JP2010205780A - Imaging unit - Google Patents

Imaging unit Download PDF

Info

Publication number
JP2010205780A
JP2010205780A JP2009046779A JP2009046779A JP2010205780A JP 2010205780 A JP2010205780 A JP 2010205780A JP 2009046779 A JP2009046779 A JP 2009046779A JP 2009046779 A JP2009046779 A JP 2009046779A JP 2010205780 A JP2010205780 A JP 2010205780A
Authority
JP
Japan
Prior art keywords
heat
solid
state imaging
imaging device
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009046779A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamagata
和広 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009046779A priority Critical patent/JP2010205780A/en
Publication of JP2010205780A publication Critical patent/JP2010205780A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging unit quickly radiating heat caused by driving of a solid state imaging element. <P>SOLUTION: The imaging unit 1 is equipped with a printed board 3, in which an opening 3a is formed to face a light receiving part 2a of a solid state imaging element 2, and the solid state imaging element 2 is flip-chip mounted in such manner as the light receiving part 2a faces the opening 3a. A heat receiving part 3c of the printed board 3 faces a drive circuit part 2b of the solid state imaging element 2, to receive the heat generated by the solid state imaging element 2 through an adhesive 4. A heat radiation layer 3d of the printed board 3 radiates the heat of the solid state imaging element 2, which the heat receiving part 3c has received, to the outside of the printed board 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CCDまたはCMOS等の固体撮像素子を備えた撮像ユニットに関し、特に、固体撮像素子の放熱性を高める放熱構造を有する撮像ユニットに関するものである。   The present invention relates to an imaging unit including a solid-state imaging device such as a CCD or a CMOS, and more particularly to an imaging unit having a heat dissipation structure that enhances the heat dissipation of the solid-state imaging device.

従来から、デジタルカメラおよびデジタルビデオカメラを始め、被検体の臓器内部を観察するための内視鏡、撮像機能を備えた携帯電話機など、各種態様の電子撮像装置が登場している。電子撮像装置は、CCDまたはCMOS等の固体撮像素子を備えた撮像ユニットを内蔵し、レンズ等の光学系によって固体撮像素子の受光部に被写体の光学像を結像し、この固体撮像素子の光電変換処理によって被写体の画像データを取得(撮像)する。   2. Description of the Related Art Conventionally, various types of electronic imaging devices such as a digital camera and a digital video camera, an endoscope for observing the inside of an organ of a subject, and a mobile phone having an imaging function have appeared. An electronic image pickup device includes an image pickup unit including a solid-state image pickup device such as a CCD or a CMOS, and forms an optical image of a subject on a light receiving portion of the solid-state image pickup device by an optical system such as a lens. Image data of the subject is acquired (captured) by the conversion process.

なお、かかる撮像ユニットの固体撮像素子は、設計仕様に規定された温度条件下において最適に駆動して、高画質な画像を撮像することができる。しかし、固体撮像素子の駆動時に発生する熱は固体撮像素子の温度上昇を引き起こし、この固体撮像素子の温度上昇に伴って暗電流等のノイズが発生する。この熱によるノイズは、画質低下等の固体撮像素子の機能低下を招来し、固体撮像素子による高画質撮像を困難にする。   Note that the solid-state imaging device of the imaging unit can be driven optimally under the temperature conditions specified in the design specifications to capture a high-quality image. However, the heat generated when the solid-state image sensor is driven causes the temperature of the solid-state image sensor to rise, and noise such as dark current is generated as the temperature of the solid-state image sensor rises. This heat noise causes a decrease in the function of the solid-state imaging device such as a reduction in image quality, making it difficult to capture high-quality images with the solid-state imaging device.

かかる固体撮像素子の温度上昇による機能低下を防止するために、近年、撮像ユニット内部の固体撮像素子の放熱を行うための放熱構造が提案されている。かかる撮像ユニットの放熱構造として、例えば、固体撮像素子パッケージの背面開口を通して内部の固体撮像素子の背面(すなわち受光部と反対側の面)にフレームの当接面を当接させ、この当接面を介して固体撮像素子の熱をフレーム全体に伝導させるものがある(特許文献1参照)。   In order to prevent the deterioration of the function due to the temperature rise of such a solid-state image sensor, a heat dissipation structure for radiating heat of the solid-state image sensor inside the image pickup unit has been proposed in recent years. As a heat dissipation structure of such an image pickup unit, for example, the contact surface of the frame is brought into contact with the back surface of the internal solid-state image sensor (that is, the surface opposite to the light receiving portion) through the back opening of the solid-state image sensor package. In some cases, the heat of the solid-state imaging device is conducted to the entire frame through the frame (see Patent Document 1).

特開2006−345196号公報JP 2006-345196 A

ところで、固体撮像素子の駆動回路部は、固体撮像素子の駆動時において最も発熱量の大きい部位であり、一般に、受光部の周辺に配置される。しかしながら、上述した従来の放熱構造を有する撮像ユニットでは、かかる受光部および駆動回路部の反対側の面、すなわち固体撮像素子の背面側から放熱しているため、固体撮像素子が駆動に伴って急激に発熱した場合、固体撮像素子からの熱を速やかに放熱することが困難になり、この結果、かかる固体撮像素子の温度上昇による機能低下を防止することが困難であるという問題点があった。なお、このような従来技術の問題点は、固体撮像素子の高画素化、高速処理化に伴って顕著になる。   By the way, the drive circuit unit of the solid-state image sensor is the part that generates the largest amount of heat when the solid-state image sensor is driven, and is generally arranged around the light receiving unit. However, in the imaging unit having the above-described conventional heat dissipation structure, heat is radiated from the opposite surface of the light receiving unit and the drive circuit unit, that is, from the back side of the solid-state imaging device. When heat is generated, it is difficult to quickly dissipate heat from the solid-state image sensor, and as a result, it is difficult to prevent a functional deterioration due to a temperature rise of the solid-state image sensor. Such problems of the prior art become more prominent as the solid-state imaging device has higher pixels and higher processing speed.

本発明は、上記事情に鑑みてなされたものであって、固体撮像素子の駆動に伴う熱を速やかに放熱することができる撮像ユニットを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an imaging unit capable of quickly dissipating heat accompanying driving of a solid-state imaging device.

上述した課題を解決し、目的を達成するために、本発明にかかる撮像ユニットは、固体撮像素子の受光部に対向する開口部が形成され、前記受光部と前記開口部とが対向する態様で前記固体撮像素子を実装した回路基板を備える撮像ユニットにおいて、少なくとも前記固体撮像素子の駆動回路部に接触する伝熱部と、前記固体撮像素子の駆動回路部に対向し、前記固体撮像素子が発する熱を前記伝熱部を介して受ける受熱部と、前記受熱部が受けた前記固体撮像素子の熱を放熱する放熱部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an imaging unit according to the present invention has an opening that faces a light receiving portion of a solid-state imaging device, and the light receiving portion and the opening face each other. In an imaging unit including a circuit board on which the solid-state imaging device is mounted, the solid-state imaging device emits at least a heat transfer portion that contacts the driving circuit unit of the solid-state imaging device and the driving circuit unit of the solid-state imaging device. A heat receiving unit that receives heat via the heat transfer unit, and a heat radiating unit that radiates heat of the solid-state imaging device received by the heat receiving unit.

また、本発明にかかる撮像ユニットは、上記の発明において、前記放熱部は、前記回路基板の一部であって前記受熱部に比して大きい表面積を有する放熱層であることを特徴とする。   In the imaging unit according to the present invention as set forth in the invention described above, the heat dissipation part is a heat dissipation layer that is a part of the circuit board and has a larger surface area than the heat receiving part.

また、本発明にかかる撮像ユニットは、上記の発明において、前記伝熱部は、前記回路基板と前記固体撮像素子との間隙を充填する充填部材であることを特徴とする。   In the imaging unit according to the present invention as set forth in the invention described above, the heat transfer section is a filling member that fills a gap between the circuit board and the solid-state imaging device.

また、本発明にかかる撮像ユニットは、上記の発明において、前記充填部材は、前記回路基板と前記固体撮像素子とを接着する熱伝導性接着剤であることを特徴とする。   In the imaging unit according to the present invention as set forth in the invention described above, the filling member is a thermally conductive adhesive that bonds the circuit board and the solid-state imaging device.

また、本発明にかかる撮像ユニットは、上記の発明において、前記伝熱部は、前記固体撮像素子の駆動回路部と前記受熱部とを熱的に接続する金属部材であることを特徴とする。   In the imaging unit according to the present invention as set forth in the invention described above, the heat transfer section is a metal member that thermally connects the drive circuit section of the solid-state image sensor and the heat receiving section.

また、本発明にかかる撮像ユニットは、上記の発明において、前記放熱層の少なくとも一部は、前記回路基板の外部に露出することを特徴とする。   In the image pickup unit according to the present invention as set forth in the invention described above, at least a part of the heat dissipation layer is exposed to the outside of the circuit board.

本発明にかかる撮像ユニットでは、固体撮像素子の受光部と回路基板の開口部とが対向する態様で前記回路基板に前記固体撮像素子を実装し、伝熱部が、少なくとも前記固体撮像素子の駆動回路部に接触し、受熱部が、前記固体撮像素子の駆動回路部に対向し、前記固体撮像素子が発する熱を前記伝熱部を介して受熱し、放熱部が、前記受熱部によって受熱された前記固体撮像素子の熱を放熱している。このため、駆動回路部の駆動に伴って発熱した固体撮像素子の熱を発熱後速やかに固体撮像素子から奪って、この固体撮像素子からの熱を放熱部に速やかに伝達でき、この結果、かかる固体撮像素子の駆動に伴う熱を発熱後速やかに放熱できるという効果を奏する。   In the imaging unit according to the present invention, the solid-state imaging device is mounted on the circuit board in such a manner that the light-receiving unit of the solid-state imaging element and the opening of the circuit board face each other, and the heat transfer unit drives at least the solid-state imaging element. The heat receiving part is in contact with the circuit part, the heat receiving part is opposed to the drive circuit part of the solid-state image sensor, receives heat generated by the solid-state image sensor through the heat transfer part, and the heat radiating part is received by the heat receiving part. The heat of the solid-state imaging device is dissipated. For this reason, the heat of the solid-state image sensor that has generated heat due to the driving of the drive circuit section can be quickly taken away from the solid-state image sensor after the heat generation, and the heat from the solid-state image sensor can be quickly transmitted to the heat radiating section. There is an effect that heat generated by driving the solid-state imaging device can be quickly dissipated after the heat is generated.

以下、図面を参照して、本発明にかかる撮像ユニットの好適な実施の形態を詳細に説明する。なお、以下では、本発明にかかる撮像ユニットの一例として、フレキシブル回路基板にフリップチップ実装した固体撮像素子を備える撮像ユニットを例示するが、この実施の形態によって本発明が限定されるものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of an imaging unit according to the invention will be described in detail with reference to the drawings. Hereinafter, as an example of the imaging unit according to the present invention, an imaging unit including a solid-state imaging device flip-chip mounted on a flexible circuit board is illustrated, but the present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1にかかる撮像ユニットの一構成例を示す断面模式図である。図2は、図1に示す方向D1から見た撮像ユニットを示す模式図である。図3は、図1に示す方向D2から見た撮像ユニットを示す模式図である。図1〜3に示すように、この実施の形態1にかかる撮像ユニット1は、被写体の画像を撮像する固体撮像素子2と、固体撮像素子2をフリップチップ実装するプリント基板3と、かかる固体撮像素子2とプリント基板3とを固定するとともに伝熱部として機能する接着剤4と、固体撮像素子2の受光部2aに対向するプリント基板3の開口部3aを閉じるカバーガラス5とを備える。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view illustrating a configuration example of an imaging unit according to the first embodiment of the present invention. FIG. 2 is a schematic diagram showing the imaging unit viewed from the direction D1 shown in FIG. FIG. 3 is a schematic diagram illustrating the imaging unit viewed from the direction D2 illustrated in FIG. As shown in FIGS. 1 to 3, the imaging unit 1 according to the first embodiment includes a solid-state imaging device 2 that captures an image of a subject, a printed circuit board 3 on which the solid-state imaging device 2 is flip-chip mounted, and such a solid-state imaging. The adhesive 4 which fixes the element 2 and the printed circuit board 3 and functions as a heat transfer part, and the cover glass 5 which closes the opening part 3a of the printed circuit board 3 facing the light-receiving part 2a of the solid-state image sensor 2 are provided.

固体撮像素子2は、CCDまたはCMOSイメージセンサ等に例示されるベアチップ状のイメージセンサであり、被写体からの光を受光してこの被写体の画像を撮像する撮像機能を有する。図4は、実施の形態1にかかる撮像ユニットの固体撮像素子の一例を示す模式図である。なお、図4には、ベアチップの表側、すなわち受光部側から見た固体撮像素子2の外観が図示されている。図4に示すように、固体撮像素子2は、サブストレート等のチップ基板の表側に、被写体からの光を受光する受光部2aと、撮像動作を実行するための駆動回路が形成された駆動回路部2bと、駆動回路部2bと電気的に接続された電極群11,12とを備える。   The solid-state imaging device 2 is a bare chip-shaped image sensor exemplified by a CCD or CMOS image sensor and has an imaging function of receiving light from a subject and capturing an image of the subject. FIG. 4 is a schematic diagram illustrating an example of a solid-state imaging element of the imaging unit according to the first embodiment. 4 shows the appearance of the solid-state imaging device 2 as viewed from the front side of the bare chip, that is, from the light receiving unit side. As shown in FIG. 4, the solid-state imaging device 2 includes a driving circuit in which a light receiving unit 2 a that receives light from a subject and a driving circuit for performing an imaging operation are formed on the front side of a chip substrate such as a substrate. And a group of electrodes 11 and 12 electrically connected to the drive circuit unit 2b.

受光部2aは、格子形状等の所定の形状に配置される画素群およびカラーフィルタ等を用いて実現され、固体撮像素子2の中央側に形成される。駆動回路部2bは、かかる受光部2aの周辺に形成される。電極群11,12は、この駆動回路部2bとプリント基板3とを電気的に接続するためのものであり、チップ基板上に形成された配線(図示せず)を介して駆動回路部2bと電気的に接続された複数の電極パッド2dの各々に金属バンプ2cを固定することによって実現される。電極群11,12は、図4に示すように、駆動回路部2bの周辺のうちの対向する2辺に各々形成される。なお、かかる固体撮像素子2の電極群は、駆動回路部2bの周辺のうちの1辺以上に必要数形成されていればよい。   The light receiving unit 2a is realized using a pixel group and a color filter that are arranged in a predetermined shape such as a lattice shape, and is formed on the center side of the solid-state imaging device 2. The drive circuit unit 2b is formed around the light receiving unit 2a. The electrode groups 11 and 12 are for electrically connecting the drive circuit unit 2b and the printed circuit board 3, and are connected to the drive circuit unit 2b via wiring (not shown) formed on the chip substrate. This is realized by fixing the metal bump 2c to each of the plurality of electrode pads 2d that are electrically connected. As shown in FIG. 4, the electrode groups 11 and 12 are respectively formed on two opposing sides of the periphery of the drive circuit unit 2b. The necessary number of electrode groups of the solid-state imaging device 2 may be formed on one or more sides of the periphery of the drive circuit unit 2b.

かかる構成を有する固体撮像素子2は、図1に示すように、プリント基板3の開口部3aと受光部2aとが対向する態様でプリント基板3上にフリップチップ実装される。この場合、固体撮像素子2の各金属バンプ2cは、プリント基板3の配線層3bと電気的に接続され、且つ、駆動回路部2bは、プリント基板3に形成された受熱部3cと対向する。このようにプリント基板3上に実装された固体撮像素子2において、受光部2aは、プリント基板3の開口部3aを覆うカバーガラス5を介して被写体からの光を受光し、この受光した光を光電変換処理する。駆動回路部2bは、かかる受光部2aによって光電変換処理された信号をもとに被写体の画像信号を生成し、この生成した画像信号を各金属バンプ2c(すなわち上述した電極群11,12)を介してプリント基板3側に出力する。   As shown in FIG. 1, the solid-state imaging device 2 having such a configuration is flip-chip mounted on the printed circuit board 3 so that the opening 3 a and the light receiving unit 2 a of the printed circuit board 3 face each other. In this case, each metal bump 2 c of the solid-state imaging device 2 is electrically connected to the wiring layer 3 b of the printed circuit board 3, and the drive circuit unit 2 b faces the heat receiving unit 3 c formed on the printed circuit board 3. Thus, in the solid-state imaging device 2 mounted on the printed circuit board 3, the light receiving unit 2a receives light from the subject via the cover glass 5 covering the opening 3a of the printed circuit board 3, and the received light is received. The photoelectric conversion process is performed. The drive circuit unit 2b generates an image signal of the subject based on the signal photoelectrically processed by the light receiving unit 2a, and the generated image signal is applied to each metal bump 2c (that is, the electrode groups 11 and 12 described above). To the printed circuit board 3 side.

プリント基板3は、上述した固体撮像素子2の撮像機能を実現するための回路構造と固体撮像素子2の放熱構造とを備える多層回路基板である。具体的には、図1,3に示すように、プリント基板3は、固体撮像素子2の撮像機能を実現するために必要な回路配線等がパターン形成された配線層3bと、上述したようにフリップチップ実装された態様の固体撮像素子2の熱を受ける受熱部3cと、この受熱部3cから伝達された固体撮像素子2の熱を放熱する放熱層3dと、かかる配線層3bと放熱層3dとを絶縁状態にする絶縁層3eと、かかるプリント基板3の最外層を形成する絶縁層3f,3gとを備える。また、かかるプリント基板3の多層構造内には、上述した固体撮像素子2の受光部2aと対向する開口部3aが形成される。開口部3aは、固体撮像素子2の受光部2aに対応して設計された開口寸法を有し、この受光部2aに対する被写体からの光の入射を可能にする。   The printed circuit board 3 is a multilayer circuit board including a circuit structure for realizing the imaging function of the solid-state imaging device 2 and a heat dissipation structure of the solid-state imaging device 2. Specifically, as shown in FIGS. 1 and 3, the printed circuit board 3 includes a wiring layer 3 b in which circuit wiring and the like necessary for realizing the imaging function of the solid-state imaging device 2 are patterned, and as described above. A heat receiving portion 3c that receives the heat of the solid-state imaging device 2 in a flip-chip mounted state, a heat-dissipating layer 3d that dissipates the heat of the solid-state imaging device 2 transmitted from the heat receiving portion 3c, and the wiring layer 3b and the heat-dissipating layer 3d And an insulating layer 3e that forms an outermost layer of the printed circuit board 3, and an insulating layer 3f that forms an outermost layer of the printed circuit board 3. Further, in the multilayer structure of the printed circuit board 3, an opening 3 a that faces the light receiving portion 2 a of the solid-state imaging device 2 described above is formed. The opening 3a has an opening dimension designed to correspond to the light receiving part 2a of the solid-state imaging device 2, and allows light from a subject to enter the light receiving part 2a.

配線層3bは、上述したように固体撮像素子2の撮像機能を実現するために必要な回路配線等がパターン形成された導電層であり、固体撮像素子2の電極群11,12の各電極に対応する複数の電極パッド(図示せず)を有する。かかる配線層3bの各電極パッドには、熱圧着技術または超音波接続技術等によって固体撮像素子2の各金属バンプ2cが各々接続される。なお、かかる配線層3b上には絶縁層3fが層形成される。   The wiring layer 3b is a conductive layer in which circuit wiring and the like necessary for realizing the imaging function of the solid-state imaging device 2 are patterned as described above, and is provided on each electrode of the electrode groups 11 and 12 of the solid-state imaging device 2. A plurality of corresponding electrode pads (not shown) are provided. Each metal bump 2c of the solid-state imaging device 2 is connected to each electrode pad of the wiring layer 3b by a thermocompression bonding technique or an ultrasonic connection technique. An insulating layer 3f is formed on the wiring layer 3b.

受熱部3cは、高熱伝導性の金属部材を用いて実現され、プリント基板3の絶縁層3eおよび放熱層3dを貫通するスルーホールに形成される。また、受熱部3cの受熱面は、例えば固体撮像素子2の駆動回路部2bに対応する枠形状に形成される(図3参照)。かかる受熱部3cは、プリント基板3上にフリップチップ実装された態様の固体撮像素子2の駆動回路部2bに対向し、この固体撮像素子2が駆動に伴って発する熱を接着剤4を介して受熱する。受熱部3cは、固体撮像素子2から受けた熱を放熱層3dに伝達する。なお、かかる受熱部3cを形成する金属部材として、例えば、アルミニウム、銅または金、あるいは、これら金属のうちの少なくとも一つを含有する合金等が挙げられる。   The heat receiving portion 3c is realized by using a metal member having high thermal conductivity, and is formed in a through hole that penetrates the insulating layer 3e and the heat dissipation layer 3d of the printed board 3. Further, the heat receiving surface of the heat receiving unit 3c is formed in a frame shape corresponding to the drive circuit unit 2b of the solid-state imaging device 2, for example (see FIG. 3). The heat receiving portion 3c is opposed to the drive circuit portion 2b of the solid-state image pickup device 2 in the form of being flip-chip mounted on the printed circuit board 3, and heat generated by the solid-state image pickup device 2 due to the drive is passed through the adhesive 4. Receive heat. The heat receiving part 3c transfers the heat received from the solid-state imaging device 2 to the heat radiation layer 3d. In addition, as a metal member which forms this heat receiving part 3c, the alloy etc. which contain aluminum, copper, gold | metal | money, or at least one of these metals are mentioned, for example.

放熱層3dは、上述した受熱部3cが受熱した固体撮像素子2の熱をプリント基板3の外部に放熱する放熱部として機能する。具体的には、放熱層3dは、絶縁層3g上の略全面に形成されるベタパターンの金属層であり、図3に示すように、上述した受熱部3cの受熱面に比して大きい表面積を有する。この場合、放熱層3dの表面積は、開口部3aを除くプリント基板3の表面積に略等しい。かかる放熱層3dは、受熱部3cと熱的に接続され、受熱部3cを介して固体撮像素子2の熱を受け、この受熱した固体撮像素子2の熱をプリント基板3の外部に放熱する。なお、かかる放熱層3dを形成する金属部材として、例えば、アルミニウム、銅または金、あるいは、これら金属のうちの少なくとも一つを含む合金等が挙げられる。   The heat radiating layer 3d functions as a heat radiating part that radiates the heat of the solid-state imaging device 2 received by the heat receiving part 3c described above to the outside of the printed circuit board 3. Specifically, the heat dissipation layer 3d is a solid pattern metal layer formed on substantially the entire surface of the insulating layer 3g, and has a surface area larger than that of the heat receiving surface of the heat receiving portion 3c described above, as shown in FIG. Have In this case, the surface area of the heat dissipation layer 3d is substantially equal to the surface area of the printed circuit board 3 excluding the opening 3a. The heat radiating layer 3d is thermally connected to the heat receiving portion 3c, receives heat from the solid-state imaging device 2 through the heat receiving portion 3c, and radiates the heat of the received solid imaging device 2 to the outside of the printed board 3. In addition, as a metal member which forms this heat radiating layer 3d, the alloy containing at least one of these metals etc. are mentioned, for example, aluminum, copper, or gold | metal | money.

絶縁層3eは、上述した配線層3bと放熱層3dとの間に層形成され、かかる配線層3bと放熱層3dとを絶縁状態にする。絶縁層3f,3gは、上述したようにプリント基板3の最外層を形成する。具体的には、絶縁層3fは、配線層3bを覆うように層形成され、この配線層3bを保護する。一方、絶縁層3gは、プリント基板3の最下層であり、上述した放熱層3dを保護する。   The insulating layer 3e is formed between the wiring layer 3b and the heat dissipation layer 3d described above, and insulates the wiring layer 3b and the heat dissipation layer 3d. The insulating layers 3f and 3g form the outermost layer of the printed circuit board 3 as described above. Specifically, the insulating layer 3f is formed so as to cover the wiring layer 3b and protects the wiring layer 3b. On the other hand, the insulating layer 3g is the lowermost layer of the printed circuit board 3, and protects the heat dissipation layer 3d described above.

なお、上述したような多層構造を有するプリント基板3は、外力の印加によって容易に変形可能である柔軟なフレキシブル回路基板であってもよいし、フレキシブル回路基板に比して変形し難いリジッド回路基板であってもよい。また、上述した図1〜3には、この実施の形態1にかかる撮像ユニット1の一部分、具体的には固体撮像素子2およびその近傍が図示されている。すなわち、上述したプリント基板3の外形は、プレート状または帯状等の所望の外形に設計される。   The printed circuit board 3 having the multilayer structure as described above may be a flexible flexible circuit board that can be easily deformed by application of an external force, or a rigid circuit board that is less likely to be deformed than a flexible circuit board. It may be. 1 to 3 described above show a part of the imaging unit 1 according to the first embodiment, specifically, the solid-state imaging device 2 and the vicinity thereof. That is, the external shape of the printed circuit board 3 described above is designed to have a desired external shape such as a plate shape or a belt shape.

接着剤4は、上述した固体撮像素子2とプリント基板3との間隙を充填する充填部材の一例であり、少なくとも固体撮像素子2の駆動回路部2bに接触する伝熱部として機能する。具体的には、図1,2に示すように、接着剤4は、プリント基板3上にフリップチップ実装された態様の固体撮像素子2とプリント基板3との間隙であって受光部2aと開口部3aとの間の領域以外に充填される。なお、接着剤4は、この固体撮像素子2の周囲に沿って裾野形状を形成する状態になるまで塗布される。かかる接着剤4は、プリント基板3の外部に対して固体撮像素子2とプリント基板3との間隙を閉塞し、これによって受光部2aへの異物混入および不要光の入射を防止する。これと同時に、接着剤4は、かかる固体撮像素子2とプリント基板3とを接着して、固体撮像素子2とプリント基板3との実装強度、すなわち各金属バンプ2cと配線層3bとの接合強度を補強する。このように固体撮像素子2とプリント基板3とを接着した態様の接着剤4は、上述した駆動回路部2bおよび受熱部3cと接触した状態であり、駆動回路部2bの発熱等によって発生した固体撮像素子2の熱を受熱部3cに伝達する。   The adhesive 4 is an example of a filling member that fills the gap between the solid-state imaging device 2 and the printed circuit board 3 described above, and functions as a heat transfer unit that contacts at least the drive circuit unit 2 b of the solid-state imaging device 2. Specifically, as shown in FIGS. 1 and 2, the adhesive 4 is a gap between the solid-state imaging device 2 and the printed circuit board 3 that is flip-chip mounted on the printed circuit board 3. The region other than the region between the portions 3a is filled. Note that the adhesive 4 is applied until a skirt shape is formed along the periphery of the solid-state imaging device 2. The adhesive 4 closes the gap between the solid-state imaging device 2 and the printed circuit board 3 with respect to the outside of the printed circuit board 3, thereby preventing foreign matter from entering the light receiving unit 2a and unnecessary light from entering. At the same time, the adhesive 4 bonds the solid-state imaging device 2 and the printed circuit board 3 to each other so that the mounting strength between the solid-state imaging device 2 and the printed circuit board 3, that is, the bonding strength between each metal bump 2c and the wiring layer 3b. Reinforce. As described above, the adhesive 4 in a mode in which the solid-state imaging device 2 and the printed circuit board 3 are bonded is in a state of being in contact with the drive circuit unit 2b and the heat receiving unit 3c described above, and is generated by heat generated by the drive circuit unit 2b. The heat of the image sensor 2 is transmitted to the heat receiving portion 3c.

ここで、上述した接着剤4は、本実施の形態1では、例えば、銀または銅等の金属フィラーを含有して熱伝導性を高めた熱伝導性接着剤を適用している。これによって、上述した固体撮像素子2と受熱部3cとの間の熱伝導効率を高めることができ、この結果、固体撮像素子2の放熱効果を高めることができる。このような接着剤4は、本願発明における伝熱部として機能する。なお、この接着剤4は、上記の素材に限定されるものではなく、少しでも熱伝導性のある素材の接着剤、例えばエポキシ系またはウレタン系等の樹脂部材を用いた接着剤であってもよい。   Here, as the adhesive 4 described above, in the first embodiment, for example, a heat conductive adhesive that includes a metal filler such as silver or copper and has improved thermal conductivity is applied. Thereby, the heat conduction efficiency between the solid-state imaging device 2 and the heat receiving portion 3c described above can be increased, and as a result, the heat dissipation effect of the solid-state imaging device 2 can be enhanced. Such an adhesive 4 functions as a heat transfer portion in the present invention. Note that the adhesive 4 is not limited to the above-described material, and may be an adhesive made of a material having a heat conductivity as much as possible, for example, an adhesive using a resin member such as epoxy or urethane. Good.

カバーガラス5は、被写体からの光、すなわち固体撮像素子2の受光部2aが受光すべき光に対して透明な光学部材であり、図1,3に示すように、プリント基板3の開口部3aを閉じるようにプリント基板3に固定される。かかるカバーガラス5は、固体撮像素子2の受光部2a側に被写体からの光を透過するとともに、この開口部3aからの異物混入を防止する。   The cover glass 5 is an optical member that is transparent to the light from the subject, that is, the light that should be received by the light receiving portion 2a of the solid-state imaging device 2, and as shown in FIGS. Is fixed to the printed circuit board 3 so as to be closed. The cover glass 5 transmits light from the subject to the light receiving unit 2a side of the solid-state imaging device 2, and prevents foreign matter from entering through the opening 3a.

つぎに、本発明の実施の形態1にかかる撮像ユニット1の放熱作用について説明する。図5は、本発明の実施の形態1にかかる撮像ユニットの放熱作用を説明するための模式図である。なお、図5において、波線矢印は、固体撮像素子2が発した熱の流れを示している。   Next, the heat radiation action of the imaging unit 1 according to the first embodiment of the present invention will be described. FIG. 5 is a schematic diagram for explaining the heat radiation action of the imaging unit according to the first embodiment of the present invention. In FIG. 5, the wavy arrow indicates the flow of heat generated by the solid-state imaging device 2.

上述したようにプリント基板3上にフリップチップ実装された固体撮像素子2は、被写体からの光を受光して被写体の画像を撮像する都度、駆動回路部2bの駆動に伴って発熱する。かかる固体撮像素子2が発した熱は、図5に示すように、駆動回路部2bに接触する接着剤4に伝達される。かかる接着剤4に伝達された固体撮像素子2の熱は、上述したように駆動回路部2bと対向する受熱部3cに伝達される。   As described above, the solid-state imaging device 2 flip-chip mounted on the printed circuit board 3 generates heat as the drive circuit unit 2b is driven each time it receives light from the subject and picks up an image of the subject. As shown in FIG. 5, the heat generated by the solid-state imaging device 2 is transmitted to the adhesive 4 that comes into contact with the drive circuit portion 2b. As described above, the heat of the solid-state imaging device 2 transmitted to the adhesive 4 is transmitted to the heat receiving unit 3c facing the drive circuit unit 2b.

受熱部3cは、かかる接着剤4を介して固体撮像素子2の熱を受熱し、この受熱した固体撮像素子2の熱を放熱層3dに伝達する。ここで、放熱層3dの熱放散性および放熱性は、放熱層3dの表面積の増大に伴って高まり、上述したように放熱層3dの表面積がプリント基板3全体の表面積と略同程度である場合に最大となる。かかる放熱層3dは、上述した受熱部3cから伝達された固体撮像素子2の熱を速やかに放散しつつ、絶縁層3gを介してプリント基板3の外部(固体撮像素子2と反対側)に固体撮像素子2の熱を効率的に放熱する。このような受熱部3cおよび放熱層3d等による放熱作用によって、固体撮像素子2の熱は奪われ、この結果、固体撮像素子2の温度上昇が抑制される。なお、かかる固体撮像素子2の熱は、図5に示すように、固体撮像素子2の背面側からも放熱される。   The heat receiving part 3c receives the heat of the solid-state imaging device 2 through the adhesive 4, and transmits the heat of the received solid-state imaging device 2 to the heat radiation layer 3d. Here, the heat dissipation and heat dissipation properties of the heat dissipation layer 3d increase with an increase in the surface area of the heat dissipation layer 3d, and as described above, the surface area of the heat dissipation layer 3d is approximately the same as the surface area of the entire printed circuit board 3. To the maximum. The heat radiating layer 3d quickly dissipates the heat of the solid-state imaging device 2 transmitted from the heat receiving portion 3c described above, and is solid outside the printed circuit board 3 (on the opposite side to the solid-state imaging device 2) via the insulating layer 3g. The heat of the image sensor 2 is efficiently radiated. Due to the heat radiation action of the heat receiving portion 3c and the heat radiation layer 3d and the like, the heat of the solid-state imaging device 2 is removed, and as a result, the temperature rise of the solid-state imaging device 2 is suppressed. The heat of the solid-state image sensor 2 is also radiated from the back side of the solid-state image sensor 2 as shown in FIG.

ここで、従来の放熱構造を有する撮像ユニット(図示せず)では、固体撮像素子の背面側に放熱部材を配置し、この放熱部材を介して固体撮像素子の背面側から放熱していた。このため、固体撮像素子の駆動に伴って発生した熱は、この固定撮像素子のサブストレート等のチップ基板内を通って外部に放熱されることとなり、この固体撮像素子のチップ基板の厚み分、固体撮像素子の発熱から放熱までに時間差が生じる。これに起因して、かかる従来の放熱構造を有する撮像ユニットは、固体撮像素子の熱を速やかに放熱することが困難であり、固体撮像素子が駆動に伴って急激に発熱した場合、この固体撮像素子の温度上昇を抑制することが困難である。   Here, in an imaging unit (not shown) having a conventional heat dissipation structure, a heat dissipation member is disposed on the back side of the solid-state image sensor, and heat is radiated from the back side of the solid-state image sensor via this heat dissipation member. For this reason, the heat generated with the driving of the solid-state image sensor is radiated to the outside through the inside of the chip substrate such as the substrate of the fixed image sensor. There is a time difference from heat generation to heat dissipation of the solid-state imaging device. Due to this, it is difficult for the imaging unit having such a conventional heat dissipation structure to quickly dissipate the heat of the solid-state imaging device. When the solid-state imaging device suddenly generates heat as it is driven, this solid-state imaging It is difficult to suppress the temperature rise of the element.

これに対し、本発明の実施の形態1にかかる撮像ユニット1では、固体撮像素子2の発熱時において最も発熱量の大きい部位である駆動回路部2bと受熱部3cとが対向し、この対向状態の受熱部3cが、接着剤4を介して駆動回路部2bから熱を受熱している。このため、かかる受熱部3cは、この駆動回路部2bの駆動に伴って発生した熱を、発熱後速やかに固体撮像素子2から奪うことができ、この固体撮像素子2から奪った熱を放熱層3dに速やかに伝達することができる。これによって、かかる固体撮像素子2の熱は、発熱後速やかに放熱層3dから放熱され、この結果、たとえ固体撮像素子2が駆動に伴って急激に発熱した場合であっても、この固体撮像素子2の温度上昇を抑制でき、この固体撮像素子2の温度上昇による機能低下を防止することができる。   In contrast, in the imaging unit 1 according to the first embodiment of the present invention, when the solid-state imaging device 2 generates heat, the drive circuit unit 2b, which is the part that generates the largest amount of heat, and the heat receiving unit 3c face each other. The heat receiving portion 3 c receives heat from the drive circuit portion 2 b through the adhesive 4. Therefore, the heat receiving portion 3c can quickly take away the heat generated by driving the drive circuit portion 2b from the solid-state image pickup device 2 after the heat generation, and the heat taken from the solid-state image pickup device 2 can be removed from the heat dissipation layer. 3d can be promptly transmitted. As a result, the heat of the solid-state imaging device 2 is quickly radiated from the heat-dissipating layer 3d after the heat generation. As a result, even if the solid-state imaging device 2 suddenly generates heat upon driving, the solid-state imaging device 2 2 can be suppressed, and the function deterioration due to the temperature increase of the solid-state imaging device 2 can be prevented.

なお、本発明にかかる放熱構造を備えた撮像ユニット1は、デジタルカメラおよびデジタルビデオカメラを始め、被検体の臓器内部を観察するための内視鏡、撮像機能を備えた携帯電話機等、各種態様の電子撮像装置に内蔵することができる。かかる電子撮像装置内部の撮像ユニット1は、電子撮像装置の撮像機能部として機能するとともに、上述したように固体撮像素子2の熱を速やかに放熱して固体撮像素子2の温度上昇を抑制する。この場合、かかる撮像ユニット1によって放熱された固体撮像素子2の熱は、例えば電子撮像装置の筐体等を介して電子撮像装置外部に排出される。   The imaging unit 1 having a heat dissipation structure according to the present invention includes various aspects such as a digital camera and a digital video camera, an endoscope for observing the inside of an organ of a subject, a mobile phone having an imaging function, and the like. It can be incorporated in the electronic imaging apparatus. The imaging unit 1 inside the electronic imaging device functions as an imaging function unit of the electronic imaging device, and quickly dissipates heat of the solid-state imaging device 2 as described above, thereby suppressing a temperature rise of the solid-state imaging device 2. In this case, the heat of the solid-state imaging device 2 radiated by the imaging unit 1 is discharged to the outside of the electronic imaging device through, for example, the housing of the electronic imaging device.

以上、説明したように、本発明の実施の形態1では、フリップチップ実装された態様の固体撮像素子の駆動回路部と対向するプリント基板内の位置に、この固体撮像素子の熱を受ける受熱部を形成し、この受熱部が受熱した固体撮像素子の熱を、プリント基板内の放熱層を介してプリント基板外部に放熱するように構成した。このため、この駆動回路部の駆動に伴って発熱した固体撮像素子の熱を発熱後速やかに固体撮像素子から奪うことができ、この固体撮像素子から奪った熱を放熱層に速やかに伝達することができる。これによって、かかる固体撮像素子の駆動に伴う熱を発熱後速やかに放熱することが可能な撮像ユニットを実現することができる。   As described above, in the first embodiment of the present invention, the heat receiving unit that receives the heat of the solid-state image sensor at the position in the printed circuit board facing the drive circuit unit of the solid-state image sensor in the flip-chip mounted mode. And the heat of the solid-state imaging device received by the heat receiving portion is radiated to the outside of the printed board through the heat radiating layer in the printed board. For this reason, the heat of the solid-state imaging device that is generated by driving the drive circuit unit can be quickly taken away from the solid-state imaging device after the heat generation, and the heat taken from the solid-state imaging device can be quickly transmitted to the heat dissipation layer. Can do. Thereby, it is possible to realize an imaging unit that can quickly dissipate heat generated by driving the solid-state imaging device after heat generation.

この実施の形態1にかかる撮像ユニットを用いることによって、たとえ固体撮像素子の高画素化、高速処理化に伴って固体撮像素子の駆動時の発熱が急激になった場合であっても、かかる固体撮像素子の急激な熱を発熱後速やかに放熱することができ、これによって、かかる固体撮像素子の温度上昇を設計範囲内に抑制することができ、この結果、かかる固体撮像素子の温度上昇による機能低下を防止することができる。   By using the image pickup unit according to the first embodiment, even when the solid-state image sensor is driven to heat and the heat generation at the time of driving the solid-state image sensor is abrupt with the increase in the number of pixels and the processing speed of the solid-state image sensor. The rapid heat of the image sensor can be dissipated quickly after heat generation, thereby suppressing the temperature rise of the solid-state image sensor within the design range. As a result, the function due to the temperature rise of the solid-state image sensor A decrease can be prevented.

また、本発明の実施の形態1では、上述した受熱部の受熱面に比して放熱層の表面積を大きくしたので、固体撮像素子の熱を放熱するための放熱面を可能な限り大きくすることができ、これによって、かかる放熱層の熱放散性および放熱性を高めることができ、この結果、かかる放熱層によって固体撮像素子の熱を一層速やかに放熱することができる。   In Embodiment 1 of the present invention, since the surface area of the heat dissipation layer is made larger than that of the heat receiving surface of the heat receiving portion described above, the heat radiating surface for radiating the heat of the solid-state imaging device should be made as large as possible. As a result, the heat dissipating property and heat dissipating property of the heat dissipating layer can be improved, and as a result, the heat of the solid-state imaging device can be dissipated more rapidly by the heat dissipating layer.

さらに、本発明の実施の形態1では、互いに対向する固体撮像素子の駆動回路部とプリント基板の受熱部との間隙に接着剤等の伝熱部材を充填し、この伝熱部材を介して固体撮像素子から受熱部に熱を伝達するように構成したので、受熱部によって固体撮像素子の熱を一層速やかに受熱することができ、この結果、かかる固体撮像素子の熱を一層効果的に放熱することができる。   Furthermore, in Embodiment 1 of the present invention, a heat transfer member such as an adhesive is filled in the gap between the drive circuit portion of the solid-state imaging element and the heat receiving portion of the printed circuit board facing each other, and the solid state is passed through this heat transfer member. Since heat is transmitted from the image sensor to the heat receiving unit, the heat of the solid-state image sensor can be received more quickly by the heat receiving unit, and as a result, the heat of the solid-state image sensor is more effectively dissipated. be able to.

(実施の形態2)
つぎに、本発明の実施の形態2について説明する。上述した実施の形態1では、放熱層3dによってプリント基板3の最下層側(すなわち絶縁層3g側)から固体撮像素子2の熱を放熱していたが、この実施の形態2では、固体撮像素子の実装面側に放熱部を形成し、この放熱部によって固体撮像素子の実装面側から固体撮像素子の熱を放熱している。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the heat of the solid-state imaging device 2 is radiated from the lowermost layer side (that is, the insulating layer 3g side) of the printed circuit board 3 by the heat radiating layer 3d, but in the second embodiment, the solid-state imaging device is radiated. A heat radiating portion is formed on the mounting surface side, and the heat of the solid-state imaging device is radiated from the mounting surface side of the solid-state imaging device by the heat radiating portion.

図6は、本発明の実施の形態2にかかる撮像ユニットの一構成例を示す断面模式図である。図6に示すように、この実施の形態2にかかる撮像ユニット21は、上述した実施の形態1にかかる撮像ユニット1のプリント基板3に代えてプリント基板23を備える。このプリント基板23は、固体撮像素子2の実装面側から固体撮像素子2の熱を放熱するために必要な放熱構造を備える。また、このプリント基板23の配線層3bは、絶縁層3e,3g間に層形成され、スルーホール等を介して固体撮像素子2の電極群11,12と電気的に接続される。なお、この実施の形態2において、かかる固体撮像素子2の電極群11,12(すなわち上述した複数の電極パッド2dおよび複数の金属バンプ2c)は、特に図6に示していないが、固体撮像素子2のチップ基板上であってプリント基板23の受熱部(後述する受熱部23c)と対向する領域以外に配置される。その他の構成は実施の形態1と同じであり、同一構成部分には同一符号を付している。   FIG. 6 is a schematic cross-sectional view illustrating a configuration example of an imaging unit according to the second embodiment of the present invention. As shown in FIG. 6, the imaging unit 21 according to the second embodiment includes a printed circuit board 23 instead of the printed circuit board 3 of the imaging unit 1 according to the first embodiment described above. The printed circuit board 23 includes a heat dissipation structure necessary for dissipating heat from the solid-state image sensor 2 from the mounting surface side of the solid-state image sensor 2. The wiring layer 3b of the printed board 23 is formed between the insulating layers 3e and 3g, and is electrically connected to the electrode groups 11 and 12 of the solid-state imaging device 2 through through holes or the like. In the second embodiment, the electrode groups 11 and 12 (that is, the plurality of electrode pads 2d and the plurality of metal bumps 2c described above) of the solid-state imaging device 2 are not particularly shown in FIG. 2 is disposed on a chip substrate other than a region facing a heat receiving portion (a heat receiving portion 23c described later) of the printed board 23. Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same components.

プリント基板23は、上述したように、固体撮像素子2の実装面側から固体撮像素子2の熱を放熱するために必要な放熱構造を備える。具体的には、プリント基板23は、上述した受熱部3cに代えて受熱部23cを絶縁層3e上に備え、この受熱部23cと熱的に接続される放熱層3dを絶縁層3e,3f間に備える。また、プリント基板23は、上述したように、固体撮像素子2の電極群11,12と電気的に接続される配線層3bを絶縁層3e,3g間に備える。かかるプリント基板23において、絶縁層3gは配線層3bを保護し、絶縁層3fは放熱層3dを保護する。なお、プリント基板23は、かかる放熱構造およびそれに付随する層構造以外、上述した実施の形態1にかかる撮像ユニット1のプリント基板3と同じ構造を有する。   As described above, the printed circuit board 23 includes a heat dissipation structure necessary for dissipating the heat of the solid-state image sensor 2 from the mounting surface side of the solid-state image sensor 2. Specifically, the printed board 23 includes a heat receiving portion 23c on the insulating layer 3e instead of the heat receiving portion 3c described above, and a heat dissipation layer 3d thermally connected to the heat receiving portion 23c is provided between the insulating layers 3e and 3f. Prepare for. In addition, as described above, the printed circuit board 23 includes the wiring layer 3b electrically connected to the electrode groups 11 and 12 of the solid-state imaging device 2 between the insulating layers 3e and 3g. In the printed circuit board 23, the insulating layer 3g protects the wiring layer 3b, and the insulating layer 3f protects the heat dissipation layer 3d. The printed circuit board 23 has the same structure as the printed circuit board 3 of the imaging unit 1 according to the first embodiment described above, except for the heat dissipation structure and the layer structure associated therewith.

受熱部23cは、高熱伝導性の金属部材を用いて実現され、プリント基板23上にフリップチップ実装された態様の固体撮像素子2の駆動回路部2bと対向するとともに電極群11,12との対向を回避するように絶縁層3e上に層形成される。かかる受熱部23cは、この固体撮像素子2の駆動回路部2bに対向した状態で固体撮像素子2の駆動に伴う熱を接着剤4を介して受熱し、この受熱した固体撮像素子2からの熱を放熱層3dに伝達する。なお、かかる受熱部23cを形成する金属部材として、例えば、アルミニウム、銅または金、あるいは、これら金属のうちの少なくとも一つを含有する合金等が挙げられる。   The heat receiving portion 23c is realized by using a metal member having high thermal conductivity, and is opposed to the drive circuit portion 2b of the solid-state imaging device 2 in a form flip-chip mounted on the printed circuit board 23 and opposed to the electrode groups 11 and 12. Is formed on the insulating layer 3e. The heat receiving unit 23c receives heat accompanying the driving of the solid-state imaging device 2 through the adhesive 4 in a state of being opposed to the drive circuit unit 2b of the solid-state imaging device 2, and the heat from the solid-state imaging device 2 that has received the heat. Is transmitted to the heat dissipation layer 3d. In addition, as a metal member which forms this heat receiving part 23c, the alloy etc. which contain aluminum, copper, or gold | metal | money or at least one of these metals are mentioned, for example.

ここで、かかるプリント基板23の放熱層3dは、上述した受熱部23cの受熱面に比して大きい表面積を有するベタパターンの金属層であり、絶縁層3e上に形成される。かかる放熱層3dは、受熱部23cと熱的に接続され、この受熱部23cが受熱した固体撮像素子2の熱を固体撮像素子2の実装面側からプリント基板23の外部に放熱する。   Here, the heat dissipation layer 3d of the printed board 23 is a solid metal layer having a larger surface area than the heat receiving surface of the heat receiving portion 23c described above, and is formed on the insulating layer 3e. The heat radiating layer 3d is thermally connected to the heat receiving portion 23c, and radiates the heat of the solid-state imaging device 2 received by the heat receiving portion 23c from the mounting surface side of the solid-state imaging device 2 to the outside of the printed board 23.

つぎに、本発明の実施の形態2にかかる撮像ユニット21の放熱作用について説明する。図7は、本発明の実施の形態2にかかる撮像ユニットの放熱作用を説明するための模式図である。なお、図7において、波線矢印は、固体撮像素子2が発した熱の流れを示している。   Next, the heat radiation action of the imaging unit 21 according to the second embodiment of the present invention will be described. FIG. 7 is a schematic diagram for explaining the heat radiation action of the imaging unit according to the second embodiment of the present invention. In FIG. 7, a wavy arrow indicates the flow of heat generated by the solid-state imaging device 2.

固体撮像素子2が駆動回路部2bの駆動に伴って発した熱は、上述した実施の形態1の場合と同様に、駆動回路部2bに接触する接着剤4に伝達される。かかる接着剤4に伝達された固体撮像素子2の熱は、図7に示すように、この駆動回路部2bと対向する受熱部23cに伝達される。   The heat generated by the solid-state imaging device 2 when the drive circuit unit 2b is driven is transmitted to the adhesive 4 in contact with the drive circuit unit 2b as in the case of the first embodiment. As shown in FIG. 7, the heat of the solid-state imaging device 2 transmitted to the adhesive 4 is transmitted to the heat receiving portion 23c facing the drive circuit portion 2b.

受熱部23cは、かかる接着剤4を介して固体撮像素子2の熱を受熱し、この受熱した固体撮像素子2の熱を放熱層3dに伝達する。ここで、放熱層3dの熱放散性および放熱性は、上述したように、放熱層3dの表面積の増大に伴って高まり、放熱層3dの表面積がプリント基板23全体の表面積と略同程度である場合に最大となる。かかる放熱層3dは、この受熱部23cから伝達された固体撮像素子2の熱を速やかに放散しつつ、絶縁層3fを介してプリント基板23の外部(固体撮像素子2の実装面側)に固体撮像素子2の熱を効率的に放熱する。   The heat receiving part 23c receives the heat of the solid-state imaging device 2 through the adhesive 4, and transmits the heat of the received solid-state imaging device 2 to the heat radiation layer 3d. Here, as described above, the heat dissipating property and heat dissipating property of the heat dissipating layer 3d increase as the surface area of the heat dissipating layer 3d increases, and the surface area of the heat dissipating layer 3d is approximately the same as the surface area of the entire printed circuit board 23. The case will be the largest. The heat radiating layer 3d quickly dissipates the heat of the solid-state imaging device 2 transmitted from the heat receiving portion 23c, and is solid outside the printed circuit board 23 (on the mounting surface side of the solid-state imaging device 2) via the insulating layer 3f. The heat of the image sensor 2 is efficiently radiated.

このような受熱部23cおよび放熱層3dによる放熱作用によって、固体撮像素子2の熱は奪われ、この結果、固体撮像素子2の温度上昇が抑制される。なお、かかる固体撮像素子2の熱は、図7に示すように、固体撮像素子2の背面側からも放熱される。   Due to the heat radiation action of the heat receiving portion 23c and the heat radiation layer 3d, the heat of the solid-state image sensor 2 is removed, and as a result, the temperature rise of the solid-state image sensor 2 is suppressed. The heat of the solid-state image sensor 2 is also radiated from the back side of the solid-state image sensor 2 as shown in FIG.

上述したような放熱構造を備えた撮像ユニット21は、実施の形態1にかかる撮像ユニット1と同様に、デジタルカメラおよびデジタルビデオカメラを始め、被検体の臓器内部を観察するための内視鏡、撮像機能を備えた携帯電話機等、各種態様の電子撮像装置に内蔵することができる。ここで、かかる撮像ユニット21は、図7に示したように、固体撮像素子2の実装面側から固体撮像素子2の熱を放熱する。このため、電子撮像装置の内部において、撮像ユニット21から放出された固体撮像素子2の熱を受ける放熱板等の放熱機構は、撮像ユニット21の固体撮像素子2の実装面側に纏めて配置することができる。この結果、かかる撮像ユニット21を内蔵する電子撮像装置の放熱機構を簡易に実現することができる。   As with the imaging unit 1 according to the first embodiment, the imaging unit 21 having the heat dissipation structure as described above is an endoscope for observing the inside of an organ of a subject, including a digital camera and a digital video camera. It can be incorporated in various types of electronic imaging devices such as a mobile phone having an imaging function. Here, as shown in FIG. 7, the imaging unit 21 radiates the heat of the solid-state imaging device 2 from the mounting surface side of the solid-state imaging device 2. For this reason, in the electronic imaging device, a heat dissipation mechanism such as a heat sink that receives the heat of the solid-state imaging device 2 emitted from the imaging unit 21 is arranged collectively on the mounting surface side of the solid-state imaging device 2 of the imaging unit 21. be able to. As a result, the heat dissipation mechanism of the electronic image pickup apparatus incorporating the image pickup unit 21 can be easily realized.

以上、説明したように、本発明の実施の形態2では、固体撮像素子をフリップチップ実装するプリント基板の上層、すなわち固体撮像素子の実装面側の基板層に、この固体撮像素子の駆動回路部と対向する受熱部と熱的に接続された放熱層を形成し、この放熱層を介してプリント基板外部に固体撮像素子の熱を放熱するようにし、その他を実施の形態1と同様に構成した。このため、上述した実施の形態1と同様の作用効果を享受するとともに、固体撮像素子の実装面側から固体撮像素子の熱を放熱することができ、これによって、簡易に電子撮像装置の放熱機構を設計可能な撮像ユニットを実現することができる。   As described above, in the second embodiment of the present invention, the driving circuit unit of the solid-state imaging device is formed on the upper layer of the printed circuit board on which the solid-state imaging device is flip-chip mounted, that is, the substrate layer on the mounting surface side of the solid-state imaging device. A heat dissipation layer thermally connected to the heat receiving portion opposite to the heat sink is formed, and the heat of the solid-state imaging device is radiated to the outside of the printed circuit board through this heat dissipation layer, and the others are configured in the same manner as in the first embodiment. . For this reason, while enjoying the effect similar to Embodiment 1 mentioned above, the heat | fever of a solid-state image sensor can be radiated | emitted from the mounting surface side of a solid-state image sensor, Thereby, the heat dissipation mechanism of an electronic imaging device can be performed simply. Can be realized.

(実施の形態3)
つぎに、本発明の実施の形態3について説明する。上述した実施の形態1では、固体撮像素子2から受熱部3cに熱を伝達する伝熱部として、固体撮像素子2とプリント基板3との間隙を充填する接着剤4を用いていたが、この実施の形態3では、固体撮像素子の駆動回路部とプリント基板の受熱部との間に金属部材を介在させ、この金属部材によって固体撮像素子から受熱部に熱を伝達している。
(Embodiment 3)
Next, a third embodiment of the present invention will be described. In Embodiment 1 described above, the adhesive 4 that fills the gap between the solid-state imaging device 2 and the printed circuit board 3 is used as the heat transfer portion that transfers heat from the solid-state imaging device 2 to the heat receiving portion 3c. In the third embodiment, a metal member is interposed between the drive circuit unit of the solid-state image sensor and the heat receiving unit of the printed circuit board, and heat is transmitted from the solid-state image sensor to the heat receiving unit by the metal member.

図8は、本発明の実施の形態3にかかる撮像ユニットの一構成例を示す断面模式図である。図8に示すように、この実施の形態3にかかる撮像ユニット31は、上述した実施の形態1にかかる撮像ユニット1の固体撮像素子2に代えて固体撮像素子32を備える。この固体撮像素子32は、駆動回路部2bと受熱部3cとを熱的に接続するための金属部材をさらに備える。その他の構成は実施の形態1と同じであり、同一構成部分には同一符号を付している。   FIG. 8 is a schematic cross-sectional view illustrating a configuration example of an imaging unit according to the third embodiment of the present invention. As shown in FIG. 8, the imaging unit 31 according to the third embodiment includes a solid-state imaging element 32 instead of the solid-state imaging element 2 of the imaging unit 1 according to the first embodiment described above. The solid-state imaging device 32 further includes a metal member for thermally connecting the drive circuit unit 2b and the heat receiving unit 3c. Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same components.

固体撮像素子32は、上述したように、駆動回路部2bと受熱部3cとを熱的に接続するための金属部材をさらに備える。図9は、実施の形態3にかかる撮像ユニットの固体撮像素子の一例を示す模式図である。なお、図9には、ベアチップの表側、すなわち受光部側から見た固体撮像素子32の外観が図示されている。図9に示すように、固体撮像素子32は、駆動回路部2b上に伝熱部群33,34を備える。かかる固体撮像素子32の他の構成は実施の形態1と同じであり、同一構成部分には同一符号を付している。   As described above, the solid-state imaging device 32 further includes a metal member for thermally connecting the drive circuit unit 2b and the heat receiving unit 3c. FIG. 9 is a schematic diagram illustrating an example of a solid-state imaging device of the imaging unit according to the third embodiment. FIG. 9 shows the appearance of the solid-state imaging device 32 as viewed from the front side of the bare chip, that is, from the light receiving unit side. As shown in FIG. 9, the solid-state imaging device 32 includes heat transfer unit groups 33 and 34 on the drive circuit unit 2b. Other configurations of the solid-state imaging device 32 are the same as those of the first embodiment, and the same components are denoted by the same reference numerals.

伝熱部群33,34は、上述した受熱部3cと駆動回路部2bとを熱的に接続するためのものである。具体的には、伝熱部群33,34は、駆動回路部2b上に形成された複数のダミーパッド32fの各々に金属部材からなる伝熱バンプ32eを固定することによって実現される。各ダミーパッド32fは、駆動回路部2b上に複数の伝熱バンプ32eを取り付けるためのパッドであり、この駆動回路部2bに対して電気的には接続されていない。各伝熱バンプ32eは、高熱伝導性の金属部材を用いて実現され、熱圧着技術または超音波接続技術等によって各ダミーパッド32fに各々取り付けられる。   The heat transfer section groups 33 and 34 are for thermally connecting the heat receiving section 3c and the drive circuit section 2b described above. Specifically, the heat transfer unit groups 33 and 34 are realized by fixing heat transfer bumps 32e made of a metal member to each of the plurality of dummy pads 32f formed on the drive circuit unit 2b. Each dummy pad 32f is a pad for attaching a plurality of heat transfer bumps 32e on the drive circuit portion 2b, and is not electrically connected to the drive circuit portion 2b. Each heat transfer bump 32e is realized by using a metal member having high thermal conductivity, and is attached to each dummy pad 32f by a thermocompression bonding technique or an ultrasonic connection technique.

なお、かかる伝熱部群33,34は、駆動回路部2b上に配置されていればよく、例えば図9に示すように上述した電極群11,12の近傍に集中的に配置されてもよいし、電極群11,12から所定の距離以上離間した位置に配置されてもよいし、駆動回路部2b内に分散的に配置されてもよい。また、なお、かかる伝熱バンプ32eを形成する金属部材として、例えば、銅または金、あるいは、これら金属のうちの少なくとも一つを含有する合金等が挙げられる。   The heat transfer unit groups 33 and 34 may be arranged on the drive circuit unit 2b. For example, as shown in FIG. 9, the heat transfer unit groups 33 and 34 may be arranged in the vicinity of the electrode groups 11 and 12 described above. The electrode groups 11 and 12 may be arranged at positions separated by a predetermined distance or more, or may be arranged in a distributed manner in the drive circuit unit 2b. In addition, examples of the metal member that forms the heat transfer bump 32e include copper or gold, or an alloy containing at least one of these metals.

かかる構成を有する固体撮像素子32は、図8に示すように、プリント基板3の開口部3aと受光部2aとが対向する態様でプリント基板3上にフリップチップ実装される。この場合、固体撮像素子32の各伝熱バンプ32eは、熱圧着技術または超音波接続技術等によって、上述したように駆動回路部2bと対向する受熱部3cに各々接続される。かかる各伝熱バンプ32eは、この固体撮像素子32の駆動回路部2bとプリント基板3の受熱部3cとを熱的に接続する。   As shown in FIG. 8, the solid-state imaging device 32 having such a configuration is flip-chip mounted on the printed circuit board 3 so that the opening 3 a and the light receiving unit 2 a of the printed circuit board 3 face each other. In this case, each heat transfer bump 32e of the solid-state imaging device 32 is connected to the heat receiving portion 3c facing the drive circuit portion 2b as described above by a thermocompression bonding technique or an ultrasonic connection technique. Each of the heat transfer bumps 32e thermally connects the drive circuit unit 2b of the solid-state imaging device 32 and the heat receiving unit 3c of the printed circuit board 3.

ここで、かかる駆動回路部2bと受熱部3cとを熱的に接続する伝熱バンプ32eは、上述した固体撮像素子2とプリント基板3との間隙を充填する接着剤4に比して極めて高い熱伝導率を有する。かかる高熱伝導性の伝熱バンプ32eは、接着剤4よりも効率的且つ速やかに固体撮像素子2から受熱部3cに熱を伝達する。このように伝熱バンプ32eによって駆動回路部2bと受熱部3cとを熱的に接続した構造を有する撮像ユニット31は、駆動回路部2bと受熱部3cとの間に接着剤4を介在させた場合に比して、一層速やかに固体撮像素子2から熱を奪うことができ、この結果、固体撮像素子32の発熱後に一層速やかに固体撮像素子32の熱を放熱することができる。   Here, the heat transfer bump 32e that thermally connects the drive circuit portion 2b and the heat receiving portion 3c is extremely higher than the adhesive 4 that fills the gap between the solid-state imaging device 2 and the printed board 3 described above. Has thermal conductivity. The heat transfer bumps 32e having high thermal conductivity transfer heat from the solid-state imaging device 2 to the heat receiving portion 3c more efficiently and quickly than the adhesive 4. Thus, the imaging unit 31 having a structure in which the drive circuit unit 2b and the heat receiving unit 3c are thermally connected by the heat transfer bump 32e has the adhesive 4 interposed between the drive circuit unit 2b and the heat receiving unit 3c. As compared with the case, heat can be taken away from the solid-state imaging device 2 more quickly. As a result, the heat of the solid-state imaging device 32 can be radiated more rapidly after the solid-state imaging device 32 generates heat.

以上、説明したように、本発明の実施の形態3では、互いに対向する固体撮像素子の駆動回路部とプリント基板の受熱部とを金属部材によって熱的に接続し、この金属部材を介して固体撮像素子の熱を受熱部に伝達するようにし、その他を実施の形態1と同様に構成した。このため、上述した実施の形態1と同様の作用効果を享受するとともに、かかる駆動回路部と受熱部との間に樹脂部材を介在させた場合に比して、一層速やかに固体撮像素子から熱を奪うことができ、この結果、固体撮像素子の発熱後に一層速やかに固体撮像素子の熱を放熱可能な撮像ユニットを実現することができる。   As described above, in the third embodiment of the present invention, the driving circuit unit of the solid-state imaging element and the heat receiving unit of the printed circuit board that are opposed to each other are thermally connected by the metal member, and the solid member is interposed via the metal member. The heat of the image sensor is transmitted to the heat receiving part, and the others are configured in the same manner as in the first embodiment. For this reason, while enjoying the same operation effect as Embodiment 1 mentioned above, compared with the case where a resin member is interposed between this drive circuit part and a heat receiving part, it is heat from a solid-state image sensing device more rapidly. As a result, it is possible to realize an imaging unit that can dissipate heat of the solid-state imaging device more rapidly after the solid-state imaging device generates heat.

なお、上述した実施の形態1,2では、固体撮像素子2が発した熱を放熱する放熱層3dを絶縁層によって覆っていたが、これに限らず、かかる放熱層3dの少なくとも一部は、プリント基板の外部に露出してもよい。図10は、本発明の実施の形態1の変形例にかかる撮像ユニットの一構成例を示す断面模式図である。図10に示すように、この実施の形態1の変形例にかかる撮像ユニット41は、プリント基板3の下面側、すなわち絶縁層3g側から放熱層3dの少なくとも一部を露出させている。その他の構成は実施の形態1と同じであり、同一構成部分には同一符号を付している。   In the first and second embodiments described above, the heat dissipation layer 3d that dissipates the heat generated by the solid-state imaging device 2 is covered with the insulating layer. However, the present invention is not limited thereto, and at least a part of the heat dissipation layer 3d You may expose to the exterior of a printed circuit board. FIG. 10 is a schematic cross-sectional view illustrating a configuration example of the imaging unit according to the modification of the first embodiment of the present invention. As shown in FIG. 10, in the imaging unit 41 according to the modification of the first embodiment, at least a part of the heat dissipation layer 3d is exposed from the lower surface side of the printed circuit board 3, that is, the insulating layer 3g side. Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same components.

かかる撮像ユニット41において、放熱層3dは、上述した絶縁層3gと協働してプリント基板3の最下層をなす態様で露出する。かかる露出状態の放熱層3dは、プリント基板3の外部(気体等)に直に接触可能であるため、上述したように絶縁層3gに覆われた場合に比して、より効率的且つ速やかに固体撮像素子2の熱を放熱することができる。なお、かかる放熱層3dの露出領域は、放熱層3dの少なくとも一部であればよいが、より広範囲の方が望ましい。何故ならば、かかる放熱層3dの露出領域の増加に伴ってプリント基板3の外部と放熱層3dとの接触面積が増加し、この結果、放熱層3dの放熱性が向上するからである。   In such an imaging unit 41, the heat dissipation layer 3d is exposed in a form that forms the lowermost layer of the printed circuit board 3 in cooperation with the insulating layer 3g described above. Since the exposed heat radiation layer 3d can be in direct contact with the outside (gas, etc.) of the printed circuit board 3, it is more efficient and quicker than the case where it is covered with the insulating layer 3g as described above. The heat of the solid-state imaging device 2 can be radiated. The exposed region of the heat dissipation layer 3d may be at least part of the heat dissipation layer 3d, but a wider range is desirable. This is because the contact area between the outside of the printed circuit board 3 and the heat dissipation layer 3d increases as the exposed area of the heat dissipation layer 3d increases, and as a result, the heat dissipation performance of the heat dissipation layer 3d is improved.

なお、特に図示しないが、上述した実施の形態2にかかる撮像ユニット21における放熱層3dは、プリント基板23の絶縁層3fと協働してプリント基板23の最上層をなすように露出すればよい。この場合も、図10に示した撮像ユニット41と同様の作用効果を奏する   Although not particularly illustrated, the heat dissipation layer 3d in the imaging unit 21 according to the second embodiment described above may be exposed so as to form the uppermost layer of the printed circuit board 23 in cooperation with the insulating layer 3f of the printed circuit board 23. . Also in this case, the same effect as the imaging unit 41 shown in FIG. 10 is obtained.

一方、上述した実施の形態1〜3では、プリント基板内に形成した放熱層または放熱部から固体撮像素子の熱を放熱していたが、これに限らず、さらに固体撮像素子の背面に放熱板を取り付け、プリント基板内の放熱層または放熱部によって固体撮像素子の熱を放熱するとともに、この固体撮像素子の背面の放熱板によって固体撮像素子の熱をさらに放熱してもよい。   On the other hand, in Embodiments 1 to 3 described above, the heat of the solid-state imaging device is radiated from the heat-radiating layer or the heat-radiating portion formed in the printed board. The heat radiation of the solid-state image sensor may be radiated by the heat radiation layer or the heat radiation part in the printed circuit board, and the heat of the solid-state image sensor may be further radiated by the heat radiation plate on the back surface of the solid-state image sensor.

また、上述した実施の形態3では、複数の伝熱バンプ32eを固体撮像素子32の駆動回路部2b上に予め固定していたが、これに限らず、プリント基板3の受熱部3c上に複数の伝熱バンプ32eを予め固定し、プリント基板3に固体撮像素子32をフリップチップ実装する際に、かかる受熱部3c上の各伝熱バンプ32eと固体撮像素子32の各ダミーパッド32fとを各々接続してもよい。   In the above-described third embodiment, the plurality of heat transfer bumps 32e are fixed in advance on the drive circuit unit 2b of the solid-state imaging device 32. When the solid-state imaging device 32 is flip-chip mounted on the printed circuit board 3 in advance, the heat-transfer bumps 32e on the heat receiving portion 3c and the dummy pads 32f of the solid-state imaging device 32 are respectively fixed. You may connect.

さらに、上述した実施の形態1〜3では、5層構造のプリント基板を例示したが、これに限らず、本発明にかかる撮像ユニットのプリント基板の多層構造は、上述した受熱部、放熱層または放熱部等の放熱構造を含むものであればよく、その層数は特に5層に限定されない。   Furthermore, in Embodiments 1 to 3 described above, the printed circuit board having a five-layer structure is illustrated. However, the multilayer structure of the printed circuit board of the imaging unit according to the present invention is not limited to this, and the heat receiving portion, the heat dissipation layer, or What is necessary is just to include heat dissipation structures, such as a thermal radiation part, and the number of layers is not specifically limited to five layers.

また、上述した実施の形態1〜3では、固体撮像素子とプリント基板との間隙に接着剤を充填していたが、これに限らず、固体撮像素子とプリント基板との間隙に充填する充填部材は、この固体撮像素子とプリント基板との間隙を封止する封止部材であってもよい。   In Embodiments 1 to 3 described above, the adhesive is filled in the gap between the solid-state imaging device and the printed board. However, the present invention is not limited thereto, and the filling member is filled in the gap between the solid-state imaging element and the printed board. May be a sealing member that seals the gap between the solid-state imaging device and the printed circuit board.

本発明の実施の形態1にかかる撮像ユニットの一構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one structural example of the imaging unit concerning Embodiment 1 of this invention. 図1に示す方向D1から見た撮像ユニットを示す模式図である。It is a schematic diagram which shows the imaging unit seen from the direction D1 shown in FIG. 図1に示す方向D2から見た撮像ユニットを示す模式図である。It is a schematic diagram which shows the imaging unit seen from the direction D2 shown in FIG. 実施の形態1にかかる撮像ユニットの固体撮像素子の一例を示す模式図である。2 is a schematic diagram illustrating an example of a solid-state image sensor of the imaging unit according to the first embodiment; FIG. 、本発明の実施の形態1にかかる撮像ユニットの放熱作用を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a heat radiation action of the imaging unit according to the first embodiment of the present invention. 本発明の実施の形態2にかかる撮像ユニットの一構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one structural example of the imaging unit concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる撮像ユニットの放熱作用を説明するための模式図である。It is a schematic diagram for demonstrating the thermal radiation effect | action of the imaging unit concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる撮像ユニットの一構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one structural example of the imaging unit concerning Embodiment 3 of this invention. 実施の形態3にかかる撮像ユニットの固体撮像素子の一例を示す模式図である。FIG. 6 is a schematic diagram illustrating an example of a solid-state imaging element of an imaging unit according to a third embodiment. 本発明の実施の形態1の変形例にかかる撮像ユニットの一構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one structural example of the imaging unit concerning the modification of Embodiment 1 of this invention.

1,21,31,41 撮像ユニット
2,32 固体撮像素子
2a 受光部
2b 駆動回路部
2c 金属バンプ
2d 電極パッド
3,23 プリント基板
3a 開口部
3b 配線層
3c,23c 受熱部
3d 放熱層
3e,3f,3g 絶縁層
4 接着剤
5 カバーガラス
11,12 電極群
32e 伝熱バンプ
32f ダミーパッド
33,34 伝熱部群
1, 21, 31, 41 Imaging unit 2,32 Solid-state imaging device 2a Light receiving portion 2b Drive circuit portion 2c Metal bump 2d Electrode pad 3,23 Printed circuit board 3a Opening portion 3b Wiring layer 3c, 23c Heat receiving portion 3d Heat radiation layer 3e, 3f 3g Insulating layer 4 Adhesive 5 Cover glass 11, 12 Electrode group 32e Heat transfer bump 32f Dummy pad 33, 34 Heat transfer part group

Claims (6)

固体撮像素子の受光部に対向する開口部が形成され、前記受光部と前記開口部とが対向する態様で前記固体撮像素子を実装した回路基板を備える撮像ユニットにおいて、
少なくとも前記固体撮像素子の駆動回路部に接触する伝熱部と、
前記固体撮像素子の駆動回路部に対向し、前記固体撮像素子が発する熱を前記伝熱部を介して受ける受熱部と、
前記受熱部が受けた前記固体撮像素子の熱を放熱する放熱部と、
を備えたことを特徴とする撮像ユニット。
In an imaging unit comprising a circuit board on which the solid-state imaging element is mounted in an aspect in which an opening facing the light-receiving part of the solid-state imaging element is formed and the light-receiving part and the opening are opposed to each other.
At least a heat transfer section in contact with the drive circuit section of the solid-state imaging device;
A heat receiving unit facing the drive circuit unit of the solid-state image sensor and receiving heat generated by the solid-state image sensor via the heat transfer unit;
A heat dissipating part for dissipating the heat of the solid-state imaging device received by the heat receiving part;
An imaging unit comprising:
前記放熱部は、前記回路基板の一部であって前記受熱部に比して大きい表面積を有する放熱層であることを特徴とする請求項1に記載の撮像ユニット。   The imaging unit according to claim 1, wherein the heat radiating part is a heat radiating layer that is a part of the circuit board and has a larger surface area than the heat receiving part. 前記伝熱部は、前記回路基板と前記固体撮像素子との間隙を充填する充填部材であることを特徴とする請求項1または2に記載の撮像ユニット。   The imaging unit according to claim 1, wherein the heat transfer unit is a filling member that fills a gap between the circuit board and the solid-state imaging device. 前記充填部材は、前記回路基板と前記固体撮像素子とを接着する熱伝導性接着剤であることを特徴とする請求項3に記載の撮像ユニット。   The imaging unit according to claim 3, wherein the filling member is a heat conductive adhesive that bonds the circuit board and the solid-state imaging device. 前記伝熱部は、前記固体撮像素子の駆動回路部と前記受熱部とを熱的に接続する金属部材であることを特徴とする請求項1または2に記載の撮像ユニット。   The imaging unit according to claim 1, wherein the heat transfer unit is a metal member that thermally connects the drive circuit unit of the solid-state imaging device and the heat receiving unit. 前記放熱層の少なくとも一部は、前記回路基板の外部に露出することを特徴とする請求項2に記載の撮像ユニット。   The imaging unit according to claim 2, wherein at least a part of the heat dissipation layer is exposed to the outside of the circuit board.
JP2009046779A 2009-02-27 2009-02-27 Imaging unit Withdrawn JP2010205780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046779A JP2010205780A (en) 2009-02-27 2009-02-27 Imaging unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046779A JP2010205780A (en) 2009-02-27 2009-02-27 Imaging unit

Publications (1)

Publication Number Publication Date
JP2010205780A true JP2010205780A (en) 2010-09-16

Family

ID=42967031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046779A Withdrawn JP2010205780A (en) 2009-02-27 2009-02-27 Imaging unit

Country Status (1)

Country Link
JP (1) JP2010205780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119795A (en) * 2010-11-29 2012-06-21 Sharp Corp Imaging module, manufacturing method therefor, and electronic information apparatus
WO2015163192A1 (en) * 2014-04-23 2015-10-29 京セラ株式会社 Electronic element mounting substrate and electronic device
US9263492B2 (en) 2012-12-06 2016-02-16 Samsung Electronics Co., Ltd. Image sensor package
JP2019050418A (en) * 2018-11-29 2019-03-28 株式会社ニコン Imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119795A (en) * 2010-11-29 2012-06-21 Sharp Corp Imaging module, manufacturing method therefor, and electronic information apparatus
US9263492B2 (en) 2012-12-06 2016-02-16 Samsung Electronics Co., Ltd. Image sensor package
WO2015163192A1 (en) * 2014-04-23 2015-10-29 京セラ株式会社 Electronic element mounting substrate and electronic device
JPWO2015163192A1 (en) * 2014-04-23 2017-04-13 京セラ株式会社 Electronic device mounting substrate and electronic device
JP2019050418A (en) * 2018-11-29 2019-03-28 株式会社ニコン Imaging apparatus

Similar Documents

Publication Publication Date Title
JP6597729B2 (en) Imaging unit and imaging apparatus
JP4379295B2 (en) Semiconductor image sensor module and manufacturing method thereof
US20130077257A1 (en) Electronic device and image sensor heat dissipation structure
JP2008130738A (en) Solid-state imaging element
JP2008219704A (en) Semiconductor device
JP6939561B2 (en) Manufacturing method of image sensor package, image sensor and image sensor package
JP2011018747A (en) Imaging unit
JP7444850B2 (en) Semiconductor device, imaging device, and semiconductor device manufacturing method
JP2010205780A (en) Imaging unit
JP4270455B2 (en) Solid-state imaging device
JP2010263004A (en) Solid-state image pickup device
JP2006339291A (en) Hollow package, semiconductor device using the same and solid-state image pickup device
JP2007158779A (en) Heat radiating device of camera module
JP2013201568A (en) Imaging module
JP2011066093A (en) Imaging unit
US10109660B2 (en) Laminated semiconductor device
JP2010205916A (en) Semiconductor unit, and electronic imaging apparatus
JP2004173028A (en) Solid-state image pickup device
JP2010206105A (en) Imaging unit
WO2023058413A1 (en) Semiconductor device and electronic equipment
WO2015097962A1 (en) Semiconductor device
JP2006287123A (en) Solid imaging device
JP2013223164A (en) Imaging module
JP6184106B2 (en) Hollow package for solid-state imaging device, solid-state imaging device, and solid-state imaging device
WO2022085326A1 (en) Imaging device, electronic apparatus, and method for manufacturing imaging device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501