JP2011109225A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011109225A
JP2011109225A JP2009259751A JP2009259751A JP2011109225A JP 2011109225 A JP2011109225 A JP 2011109225A JP 2009259751 A JP2009259751 A JP 2009259751A JP 2009259751 A JP2009259751 A JP 2009259751A JP 2011109225 A JP2011109225 A JP 2011109225A
Authority
JP
Japan
Prior art keywords
flexible substrate
solid
heat
state imaging
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009259751A
Other languages
Japanese (ja)
Inventor
Satoshi Kazama
里志 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009259751A priority Critical patent/JP2011109225A/en
Publication of JP2011109225A publication Critical patent/JP2011109225A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which efficiently dissipates heat generated by semiconductor elements with a simple configuration. <P>SOLUTION: The semiconductor device 100 is provided with: a solid-state imaging element 1 which has a first surface and a second surface, and has a light receiving area 2 and an electrode unit 3 on the first surface; and a flexible substrate 30 with a front surface 30A and a rear surface 30B. The flexible substrate has at least a heat dissipation unit which is partially exposed on the front surface, and a wiring pattern on the rear surface. The electrode unit is electrically connected to the wiring pattern. The second surface of the solid-state imaging element is thermally connected to the heat dissipation unit through heat conductive adhesive 60. The flexible substrate has a cut portion 31 which surrounds a part of the region so as to include a part exposed on a surface of the heat dissipation unit. The solid-state imaging element is arranged on the flexible substrate so that (1) the electrode unit of the first surface faces the rear surface, (2) the exposed unit of the first surface is surrounded by the cut portion, (3) at least a part of the second surface faces the front surface surrounded by the cut portion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置、より詳しくは、放熱構造を有する可撓性基板を備えた半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device provided with a flexible substrate having a heat dissipation structure.

従来、Si(シリコン)等からなる半導体基板上に、露出部として半導体素子外部からの光を入射する受光領域を形成した半導体素子や、露出部として半導体素子外部に光を出射する発光領域を形成した半導体素子が実用化されている。
このうち、受光領域を形成した半導体素子の例として、CCDイメージセンサ、CMOSイメージセンサに代表される固体撮像素子はビデオカメラ、デジタルカメラや携帯電話機等に広く用いられている。
Conventionally, on a semiconductor substrate made of Si (silicon) or the like, a semiconductor element in which a light receiving region for incident light from the outside of the semiconductor element is formed as an exposed portion, or a light emitting region for emitting light to the outside of the semiconductor element as an exposed portion is formed. Such semiconductor devices have been put into practical use.
Among these, as an example of a semiconductor element in which a light receiving region is formed, a solid-state imaging device typified by a CCD image sensor and a CMOS image sensor is widely used in a video camera, a digital camera, a mobile phone, and the like.

上述の固体撮像素子を用いたカメラモジュールの例として、特許文献1にはカメラモジュール(半導体装置)及びその製造方法が記載されている。特許文献1に記載のカメラモジュールは、開口が形成された基板と、撮像面を開口側に露呈させ、基板にフリップチップ実装されるベアチップ状態の固体撮像素子と、固体撮像素子に取り付けられ、固体撮像素子の撮像面を保護する透光性の保護プレートとを備え、さらに、撮像面と相対する固体撮像素子の底面には、固体撮像素子で発生した熱を放熱する放熱部材が取り付けられている。
特許文献1のカメラモジュールでは、厚みが薄く、かつ、熱伝導率が高い金属、例えば銅で形成された放熱プレートを、放熱部材として固体撮像素子の底面に取り付けて固体撮像素子で発生した熱を放熱させるため、放熱性が向上し、撮影に際しての動作速度や処理速度を速くすることができる。
As an example of a camera module using the above-described solid-state imaging device, Patent Document 1 describes a camera module (semiconductor device) and a manufacturing method thereof. The camera module described in Patent Document 1 includes a substrate in which an opening is formed, a solid-state imaging device in a bare chip state in which an imaging surface is exposed to the opening side and flip-chip mounted on the substrate, and is attached to the solid-state imaging device. A translucent protective plate that protects the imaging surface of the imaging element, and a heat radiating member that radiates heat generated by the solid-state imaging element is attached to the bottom surface of the solid-state imaging element that faces the imaging surface. .
In the camera module of Patent Document 1, a heat dissipation plate formed of a metal having a small thickness and high thermal conductivity, such as copper, is attached to the bottom surface of the solid-state image sensor as a heat dissipation member, and heat generated in the solid-state image sensor is generated. Since heat is dissipated, heat dissipation is improved, and the operation speed and processing speed can be increased during shooting.

特開2008−153938号公報JP 2008-153938 A

近年、固体撮像素子の高精細化(高画素化)、高機能化が求められている。高精細化、高機能化にともない、固体撮像素子上に形成された回路の動作速度が高速になると、固体撮像素子が発生する熱量が増加し、固体撮像素子の温度が上昇して受光領域の熱雑音や暗電流を増加させることで固体撮像素子の性能が劣化することが知られている。   In recent years, there has been a demand for higher definition (higher pixels) and higher functionality of solid-state imaging devices. As the operation speed of the circuit formed on the solid-state image sensor increases with the increase in definition and functionality, the amount of heat generated by the solid-state image sensor increases, the temperature of the solid-state image sensor increases, and the light receiving area increases. It is known that the performance of a solid-state imaging device deteriorates by increasing thermal noise and dark current.

このため、固体撮像素子が発生した熱を効率よく半導体装置の外部に放熱し、固体撮像素子の温度上昇を防止することが固体撮像素子を備えた半導体装置の品質向上に重要である。一方、このような半導体装置は、搭載するビデオカメラ等の機器の小型化の観点から、更なる小型化、低コスト化が求められており、固体撮像素子が発生した熱を半導体装置外部に放熱するための構成をより単純化することも重要となっている。   For this reason, it is important for improving the quality of a semiconductor device provided with a solid-state imaging element to efficiently dissipate heat generated by the solid-state imaging element to the outside of the semiconductor device and prevent a temperature rise of the solid-state imaging element. On the other hand, such semiconductor devices are required to be further reduced in size and cost from the viewpoint of miniaturization of devices such as mounted video cameras, and the heat generated by the solid-state imaging device is radiated to the outside of the semiconductor device. It is also important to simplify the configuration for this purpose.

しかしながら、特許文献1に記載のカメラモジュール及びその製造方法では、固体撮像素子の入出力パッドとフレキシブル基板の開口部を取り囲むように設けられた入出力パッドとを、バンプを介して半田付けにより電気的および物理的に接続してフリップチップ実装している。そして、撮像面と反対側の固体撮像素子の底面に取り付けた放熱部材で固体撮像素子が発生した熱を放熱している。すなわち、特許文献1に記載のカメラモジュールは、放熱のために固体撮像素子と電気的に接続したフレキシブル基板とは別部材である放熱部材を必要とする構成であり、放熱部材の分のコストが掛かり、コスト増加の原因となっていたという問題があった。   However, in the camera module and the manufacturing method thereof described in Patent Document 1, the input / output pads of the solid-state imaging device and the input / output pads provided so as to surround the opening of the flexible substrate are electrically connected by soldering via the bumps. Flip-chip mounting with physical and physical connection. The heat generated by the solid-state imaging device is radiated by the heat-dissipating member attached to the bottom surface of the solid-state imaging device opposite to the imaging surface. That is, the camera module described in Patent Document 1 is a configuration that requires a heat dissipation member that is a separate member from the flexible substrate that is electrically connected to the solid-state imaging device for heat dissipation, and the cost of the heat dissipation member is low. There was a problem that it was a cause of cost increase.

本発明は上記事情に鑑みて成されたものであり、簡素な構成で半導体素子の発生する熱を効率よく放熱することができる半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device that can efficiently dissipate heat generated by a semiconductor element with a simple configuration.

上記問題点を解決するために、本発明は、第1の面と第2の面とを有し、前記第1の面に露出部と電極部を有する半導体素子と、第3の面と第4の面とを有する可撓性基板とを備えた半導体装置において、前記可撓性基板は、少なくとも一部が前記第3の面に露出する放熱部を有するとともに、前記第4の面に配線パターンを有し、前記半導体素子の前記電極部は、前記可撓性基板の前記配線パターンと電気的に接続され、前記半導体素子の前記第2の面は、熱伝導性部材を介して前記可撓性基板の前記放熱部と熱的に接続され、前記可撓性基板は、前記放熱部の前記第3の面に露出した部位を含むように一部の領域を囲繞する切り込みを有し、前記半導体素子は前記可撓性基板に対して、(1)前記第1の面の電極部は前記第4の面と対向し、(2)前記第1の面の露出部は前記切り込みに囲繞されており、(3)前記第2の面の少なくとも一部は前記切り込みに囲繞された前記第3の面と対向するように、配置されていることを特徴とする。   In order to solve the above problems, the present invention provides a semiconductor element having a first surface and a second surface, an exposed portion and an electrode portion on the first surface, a third surface and a second surface. And a flexible substrate having a fourth surface, wherein the flexible substrate has a heat radiating portion at least partially exposed to the third surface, and a wiring is provided on the fourth surface. And the electrode portion of the semiconductor element is electrically connected to the wiring pattern of the flexible substrate, and the second surface of the semiconductor element is connected to the flexible substrate via a heat conductive member. Thermally connected to the heat radiating portion of the flexible substrate, the flexible substrate has a notch surrounding a part of the region so as to include a portion exposed to the third surface of the heat radiating portion; The semiconductor element is opposed to the flexible substrate. (1) The electrode portion of the first surface is opposed to the fourth surface. (2) The exposed portion of the first surface is surrounded by the cut, and (3) at least a part of the second surface is opposed to the third surface surrounded by the cut. Are arranged.

前記放熱部は、前記第3の面及び前記第4の面に形成された放熱パターンと、前記第3の面の放熱パターンと前記前記第4の面の放熱パターンとを熱的に接続するビアとを有してもよい。   The heat dissipating part is a via that thermally connects the heat dissipating pattern formed on the third surface and the fourth surface, and the heat dissipating pattern of the third surface and the heat dissipating pattern of the fourth surface. You may have.

前記ビアは、前記半導体素子の前記第2の面と対向する前記切り込みに囲繞された範囲内に形成されてもよい。   The via may be formed in a range surrounded by the notch facing the second surface of the semiconductor element.

前記放熱部及び前記熱伝導性部材が導電性を有し、前記半導体素子の前記第2の面と電気的に接続されてもよい。   The heat radiating part and the heat conductive member may be conductive and electrically connected to the second surface of the semiconductor element.

本発明の半導体装置によれば、簡素な構成で半導体素子の発生する熱を効率よく放熱することができる。   According to the semiconductor device of the present invention, the heat generated by the semiconductor element can be efficiently radiated with a simple configuration.

本発明の第1実施形態の半導体装置を分解して示す斜視図である。1 is an exploded perspective view showing a semiconductor device according to a first embodiment of the present invention. (a)は、同半導体装置の可撓性基板の表面を示す平面図であり、(b)は同可撓性基板の裏面を示す平面図である。(A) is a top view which shows the surface of the flexible substrate of the semiconductor device, (b) is a top view which shows the back surface of the flexible substrate. (a)は、図1のA−A線に対応する位置における同半導体装置の断面図であり、(b)は、図1のB−B線に対応する位置における同半導体装置の断面図である。(A) is sectional drawing of the semiconductor device in the position corresponding to the AA line of FIG. 1, (b) is sectional drawing of the semiconductor device in the position corresponding to the BB line of FIG. is there. 本発明の第2実施形態の半導体装置を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the semiconductor device of 2nd Embodiment of this invention. (a)は、同半導体装置の可撓性基板の表面を示す平面図であり、(b)は同可撓性基板の裏面を示す平面図である。(A) is a top view which shows the surface of the flexible substrate of the semiconductor device, (b) is a top view which shows the back surface of the flexible substrate. (a)は、図1のC−C線に対応する位置における同半導体装置の断面図であり、(b)は、図1のB−B線に対応する位置における同半導体装置の断面図である。(A) is sectional drawing of the semiconductor device in the position corresponding to CC line of FIG. 1, (b) is sectional drawing of the semiconductor device in the position corresponding to BB line of FIG. is there. 本発明の変形例の半導体装置における可撓性基板の形状を示す側面図である。It is a side view which shows the shape of the flexible substrate in the semiconductor device of the modification of this invention. 本発明の変形例の半導体装置における可撓性基板の形状を示す斜視図である。It is a perspective view which shows the shape of the flexible substrate in the semiconductor device of the modification of this invention. (a)及び(b)は、いずれも本発明の変形例の半導体装置における可撓性基板の形状を示す平面図である。(A) And (b) is a top view which shows the shape of the flexible substrate in the semiconductor device of the modification of this invention.

以下、本発明の第1実施形態の半導体装置について図1から図4を参照して説明する。なお、本発明の各実施形態では、半導体素子の一例として、入射した光を蓄積する受光領域を露出部として半導体基板上に形成した固体撮像素子を用いた場合について詳細に説明するが、露出部として光を出射する発光領域を形成した半導体素子を用いることも可能である。   The semiconductor device according to the first embodiment of the present invention will be described below with reference to FIGS. In each embodiment of the present invention, as an example of a semiconductor element, a case where a solid-state imaging element formed on a semiconductor substrate with a light receiving region that accumulates incident light as an exposed part will be described in detail. It is also possible to use a semiconductor element in which a light emitting region for emitting light is formed.

図1は、本実施形態の半導体装置100を分解して示す斜視図である。図1に示すように、半導体装置100は、受光領域2と電極部3とを有する固体撮像素子1と、固体撮像素子1の受光領域2を含む範囲を囲繞する切り込み31を形成した可撓性基板30と、固体撮像素子1の第1の面(受光領域2が形成された面。以下、「表面」と称する。)側において接着剤20、可撓性基板30、及び接着剤40を挟んで受光領域2に対向する位置に配置された透光性部材50と、固体撮像素子1の第2の面(以下、「裏面」と称する。)側に配置された熱伝導性接着剤(熱伝導性部材)60とを備えている。切り込み31に囲繞された可撓性基板30の一部は、熱伝導性接着剤60によって固体撮像素子1の裏面に熱的に接続されて固定されている。熱伝導性接着剤60は、固体撮像素子1裏面と可撓性基板30表面の熱的な接続面積を広くするため、切り込み31に囲繞された可撓性基板30表面全面を覆うように配置するのが好ましい。   FIG. 1 is an exploded perspective view showing the semiconductor device 100 of the present embodiment. As shown in FIG. 1, the semiconductor device 100 is flexible in which a solid-state imaging device 1 having a light-receiving region 2 and an electrode portion 3 and a cut 31 surrounding a range including the light-receiving region 2 of the solid-state imaging device 1 are formed. The adhesive 20, the flexible substrate 30, and the adhesive 40 are sandwiched between the substrate 30 and the first surface (surface on which the light receiving region 2 is formed; hereinafter referred to as “surface”) of the solid-state imaging device 1. The translucent member 50 disposed at a position facing the light receiving region 2 and a heat conductive adhesive (heat) disposed on the second surface (hereinafter referred to as “back surface”) side of the solid-state imaging device 1. Conductive member) 60. A part of the flexible substrate 30 surrounded by the notch 31 is thermally connected and fixed to the back surface of the solid-state imaging device 1 by a heat conductive adhesive 60. The heat conductive adhesive 60 is disposed so as to cover the entire surface of the flexible substrate 30 surrounded by the cuts 31 in order to increase the thermal connection area between the back surface of the solid-state imaging device 1 and the surface of the flexible substrate 30. Is preferred.

図2は、可撓性基板30を示す図である。図2(a)は、図1において接着剤40に対向する可撓性基板の表面(第3の面)30Aを示す平面図であり、図2(b)は、図1において接着剤20に対向する可撓性基板の裏面(第4の面)30Bを示す平面図である。
可撓性基板30には、一般的な銅箔等からなる放熱パターン33が表面30A上全体に形成されている。裏面30Bにおいては、切り込み31に囲繞された領域に放熱パターン35が形成され、切り込み31に囲繞されていない放熱パターン35の周囲の領域に銅箔等の配線パターン34A、34B、34Cが、それぞれ放熱パターン35と電気的に分離されて形成されている。このような可撓性基板30は、公知の2層フレキシブル基板を用いることにより、容易に製造することができる。
FIG. 2 is a diagram showing the flexible substrate 30. 2A is a plan view showing a surface (third surface) 30A of the flexible substrate facing the adhesive 40 in FIG. 1, and FIG. 2B is a plan view showing the adhesive 20 in FIG. It is a top view which shows the back surface (4th surface) 30B of the flexible substrate which opposes.
On the flexible substrate 30, a heat radiation pattern 33 made of a general copper foil or the like is formed on the entire surface 30 </ b> A. On the back surface 30B, a heat dissipation pattern 35 is formed in a region surrounded by the notch 31, and wiring patterns 34A, 34B, and 34C such as copper foils dissipate heat in a region around the heat dissipation pattern 35 that is not surrounded by the notch 31, respectively. It is formed so as to be electrically separated from the pattern 35. Such a flexible substrate 30 can be easily manufactured by using a known two-layer flexible substrate.

可撓性基板30の切り込み31に囲繞された範囲(以下、「囲繞領域」と称することがある。)内には、可撓性基板を厚さ方向に貫通するビア32が形成されており、可撓性基板30の表面30Aの放熱パターン33と裏面30Bの放熱パターン35とを熱的に接続している。
ビア32としては、一般的な基板配線層接続に用いられるスルーホール、スタックビア等を好適に採用することができるが、これには限定されない。ビア32をスルーホールで構成する場合、その内部空間を金属ソルダなどで充填すると熱伝導効率を高くすることができ、好ましい。また、ビア32の形成位置や個数は適宜設定することができるが、形成数が多いことが好ましい。これは、可撓性基板30の表面30Aから裏面30Bへの熱伝導経路を多く確保し、放熱効率を向上できるためである。
以上説明したように、可撓性基板30には、放熱パターン33、35、及びビア32からなる放熱部39が形成されており、その少なくとも一部は表面30Aに露出して固体撮像装置1の裏面に熱的に接続されている。
A via 32 penetrating the flexible substrate in the thickness direction is formed in a range surrounded by the notch 31 of the flexible substrate 30 (hereinafter sometimes referred to as “enclosed region”). The heat radiation pattern 33 on the front surface 30A of the flexible substrate 30 and the heat radiation pattern 35 on the back surface 30B are thermally connected.
As the via 32, a through hole, a stacked via, or the like used for general substrate wiring layer connection can be preferably used, but the via 32 is not limited thereto. When the via 32 is formed of a through hole, it is preferable to fill the internal space with a metal solder or the like because the heat conduction efficiency can be increased. Moreover, although the formation position and the number of vias 32 can be set as appropriate, it is preferable that the number of formations is large. This is because a large number of heat conduction paths from the front surface 30A to the back surface 30B of the flexible substrate 30 can be secured and the heat dissipation efficiency can be improved.
As described above, the flexible substrate 30 is formed with the heat radiation portion 39 including the heat radiation patterns 33 and 35 and the vias 32, and at least a part of the heat radiation portion 39 is exposed to the surface 30 </ b> A. It is thermally connected to the back side.

固体撮像素子1の表面の受光領域2周縁部の対向する2辺に形成した6箇所の電極部3と、可撓性基板30の裏面30Bに形成された配線パターン34A、34B、34Cとは、バンプ位置36において対向しており、図1に示すように突起電極の一例である金属バンプ10によって電気的に接続されている。そして、電極部3を含む固体撮像素子1表面の周縁領域に配置した接着剤20によって固体撮像素子1が可撓性基板30に固定されている。本実施形態の金属バンプ10は金からなるが、その他の金属、合金あるいは半田等を使用することもできる。   The six electrode portions 3 formed on the two opposite sides of the peripheral portion of the light receiving region 2 on the surface of the solid-state imaging device 1 and the wiring patterns 34A, 34B, 34C formed on the back surface 30B of the flexible substrate 30 are: The bumps are opposed to each other at a bump position 36 and are electrically connected by metal bumps 10 as an example of protruding electrodes as shown in FIG. The solid-state imaging device 1 is fixed to the flexible substrate 30 by an adhesive 20 disposed in the peripheral region of the surface of the solid-state imaging device 1 including the electrode portion 3. The metal bump 10 of this embodiment is made of gold, but other metals, alloys, solders, or the like can also be used.

切り込み31に囲繞された可撓性基板30の囲繞領域が固体撮像素子1の裏面に配置されることにより、可撓性基板に貫通孔38が形成されており、固体撮像素子1の受光領域2は、平面視において切り込み31に囲繞されて貫通孔38と重なるように配置されている。
透光性部材50は透明なガラス、樹脂等からなり、接着剤40によって固体撮像素子1の表面および可撓性基板30の表面30Aに固定されている。接着剤40は、一部は貫通孔38内の接着剤20上に配置され、残りは可撓性基板30の表面30A上に配置される。
上記のように構成されることにより、半導体装置100の外部から入射した光が透光性部材50を透過し、貫通孔38を通って固体撮像素子1の受光領域2に入射されることが可能となっている。
By arranging the surrounding area of the flexible substrate 30 surrounded by the notch 31 on the back surface of the solid-state imaging device 1, a through hole 38 is formed in the flexible substrate, and the light receiving region 2 of the solid-state imaging device 1. Are arranged so as to be surrounded by the notch 31 and overlap with the through hole 38 in plan view.
The translucent member 50 is made of transparent glass, resin, or the like, and is fixed to the surface of the solid-state imaging device 1 and the surface 30 </ b> A of the flexible substrate 30 by an adhesive 40. A part of the adhesive 40 is disposed on the adhesive 20 in the through hole 38, and the rest is disposed on the surface 30 </ b> A of the flexible substrate 30.
By being configured as described above, light incident from the outside of the semiconductor device 100 can pass through the translucent member 50 and enter the light receiving region 2 of the solid-state imaging device 1 through the through hole 38. It has become.

図3(a)は、図1及び図2に示すA−A線に対応する位置における半導体装置100の完成時断面図であり、図3(b)は、図1及び図2に示すB−B線に対応する位置における半導体装置100の完成時断面図である。図3(a)に示すように、固体撮像素子1の表面に配置した接着剤20、接着剤40で透光性部材50が固定され、固体撮像素子1表面上の空間51は、接着剤20、可撓性基板30、接着剤40、および透光性部材50により埃等が入らないように気密封止されている。   3A is a cross-sectional view when the semiconductor device 100 is completed at a position corresponding to the line AA shown in FIGS. 1 and 2, and FIG. 3B is a cross-sectional view taken along the line B- shown in FIGS. 1 and 2. It is sectional drawing at the time of completion of the semiconductor device 100 in the position corresponding to B line. As shown in FIG. 3A, the translucent member 50 is fixed by the adhesive 20 and the adhesive 40 arranged on the surface of the solid-state imaging device 1, and the space 51 on the surface of the solid-state imaging device 1 The flexible substrate 30, the adhesive 40, and the translucent member 50 are hermetically sealed so that dust and the like do not enter.

図3(a)及び図3(b)に示すように、可撓性基板30において、放熱パターン33と放熱パターン35、及び放熱パターン33と配線パターン34A、34B、34Cとの間は、絶縁層37により電気的に分離されている。固体撮像素子1表面の電極部3上に配置した金属バンプ10は、接着剤20で可撓性基板30の裏面30Bに形成された配線パターン34A、34B、34Cと電気的に接続された状態で固定されている。
また、固体撮像素子1の裏面、接着剤40、並びに放熱部39を構成する放熱パターン33、35、及びビア32は、互いに熱的に接続されて一体に固定されている。
As shown in FIGS. 3A and 3B, in the flexible substrate 30, there is an insulating layer between the heat radiation pattern 33 and the heat radiation pattern 35 and between the heat radiation pattern 33 and the wiring patterns 34 </ b> A, 34 </ b> B, 34 </ b> C. 37 is electrically separated. The metal bump 10 disposed on the electrode portion 3 on the surface of the solid-state imaging device 1 is electrically connected to the wiring patterns 34A, 34B, and 34C formed on the back surface 30B of the flexible substrate 30 with the adhesive 20. It is fixed.
Further, the back surface of the solid-state imaging device 1, the adhesive 40, and the heat radiation patterns 33 and 35 and the via 32 constituting the heat radiation portion 39 are thermally connected to each other and fixed integrally.

上記のように構成された本実施形態の半導体装置100の使用時における放熱の動作について説明する。
半導体装置100の外部から透光性部材50を透過して光が入射し、固体撮像素子1の受光領域2に到達する。受光領域2に到達した光は、図示しない信号読出し回路によって所定の処理が行われた後に電気信号として電極部3から配線パターン34A、34B、34Cの少なくとも1つの配線パターンを通って外部に出力される。この信号読出し回路の高速動作に伴い固体撮像素子1が発熱し、熱は固体撮像素子1全体に拡散する。
The operation of heat dissipation when using the semiconductor device 100 of the present embodiment configured as described above will be described.
Light enters through the translucent member 50 from the outside of the semiconductor device 100 and reaches the light receiving region 2 of the solid-state imaging device 1. The light reaching the light receiving region 2 is output to the outside through at least one wiring pattern of the wiring patterns 34A, 34B, and 34C as an electric signal after being subjected to predetermined processing by a signal reading circuit (not shown). The As the signal readout circuit operates at high speed, the solid-state image sensor 1 generates heat, and the heat diffuses throughout the solid-state image sensor 1.

固体撮像素子1全体に拡散した熱は、固体撮像素子1の裏面から熱伝導性接着剤60に熱伝導し熱伝導接着剤60全体に拡散する。熱伝導性接着剤60に拡散した熱は、図3(a)に矢印で示すように、一部は半導体装置100の外部に放熱され、残りは熱的に接続している可撓性基板30の表面30Aの放熱パターン33に熱伝導する。放熱パターン33全体に拡散した熱は、一部半導体装置100外部に放熱され、残りはビア32に分散されて可撓性基板30の裏面30Bの放熱パターン35に熱伝導する。その後、熱は放熱パターン35全体に拡散されて、最終的に半導体装置100の外部に放熱される。こうして、固体撮像装置1で発生した熱は、固体撮像素子1の裏面に取り付けられた放熱部39によって、効率よく放出される。   The heat diffused throughout the solid-state imaging device 1 is conducted from the back surface of the solid-state imaging device 1 to the heat conductive adhesive 60 and diffuses throughout the heat conductive adhesive 60. As shown by an arrow in FIG. 3A, a part of the heat diffused in the heat conductive adhesive 60 is radiated to the outside of the semiconductor device 100, and the remainder is thermally connected to the flexible substrate 30. Heat conduction to the heat radiation pattern 33 on the surface 30A of the substrate. The heat diffused throughout the heat radiation pattern 33 is partially radiated to the outside of the semiconductor device 100, and the rest is dispersed in the vias 32 and thermally conducted to the heat radiation pattern 35 on the back surface 30 </ b> B of the flexible substrate 30. Thereafter, the heat is diffused throughout the heat radiation pattern 35 and finally radiated to the outside of the semiconductor device 100. Thus, the heat generated in the solid-state imaging device 1 is efficiently released by the heat radiating unit 39 attached to the back surface of the solid-state imaging device 1.

以上説明したように、本実施形態の半導体装置100においては、固体撮像素子1と電気的に接続する配線パターンを備えた可撓性基板30において、切り込み31に囲繞された囲繞領域内の表面30Aに露出する放熱パターン33を形成し、熱伝導性接着剤60を介して固体撮像素子1の裏面と熱的に接続している。したがって、可撓性基板と別に放熱板等の部材を必要としないため、半導体装置100の製造コストを低減しつつ、固体撮像素子1が発生した熱を放熱パターン33から効率よく放熱することができる。   As described above, in the semiconductor device 100 according to the present embodiment, the surface 30 </ b> A in the surrounding area surrounded by the notch 31 in the flexible substrate 30 having the wiring pattern that is electrically connected to the solid-state imaging device 1. The heat radiation pattern 33 exposed to the surface is formed, and is thermally connected to the back surface of the solid-state imaging device 1 through the heat conductive adhesive 60. Accordingly, since a member such as a heat sink is not required separately from the flexible substrate, the heat generated by the solid-state imaging device 1 can be efficiently radiated from the heat radiation pattern 33 while reducing the manufacturing cost of the semiconductor device 100. .

また、固体撮像素子1裏面と熱伝導接着剤60を挟んで対向する可撓性基板30の囲繞領域内にビア32を形成しているので、最短の熱伝導経路で固体撮像素子1が発生した熱を可撓性基板30の裏面30Bの放熱パターン35に伝導して放熱効率を向上することができる。   In addition, since the via 32 is formed in the surrounding region of the flexible substrate 30 facing the back surface of the solid-state image pickup device 1 with the heat conductive adhesive 60 interposed therebetween, the solid-state image pickup device 1 is generated with the shortest heat conduction path. Heat can be conducted to the heat radiation pattern 35 on the back surface 30B of the flexible substrate 30 to improve heat radiation efficiency.

さらに、放熱部39を構成する放熱パターン33、放熱パターン35およびビア32は、一般的な製造工程で可撓性基板30に形成できるため、放熱部を形成するために特別な製造工程を設ける必要がなく、半導体装置100の製造にかかる時間、コストをさらに抑えることができる。   Furthermore, since the heat radiation pattern 33, the heat radiation pattern 35, and the via 32 constituting the heat radiation part 39 can be formed on the flexible substrate 30 by a general manufacturing process, it is necessary to provide a special manufacturing process to form the heat radiation part. Therefore, the time and cost for manufacturing the semiconductor device 100 can be further suppressed.

加えて、放熱パターン33及び35は一般的な銅箔等で形成できるため、固体撮像素子1と電気的に接続する機能を併せもつ構成とすることも容易である。すなわち、放熱部に電気的な機能をもたせることも可能である。例えば、固体撮像素子1裏面へのグランドを含む電位の供給配線パターンとして放熱部39を使用することで、固体撮像素子1と可撓性基板30との電位の共通化を行い、半導体装置100の動作を安定させることができる。この場合には、ビア32や熱伝導性接着剤60が導電性を有するように適宜材料等を選択すればよい。   In addition, since the heat dissipating patterns 33 and 35 can be formed of a general copper foil or the like, it is easy to adopt a configuration having a function of electrically connecting to the solid-state imaging device 1. That is, it is possible to give the heat radiating portion an electrical function. For example, by using the heat radiation part 39 as a potential supply wiring pattern including the ground to the back surface of the solid-state imaging device 1, the potential of the solid-state imaging device 1 and the flexible substrate 30 is shared, and the semiconductor device 100 The operation can be stabilized. In this case, a material or the like may be appropriately selected so that the via 32 and the heat conductive adhesive 60 have conductivity.

本実施形態の可撓性基板30は、2層フレキシブル基板のほか、1層あるいは多層フレキシブル基板を用いて製造することも可能である。
また、本実施形態では、金属バンプ10及び接着材20を用いて固体撮像素子1と可撓性基板30とが電気的に接続される例を説明したが、固体撮像素子1と可撓性基板30との電気的接続方法はこれに限らず、例えば異方性導電膜等を用いて接続されてもよい。
The flexible substrate 30 of the present embodiment can be manufactured using a single-layer or multilayer flexible substrate in addition to a two-layer flexible substrate.
In this embodiment, the example in which the solid-state imaging device 1 and the flexible substrate 30 are electrically connected using the metal bumps 10 and the adhesive 20 has been described. However, the solid-state imaging device 1 and the flexible substrate are described. The electrical connection method with 30 is not limited to this, and may be connected using, for example, an anisotropic conductive film.

なお、本発明の半導体装置においては、固体撮像素子等の半導体素子の電極部と接続される部分を可撓性基板の裏面に残す必要があること、可撓性基板の囲繞領域は、下方に屈曲されてから固体撮像素子の裏面に接続されることの2点より、固体撮像素子の裏面全体を覆うことはできない。しかしながら、覆われない領域はいずれも半導体素子裏面の周縁付近であり、通常、表面の対応する位置には電極部が形成されていることが多いため、当該領域で発生する熱は少ない。したがって、放熱部の放熱性能を大きく損なうことはない。   In the semiconductor device of the present invention, it is necessary to leave a portion connected to the electrode portion of a semiconductor element such as a solid-state imaging element on the back surface of the flexible substrate, and the surrounding area of the flexible substrate is downward. The entire back surface of the solid-state image sensor cannot be covered by two points of being bent and connected to the back surface of the solid-state image sensor. However, all the uncovered regions are near the periphery of the back surface of the semiconductor element, and usually, electrode portions are often formed at corresponding positions on the front surface, so that heat generated in the regions is small. Therefore, the heat dissipation performance of the heat dissipation part is not greatly impaired.

次に、本発明の第2実施形態について、図4から図6を参照して説明する。本実施形態の半導体装置200と、第1実施形態の半導体装置100との異なるところは、固体撮像素子における電極部の配置と、可撓性基板における切り込みの形状である。なお、第1実施形態と共通する構成については、同一の符号を付して重複する説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. The difference between the semiconductor device 200 of the present embodiment and the semiconductor device 100 of the first embodiment is the arrangement of the electrode portions in the solid-state imaging device and the shape of the cuts in the flexible substrate. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図4は、半導体装置200を分解して示す斜視図である。半導体装置200は、固体撮像素子1に代えて固体撮像素子101を備え、可撓性基板30に代えて可撓性基板130を備えている。
固体撮像素子1においては、周縁の対向する2辺にそって電極部3が形成されていたのに対し、固体撮像素子101では、周縁の4辺に沿って8つの電極部103が形成されている。上述のように、各電極部に接続する領域を可撓性基板の裏面に確保するために、当該領域は切り込みに囲繞されないように切り込みの周囲に位置させる必要がある。
そこで、半導体装置200においては、この要件を満たしつつ、固体撮像素子101の裏面に接続される可撓性基板130の一部の面積を最大化できるように切り込みの形状が設定されている。
FIG. 4 is an exploded perspective view showing the semiconductor device 200. The semiconductor device 200 includes a solid-state image sensor 101 instead of the solid-state image sensor 1, and includes a flexible substrate 130 instead of the flexible substrate 30.
In the solid-state imaging device 1, the electrode unit 3 is formed along two opposite sides of the periphery, whereas in the solid-state imaging device 101, eight electrode units 103 are formed along the four sides of the periphery. Yes. As described above, in order to secure a region connected to each electrode portion on the back surface of the flexible substrate, the region needs to be positioned around the cut so as not to be surrounded by the cut.
Therefore, in the semiconductor device 200, the cut shape is set so as to maximize the area of a part of the flexible substrate 130 connected to the back surface of the solid-state imaging device 101 while satisfying this requirement.

図5(a)は、可撓性基板130の表面130Aを示す平面図であり、図5(b)は、可撓性基板130の裏面130Bを示す平面図である。可撓性基板130の表面130Aには、第1実施形態同様、全面に放熱パターン33が形成されている。裏面130Bには、配線パターン34A、34B、34Cに加えて、配線パターン134A、134Bが形成されており、計8本の配線パターンが固体撮像素子101の各電極部103に対応させて形成されている。   FIG. 5A is a plan view showing the front surface 130 </ b> A of the flexible substrate 130, and FIG. 5B is a plan view showing the back surface 130 </ b> B of the flexible substrate 130. A heat dissipation pattern 33 is formed on the entire surface 130A of the flexible substrate 130 as in the first embodiment. In addition to the wiring patterns 34A, 34B, and 34C, wiring patterns 134A and 134B are formed on the back surface 130B, and a total of eight wiring patterns are formed corresponding to each electrode portion 103 of the solid-state imaging device 101. Yes.

固体撮像素子101の裏面に取り付けられる囲繞領域を規定する切り込み131は、各配線パターン34A、34B、34C、134A、及び134Bを囲繞しないように、これら配線パターンを避けて設定されている。また、切り込み131は、囲繞領域の面積を大きくするために、上述の配線パターン間の領域を囲繞するようにその一部が隣接する配線パターン間に延びている。
切り込み131が上記のように設定されることにより、切り込み131に囲繞された囲繞領域は、周縁に突出する複数の凸部131Aを有する形状に設定されている。
The notch 131 that defines the surrounding area attached to the back surface of the solid-state imaging device 101 is set to avoid these wiring patterns so as not to surround each of the wiring patterns 34A, 34B, 34C, 134A, and 134B. Further, in order to increase the area of the surrounding region, the notch 131 partially extends between adjacent wiring patterns so as to surround the region between the wiring patterns.
By setting the notch 131 as described above, the surrounding area surrounded by the notch 131 is set to have a shape having a plurality of convex portions 131A protruding to the periphery.

可撓性基板130の囲繞領域には、第1実施形態同様、ビア132が形成されている。また、これに加えて、切り込み131に囲繞されていない領域においても、可撓性基板130を厚さ方向に貫通するビア139が形成されている。なお、ビア132及び139は、設置位置や個数等が異なるだけで、基本構造は第1実施形態のビア32と同様である。   Vias 132 are formed in the surrounding area of the flexible substrate 130 as in the first embodiment. In addition, a via 139 that penetrates the flexible substrate 130 in the thickness direction is also formed in a region that is not surrounded by the notch 131. The basic structures of the vias 132 and 139 are the same as those of the via 32 of the first embodiment except that the installation positions and the number of the vias 132 and 139 are different.

図4に示すように、可撓性基板130には、切り込み131に対応した形状の貫通孔138が形成され、固体撮像素子101は、貫通孔138を通して受光領域2で受光可能となるように、接着剤20で可撓性基板130に固定される。同時に、固体撮像素子101は、電極部103に対応させた8つのバンプ10によって、バンプ位置36(図5(b)参照)において各配線パターン34A、34B、34C、134A、及び134Bと電気的に接続される。   As shown in FIG. 4, a through hole 138 having a shape corresponding to the cut 131 is formed in the flexible substrate 130, and the solid-state imaging device 101 can receive light in the light receiving region 2 through the through hole 138. The adhesive 20 is fixed to the flexible substrate 130. At the same time, the solid-state imaging device 101 is electrically connected to the wiring patterns 34A, 34B, 34C, 134A, and 134B at the bump position 36 (see FIG. 5B) by the eight bumps 10 corresponding to the electrode portions 103. Connected.

図6(a)は、図4及び図5に示すC−C線に対応する位置における半導体装置200の完成時断面図であり、図6(b)は、図4及び図5に示すD−D線に対応する位置における半導体装置200の完成時断面図である。図6(a)及び図6(b)に示すように、可撓性基板130の囲繞領域は、熱伝導性接着剤60によって固体撮像素子101の裏面に接続される。熱伝導性接着剤60の塗布領域は、図4に示すように囲繞領域の形状に合わせて設定されるのが好ましい。
囲繞領域は、周縁に複数の凸部131Aを有するので、図6(b)に示すように、固体撮像素子101の裏面における周縁部の一部にも熱的に接続される。したがって、半導体装置200では、固体撮像素子1よりも電極がより多い固体撮像素子101を備えるにもかかわらず、可撓性基板130の一部がより大きい面積で固体撮像素子101の裏面に熱的に接続されている。
6A is a cross-sectional view when the semiconductor device 200 is completed at a position corresponding to the line CC shown in FIGS. 4 and 5, and FIG. 6B is a cross-sectional view taken along the line D- shown in FIGS. 4 and 5. It is sectional drawing at the time of completion of the semiconductor device 200 in the position corresponding to D line. As shown in FIGS. 6A and 6B, the surrounding region of the flexible substrate 130 is connected to the back surface of the solid-state imaging device 101 by a heat conductive adhesive 60. The application region of the heat conductive adhesive 60 is preferably set in accordance with the shape of the surrounding region as shown in FIG.
Since the surrounding area has a plurality of convex portions 131A on the periphery, it is also thermally connected to a part of the periphery on the back surface of the solid-state imaging device 101 as shown in FIG. Therefore, although the semiconductor device 200 includes the solid-state image sensor 101 having more electrodes than the solid-state image sensor 1, a part of the flexible substrate 130 is thermally applied to the back surface of the solid-state image sensor 101 with a larger area. It is connected to the.

本実施形態の半導体装置200においても、第1実施形態の半導体装置100と同様に、製造コストを低減しつつ、固体撮像素子101が発生した熱を放熱パターン33及び35から効率よく放熱することができる。
また、可撓性基板130において、固体撮像素子101の裏面に接続される切り込み131に囲繞された囲繞領域が複数の凸部131Aを有するように切り込み131の形状が設定されているので、可撓性基板130と固体撮像素子101の裏面との接続面積を増加させて、より効率よく放熱を行うことができる。
In the semiconductor device 200 of the present embodiment as well, as with the semiconductor device 100 of the first embodiment, the heat generated by the solid-state imaging device 101 can be efficiently radiated from the heat radiation patterns 33 and 35 while reducing the manufacturing cost. it can.
In addition, in the flexible substrate 130, the shape of the cut 131 is set so that the surrounding region surrounded by the cut 131 connected to the back surface of the solid-state imaging device 101 has a plurality of convex portions 131A. The heat dissipation can be performed more efficiently by increasing the connection area between the conductive substrate 130 and the back surface of the solid-state imaging device 101.

さらに、可撓性基板130においては、切り込み131に囲繞されていない領域にビア139が形成されているので、可撓性基板130の表面130Aから裏面130Bへの熱伝導経路をより多く確保してさらに放熱効率を向上させることができる。   Further, in the flexible substrate 130, the via 139 is formed in a region not surrounded by the notch 131, so that more heat conduction paths from the front surface 130A to the back surface 130B of the flexible substrate 130 are secured. Furthermore, the heat dissipation efficiency can be improved.

以上、本発明の半導体装置について、各実施形態を示して説明したが、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述の各実施形態においては、放熱部の少なくとも一部が可撓性基板の表面に露出するように形成された例を説明したが、これに代えて、放熱部の少なくとも一部が可撓性基板の裏面に露出するように形成されてもよい。この場合は、図7に示す変形例のように、可撓性基板30の囲繞領域70の一部を折り返し、裏面30Bを固体撮像素子1の裏面に熱的に接続すればよい。また、折り返す方向にも特に制限はなく、図8に示すように、囲繞領域70の延在方向と平行に折り返して可撓性基板30の裏面30Bを固体撮像素子1に接続してもよい。
The semiconductor device of the present invention has been described with reference to the embodiments. However, the technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. It is possible to make changes.
For example, in each of the above-described embodiments, an example in which at least a part of the heat radiating part is formed to be exposed on the surface of the flexible substrate has been described, but instead, at least a part of the heat radiating part is allowed. It may be formed so as to be exposed on the back surface of the flexible substrate. In this case, as in the modification shown in FIG. 7, a part of the surrounding region 70 of the flexible substrate 30 may be folded back and the back surface 30 </ b> B may be thermally connected to the back surface of the solid-state imaging device 1. Further, the direction of folding is not particularly limited, and the back surface 30B of the flexible substrate 30 may be connected to the solid-state imaging device 1 by folding back in parallel with the extending direction of the surrounding region 70 as shown in FIG.

また、上述の各実施形態においては、可撓性基板において、切り込みに囲繞された囲繞領域が1箇所形成される例を説明したが、囲繞領域が2箇所以上形成されるように切り込みの形状が設定されてもよい。例えば、図9(a)に示す変形例のように、可撓性基板30にH字状の切り込み31Aを形成することにより、各々が切り込み31Aに囲繞され、かつ端部が対向する一対の囲繞領域70A及び70Bが形成されてもよい。また、図9(b)に示す変形例のような切り込み31Bを可撓性基板30に形成することにより、各々が切り込み31Bに囲繞され、互い違いに延びる2つの囲繞領域71A及び71Bが形成されてもよい。
なお、本発明において「切り込みが可撓性基板の一部を囲繞する」とは、切り込みに囲まれた可撓性基板の一部領域が、囲まれていない領域との間に半導体素子を挟める程度に離間できるように当該一部領域を囲むことを意味し、当該一部領域の周囲を隙間なく囲むことを意味しない。したがって、当該一部領域が、囲まれていない領域との間に半導体素子を挟める程度に離間できれば、当該領域の形状や切り込みの形状に特に制限はない。ただし、上述したように、囲繞領域と半導体素子裏面との接続面積が大きいほど効率よく放熱が行えるため、当該接続面積ができるだけ大きくなるように囲繞領域の形状や切り込みの形状が設定されるのが好ましい。
Further, in each of the above-described embodiments, an example in which one surrounding area surrounded by the cut is formed in the flexible substrate has been described. However, the shape of the cut is such that two or more surrounding areas are formed. It may be set. For example, as in the modification shown in FIG. 9A, by forming H-shaped cuts 31A in the flexible substrate 30, each pair is surrounded by the cuts 31A and opposite ends. Regions 70A and 70B may be formed. Further, by forming the cut 31B as in the modification shown in FIG. 9B in the flexible substrate 30, each of the cuts 31B is surrounded, and two surrounding regions 71A and 71B extending alternately are formed. Also good.
In the present invention, “the cut surrounds a part of the flexible substrate” means that a semiconductor element is sandwiched between a part of the flexible substrate surrounded by the cut and a region not surrounded by the cut. It means that the partial area is surrounded so that it can be separated to a certain extent, and does not mean that the partial area is surrounded without a gap. Accordingly, there is no particular limitation on the shape of the region or the shape of the cut as long as the partial region can be separated from the region not surrounded by the semiconductor element. However, as described above, the larger the connection area between the surrounding area and the back surface of the semiconductor element, the more efficiently heat can be dissipated. Therefore, the shape of the surrounding area and the shape of the cut are set so that the connection area becomes as large as possible. preferable.

さらに、本実施形態では、放熱部が、可撓性基板の両面に形成された放熱パターンと、これら放熱パターンを熱的に接続するビアとを有して構成される例を説明したが、放熱部の構成は要求される放熱性能に応じて適宜設定されてよい。例えば、表面及び裏面のいずれか一方に形成された放熱パターンのみで放熱部を構成してもよいし、囲繞領域を厚さ方向に貫通するビアのみで放熱部が形成されてもよい。また、表面と裏面との熱伝導が若干低下するが、両面の放熱パターンのみで放熱部を構成しても構わない。   Further, in the present embodiment, the heat radiating portion has been described as having the heat radiating pattern formed on both surfaces of the flexible substrate and vias that thermally connect these heat radiating patterns. The configuration of the unit may be appropriately set according to the required heat dissipation performance. For example, the heat dissipating part may be formed only by the heat dissipating pattern formed on either the front surface or the back surface, or the heat dissipating part may be formed only by the via that penetrates the surrounding region in the thickness direction. Further, although the heat conduction between the front surface and the back surface is slightly lowered, the heat radiating portion may be constituted by only the heat radiation patterns on both surfaces.

また、本発明の半導体装置には、半導体素子以外に他の電気部品が搭載されてもよい。
また、半導体素子と可撓性基板とを熱的に接続する熱伝導性接着剤は、両者の接続面積を広くするため、半導体素子と接続される可撓性基板の囲繞領域全面を覆う形状とすることが放熱効率向上のため望ましいが、熱伝導性接着剤の配置形状はこれに限定されない。すなわち、半導体素子と囲繞領域内に形成された放熱部とが熱的に接続されていれば、熱伝導性接着剤の配置形状に特に制限はない。
In addition to the semiconductor elements, other electrical components may be mounted on the semiconductor device of the present invention.
Further, the thermally conductive adhesive that thermally connects the semiconductor element and the flexible substrate has a shape that covers the entire surrounding area of the flexible substrate connected to the semiconductor element in order to increase the connection area between the two. Although it is desirable to improve the heat dissipation efficiency, the arrangement shape of the heat conductive adhesive is not limited to this. That is, the arrangement shape of the heat conductive adhesive is not particularly limited as long as the semiconductor element and the heat radiating portion formed in the surrounding region are thermally connected.

1、101 固体撮像素子(半導体素子)
2 受光領域(露出部)
3、103 電極部
30、130 可撓性基板
30A、130A 表面(第3の面)
30B、130B 裏面(第4の面)
31、31A、31B、131 切り込み
32、132、139 ビア
33、35 放熱パターン
34A、34B、34C、134A、134B 配線パターン
39 放熱部
60 熱伝導性接着剤(熱伝導性部材)
100、200 半導体装置
1,101 Solid-state imaging device (semiconductor device)
2 Light receiving area (exposed part)
3, 103 Electrode portion 30, 130 Flexible substrate 30A, 130A Surface (third surface)
30B, 130B Back side (fourth side)
31, 31A, 31B, 131 Notch 32, 132, 139 Via 33, 35 Heat radiation pattern 34A, 34B, 34C, 134A, 134B Wiring pattern 39 Heat radiation portion 60 Thermal conductive adhesive (thermal conductive member)
100, 200 Semiconductor device

Claims (4)

第1の面と第2の面とを有し、前記第1の面に露出部と電極部を有する半導体素子と、第3の面と第4の面とを有する可撓性基板とを備えた半導体装置において、
前記可撓性基板は、少なくとも一部が前記第3の面に露出する放熱部を有するとともに、前記第4の面に配線パターンを有し、
前記半導体素子の前記電極部は、前記可撓性基板の前記配線パターンと電気的に接続され、
前記半導体素子の前記第2の面は、熱伝導性部材を介して前記可撓性基板の前記放熱部と熱的に接続され、
前記可撓性基板は、前記放熱部の前記第3の面に露出した部位を含むように一部の領域を囲繞する切り込みを有し、
前記半導体素子は前記可撓性基板に対して、
(1)前記第1の面の電極部は前記第4の面と対向し、
(2)前記第1の面の露出部は前記切り込みに囲繞されており、
(3)前記第2の面の少なくとも一部は前記切り込みに囲繞された前記第3の面と対向するように、
配置されていることを特徴とする半導体装置。
A semiconductor element having a first surface and a second surface, the first surface having an exposed portion and an electrode portion, and a flexible substrate having a third surface and a fourth surface. In semiconductor devices
The flexible substrate has a heat radiation part at least partially exposed on the third surface, and has a wiring pattern on the fourth surface,
The electrode portion of the semiconductor element is electrically connected to the wiring pattern of the flexible substrate,
The second surface of the semiconductor element is thermally connected to the heat dissipating part of the flexible substrate via a heat conductive member,
The flexible substrate has a notch surrounding a part of the region so as to include a portion exposed on the third surface of the heat radiating portion;
The semiconductor element is relative to the flexible substrate.
(1) The electrode portion of the first surface is opposed to the fourth surface,
(2) The exposed portion of the first surface is surrounded by the cut.
(3) At least a part of the second surface is opposed to the third surface surrounded by the notch,
A semiconductor device which is arranged.
前記放熱部は、前記第3の面及び前記第4の面に形成された放熱パターンと、前記第3の面の放熱パターンと前記前記第4の面の放熱パターンとを熱的に接続するビアとを有することを特徴とする請求項1に記載の半導体装置。   The heat dissipating part is a via that thermally connects the heat dissipating pattern formed on the third surface and the fourth surface, and the heat dissipating pattern of the third surface and the heat dissipating pattern of the fourth surface. The semiconductor device according to claim 1, wherein: 前記ビアは、前記半導体素子の前記第2の面と対向する前記切り込みに囲繞された範囲内に形成されていることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the via is formed in a range surrounded by the notch facing the second surface of the semiconductor element. 前記放熱部及び前記熱伝導性部材が導電性を有し、前記半導体素子の前記第2の面と電気的に接続されていることを特徴とする請求項1から3のいずれか1項に記載の半導体装置。   The said heat radiating part and the said heat conductive member have electroconductivity, and are electrically connected with the said 2nd surface of the said semiconductor element, The any one of Claim 1 to 3 characterized by the above-mentioned. Semiconductor device.
JP2009259751A 2009-11-13 2009-11-13 Semiconductor device Withdrawn JP2011109225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259751A JP2011109225A (en) 2009-11-13 2009-11-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259751A JP2011109225A (en) 2009-11-13 2009-11-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011109225A true JP2011109225A (en) 2011-06-02

Family

ID=44232272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259751A Withdrawn JP2011109225A (en) 2009-11-13 2009-11-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011109225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134895A1 (en) * 2016-02-05 2017-08-10 イリソ電子工業株式会社 Imaging device component, and imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134895A1 (en) * 2016-02-05 2017-08-10 イリソ電子工業株式会社 Imaging device component, and imaging device
JPWO2017134895A1 (en) * 2016-02-05 2018-12-27 イリソ電子工業株式会社 Imaging device parts and imaging device
US10841467B2 (en) 2016-02-05 2020-11-17 Iriso Electronics Co., Ltd. Parts for imaging apparatus, and imaging apparatus

Similar Documents

Publication Publication Date Title
JP6597729B2 (en) Imaging unit and imaging apparatus
JP4379295B2 (en) Semiconductor image sensor module and manufacturing method thereof
KR102467001B1 (en) Substrate structure for image sensor module and image sneor module including the same
JP4852675B2 (en) Electronic assembly for image sensor device and method of manufacturing the same
US8902356B2 (en) Image sensor module having image sensor package
JP2008219704A (en) Semiconductor device
JP2008130738A (en) Solid-state imaging element
JP2004006564A (en) Stacked semiconductor device
JP6939561B2 (en) Manufacturing method of image sensor package, image sensor and image sensor package
JP2008227653A (en) Semiconductor device having imaging element
JP2006339291A (en) Hollow package, semiconductor device using the same and solid-state image pickup device
JP2010263004A (en) Solid-state image pickup device
JP2006120996A (en) Circuit module
JP2010205780A (en) Imaging unit
JP2011109225A (en) Semiconductor device
JP2006319124A (en) Solid state imaging apparatus
JP7406314B2 (en) electronic modules and equipment
JP2007194441A (en) Semiconductor device for image sensor and its manufacturing method
JP2001177023A (en) Mounting structure of chip device
JP6184106B2 (en) Hollow package for solid-state imaging device, solid-state imaging device, and solid-state imaging device
US20230171874A1 (en) Image sensor package and camera device including same
WO2021241053A1 (en) Solid-state imaging device and electronic apparatus
JP2004282227A (en) Optical module, manufacturing method thereof, and electronic apparatus
WO2015097962A1 (en) Semiconductor device
JP2010098376A (en) Solid-state imaging device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205