調整値(P_offset)の初期値は0である。 FIG. 6 is a flowchart showing an output upper limit setting flow in the power supply system according to the first embodiment of the present invention. FIG. 7 is a schematic diagram illustrating a numerical example that facilitates understanding of the output upper limit value setting flow illustrated in FIG. 6. Hereinafter, in the description of the flowchart of FIG. 6, specific numerical examples will also be described with reference to FIG. 7. Note that an initial value of an adjustment value (P_offset) described later is 0.
 出力上限値の設定にあたって、コントローラ4は、第1の電力計7から負荷の電力値(Pld)を取得し、第2の電力計8から3つのPCS32の合計出力値(Ppv)を取得する(ステップS1)。図7に示す例では、Pld=320kW、Ppv=100kWである。 In setting the output upper limit value, the controller 4 acquires the load power value (Pld) from the first wattmeter 7 and the total output value (Ppv) of the three PCSs 32 from the second wattmeter 8 ( Step S1). In the example shown in FIG. 7, Pld = 320 kW and Ppv = 100 kW.
 次に、コントローラ4は、負荷の電力値(Pld)とディーゼル発電装置2の最低出力値(Pdg_min)とから、3つのPCS32が出力可能な電力値(Pld-Pdg_min)を算出する。ディーゼル発電装置2の最低出力値(Pdg_min)は、例えばコントローラ4に含まれる記憶部(不図示)に記憶される構成としてよい。また、別の形態として、ディーゼル発電装置2の制御部(不図示)がコントローラ4とは別に設けられる場合には、最低出力値(Pdg_min)は、当該制御部からコントローラ4に送信される構成としてもよい。また、ディーゼル発電装置2が複数台のディーゼル発電機で構成されている場合、稼働している発電機の総定格容量に応じて、最低出力値(Pdg_min)が変化する。コントローラ4は、3つのPCS32が出力可能な電力値(Pld-Pdg_min)と、3つのPCS32の定格出力値の合計値(Ppv_rtd×N)との大小関係を比較する(ステップS2)。図7に示す例では、(Pld-Pdg_min)=(320kW-200kW)=120kW、(Ppv_rtd×N)=(100kW×3)=300kWである。 Next, the controller 4 calculates the power value (Pld-Pdg_min) that can be output by the three PCSs 32 from the power value (Pld) of the load and the minimum output value (Pdg_min) of the diesel power generator 2. The minimum output value (Pdg_min) of the diesel power generator 2 may be stored in a storage unit (not shown) included in the controller 4, for example. As another configuration, when a control unit (not shown) of the diesel power generator 2 is provided separately from the controller 4, the minimum output value (Pdg_min) is transmitted from the control unit to the controller 4. Also good. Moreover, when the diesel generator 2 is comprised with the several diesel generator, the minimum output value (Pdg_min) changes according to the total rated capacity of the generator in operation. The controller 4 compares the magnitude relationship between the power value (Pld-Pdg_min) that can be output by the three PCSs 32 and the total value (Ppv_rtd × N) of the rated output values of the three PCSs 32 (step S2). In the example shown in FIG. 7, (Pld−Pdg_min) = (320 kW−200 kW) = 120 kW, (Ppv_rtd × N) = (100 kW × 3) = 300 kW.
 なお、ディーゼル発電装置2の最低出力値(Pdg_min)は、本発明の第1の値及び出力制限値の一例である。また、負荷の電力値(Pld)からディーゼル発電装置2の最低出力値(Pdg_min)を差し引いた値(Pld-Pdg_min) は、本発明の第2の値の一例である。 The minimum output value (Pdg_min) of the diesel power generator 2 is an example of the first value and the output limit value of the present invention. A value (Pld-Pdg_min) obtained by subtracting the minimum output value (Pdg_min) of the diesel power generator 2 from the power value (Pld) of the load is an example of the second value of the present invention.
 3つのPCS32が出力可能な電力値(Pld-Pdg_min)が、3つのPCS32の定格出力値の合計値(Ppv_rtd×N)以上である場合(ステップS2でNo)、各PCS32の出力を抑制する必要がない。このために、コントローラ4は、上限計算値(Ppv_max) =各PCS32の定格出力値(Ppv_rtd)、調整値(P_offset)=0にする(ステップS3)。 When the power value (Pld-Pdg_min) that can be output by the three PCSs 32 is equal to or greater than the total value (Ppv_rtd × N) of the rated output values of the three PCSs 32 (No in step S2), it is necessary to suppress the output of each PCS 32 There is no. For this purpose, the controller 4 sets the upper limit calculation value (Ppv_max) = the rated output value (Ppv_rtd) of each PCS 32 and the adjustment value (P_offset) = 0 (step S3).
 一方、3つのPCS32が出力可能な電力値(Pld-Pdg_min)が、3つのPCS32の定格出力値の合計値(Ppv_rtd×N)より小さい場合(ステップS2でYes)、各PCS32の出力を抑制する必要がある。図7に示す例は、このケースに該当する。コントローラ4は、3つのPCS32が出力可能な電力値(Pld-Pdg_min)を三等分した値を、各PCS32の上限計算値(Ppv_max)として算出する(ステップS4)。上限計算値(Ppv_max)は、本発明の出力上限計算値の一例である。図7に示す例では、Ppv_max=(Pld-Pdg_min)/N=120/3=40kWになる。 On the other hand, when the power value (Pld-Pdg_min) that can be output by the three PCSs 32 is smaller than the total value (Ppv_rtd × N) of the rated output values of the three PCSs 32 (Yes in step S2), the output of each PCS 32 is suppressed. There is a need. The example shown in FIG. 7 corresponds to this case. The controller 4 calculates, as an upper limit calculation value (Ppv_max) of each PCS 32, a value obtained by dividing the power value (Pld-Pdg_min) that can be output by the three PCSs 32 into three equal parts (step S4). The upper limit calculation value (Ppv_max) is an example of the output upper limit calculation value of the present invention. In the example shown in FIG. 7, Ppv_max = (Pld−Pdg_min) / N = 120/3 = 40 kW.
 次に、コントローラ4は、現在の3つのPCS32の合計出力値(Ppv)が上限計算値の合計値(Ppv_max×N)より小さいか否かを判断する(ステップS5)。現在の3つのPCS32の合計出力値(Ppv)が上限計算値の合計値(Ppv_max×N)より小さい場合(ステップS5でYes)、現在の出力上限値を大きくする余裕があるために、コントローラ4は調整値(P_offset)を大きくする(ステップS6)。図7に示す例では、Ppv=100kW、(Ppv_max×N)=(40kW×3)=120kWである。このために、調整値(P_offset)が大きくされる。 Next, the controller 4 determines whether or not the total output value (Ppv) of the current three PCSs 32 is smaller than the total value (Ppv_max × N) of the upper limit calculation value (step S5). If the total output value (Ppv) of the current three PCSs 32 is smaller than the total value (Ppv_max × N) of the upper limit calculation value (Yes in step S5), there is room to increase the current output upper limit value. Increases the adjustment value (P_offset) (step S6). In the example shown in FIG. 7, Ppv = 100 kW and (Ppv_max × N) = (40 kW × 3) = 120 kW. For this reason, the adjustment value (P_offset) is increased.
 調整値(P_offset)は、例えば各PCS32の定格出力値の1%(図7の例では1kWに該当)等、所定の値大きくされる構成としてよい。また、別の例として、調整値(P_offset)は、上限計算値の合計値(Ppv_max×N)と、現在の3つのPCS32の合計出力値(Ppv)との差分をPCS32の台数(N)で除した値だけ増やされてもよい。図7の例では、調整値(P_offset)を増やす量は、(Ppv_max×N‐Ppv)/N=(40kW×3-100kW)/3≒6kWになる。 The adjustment value (P_offset) may be increased by a predetermined value such as 1% of the rated output value of each PCS 32 (corresponding to 1 kW in the example of FIG. 7). As another example, the adjustment value (P_offset) is the difference between the total value (Ppv_max × N) of the upper limit calculation value and the current total output value (Ppv) of the three PCSs 32 in the number of PCSs 32 (N). It may be increased by the divided value. In the example of FIG. 7, the amount by which the adjustment value (P_offset) is increased is (Ppv_max × N−Ppv) / N = (40 kW × 3-100 kW) / 3≈6 kW.
 現在の3つのPCS32の合計出力値(Ppv)が上限計算値の合計値(Ppv_max×N)以上である場合(ステップS5でNo)、現在の出力上限値が大きすぎる可能性がある。コントローラ4は、調整値(P_offset)が0より大きいか否かを判断する(ステップS7)。コントローラ4は、調整値(P_offset)が0より大きい場合(ステップS7でYes)、調整値(P_offset)を減らす(ステップS8)。コントローラ4は、調整値(P_offset)が0より大きくない場合(ステップS7でNo)、調整値(P_offset)を0にする(ステップS9)。なお、調整値(P_offset)を小さくする場合、その値の決定方法は特に限定されないが、例えば、定格出力値の1%減らす等としてよい。 If the total output value (Ppv) of the current three PCSs 32 is equal to or greater than the total value (Ppv_max × N) of the upper limit calculation value (No in step S5), the current output upper limit value may be too large. The controller 4 determines whether or not the adjustment value (P_offset) is greater than 0 (step S7). When the adjustment value (P_offset) is greater than 0 (Yes in step S7), the controller 4 decreases the adjustment value (P_offset) (step S8). If the adjustment value (P_offset) is not greater than 0 (No in step S7), the controller 4 sets the adjustment value (P_offset) to 0 (step S9). Note that, when the adjustment value (P_offset) is decreased, the determination method of the value is not particularly limited. For example, it may be reduced by 1% of the rated output value.
 コントローラ4は、上限計算値(Ppv_max)及び調整値(P_offset)が決定すると、出力上限値(Ppv_lmt)=上限計算値(Ppv_max)+調整値(P_offset)とする。そして、当該出力上限値(Ppv_lmt)を各PCS32に通知する(ステップS10)。図7に示す例では、例えば、出力上限値41kW(又は46kW)が送信される。コントローラ4は、ステップS10の処理を行った後は、ステップS1に戻って、以上の処理を繰り返す。出力上限値を取得した各PCS32は、取得した出力上限値を超えないように、出力の制御を行う。出力上限値(Ppv_lmt)は適宜更新される。 When the upper limit calculation value (Ppv_max) and the adjustment value (P_offset) are determined, the controller 4 sets the output upper limit value (Ppv_lmt) = the upper limit calculation value (Ppv_max) + the adjustment value (P_offset). The output upper limit value (Ppv_lmt) is notified to each PCS 32 (step S10). In the example illustrated in FIG. 7, for example, an output upper limit value 41 kW (or 46 kW) is transmitted. After performing the process of step S10, the controller 4 returns to step S1 and repeats the above process. Each PCS 32 that has acquired the output upper limit value controls the output so as not to exceed the acquired output upper limit value. The output upper limit (Ppv_lmt) is updated as appropriate.
 なお、以上に示した出力上限値の設定フローでは、ステップS5の判断を行った後に、即座に、調整値(P_offset)を大きくしたり、小さくしたりする構成としている。しかし、これは一例にすぎない。例えば、ステップS5で判断した状態が、一定時間連続した場合に、調整値(P_offset)を大きくしたり、小さくしたりする構成にしてもよい。また、ステップ5の判断に代えて、例えば、次のような構成が採用されてもよい。現在の3つのPCS32の合計出力値(Ppv)と、上限計算値の合計値(Ppv_max×N)との差が、所定の範囲内である場合には調整値(P_offset)の変更を行わず、所定の範囲外である場合に調整値(P_offset)の変更を行う構成としてもよい。 In the output upper limit setting flow shown above, the adjustment value (P_offset) is immediately increased or decreased after the determination in step S5. However, this is only an example. For example, the adjustment value (P_offset) may be increased or decreased when the state determined in step S5 continues for a certain period of time. Further, instead of the determination in step 5, for example, the following configuration may be employed. When the difference between the total output value (Ppv) of the current three PCSs 32 and the total value (Ppv_max × N) of the upper limit calculation value is within a predetermined range, the adjustment value (P_offset) is not changed, The configuration may be such that the adjustment value (P_offset) is changed when it is outside the predetermined range.
 第1実施形態の電力供給システムによれば、負荷5の電力値、ディーゼル発電装置2に設定される最低出力、及び、PCS32の数によって、単純に出力上限値を設定する構成になっていない。第1実施形態の電力供給システムでは、3つのPCS32の合計出力値を加味して出力上限値を設定する構成になっている。このために、第1実施形態の電力供給システムによれば、例えば、各PCS32から出力される電力が必要以上に抑制されることを防止できる。このために、第1実施形態の電力供給システムによれば、太陽光発電の電力を有効活用できる。 According to the power supply system of the first embodiment, the output upper limit value is not simply set according to the power value of the load 5, the minimum output set in the diesel power generator 2, and the number of PCSs 32. In the power supply system of the first embodiment, the output upper limit value is set in consideration of the total output value of the three PCSs 32. For this reason, according to the power supply system of 1st Embodiment, it can prevent that the electric power output from each PCS32 is suppressed more than necessary, for example. For this reason, according to the electric power supply system of 1st Embodiment, the electric power of solar power generation can be used effectively.
 また、第1実施形態の電力供給システムによれば、例えば、太陽光発電装置3a~3cで発電可能な電力、及び、負荷5の電力に変化がなければ、複数のPCS32の合計出力値を目標電力値に近づけることができる。このために、第1実施形態の電力供給システムによれば、太陽光発電の電力を有効活用できる。なお、目標電力値は、負荷5の電力値からディーゼル発電装置2の最低出力を差し引いた値である。 Further, according to the power supply system of the first embodiment, for example, if there is no change in the power that can be generated by the solar power generation devices 3a to 3c and the power of the load 5, the total output value of the plurality of PCSs 32 is targeted. It can be close to the power value. For this reason, according to the electric power supply system of 1st Embodiment, the electric power of solar power generation can be used effectively. The target power value is a value obtained by subtracting the minimum output of the diesel generator 2 from the power value of the load 5.
 また、第1実施形態の電力供給システムによれば、例えば、日射変動によって、急に複数のPCS32の合計出力値が大きくなった場合でも、出力上限値を即座に修正できる。このために、日射変動に対応し易い。
 <第2実施形態>
Further, according to the power supply system of the first embodiment, for example, even when the total output value of the plurality of PCSs 32 suddenly increases due to solar radiation fluctuations, the output upper limit value can be immediately corrected. For this reason, it is easy to cope with solar radiation fluctuations.
Second Embodiment
 図8は、本発明の第2実施形態に係る電力供給システムの構成を示すブロック図である。第2実施形態の電力供給システムは、概ね、第1実施形態の電力供給システムと同じ構成である。第1実施形態と異なる点は、3つの太陽光発電装置3a~3cの各出力値を別々に計測できるように、3つの第2の電力計8a~8cが配置されている点である。なお、第2実施形態の説明にあたっては、第1実施形態と同様の構成については同一の符号を付し、特に必要がない場合には、その説明を省略する。 FIG. 8 is a block diagram showing a configuration of a power supply system according to the second embodiment of the present invention. The power supply system of the second embodiment has generally the same configuration as the power supply system of the first embodiment. The difference from the first embodiment is that three second wattmeters 8a to 8c are arranged so that output values of the three solar power generation devices 3a to 3c can be separately measured. In the description of the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted unless particularly necessary.
 図9は、本発明の第2実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。第1実施形態の構成とは、各PCS32の出力値(Ppvi)が別々に電力管理部41に入力される点が異なる。なお、電力管理部41は、各PCS32の出力値を合計して、3つのPCS32の合計出力値(Ppv)を得ることができる。 FIG. 9 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the second embodiment of the present invention. The configuration of the first embodiment is different in that the output value (Ppvi) of each PCS 32 is input to the power management unit 41 separately. The power management unit 41 can sum the output values of the PCSs 32 to obtain a total output value (Ppv) of the three PCSs 32.
 図10は、本発明の第2実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートである。図11は、図10に示す出力上限値の設定フローの理解を容易とする数値例を示す模式図である。以下、図10のフローチャートの説明にあたって、図11を参照して、具体的な数値例についても説明する。なお、第2実施形態においても、調整値(P_offset)の初期値は0である。 FIG. 10 is a flowchart showing an output upper limit setting flow in the power supply system according to the second embodiment of the present invention. FIG. 11 is a schematic diagram illustrating a numerical example that facilitates understanding of the setting flow of the output upper limit value illustrated in FIG. 10. Hereinafter, in the description of the flowchart of FIG. 10, specific numerical examples will also be described with reference to FIG. 11. Also in the second embodiment, the initial value of the adjustment value (P_offset) is zero.
 出力上限値の設定にあたって、コントローラ4は、負荷の電力値(Pld)とともに、第2の電力計8a~8cを用いて、各PCS32の出力値(Pvi)を取得する。また、コントローラ4は、各PCS32の出力値(Pvi)を足し合わせて3つのPCS32の合計出力値(Ppv)を得る(ステップS11)。図11に示す例では、最初、Pld=320kW、Ppv1=70kW、Ppv2=40kW、Ppv3=20kW、Ppv=130kWである。 In setting the output upper limit value, the controller 4 acquires the output value (Pvi) of each PCS 32 using the second wattmeters 8a to 8c together with the load power value (Pld). Further, the controller 4 adds the output values (Pvi) of the PCSs 32 to obtain the total output value (Ppv) of the three PCSs 32 (step S11). In the example shown in FIG. 11, first, Pld = 320 kW, Ppv1 = 70 kW, Ppv2 = 40 kW, Ppv3 = 20 kW, and Ppv = 130 kW.
 ステップS11の後、第1実施形態と同様に、ステップS2~ステップS5が実行される。図11に示す例では、(Pld-Pdg_min)=120kW、Ppv_max=40kW、(Ppv_max×N)=120kWになる。このために、最初、ステップS5の判断において、Ppv>(Ppv_max×N)になる(ステップS5でNo)。このために、コントローラ4は、処理Aを行う(ステップ12)。処理Aは、詳細には、第1実施形態(図6)のステップS7~S9が該当する。そして、コントローラ4は、(Ppv_max+P_offset)=(40kW+0kW)=40kWを出力上限値(Ppv_lmt)として、各PCS32に送信する(ステップS10)。各PCS32は、当該出力上限値にしたがって出力を行う。 After Step S11, Steps S2 to S5 are executed as in the first embodiment. In the example shown in FIG. 11, (Pld−Pdg_min) = 120 kW, Ppv_max = 40 kW, and (Ppv_max × N) = 120 kW. For this reason, first, Ppv> (Ppv_max × N) is satisfied in the determination in step S5 (No in step S5). For this purpose, the controller 4 performs process A (step 12). The process A specifically corresponds to steps S7 to S9 of the first embodiment (FIG. 6). Then, the controller 4 transmits (Ppv_max + P_offset) = (40 kW + 0 kW) = 40 kW as an output upper limit value (Ppv_lmt) to each PCS 32 (step S10). Each PCS 32 performs output according to the output upper limit value.
 再度ステップS11で電力の取得を行うと、Pld=320kW、Ppv1=40kW、Ppv2=40kW、Ppv3=20kW、Ppv=100kWになる。このために、次のステップS5の判断では、Ppv<(Ppv_max×N)になり(ステップS5でYes)、ステップS13に進む。 If power is acquired again in step S11, Pld = 320 kW, Ppv1 = 40 kW, Ppv2 = 40 kW, Ppv3 = 20 kW, and Ppv = 100 kW. For this reason, in the determination of the next step S5, Ppv <(Ppv_max × N) is satisfied (Yes in step S5), and the process proceeds to step S13.
 ステップS13はループ処理であり、コントローラ4は、iを1ずつ増やしながらNになるまで、ステップS14、15の処理を繰り返す。すなわち、コントローラ4は、各PCSごとに、出力値(Ppvi)が出力上限値(Ppv_lmt)より小さいか否かを判断する(ステップS14)。なお、出力上限値(Ppv_lmt)は、初めて出力上限値を決定する場合には、ステップS4で求めたPpv_maxと、P_offsetの初期値とを加算した値になる。先に出力上限値を決定するフローが行われている場合には、出力上限値(Ppv_lmt)は、直近のステップS10で得た値になる。そして、出力値(Ppvi)が出力上限値(Ppv_lm)より小さくない場合に(ステップS14でNo)、コントローラ4は、カウント値(P_lmt_cnt)を1つ増やす(ステップS15)。出力値(Ppvi)が出力上限値(Ppv_lmt)より小さい場合に(ステップS14でYes)、カウント値(P_lmt_cnt)は増えない。カウント値(P_lmt_cnt)は、現在の出力上限値(Ppv_lmt)よりも大きな出力を出せる可能性があるPCS32の台数を示す。なお、図11に示す例では、現在の出力上限値(Ppv_lmt)=40kWである。そして、P_lmt_cnt=2になる。 Step S13 is a loop process, and the controller 4 repeats the processes of steps S14 and 15 until i becomes N while increasing i by 1. That is, the controller 4 determines whether or not the output value (Ppvi) is smaller than the output upper limit value (Ppv_lmt) for each PCS (step S14). The output upper limit (Ppv_lmt) is a value obtained by adding Ppv_max obtained in step S4 and the initial value of P_offset when the output upper limit is determined for the first time. When the flow for determining the output upper limit value is performed first, the output upper limit value (Ppv_lmt) is the value obtained in the most recent step S10. When the output value (Ppvi) is not smaller than the output upper limit value (Ppv_lm) (No in step S14), the controller 4 increases the count value (P_lmt_cnt) by one (step S15). When the output value (Ppvi) is smaller than the output upper limit value (Ppv_lmt) (Yes in step S14), the count value (P_lmt_cnt) does not increase. The count value (P_lmt_cnt) indicates the number of PCSs 32 that can possibly output larger than the current output upper limit value (Ppv_lmt). In the example shown in FIG. 11, the current output upper limit value (Ppv_lmt) = 40 kW. Then, P_lmt_cnt = 2.
 全てのPCS32についてステップS14、15の処理が済むと、コントローラ4は、カウント値(P_lmt_cnt)が0か否かを判断する(ステップS16)。カウント値(P_lmt_cnt)が0の場合は(ステップS16でYes)、各PCS32がこれ以上出力を上げられないと判断される。このために、コントローラ4は、調整値(P_offset)を現在の値で維持し(ステップS17)、ステップS10に進む。 When the processing of steps S14 and 15 is completed for all the PCSs 32, the controller 4 determines whether or not the count value (P_lmt_cnt) is 0 (step S16). If the count value (P_lmt_cnt) is 0 (Yes in step S16), it is determined that each PCS 32 cannot increase the output any more. For this purpose, the controller 4 maintains the adjustment value (P_offset) at the current value (step S17), and proceeds to step S10.
 カウント値(P_lmt_cnt)が0でない場合は(ステップS16でNo)、コントローラ4は、カウント値(P_lmt_cnt)の数だけ、現在の出力上限値よりも大きな出力を出せる可能性があるPCS32が存在すると判断する。そして、コントローラ4は、増やしたい出力分(Ppv_max×N-Ppv)をカウント値(P_lmt_cnt)で除して得た値だけ、調整値(P_offset)を増やす。図11に示す例は、このケースに該当する。P_offset=0kW+(40×3-100)/2=10kWになる。コントローラ4は、出力上限値(Ppv_lmt)=(Ppv_max+P_offset)=(40kw+10kw)=50kWを各PCS32に送信する(ステップS10)。その後、ステップS11から始まるフローが繰り返される。 If the count value (P_lmt_cnt) is not 0 (No in step S16), the controller 4 determines that there is a PCS 32 that can output an output larger than the current output upper limit value by the number of count values (P_lmt_cnt). To do. Then, the controller 4 increases the adjustment value (P_offset) by the value obtained by dividing the output (Ppv_max × N-Ppv) to be increased by the count value (P_lmt_cnt). The example shown in FIG. 11 corresponds to this case. P_offset = 0 kW + (40 × 3-100) / 2 = 10 kW. The controller 4 transmits an output upper limit value (Ppv_lmt) = (Ppv_max + P_offset) = (40 kW + 10 kW) = 50 kW to each PCS 32 (step S10). Thereafter, the flow starting from step S11 is repeated.
 なお、以上に示したフローでは、PCS32が現在の出力上限値よりも大きな出力を出せるか否かを判断するにあたって、各PCS32の出力値と出力上限値とを比較する構成にした。しかし、これは一例にすぎない。例えば、各PCS32の出力値が、出力上限値を基準として設定された或る範囲内に入っているか否かによって、PCS32が現在の出力上限値よりも大きな出力を出せるか否かを判断してもよい。 In the flow shown above, the PCS 32 compares the output value of each PCS 32 with the output upper limit value when determining whether the PCS 32 can output an output larger than the current output upper limit value. However, this is only an example. For example, it is determined whether or not the PCS 32 can output an output larger than the current output upper limit value depending on whether or not the output value of each PCS 32 is within a certain range set based on the output upper limit value. Also good.
 第2実施形態の電力供給システムは、例えば第1実施形態と同様の効果が得られる。また、第2実施形態の電力供給システムでは、調整値(P_offset)を求めるにあたって、出力抑制がかかっていると判断されるPCS32の台数を判定し、当該判定結果を利用して調整値(P_offset)を決めている。このために、第2実施形態の電力供給システムでは、例えば、太陽光発電装置によって発電した電力を、第1実施形態の場合より適切に利用し易い。また、第2実施形態の電力供給システムでは、例えば、負荷変動や日射変動により早く追従して、太陽光発電装置によって発電した電力を有効に利用できる。
<第3実施形態>
The power supply system of the second embodiment can obtain the same effects as those of the first embodiment, for example. Further, in the power supply system of the second embodiment, when obtaining the adjustment value (P_offset), the number of PCSs 32 that are determined to be output-suppressed is determined, and the adjustment value (P_offset) is determined using the determination result. Have decided. For this reason, in the power supply system of the second embodiment, for example, the power generated by the solar power generation device can be more appropriately used than in the case of the first embodiment. Moreover, in the electric power supply system of 2nd Embodiment, the electric power generated by the solar power generation device can be used effectively, for example, following quickly the load fluctuation and the solar radiation fluctuation.
<Third Embodiment>
 第3実施形態の電力供給システムは、概ね第2実施形態の電力供給システムと同じである。このため、第2実施形態と同様の内容については説明を省略する。図12は、本発明の第3実施形態に係る電力供給システムが備える太陽光発電装置3aの構成を示すブロック図である。なお、3つの太陽光発電装置3a~3cは同様の構成を備える。このため、ここでは、太陽光発電装置3aを代表例として示し、他の太陽光発電装置3b、3cの図示は省略している。図13は、本発明の第3実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。 The power supply system of the third embodiment is generally the same as the power supply system of the second embodiment. For this reason, description about the same content as 2nd Embodiment is abbreviate | omitted. FIG. 12 is a block diagram illustrating a configuration of a solar power generation device 3a included in the power supply system according to the third embodiment of the present invention. The three solar power generation devices 3a to 3c have the same configuration. For this reason, the solar power generation device 3a is shown here as a representative example, and illustration of the other solar power generation devices 3b and 3c is omitted. FIG. 13 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the third embodiment of the present invention.
 図13に示すように、第3実施形態においては、コントローラ4に、各PCS32を管理するPCS管理部43が含まれる。この点が、第2実施形態と異なる。PCS管理部43は、各PCS32に対して運転停止及び運転再開を指示する。このために、本実施形態の電力供給システムには、図12及び図13に示すように、PCS管理部43から各PCS32の出力制御部322に運転停止及び運転再開の指示を出す信号線が備えられている。本実施形態では、調整値算出部422がPCS32の運転停止及び運転再開を決定する。 As shown in FIG. 13, in the third embodiment, the controller 4 includes a PCS management unit 43 that manages each PCS 32. This point is different from the second embodiment. The PCS management unit 43 instructs each PCS 32 to stop operation and resume operation. For this purpose, the power supply system according to the present embodiment includes a signal line for instructing the output control unit 322 of each PCS 32 to stop operation and resume operation, as shown in FIGS. 12 and 13. It has been. In the present embodiment, the adjustment value calculation unit 422 determines whether to stop the operation of the PCS 32 and restart the operation.
 なお、運転停止は、例えば、出力上限値を0kWにすることによって指令してもよい。この構成では、出力上限値が0kWより大きな値に設定された場合に運転再開指令と判断されてよい。 The operation stop may be commanded by setting the output upper limit value to 0 kW, for example. In this configuration, the operation restart command may be determined when the output upper limit value is set to a value larger than 0 kW.
 図14は、本発明の第3実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートである。第3実施形態における出力上限値の設定フローは、概ね第2実施形態と同じである。ただし、ステップS2、S4、S5、S18において、PCSの数が、システムに含まれるPCSの数(N)ではなく、動作中のPCSの数(n)になっている点が、第2実施形態とは異なる。また、ステップS17、S18の後に処理Bが追加された点も異なる。なお、nはN以下の値である。動作しているPCS32の数(n)は、PCS管理部43によって管理されている。 FIG. 14 is a flowchart showing an output upper limit setting flow in the power supply system according to the third embodiment of the present invention. The output upper limit setting flow in the third embodiment is substantially the same as in the second embodiment. However, in the second embodiment, in steps S2, S4, S5, and S18, the number of PCSs is not the number (N) of PCSs included in the system but the number (n) of operating PCSs. Is different. Another difference is that process B is added after steps S17 and S18. Note that n is a value of N or less. The number (n) of operating PCSs 32 is managed by the PCS management unit 43.
 図15は、本発明の第3実施形態に係る電力供給システムにおいて、追加された処理Bを示すフローチャートである。図15に示すように、第3実施形態においては、ステップS18で調整値(P_offset)を算出した後に、コントローラ4は、最も出力値が小さいPCS32を停止するか否かの判断を行う。先の手順で、現在の出力上限値よりも大きな出力を出せる可能性があるPCS32が少なくとも1つは存在していると判断されている。この少なくとも1つのPCS32で出力が補える場合に、出力値が小さなPCS32は運転停止される。 FIG. 15 is a flowchart showing the added process B in the power supply system according to the third embodiment of the present invention. As shown in FIG. 15, in the third embodiment, after calculating the adjustment value (P_offset) in step S18, the controller 4 determines whether or not to stop the PCS 32 having the smallest output value. In the previous procedure, it is determined that there is at least one PCS 32 that may be able to produce an output that is larger than the current output upper limit. When the output can be supplemented by the at least one PCS 32, the PCS 32 having a small output value is stopped.
 具体的には、コントローラ4は、以下の式(1)によって、最も出力の小さいPCS32を停止させるか否かを判断する(ステップS19)。
 (Ppv_max+Ppv_x)/(n-1)<Pth   (1)
  Ppv_x:最も出力が小さなX番目のPCS32の出力値
  Pth:一定の閾値
  Pthは、例えば、実験やシミュレーション等によって決定できる。
Specifically, the controller 4 determines whether or not to stop the PCS 32 having the smallest output by the following equation (1) (step S19).
(Ppv_max + Ppv_x) / (n−1) <Pth (1)
Ppv_x: the output value of the Xth PCS 32 with the smallest output Pth: the constant threshold value Pth can be determined, for example, by experiment or simulation.
 式(1)を満足する場合(ステップS19でYes)、コントローラ4は、X番目のPCS32の運転を停止させ、nを1小さくする(ステップS20)。次回のループからは、新しいn値が使用される。一方、式(1)を満足しない場合(ステップS19でNo)、コントローラ4は、いずれのPCS32についても運転停止させない。 If the expression (1) is satisfied (Yes in step S19), the controller 4 stops the operation of the Xth PCS 32 and decreases n by 1 (step S20). From the next loop, the new n value is used. On the other hand, if the expression (1) is not satisfied (No in step S19), the controller 4 does not stop the operation of any PCS 32.
 また、図15に示すように、第3実施形態においては、ステップS17で調整値(P_offset)を維持すると判断した後に、コントローラ4は、停止中のPCS32が存在するか否かを判断する(ステップS21)。具体的には、N=nであるか否かを判断する。N=nでない場合には(ステップS21でNo)、停止中のPCS32が存在すると判断されるために、停止中のPCS32を1台運転再開させる(ステップS22)。また、この際、nを1大きくする。次回のループからは、新しいn値が使用される。一方、N=nであれば、停止中のPCS32が存在しないと判断されるため、運転再開処理は行われない。 As shown in FIG. 15, in the third embodiment, after determining that the adjustment value (P_offset) is maintained in step S17, the controller 4 determines whether there is a PCS 32 that is stopped (step S17). S21). Specifically, it is determined whether N = n. If N = n is not satisfied (No in step S21), it is determined that there is a stopped PCS 32, and therefore one stopped PCS 32 is restarted (step S22). At this time, n is increased by one. From the next loop, the new n value is used. On the other hand, if N = n, it is determined that there is no PCS 32 that is stopped, so the operation resumption process is not performed.
 なお、最も出力が小さなPCS32を停止させるか否かの判断は、式(1)を用いなくてもよい。例えば、単に、最も出力が小さなPCS32の出力値(Ppv_x)が一定の出力値以下であるか否かによって判断してもよい。 Note that it is not necessary to use Equation (1) to determine whether to stop the PCS 32 having the smallest output. For example, the determination may be made based on whether or not the output value (Ppv_x) of the PCS 32 having the smallest output is equal to or less than a certain output value.
 第3実施形態の電力供給システムは、例えば第2実施形態と同様の効果が得られる。また、第3実施形態の電力供給システムでは、例えば極端に出力が低い太陽光発電装置におけるPCSの運転を停止して、当該太陽光発電装置のメンテナンスを行うこともできる。また、第3実施形態の電力供給システムでは、例えば、出力が大きな太陽光発電装置を適切に選択して、太陽光発電装置によって発電した電力を効率的に利用できる。
<第4実施形態>
The power supply system of the third embodiment can obtain the same effects as those of the second embodiment, for example. Further, in the power supply system of the third embodiment, for example, the operation of the PCS in the solar power generation device with extremely low output can be stopped, and the solar power generation device can be maintained. Moreover, in the electric power supply system of 3rd Embodiment, the solar power generation device with a big output can be selected appropriately, for example, and the electric power generated with the solar power generation device can be used efficiently.
<Fourth embodiment>
 第4実施形態の電力供給システムは、概ね第1実施形態の電力供給システムと同じ構成を備えている(例えば図3参照)。第1実施形態と同様の構成については、説明を省略する。図16は、本発明の第4実施形態に係る電力供給システムが備える太陽光発電装置3aの構成を示すブロック図である。なお、3つの太陽光発電装置3a~3cは同様の構成を備える。このために、ここでは、太陽光発電装置3aを代表例として示し、他の太陽光発電装置3b、3cの図示は省略している。図17は、本発明の第4実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。 The power supply system of the fourth embodiment has generally the same configuration as the power supply system of the first embodiment (see, for example, FIG. 3). The description of the same configuration as in the first embodiment is omitted. FIG. 16: is a block diagram which shows the structure of the solar power generation device 3a with which the electric power supply system which concerns on 4th Embodiment of this invention is provided. The three solar power generation devices 3a to 3c have the same configuration. For this reason, the solar power generation device 3a is shown here as a representative example, and the illustration of the other solar power generation devices 3b and 3c is omitted. FIG. 17 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the fourth embodiment of the present invention.
 図16に示すように、第4実施形態においては、各太陽光発電装置3a~3cが日射計33を備える。この点が、第1実施形態の構成とは異なる。日射計33は、太陽光パネル31の受光面と一致するように、太陽光パネル31と平行に配置される。日射計33の存在により、各PCS32の出力可能最大電力を予測することができる。なお、日射計33は、本発明の測定部の一例である。 As shown in FIG. 16, in the fourth embodiment, each of the solar power generation devices 3a to 3c includes a solar radiation meter 33. This point is different from the configuration of the first embodiment. The pyranometer 33 is arranged in parallel with the solar panel 31 so as to coincide with the light receiving surface of the solar panel 31. Due to the presence of the pyranometer 33, the maximum output power of each PCS 32 can be predicted. The pyranometer 33 is an example of the measurement unit of the present invention.
 図16及び図17に示すように、日射計33で計測された日射量は、コントローラ4の調整値算出部422に送信される。調整値算出部422では、以下の式(2)によって、各PCS32における出力可能最大電力予測値を算出する。
 P_est_i=H(i)×Ppv_rtd×K  (2)
  P_est_i:i番目のPCS32の出力可能最大電力予測値
  H(i):i番目のPCS32の日射量[kW/m
  K:効率(一定の値)
  Ppv_rtd:PCS32の最大定格出力値
 なお、本実施形態では、Ppv_rtdは、いずれのPCS32も同じ値である。
As shown in FIGS. 16 and 17, the amount of solar radiation measured by the solar radiation meter 33 is transmitted to the adjustment value calculation unit 422 of the controller 4. The adjustment value calculation unit 422 calculates the maximum output power predicted value in each PCS 32 by the following equation (2).
P_est_i = H (i) × Ppv_rtd × K (2)
P_est_i: Maximum output power predicted value of i-th PCS 32 H (i): Solar radiation amount [kW / m 2 ] of i-th PCS 32
K: Efficiency (constant value)
Ppv_rtd: Maximum rated output value of PCS 32 In this embodiment, Ppv_rtd has the same value for all PCSs 32.
 図18は、本発明の第4実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートである。第4実施形態に係る電力供給システムにおける出力上限値設定フローは、概ね、図10に示す第2実施形態の出力上限値設定フローと同じである。ただし、第4実施形態では、3つのPCS32の合計出力値を計測できるが、各PCS32の出力値は計測できない。また、第4実施形態では、日射計33が備えられる。これらの事項の相違により、第2実施形態のフローチャートとは、以下の点が相違している。 FIG. 18 is a flowchart showing an output upper limit value setting flow in the power supply system according to the fourth embodiment of the present invention. The output upper limit setting flow in the power supply system according to the fourth embodiment is generally the same as the output upper limit setting flow of the second embodiment shown in FIG. However, in the fourth embodiment, the total output value of the three PCSs 32 can be measured, but the output value of each PCS 32 cannot be measured. In the fourth embodiment, a pyranometer 33 is provided. Due to the difference of these matters, the following points are different from the flowchart of the second embodiment.
 第2実施形態におけるステップ11が、第1実施形態のステップS1(図6)と同じになっている。また、第2実施形態のステップS14が、ステップS23に変更されている。 Step 11 in the second embodiment is the same as step S1 (FIG. 6) in the first embodiment. Moreover, step S14 of the second embodiment is changed to step S23.
 図18に示すフローチャートにおいて、ステップS13、S23、S15では、現在の出力上限値よりも大きな出力を出せる可能性があるPCS32の台数がカウントされる。第2実施形態では、第2の電力計8a~8cで計測される各PCS32の出力値に基づいて、PCS32の台数をカウントする構成とした。第4実施形態では、これとは異なり、出力可能最大電力予測値(P_est)に基づいて、現在の出力上限値よりも大きな出力を出せる可能性があるPCS32の台数がカウントされる。 In the flowchart shown in FIG. 18, in steps S13, S23, and S15, the number of PCSs 32 that may be able to output larger than the current output upper limit value is counted. In the second embodiment, the number of PCSs 32 is counted based on the output value of each PCS 32 measured by the second wattmeters 8a to 8c. In the fourth embodiment, unlike this, the number of PCSs 32 that may be able to output larger than the current output upper limit value is counted based on the predicted maximum output power value (P_est).
 具体的には、各PCS32について、出力可能最大電力予測値(P_est)と現在の出力上限値(Ppv_lmt)が比較される。比較の結果、出力可能最大電力予測値(P_est)が現在の出力上限値(Ppv_lmt)より小さい場合は、台数のカウント値は増やされない。一方、出力可能最大電力予測値(P_est)が現在の出力上限値(Ppv_lmt)以上である場合は、台数のカウント値が増やされる。 Specifically, for each PCS 32, the predicted maximum output power value (P_est) and the current output upper limit value (Ppv_lmt) are compared. As a result of the comparison, if the predicted maximum output power value (P_est) is smaller than the current output upper limit value (Ppv_lmt), the count value of the number is not increased. On the other hand, if the predicted maximum output power value (P_est) is equal to or greater than the current output upper limit value (Ppv_lmt), the count value of the number is increased.
 なお、本実施形態では、各太陽光発電装置3a~3cに日射計33が備えられる構成としたが、これは一例にすぎない。日射計33は、複数の太陽光発電装置で共用されても構わない。例えば、太陽光パネル31が同じ方角を向く複数の太陽光発電装置で、日射計33が共用されても構わない。 In this embodiment, the solar power generators 3a to 3c are provided with the solar radiation meter 33, but this is only an example. The pyranometer 33 may be shared by a plurality of solar power generation devices. For example, the solar radiation meter 33 may be shared by a plurality of solar power generation devices in which the solar panels 31 face the same direction.
 第4実施形態の電力供給システムでは、例えば第2実施形態と同様の効果が得られる。また、例えば、日射計33が利用されるために、実際の天候状態を反映した出力制御を行い易い。なお、第2実施形態と同様に、各PCS32の出力を計測する電力計が備えられる構成としてもよい。この場合、例えば、日射計33の計測結果に各PCS32の出力測定結果も加味して、現在の出力上限値よりも大きな出力を出せる可能性があるPCS32の数が判断される構成としてもよい。
<第5実施形態>
In the power supply system of the fourth embodiment, for example, the same effects as those of the second embodiment can be obtained. For example, since the pyranometer 33 is used, it is easy to perform output control reflecting the actual weather condition. In addition, it is good also as a structure provided with the wattmeter which measures the output of each PCS32 similarly to 2nd Embodiment. In this case, for example, the output measurement result of each PCS 32 may be added to the measurement result of the pyranometer 33 to determine the number of PCSs 32 that can possibly output larger than the current output upper limit value.
<Fifth Embodiment>
 第5実施形態の電力供給システムは、概ね第1実施形態の電力供給システムと同じ構成を備えている(例えば図3参照)。第1実施形態と同様の構成については、説明を省略する。図19は、本発明の第5実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。 The power supply system of the fifth embodiment has substantially the same configuration as the power supply system of the first embodiment (see, for example, FIG. 3). The description of the same configuration as in the first embodiment is omitted. FIG. 19 is a block diagram illustrating a functional configuration of the controller 4 included in the power supply system according to the fifth embodiment of the present invention.
 図19に示すように、第5実施形態においては、コントローラ4がPCS管理データ記憶部44を備える。この点が、第1実施形態の構成とは異なる。PCS管理データ記憶部44には、例えば、太陽光パネル31の方角情報、枚数情報、過去の日射量情報、過去の使用履歴情報等が記憶される。PCS管理データ記憶部44で記憶される情報は、調整値算出部422に送信可能になっている。なお、PCS管理データ記憶部44は、本発明の記憶部の一例である。 As shown in FIG. 19, in the fifth embodiment, the controller 4 includes a PCS management data storage unit 44. This point is different from the configuration of the first embodiment. The PCS management data storage unit 44 stores, for example, direction information, number information, past solar radiation amount information, past use history information, and the like of the solar panel 31. Information stored in the PCS management data storage unit 44 can be transmitted to the adjustment value calculation unit 422. The PCS management data storage unit 44 is an example of the storage unit of the present invention.
 調整値算出部422は、例えば、現在の季節及び時刻、PCS管理データ記憶部44から得た太陽光パネル31の方角情報及び枚数情報、過去の日射量情報等に基づいて各PCS32の出力を予測する。 The adjustment value calculation unit 422 predicts the output of each PCS 32 based on, for example, the current season and time, direction information and number information of the solar panels 31 obtained from the PCS management data storage unit 44, past solar radiation amount information, and the like. To do.
 また、別の例として、調整値算出部422は、例えば、現在時刻、PCS管理データ記憶部44に記憶される使用履歴情報等に基づいて各PCS32の出力予測値(P_est)を得る。例えば、PCS管理データ記憶部44には、図20に示すようなテーブルが記憶される。図20に示すテーブルは、過去の使用履歴から作成されたテーブルであり、時刻毎の各PCS32の出力予測値が含まれている。現在時刻が10時であると、各PCS32の出力予測値は、第1PCSが70kW、第2PCSが40kW、第3PCSが20kWになる。 As another example, the adjustment value calculation unit 422 obtains an output predicted value (P_est) of each PCS 32 based on, for example, the current time, usage history information stored in the PCS management data storage unit 44, and the like. For example, the PCS management data storage unit 44 stores a table as shown in FIG. The table shown in FIG. 20 is a table created from the past usage history, and includes the predicted output value of each PCS 32 for each time. If the current time is 10:00, the predicted output value of each PCS 32 is 70 kW for the first PCS, 40 kW for the second PCS, and 20 kW for the third PCS.
 第5実施形態に係る電力供給システムにおける出力上限値設定フローは、図18に示す第4実施形態の出力上限値設定フローと同じにできる。ただし、ステップS23で使用する出力予測値(P_est)の取得の仕方が異なる。第4実施形態では、日射計33の計測値を利用して出力予測値を得る。一方、第5実施形態では、PCS管理データ部44から得られる情報を利用して出力予測値を得る。 The output upper limit setting flow in the power supply system according to the fifth embodiment can be the same as the output upper limit setting flow of the fourth embodiment shown in FIG. However, the method of acquiring the predicted output value (P_est) used in step S23 is different. In the fourth embodiment, the predicted output value is obtained using the measurement value of the pyranometer 33. On the other hand, in the fifth embodiment, an output predicted value is obtained using information obtained from the PCS management data unit 44.
 例えば、現在時刻が10時で、この時点で各PCS32の出力上限値が40kW、3つのPCS32の合計出力値の許容値(Pld-Pdg_min)が120kWであったとする。この場合、図20のテーブルを利用しながら、コントローラ4は、出力上限値を適宜更新して60kWに近づける。 For example, it is assumed that the current time is 10:00 and the output upper limit value of each PCS 32 is 40 kW and the allowable value (Pld-Pdg_min) of the total output value of three PCS 32 is 120 kW. In this case, while using the table of FIG. 20, the controller 4 appropriately updates the output upper limit value to approach 60 kW.
 第5実施形態の電力供給システムでは、例えば第2実施形態と同様の効果が得られる。また、例えば、PCS管理データ記憶部44に記憶される過去の履歴情報等が利用されるために、例えば電力計や日射計等の数を減らしつつ、適切な出力制御を行える。
<第6実施形態>
In the power supply system of the fifth embodiment, for example, the same effects as those of the second embodiment can be obtained. Further, for example, since past history information stored in the PCS management data storage unit 44 is used, appropriate output control can be performed while reducing the number of power meters, pyranometers, and the like.
<Sixth Embodiment>
 図21は、本発明の第6実施形態に係る電力供給システムの構成を示すブロック図である。第6実施形態の電力供給システムにおいては、図1に示す第1の電力供給部が電力会社によって構成される電力系統2として実現されている。また、第6実施形態の電力供給システムにおいては、図1に示す複数の第2の電力供給部が複数の太陽光発電装置3a~3bとして実現されている。 FIG. 21 is a block diagram showing a configuration of a power supply system according to the sixth embodiment of the present invention. In the power supply system of the sixth embodiment, the first power supply unit shown in FIG. 1 is realized as a power system 2 configured by a power company. In the power supply system of the sixth embodiment, a plurality of second power supply units shown in FIG. 1 are realized as a plurality of solar power generation devices 3a to 3b.
 第6実施形態の電力供給システムは、負荷5の電力を計測する第1の電力計7と、3つの太陽光発電装置3a~3cから出力される出力値の合計を計測する第2の電力計8と、を備えている。この点、第1実施形態の電力供給システムと同様である。また、第6実施形態の太陽光発電装置3a~3cの構成は、第1実施形態と同様である。 The power supply system of the sixth embodiment includes a first wattmeter 7 that measures the power of the load 5 and a second wattmeter that measures the sum of output values output from the three solar power generation devices 3a to 3c. 8 and. This is the same as the power supply system of the first embodiment. The configuration of the solar power generation devices 3a to 3c of the sixth embodiment is the same as that of the first embodiment.
 図22は、本発明の第6実施形態に係る電力供給システムが備えるコントローラ4の機能構成を示すブロック図である。コントローラ4の構成は、第1実施形態の電力供給システムと概ね同様である。ただし、コントローラ4は、系統指令取得部45を備える。この点が、第1実施形態と異なる。 FIG. 22 is a block diagram showing a functional configuration of the controller 4 included in the power supply system according to the sixth embodiment of the present invention. The configuration of the controller 4 is substantially the same as that of the power supply system of the first embodiment. However, the controller 4 includes a system command acquisition unit 45. This point is different from the first embodiment.
 系統指令取得部45は、電力系統2が出す系統指令値(Pgrd)を取得する。本実施形態においては、系統指令値(Pgrd)は、買い取り電力の指令値である。系統指令値(Pgrd)=0は、逆潮流不可を意味する。また、系統指令値(Pgrd)が負の値の場合、その値は、逆潮流の許容電力値を示す。 The system command acquisition unit 45 acquires a system command value (Pgrd) issued by the power system 2. In the present embodiment, the system command value (Pgrd) is a command value for purchased power. System command value (Pgrd) = 0 means that reverse power flow is impossible. Further, when the system command value (Pgrd) is a negative value, the value indicates the allowable power value of reverse power flow.
 図23は、本発明の第6実施形態に係る電力供給システムにおける出力上限値の設定フローを示すフローチャートである。第6実施形態の出力上限値の設定フローは、概ね、第1実施形態の出力上限値の設定フローと同じである。第1実施形態のステップS2、S4が、それぞれ、ステップS24、S25に変更されている点が異なる。具体的には、第1実施形態のPdg_minを、Pgrdに置き換えた点が異なる。その点を除き同様であるので、詳細な説明は省略する。 FIG. 23 is a flowchart showing an output upper limit value setting flow in the power supply system according to the sixth embodiment of the present invention. The output upper limit value setting flow of the sixth embodiment is generally the same as the output upper limit value setting flow of the first embodiment. The difference is that steps S2 and S4 of the first embodiment are changed to steps S24 and S25, respectively. Specifically, the difference is that Pdg_min in the first embodiment is replaced with Pgrd. Since it is the same except for the point, detailed description is abbreviate | omitted.
 第6実施形態の電力供給システムでは、例えば第1実施形態と同様に、各PCS32から出力される電力が必要以上に抑制されることを防止できる。このために、第6実施形態の電力供給システムによれば、太陽光発電の電力を有効活用できる。
<その他>
In the power supply system of the sixth embodiment, for example, similarly to the first embodiment, it is possible to prevent the power output from each PCS 32 from being suppressed more than necessary. For this reason, according to the electric power supply system of 6th Embodiment, the electric power of solar power generation can be used effectively.
<Others>
 以上に示した各実施形態の構成は、本発明の例示にすぎない。各実施形態の構成は、本発明の技術的思想を超えない範囲で適宜変更されて構わない。各実施形態及び実施形態における細かな変形例は可能な範囲で組み合わせて実施することもできる。 The configuration of each embodiment described above is merely an example of the present invention. The configuration of each embodiment may be changed as appropriate without departing from the technical idea of the present invention. Each embodiment and the fine modification in embodiment can also be implemented combining in the possible range.
 また、以上においては、第2の電力供給部が太陽光発電装置で構成される場合を示したが、これは一例にすぎない。例えば、第2の電力供給部は、風力発電装置等の他の自然エネルギーを利用して発電を行う装置であっても構わない。 In the above description, the case where the second power supply unit is configured by a solar power generation device has been described, but this is only an example. For example, the second power supply unit may be a device that generates power using other natural energy such as a wind power generator.
   1  電力供給システム
   2  第1の電力供給部、ディーゼル発電装置、電力系統
   3a~3c  第2の電力供給部、太陽光発電装置
   4  コントローラ(制御部、出力制御装置)
   5  負荷
   6  記録媒体
   33  日射計(測定部)
   41  電力管理部
   42  上限値設定部
   44  PCS管理データ記憶部(記憶部)
DESCRIPTION OF SYMBOLS 1 Electric power supply system 2 1st electric power supply part, diesel power generator, electric power system 3a-3c 2nd electric power supply part, solar power generation device 4 Controller (control part, output control apparatus)
5 Load 6 Recording medium 33 Pyrometer (measurement part)
41 Power management unit 42 Upper limit setting unit 44 PCS management data storage unit (storage unit)

Claims (22)

  1.  第1の電力供給部と、複数の第2の電力供給部と、を連係して負荷に電力を供給する電力供給システムであって、
     前記負荷の電力値、及び、前記複数の第2の電力供給部の合計出力値を取得可能に設けられるとともに、前記複数の第2の電力供給部に同一の出力上限値を設定する制御部を備え、
     前記制御部は、前記負荷の電力値と、前記第1の電力供給部に由来する第1の値とに基づいて算出される出力上限計算値に、前記合計出力値に応じて得られる調整値を加えた値を前記出力上限値とする、電力供給システム。
    A power supply system that links a first power supply unit and a plurality of second power supply units to supply power to a load,
    A control unit configured to be able to acquire a power value of the load and a total output value of the plurality of second power supply units, and to set the same output upper limit value to the plurality of second power supply units; Prepared,
    The control unit adjusts an output upper limit calculated value based on the load power value and a first value derived from the first power supply unit according to the total output value. A power supply system in which a value obtained by adding is used as the output upper limit value.
  2.  前記第1の値は、前記第1の電力供給部に設定される出力制限値、又は、前記第1の電力供給部が与える指令値である、請求項1に記載の電力供給システム。 The power supply system according to claim 1, wherein the first value is an output limit value set in the first power supply unit or a command value given by the first power supply unit.
  3.  前記制御部は、前記出力上限値を更新して前記合計出力値を第2の値に近づける、請求項1又は2に記載の電力供給システム。 The power supply system according to claim 1 or 2, wherein the control unit updates the output upper limit value to bring the total output value closer to a second value.
  4.  前記第2の値は、前記負荷の電力値から前記第1の値を差し引いた値である、請求項3に記載の電力供給システム。 The power supply system according to claim 3, wherein the second value is a value obtained by subtracting the first value from the power value of the load.
  5.  前記複数の第2の電力供給部の各出力値を定格出力値より小さくする必要がある場合に、前記出力上限計算値と前記調整値とを用いた前記出力上限値の設定が実行され、
     前記各出力値を前記定格出力値より小さくする必要がない場合に、前記出力上限値は前記定格出力値に設定される、請求項1から4のいずれか1項に記載の電力供給システム。
    When it is necessary to make each output value of the plurality of second power supply units smaller than a rated output value, the setting of the output upper limit value using the output upper limit calculation value and the adjustment value is executed,
    5. The power supply system according to claim 1, wherein when the output values do not need to be smaller than the rated output value, the output upper limit value is set to the rated output value. 6.
  6.  前記制御部は、前記合計出力値と、前記出力上限計算値に稼働中の前記第2の電力供給部の数を乗じて得られる乗算値とを比較した結果に応じて前記調整値を決定する、請求項1から5のいずれか1項に記載の電力供給システム。 The control unit determines the adjustment value according to a result of comparing the total output value and a multiplication value obtained by multiplying the output upper limit calculation value by the number of the second power supply units in operation. The power supply system according to any one of claims 1 to 5.
  7.  前記合計出力値が前記乗算値より小さい場合に、前記制御部は前記調整値を増やし、
     前記合計出力値が前記乗算値以上である場合に、前記制御部は、前記調整値を減らすか、又は維持する、請求項6に記載の電力供給システム。
    When the total output value is smaller than the multiplication value, the control unit increases the adjustment value,
    The power supply system according to claim 6, wherein the control unit reduces or maintains the adjustment value when the total output value is equal to or greater than the multiplication value.
  8.  前記制御部は、前記複数の第2の電力供給部の各出力値を取得可能に設けられ、
     前記合計出力値が前記乗算値より小さい場合に、前記制御部は、取得された各出力値から現在の前記出力上限値よりも大きな出力を出せる可能性がある前記第2の電力供給部の数を判断し、当該数に基づいて前記調整値を算出し、
     前記合計出力値が前記乗算値以上である場合に、前記制御部は、前記調整値を減らすか、又は維持する、請求項6に記載の電力供給システム。
    The control unit is provided to be able to acquire each output value of the plurality of second power supply units,
    When the total output value is smaller than the multiplication value, the control unit can output a larger output than the current output upper limit value from each acquired output value. And calculating the adjustment value based on the number,
    The power supply system according to claim 6, wherein the control unit reduces or maintains the adjustment value when the total output value is equal to or greater than the multiplication value.
  9.  前記制御部は、取得された出力値が現在の前記出力上限値より小さくない前記第2の電力供給部を、現在の前記出力上限値よりも大きな出力を出せる可能性があると判断する、請求項8に記載の電力供給システム。 The control unit determines that there is a possibility that the second power supply unit whose acquired output value is not smaller than the current output upper limit value can output an output larger than the current output upper limit value. Item 9. The power supply system according to Item 8.
  10.  前記制御部は、前記第2の電力供給部の運転停止と運転再開とを判断する、請求項8又は9に記載の電力供給システム。 The power supply system according to claim 8 or 9, wherein the control unit determines whether to stop operation and restart operation of the second power supply unit.
  11.  前記制御部は、
     現在の前記出力上限値よりも大きな出力を出せる可能性がある前記第2の電力供給部が存在する場合に前記運転停止の判断を行い、
     現在の前記出力上限値よりも大きな出力を出せる可能性がある前記第2の電力供給部が存在しない場合に前記運転再開の判断を行う、請求項10に記載の電力供給システム。
    The controller is
    When there is the second power supply unit that may be able to output larger than the current output upper limit value, the operation stop determination is performed,
    The power supply system according to claim 10, wherein the operation restart determination is performed when there is no second power supply unit that has a possibility of outputting an output larger than the current output upper limit value.
  12.  前記複数の第2の電力供給部の各出力値を予測可能とする測定部を更に備え、
     前記合計出力値と、前記測定部から得られる情報とに基づいて、前記調整値を決定する、請求項6に記載の電力供給システム。
    A measuring unit that can predict each output value of the plurality of second power supply units;
    The power supply system according to claim 6, wherein the adjustment value is determined based on the total output value and information obtained from the measurement unit.
  13.  前記合計出力値が前記乗算値より小さい場合に、前記制御部は、測定された各出力予測値から現在の前記出力上限値よりも大きな出力を出せる可能性がある前記第2の電力供給部の数を判断し、当該数に基づいて前記調整値を算出し、
     前記合計出力値が前記乗算値以上である場合に、前記制御部は、前記調整値を減らすか、又は維持する、請求項12に記載の電力供給システム。
    When the total output value is smaller than the multiplication value, the control unit may output a larger output than the current output upper limit value from each measured output predicted value. Determine the number, calculate the adjustment value based on the number,
    The power supply system according to claim 12, wherein the control unit reduces or maintains the adjustment value when the total output value is equal to or greater than the multiplication value.
  14.  前記複数の第2の電力供給部の各出力値を予測可能とするデータを記憶する記憶部を更に備え、
     前記合計出力値と、前記記憶部から得られる情報とに基づいて、前記調整値を決定する、請求項6に記載の電力供給システム。
    A storage unit for storing data that makes it possible to predict each output value of the plurality of second power supply units;
    The power supply system according to claim 6, wherein the adjustment value is determined based on the total output value and information obtained from the storage unit.
  15.  前記合計出力値が前記乗算値より小さい場合に、前記制御部は、前記記憶部に記憶されるデータによって得られる各出力予測値から現在の前記出力上限値よりも大きな出力を出せる可能性がある前記第2の電力供給部の数を判断し、当該数に基づいて前記調整値を算出し、
     前記合計出力値が前記乗算値以上である場合に、前記制御部は、前記調整値を減らすか、又は維持する、請求項14に記載の電力供給システム。
    When the total output value is smaller than the multiplication value, the control unit may be able to output an output larger than the current output upper limit value from each output predicted value obtained by data stored in the storage unit. Determining the number of the second power supply units, calculating the adjustment value based on the number,
    The power supply system according to claim 14, wherein the control unit reduces or maintains the adjustment value when the total output value is equal to or greater than the multiplication value.
  16.  前記制御部は、前記出力予測値が現在の前記出力上限値より小さくない前記第2の電力供給部を、現在の前記出力上限値よりも大きな出力が出せる可能性があると判断する、請求項13又は15に記載の電力供給システム。 The said control part judges that the said 2nd electric power supply part whose said output prediction value is not smaller than the said current output upper limit value can output larger than the said current output upper limit value. The power supply system according to 13 or 15.
  17.  前記第1の電力供給部は、ディーゼル発電機で発電した電力を前記負荷に供給することを特徴とする請求項1から16のいずれか1項に記載の電力供給システム。 The power supply system according to any one of claims 1 to 16, wherein the first power supply unit supplies power generated by a diesel generator to the load.
  18.  前記第1の電力供給部は、電力系統であることを特徴とする請求項1から16のいずれか1項に記載の電力供給システム。 The power supply system according to any one of claims 1 to 16, wherein the first power supply unit is a power system.
  19.  前記第2の電力供給部は、自然エネルギーを用いて発電した電力を前記負荷に供給することを特徴とする請求項1から18のいずれか1項に記載の電力供給システム。 The power supply system according to any one of claims 1 to 18, wherein the second power supply unit supplies power generated by using natural energy to the load.
  20.  第1の電力供給部と連係して負荷に電力を供給する複数の第2の電力供給部の出力を制御する出力制御装置であって、
     前記負荷の電力値、及び、前記複数の第2の電力供給部の合計出力値を取得可能に設けられる電力管理部と、
     前記複数の第2の電力供給部に同一の出力上限値を設定する上限値設定部と、
     を備え、
     前記上限値設定部は、前記負荷の電力値と前記第1の電力供給部に由来する値とに基づいて算出される出力上限計算値に、前記合計出力値に応じて得られる調整値を加えた値を前記出力上限値とする、出力制御装置。
    An output control device that controls outputs of a plurality of second power supply units that supply power to a load in cooperation with a first power supply unit,
    A power management unit provided to be able to acquire a power value of the load and a total output value of the plurality of second power supply units;
    An upper limit setting unit that sets the same output upper limit value in the plurality of second power supply units;
    With
    The upper limit setting unit adds an adjustment value obtained according to the total output value to an output upper limit calculation value calculated based on a power value of the load and a value derived from the first power supply unit. An output control device in which the output value is the output upper limit value.
  21.  第1の電力供給部と連係して負荷に電力を供給する複数の第2の電力供給部の出力を制御する出力制御方法であって、
     前記複数の第2の電力供給部の合計出力値を取得するステップと、
     前記負荷の電力値と前記第1の電力供給部に由来する値とに基づいて出力上限計算値を算出するステップと、
     前記合計出力値に応じて得られる調整値を前記出力上限計算値に加えた値を出力上限値とするステップと、
     前記複数の第2の電力供給部のそれぞれに同一の前記出力上限値を送信するステップと、
     を備えることを特徴とする出力制御方法。
    An output control method for controlling outputs of a plurality of second power supply units that supply power to a load in cooperation with a first power supply unit,
    Obtaining a total output value of the plurality of second power supply units;
    Calculating an output upper limit calculation value based on a power value of the load and a value derived from the first power supply unit;
    A value obtained by adding an adjustment value obtained according to the total output value to the output upper limit calculated value as an output upper limit;
    Transmitting the same output upper limit value to each of the plurality of second power supply units;
    An output control method comprising:
  22.  コンピュータが実行可能なプログラムを非一時的に記録したコンピュータ読取可能な記録媒体であって、
     請求項21に記載の出力制御方法をコンピュータに実行させる出力制御用プログラムが記録される、記録媒体。
    A computer-readable recording medium in which a computer-executable program is recorded non-temporarily.
    A recording medium on which an output control program for causing a computer to execute the output control method according to claim 21 is recorded.
PCT/JP2015/073364 2015-08-20 2015-08-20 Power supply system, output control device, output control method, and recording medium WO2017029756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073364 WO2017029756A1 (en) 2015-08-20 2015-08-20 Power supply system, output control device, output control method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073364 WO2017029756A1 (en) 2015-08-20 2015-08-20 Power supply system, output control device, output control method, and recording medium

Publications (1)

Publication Number Publication Date
WO2017029756A1 true WO2017029756A1 (en) 2017-02-23

Family

ID=58051172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073364 WO2017029756A1 (en) 2015-08-20 2015-08-20 Power supply system, output control device, output control method, and recording medium

Country Status (1)

Country Link
WO (1) WO2017029756A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114900A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Apparatus and method for controlling supply and demand of micro-grid
WO2012172616A1 (en) * 2011-06-17 2012-12-20 株式会社日立製作所 Microgrid control system
WO2013024709A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Power generation control device and hybrid independent power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114900A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Apparatus and method for controlling supply and demand of micro-grid
WO2012172616A1 (en) * 2011-06-17 2012-12-20 株式会社日立製作所 Microgrid control system
WO2013024709A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Power generation control device and hybrid independent power generation system

Similar Documents

Publication Publication Date Title
JP6320539B2 (en) Method and apparatus for controlling a hybrid energy storage system
JP5076157B2 (en) Distributed power supply system and system voltage stabilization method using this system
JP5766364B1 (en) Voltage monitoring control device and voltage control device
JP6609520B2 (en) Microgrid control apparatus and method
JP6548570B2 (en) POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM
US20170063089A1 (en) Voltage Reactive Power Control System
JP2016038816A (en) Photovoltaic power generation system monitoring controller, monitor control program and photovoltaic power generation system
JP2021168598A (en) Natural energy power generation system, and control method of reactive power controller or natural energy power generation system
JP2017200307A (en) Power storage control device
WO2016098200A1 (en) Control system for solar power plant
JP6338009B1 (en) Power stabilization system and control device using power storage device
JP5104991B1 (en) Power stabilization control device, power stabilization program
JP5823646B1 (en) Autonomous stable supply type renewable energy control device
JP2010166723A (en) Method and device for adjusting power generation output
US10074984B2 (en) Electric power control system
WO2017029756A1 (en) Power supply system, output control device, output control method, and recording medium
JP6753593B2 (en) Energy management system, guide server and energy management method
US20190252882A1 (en) Hybrid dynamic demand control for power system frequency regulation
US10270253B2 (en) System and method for regulating the reactive power flow of one or more inverters coupled to an electrical grid
WO2017029821A1 (en) Power-source system, output control device, output control method, and storage medium
JP6606368B2 (en) Operation plan calculation method and operation plan calculation server for heat source power supply equipment
KR20150078298A (en) Auto generation control method and system based on load fluctuation
WO2017037889A1 (en) Power supply system, output control device, output control method, and recording medium
WO2023175983A1 (en) Control device, control method, and program
KR101500037B1 (en) Apparatus and method for the allocation of the output forecast error of wind power generator and capacity estimation of energy storage system using low-pass filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15901738

Country of ref document: EP

Kind code of ref document: A1