JP2017037865A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2017037865A
JP2017037865A JP2013268055A JP2013268055A JP2017037865A JP 2017037865 A JP2017037865 A JP 2017037865A JP 2013268055 A JP2013268055 A JP 2013268055A JP 2013268055 A JP2013268055 A JP 2013268055A JP 2017037865 A JP2017037865 A JP 2017037865A
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor device
heat conducting
conducting member
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013268055A
Other languages
Japanese (ja)
Inventor
裕貴 山下
Hirotaka Yamashita
裕貴 山下
藤井 俊夫
Toshio Fujii
俊夫 藤井
赤星 年隆
Toshitaka Akaboshi
年隆 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013268055A priority Critical patent/JP2017037865A/en
Priority to PCT/JP2014/005540 priority patent/WO2015097962A1/en
Publication of JP2017037865A publication Critical patent/JP2017037865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of securing heat radiation property and suppressing degradation in image quality.SOLUTION: A semiconductor device comprises: a first semiconductor chip 100 having a sensor part 110; a second semiconductor chip 101 arranged in a region that avoids the sensor part 110 on the first semiconductor chip 100; a first connection member 108 electrically connecting the first semiconductor chip 100 and the second semiconductor chip 101 to each other; an amplifier circuit 114 formed on the first semiconductor chip 100, and electrically connecting the sensor part 110 and the first connection member 108 to each other; and a first thermal conduction member 112 arranged above the amplifier circuit 114, not electrically connected with the amplifier circuit 114, and thermally coupled with the amplifier circuit 114.SELECTED DRAWING: Figure 1A

Description

本開示は、センサーチップに信号処理チップを積層した半導体装置に関する。   The present disclosure relates to a semiconductor device in which a signal processing chip is stacked on a sensor chip.

従来、半導体モジュール内で発生する熱を放熱することで、半導体モジュール内に設けられた素子が熱による劣化や機能障害を生ずるのを抑制する技術が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a technique is known in which heat generated in a semiconductor module is dissipated to prevent elements provided in the semiconductor module from being deteriorated by heat or causing functional failure (for example, see Patent Document 1). .

特許文献1に開示された半導体モジュールは、光電変換領域が形成された第1の半導体チップと、第1の半導体チップ上における光電変換領域が形成されていない領域に設けられ、第1の半導体チップと電気的に接続された第2の半導体チップと、第1の半導体チップ、第2の半導体チップを収容するとともに、少なくとも光電変換領域と対向する領域が透光性材料で形成されたパッケージと、第2の半導体チップとパッケージとを熱的に連結する熱伝導部材とを備える。この半導体モジュールは、第2の半導体チップで発生した熱を、熱伝導部材を介してパッケージに放熱することで、第2の半導体チップで発生した熱が光電変換部側へ移動するのを抑制することができる。   The semiconductor module disclosed in Patent Document 1 is provided in a first semiconductor chip in which a photoelectric conversion region is formed and a region in which no photoelectric conversion region is formed on the first semiconductor chip. A second semiconductor chip electrically connected to the first semiconductor chip, a package in which a first semiconductor chip and a second semiconductor chip are accommodated, and at least a region facing the photoelectric conversion region is formed of a translucent material; A heat conducting member for thermally connecting the second semiconductor chip and the package; In this semiconductor module, the heat generated in the second semiconductor chip is radiated to the package via the heat conducting member, thereby suppressing the heat generated in the second semiconductor chip from moving to the photoelectric conversion unit side. be able to.

特開2012−124305号公報JP 2012-124305 A

しかしながら、特許文献1に開示された技術では、第2の半導体チップで発生した熱が光電変換部側へ移動するのを抑制するのであり、光電変換部から第2の半導体チップを結ぶ回路で発生した熱が光電変換部側へ移動する場合には、放熱が不十分であり、光電変換部において機能障害が発生するおそれがある。   However, in the technique disclosed in Patent Document 1, heat generated in the second semiconductor chip is suppressed from moving to the photoelectric conversion unit side, and is generated in a circuit connecting the photoelectric conversion unit to the second semiconductor chip. When the generated heat moves to the photoelectric conversion unit side, heat dissipation is insufficient, and a functional failure may occur in the photoelectric conversion unit.

発熱による光電変換部における機能障害とは、例えば、以下のようなものがある。   Examples of functional failures in the photoelectric conversion unit due to heat generation include the following.

固体撮像素子においては、映像信号の黒レベルを一定にするために、暗電流によるノイズ成分を映像信号から差し引く必要がある。暗電流は、光電変換部を構成する半導体の熱雑音に起因するものであり、第2の半導体チップからの発熱により光電変換部が形成された領域内で温度分布、すなわち、部分的に温度上昇が生じた場合には、当該領域内での暗電流の発生量に差が出てしまうこととなる。   In a solid-state imaging device, it is necessary to subtract a noise component due to dark current from a video signal in order to make the black level of the video signal constant. The dark current is caused by the thermal noise of the semiconductor constituting the photoelectric conversion unit, and the temperature distribution in the region where the photoelectric conversion unit is formed by the heat generated from the second semiconductor chip, that is, the temperature rises partially. If this occurs, there will be a difference in the amount of dark current generated in that area.

暗電流によるノイズ成分は、光電変換部が形成された領域全体で一律に映像信号から差し引かれるため、当該領域内で暗電流の発生量に差があると、本来差し引かれるべき量のノイズ成分が差し引かれないこととなる。その結果、画質が劣化するという問題が発生する。   Since the noise component due to dark current is uniformly subtracted from the video signal in the entire area where the photoelectric conversion unit is formed, if there is a difference in the amount of dark current generated in the area, the amount of noise component that should be subtracted will be reduced. It will not be deducted. As a result, the problem that the image quality deteriorates occurs.

本発明は、上記従来の問題点を解決するものであり、放熱性を確保し、画質の劣化を抑制する半導体装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a semiconductor device that ensures heat dissipation and suppresses deterioration of image quality.

本開示における半導体装置は、センサー部を有する第1の半導体チップと、前記第1の半導体チップ上の前記センサー部を避けた領域に配置された第2の半導体チップと、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する第1の接続部材と、前記第1の半導体チップに形成され、前記センサー部と前記第1の接続部材とを電気的に接続する回路部と、前記回路部の上方に配置され、前記回路部と電気的に接続されておらず、かつ、前記回路部と熱的に連結されている第1の熱伝導部材と、を備えることを特徴とする。   A semiconductor device according to the present disclosure includes a first semiconductor chip having a sensor portion, a second semiconductor chip disposed in a region on the first semiconductor chip avoiding the sensor portion, and the first semiconductor chip. And a first connection member that electrically connects the second semiconductor chip, and a circuit portion that is formed on the first semiconductor chip and electrically connects the sensor unit and the first connection member. And a first heat conducting member that is disposed above the circuit unit, is not electrically connected to the circuit unit, and is thermally coupled to the circuit unit. And

本開示における半導体装置によると、放熱性を確保し、画質の劣化を抑制する半導体装置を提供することを目的とする。   An object of the semiconductor device according to the present disclosure is to provide a semiconductor device that ensures heat dissipation and suppresses deterioration of image quality.

第1の実施の形態に係る半導体装置の断面図Sectional drawing of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の平面図1 is a plan view of a semiconductor device according to a first embodiment; 第1の実施の形態に係る半導体装置の回路動作を示したブロック図The block diagram which showed the circuit operation | movement of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の変形例を示した断面図Sectional drawing which showed the modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の変形例を示した断面図Sectional drawing which showed the modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の変形例を示した断面図Sectional drawing which showed the modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した平面図The top view which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した平面図The top view which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した断面図Sectional drawing which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した断面図Sectional drawing which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した断面図Sectional drawing which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した平面図The top view which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した平面図The top view which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第1の実施の形態に係る半導体装置の他の変形例を示した平面図The top view which showed the other modification of the semiconductor device which concerns on 1st Embodiment 第2の実施の形態に係る半導体装置を示した断面図Sectional drawing which showed the semiconductor device which concerns on 2nd Embodiment 第3の実施の形態に係る半導体装置を示した断面図Sectional drawing which showed the semiconductor device which concerns on 3rd Embodiment

以下、本開示に係る半導体装置について図面を参照しながら説明する。但し、詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。   Hereinafter, a semiconductor device according to the present disclosure will be described with reference to the drawings. However, detailed description may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.

なお、添付図面および以下の説明は当業者が本開示を十分に理解するためのものであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。   The accompanying drawings and the following description are for the purpose of fully understanding the present disclosure by those skilled in the art, and are not intended to limit the subject matter described in the claims.

(第1の実施の形態)
はじめに、第1の実施の形態について説明する。
(First embodiment)
First, the first embodiment will be described.

図1A及び図1Bは、本実施の形態に係る半導体装置の全体構造を示す図であり、図1Bは平面図、図1Aは図1Bに示したA−A’線矢視断面図である。なお、図1Bに示す半導体装置では、図1Aにおける透光性カバー103の図示を省略している。   1A and 1B are diagrams showing an overall structure of a semiconductor device according to the present embodiment, FIG. 1B is a plan view, and FIG. 1A is a cross-sectional view taken along the line A-A ′ shown in FIG. 1B. In the semiconductor device shown in FIG. 1B, the illustration of the translucent cover 103 in FIG. 1A is omitted.

図1Aに示す半導体装置は、主な構成として、第1の半導体チップ100とセンサー部110と、第1の半導体チップ100上のセンサー部110を避けた領域に配置された第2の半導体チップ101と、パッケージ102と、第1の半導体チップ100上に形成され、センサー部110と第1の半導体チップ100と第2の半導体チップ101とを結ぶアンプ回路114の上に形成された第1の熱伝導部材112とを備えている。   The semiconductor device shown in FIG. 1A has, as main components, a first semiconductor chip 100, a sensor unit 110, and a second semiconductor chip 101 arranged in a region on the first semiconductor chip 100 avoiding the sensor unit 110. And the first heat formed on the package 102 and the amplifier circuit 114 formed on the first semiconductor chip 100 and connecting the sensor unit 110, the first semiconductor chip 100, and the second semiconductor chip 101. And a conductive member 112.

[1.パッケージ]
パッケージ102は、内部に第1の半導体チップ100と第2の半導体チップ101とを収容するとともに、センサー部110と対向する領域が透光性カバー103で形成されている。
[1. package]
The package 102 accommodates the first semiconductor chip 100 and the second semiconductor chip 101 inside, and a region facing the sensor unit 110 is formed by a translucent cover 103.

具体的には、図1Aに示すように、パッケージ102は、セラミック製の基板部102aと、同じくセラミック製の側壁部104と、透光性カバー103とで構成される。側壁部104と透光性カバー103との固着には、例えば、接着剤等を用いることができる。   Specifically, as illustrated in FIG. 1A, the package 102 includes a ceramic substrate portion 102 a, a ceramic side wall portion 104, and a translucent cover 103. For example, an adhesive or the like can be used for fixing the side wall portion 104 and the translucent cover 103.

透光性カバー103は、平板状であり、透光性を有する樹脂または透光性を有するガラス等で形成されている。この透光性カバー103は、パッケージ102を構成する側壁部104により構成される開口を塞ぐように、パッケージ102の側壁部104に接着剤等により固着されている。なお、透光性カバー103は、パッケージ102において第1の半導体チップ100および第2の半導体チップ101の上方に設けられるため、本実施の形態における天井部に相当する。   The translucent cover 103 has a flat plate shape and is made of a translucent resin or translucent glass. The translucent cover 103 is fixed to the side wall portion 104 of the package 102 with an adhesive or the like so as to close the opening formed by the side wall portion 104 constituting the package 102. Note that the light-transmitting cover 103 is provided above the first semiconductor chip 100 and the second semiconductor chip 101 in the package 102 and thus corresponds to the ceiling portion in the present embodiment.

図1A及び図1Bに示すように、パッケージ102の内部には、複数の電極パッド105が設けられている。また、基板部102aには、複数の外部リード線111が設けられている。外部リード線111の一部は、基板部102a内に埋設されるとともに、他の部分は基板部102aの外部に突出している。   As shown in FIGS. 1A and 1B, a plurality of electrode pads 105 are provided inside the package 102. A plurality of external lead wires 111 are provided on the substrate portion 102a. A part of the external lead wire 111 is embedded in the board part 102a, and the other part protrudes outside the board part 102a.

電極パッド105および外部リード線111は、それぞれ基板部102a内に埋設された配線に接続されている。そして、基板部102aの上面に第1の半導体チップ100が配置されており、さらに第1の半導体チップ100の上面に第2の半導体チップ101が配置されている。   The electrode pad 105 and the external lead wire 111 are respectively connected to wirings embedded in the substrate portion 102a. The first semiconductor chip 100 is disposed on the upper surface of the substrate portion 102 a, and the second semiconductor chip 101 is disposed on the upper surface of the first semiconductor chip 100.

[2.第1の半導体チップ及び第2の半導体チップ]
[2−1.外観構成]
第1の半導体チップ100は、イメージセンサとして機能する。第1の半導体チップ100は、シリコン基板と、シリコン基板上に設けられた電極パッド116及び117とを有している。なお、電極パッド116及び電極パッド117は、後に詳述するように、イメージセンサにおいてそれぞれ垂直転送部116および水平転送部117を構成する電極パッドとして使用される。
[2. First semiconductor chip and second semiconductor chip]
[2-1. Appearance configuration]
The first semiconductor chip 100 functions as an image sensor. The first semiconductor chip 100 has a silicon substrate and electrode pads 116 and 117 provided on the silicon substrate. The electrode pad 116 and the electrode pad 117 are used as electrode pads constituting the vertical transfer unit 116 and the horizontal transfer unit 117 in the image sensor, as will be described in detail later.

シリコン基板内には、入射光を受光し光電変換する光電変換部が行列状に複数形成されている。なお、光電変換部は、後に詳述するように、本実施の形態におけるセンサー部110に相当する。以下、この領域(光電変換部)をセンサー部110と称す。なお、第1の半導体チップ100と基板部102aとは、例えば、金属ペースト等によりボンディングされている。   In the silicon substrate, a plurality of photoelectric conversion portions that receive incident light and perform photoelectric conversion are formed in a matrix. Note that the photoelectric conversion unit corresponds to the sensor unit 110 in the present embodiment, as will be described in detail later. Hereinafter, this region (photoelectric conversion unit) is referred to as a sensor unit 110. The first semiconductor chip 100 and the substrate portion 102a are bonded with, for example, a metal paste.

また、図1Aに示すように、透光性カバー103を通過した光が第1の半導体チップ100のセンサー部110に入射されるように、第1の半導体チップ100において、センサー部110と透光性カバー103とが対向するように配置されている。   Further, as shown in FIG. 1A, in the first semiconductor chip 100, the light passing through the translucent cover 103 is incident on the sensor unit 110 of the first semiconductor chip 100. It arrange | positions so that the property cover 103 may oppose.

図1Aに示すように、電極パッド105は、それに対応するパッケージ102の電極パッド113に、外部リード線(ワイヤー線)106によりボンディングされている。センサー部110と第2の半導体チップ101とに信号を伝達する経路には、例えば、アンプ回路114が形成されている。アンプ回路114は、センサー部110からの信号を増幅させて第2の半導体チップ101に伝達する。なお、アンプ回路114は、本実施の形態における回路部に相当する。   As shown in FIG. 1A, the electrode pad 105 is bonded to the corresponding electrode pad 113 of the package 102 by an external lead wire (wire wire) 106. For example, an amplifier circuit 114 is formed in a path for transmitting a signal to the sensor unit 110 and the second semiconductor chip 101. The amplifier circuit 114 amplifies the signal from the sensor unit 110 and transmits the amplified signal to the second semiconductor chip 101. Note that the amplifier circuit 114 corresponds to a circuit portion in this embodiment.

第2の半導体チップ101は、例えば、後に詳述するように、第1の半導体チップ100に形成されたセンサー部(光電変換部)110を駆動する駆動回路120、および、第1の半導体チップ100からのアナログの画像電気信号をデジタル信号に変換するAFE(アナログフロントエンド)回路121等を含んだ集積回路のチップである。   The second semiconductor chip 101 includes, for example, a drive circuit 120 that drives a sensor unit (photoelectric conversion unit) 110 formed in the first semiconductor chip 100 and the first semiconductor chip 100, as will be described in detail later. An integrated circuit chip including an AFE (analog front end) circuit 121 that converts an analog electrical image signal from the digital image signal into a digital signal.

この第2の半導体チップ101の下端には、複数の接続部材が配設されている。複数の接続部材とは、例えば図1A及び図1Bに示すように、第1の接続部材108及び第2の接続部材109とがある。   A plurality of connection members are disposed at the lower end of the second semiconductor chip 101. Examples of the plurality of connecting members include a first connecting member 108 and a second connecting member 109 as shown in FIGS. 1A and 1B.

第1の接続部材108は、センサー部110からの信号を第2の半導体チップ101に送るための電極である。第2の接続部材109は、アナログ信号をデジタルに変換したデジタル信号を第2の半導体チップ101から第1の半導体チップ100に送るための電極である。この第1の接続部材108と第2の接続部材109とを介して、対応する第1の半導体チップ100と第2の半導体チップ101とがフリップチップボンディングにより接続されている。   The first connection member 108 is an electrode for sending a signal from the sensor unit 110 to the second semiconductor chip 101. The second connection member 109 is an electrode for sending a digital signal obtained by converting an analog signal into a digital signal from the second semiconductor chip 101 to the first semiconductor chip 100. Corresponding first semiconductor chip 100 and second semiconductor chip 101 are connected by flip chip bonding via the first connection member 108 and the second connection member 109.

第1の半導体チップ100と第2の半導体チップ101との隙間には、アンダーフィル樹脂107が充填されている。アンダーフィル樹脂107は、例えば接着力強化剤により構成され、第1の接続部材108、第2の接続部材109および第2の半導体チップ101を保護するために用いられている。アンダーフィル樹脂107の材料としては、例えば、液状エポキシ樹脂、樹脂シート、ACF(ACF:Anisotropic Conductive Film)等を用いることができる。   An underfill resin 107 is filled in a gap between the first semiconductor chip 100 and the second semiconductor chip 101. The underfill resin 107 is made of, for example, an adhesive strength enhancer, and is used to protect the first connection member 108, the second connection member 109, and the second semiconductor chip 101. As a material of the underfill resin 107, for example, a liquid epoxy resin, a resin sheet, ACF (ACF: Anisotropic Conductive Film), or the like can be used.

[2−2.回路構成]
図2は、本実施の形態に係る半導体装置における第1の半導体チップ100と第2の半導体チップ101の内部回路および動作の一例を模式的に示すブロック図である。
[2-2. Circuit configuration]
FIG. 2 is a block diagram schematically showing an example of internal circuits and operations of the first semiconductor chip 100 and the second semiconductor chip 101 in the semiconductor device according to the present embodiment.

本実施の形態にける半導体装置において、第1の半導体チップ100は、イメージセンサとして機能する。第1の半導体チップ100のセンサー部110には、行列状に配置された複数の光電変換回路115と、光電変換回路115の列毎に対応して設けられた垂直転送部116と、水平転送部117とが配置される。すなわち、センサー部110は、受光素子として機能する。垂直転送部116および水平転送部117は、それぞれ電極パッド116及び117で構成される。   In the semiconductor device according to the present embodiment, the first semiconductor chip 100 functions as an image sensor. The sensor unit 110 of the first semiconductor chip 100 includes a plurality of photoelectric conversion circuits 115 arranged in a matrix, a vertical transfer unit 116 provided corresponding to each column of the photoelectric conversion circuits 115, and a horizontal transfer unit. 117 are arranged. That is, the sensor unit 110 functions as a light receiving element. The vertical transfer unit 116 and the horizontal transfer unit 117 include electrode pads 116 and 117, respectively.

各光電変換回路115は、入射光を光電変換して信号電荷を生成する。垂直転送部116は、各光電変換回路115で生成された信号電荷を読み出し、水平転送部117に転送する。水平転送部117は、転送された信号電荷を同じ第1の半導体チップ100内の出力回路部119に転送する。出力回路部119は、転送された信号電荷をアナログの画像電気信号に変換して第2の半導体チップ101に出力する。   Each photoelectric conversion circuit 115 photoelectrically converts incident light to generate a signal charge. The vertical transfer unit 116 reads the signal charge generated by each photoelectric conversion circuit 115 and transfers it to the horizontal transfer unit 117. The horizontal transfer unit 117 transfers the transferred signal charge to the output circuit unit 119 in the same first semiconductor chip 100. The output circuit unit 119 converts the transferred signal charge into an analog image electrical signal and outputs it to the second semiconductor chip 101.

第2の半導体チップ101は、駆動回路120と、AFE回路121と、タイミングジェネレータ(TG:Timing Generator)122とを備えている。駆動回路120は、TG122で生成されるタイミング信号に基づいて駆動パルスを生成し、第1の半導体チップ100に出力する。   The second semiconductor chip 101 includes a drive circuit 120, an AFE circuit 121, and a timing generator (TG: Timing Generator) 122. The drive circuit 120 generates a drive pulse based on the timing signal generated by the TG 122 and outputs it to the first semiconductor chip 100.

ここで、駆動パルスには、垂直転送部116、水平転送部117および出力回路部119のそれぞれを駆動する駆動パルスが含まれる。第1の半導体チップ100では、これらの駆動パルスにもとづいて、上述のような光電変換回路115で生成された信号電荷の読み出しから、出力回路部119からの画像電気信号の出力までの一連の動作が行われる。   Here, the drive pulses include drive pulses for driving each of the vertical transfer unit 116, the horizontal transfer unit 117, and the output circuit unit 119. In the first semiconductor chip 100, based on these drive pulses, a series of operations from reading the signal charge generated by the photoelectric conversion circuit 115 as described above to outputting the image electric signal from the output circuit unit 119. Is done.

AFE回路121は、TG122で生成されるタイミング信号に基づいて、出力回路部119から出力されたアナログの画像電気信号を、デジタル信号に変換(ADC:Analog Digital Converter)する。ADCの前処理として、相関二重サンプリング(CDS:Correlated Double Sampling)、自動利得調整(AGC:Auto Gain Control)を行ってもよい。変換されたデジタル信号は、第2の半導体チップ101の外部に出力される。   The AFE circuit 121 converts an analog electrical image signal output from the output circuit unit 119 into a digital signal (ADC: Analog Digital Converter) based on the timing signal generated by the TG 122. As pre-processing of the ADC, correlated double sampling (CDS: Correlated Double Sampling) and automatic gain adjustment (AGC: Auto Gain Control) may be performed. The converted digital signal is output to the outside of the second semiconductor chip 101.

第1の半導体チップ100から第2の半導体チップ101に出力される画像電気信号は、第1の接続部材108より第2の半導体チップ101へ送られる。また、第2の半導体チップ101から出力されるデジタル信号は、第2の接続部材109により第1の半導体チップ100へ送られた後、第2の接続部材109と電気的に接続された電極パッド105に送られる。第1の半導体チップ100において、センサー部110から第2の半導体チップ101へ送られる信号は、アンプ回路114によって増幅される。   The electrical image signal output from the first semiconductor chip 100 to the second semiconductor chip 101 is sent from the first connection member 108 to the second semiconductor chip 101. The digital signal output from the second semiconductor chip 101 is sent to the first semiconductor chip 100 by the second connection member 109 and then electrically connected to the second connection member 109. 105. In the first semiconductor chip 100, a signal sent from the sensor unit 110 to the second semiconductor chip 101 is amplified by the amplifier circuit 114.

前述の内部回路の一例では、第1の半導体チップ100がCCD(Charge Coupled Device)イメージセンサの場合を説明したが、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、その他のメカニズムによるイメージセンサであってもよい。CMOSイメージセンサを用いれば、消費電力の抑制に有効である。また、被写体像を撮像して画像データを生成するものであればよい。   In the example of the internal circuit described above, the case where the first semiconductor chip 100 is a CCD (Charge Coupled Device) image sensor has been described. However, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or an image sensor based on another mechanism, may be used. Also good. Use of a CMOS image sensor is effective in suppressing power consumption. Moreover, what is necessary is just to image a subject image and generate image data.

また、第2の半導体チップ101に実装する回路は、前述の駆動回路120、AFE回路121、TG122に限らず、それらを含まないものであっても、もしくはその他の機能を備えたものであってもよい。画像電気信号を受けてデジタル信号を出力するものであれば、物理的にどのように構成してもよい。   Further, the circuit mounted on the second semiconductor chip 101 is not limited to the drive circuit 120, the AFE circuit 121, and the TG 122 described above, and may be one that does not include them, or that has other functions. Also good. Any configuration may be used physically as long as it receives an electrical image signal and outputs a digital signal.

また、第2の半導体チップ101の代わりに、もしくは第2の半導体チップ101に加えて、半導体チップ以外の電子部品を配置してもよい。また、AFE回路121の機能は、ADCは必須だが、その他の機能は選択的に配置してもよい。   Further, instead of the second semiconductor chip 101 or in addition to the second semiconductor chip 101, electronic components other than the semiconductor chip may be arranged. In addition, ADC is essential for the function of the AFE circuit 121, but other functions may be selectively arranged.

[2−3.熱伝導部材]
図1A及び図1Bに示すように、パッケージ102内におけるアンプ回路114の上方には、第1の熱伝導部材112が設けられている。第1の熱伝導部材112は、アンプ回路114と電気的に接続されておらず、熱的に連結されている。第1の熱伝導部材112は、アンプ回路114からの発熱を逃がす機能を果たす。
[2-3. Thermal conduction member]
As shown in FIGS. 1A and 1B, a first heat conducting member 112 is provided above the amplifier circuit 114 in the package 102. The first heat conducting member 112 is not electrically connected to the amplifier circuit 114 but is thermally connected. The first heat conducting member 112 functions to release heat from the amplifier circuit 114.

第1の熱伝導部材112は、パッケージ102内に含まれる気体よりも熱伝導率が高い材料で構成されている。このような材料としては、例えば、アルミニウム、銅、ステンレス等の金属材料、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等の熱伝導性の高い樹脂材料、または、これらの樹脂材料を布状に形成した熱伝導性シート等が挙げられる。また、第1の熱伝導部材112に上記の樹脂材料を用いる場合には、酸化亜鉛、酸化チタン、銀、カーボン、セラミック等の熱伝導性のフィラーが混合されていることが望ましい。第1の熱伝導部材112の材料として、例えば金属材料を用いることで、高い伝導性と非透光性を有する熱伝導部材を構成することができる。   The first heat conducting member 112 is made of a material having a higher thermal conductivity than the gas contained in the package 102. Examples of such materials include metal materials such as aluminum, copper, and stainless steel, resin materials having high thermal conductivity such as epoxy resins, acrylic resins, and silicone resins, or heat formed by forming these resin materials into a cloth shape. A conductive sheet etc. are mentioned. Moreover, when using said resin material for the 1st heat conductive member 112, it is desirable to mix heat conductive fillers, such as a zinc oxide, a titanium oxide, silver, carbon, a ceramic. By using, for example, a metal material as the material of the first heat conducting member 112, a heat conducting member having high conductivity and non-light-transmitting property can be configured.

上記では、第1の熱伝導部材112がパッケージ102内に含まれる気体よりも熱伝導率が高い材料で構成されているとしたが、より好ましくは、第1の半導体チップ100よりも熱伝導率が高い材料で構成されている方が良い。第1の熱伝導部材112が第1の半導体チップ100よりも熱伝導率が高い材料で構成されている場合には、アンプ回路114の放熱は、第1の半導体チップ100を介してパッケージ102に放熱されるよりも、第1の熱伝導部材112から直接放熱される方が、放熱量が多くなる。したがって、アンプ回路114から第1の半導体チップ100への熱の移動が減少し、第1の半導体チップ100はより安定した動作を行うことができる。   In the above description, the first thermal conductive member 112 is made of a material having a higher thermal conductivity than the gas contained in the package 102, but more preferably, the thermal conductivity is higher than that of the first semiconductor chip 100. It is better to be composed of high material. When the first heat conducting member 112 is made of a material having a higher thermal conductivity than that of the first semiconductor chip 100, the heat radiation of the amplifier circuit 114 is transferred to the package 102 via the first semiconductor chip 100. The amount of heat released is greater when heat is radiated directly from the first heat conducting member 112 than when heat is radiated. Therefore, heat transfer from the amplifier circuit 114 to the first semiconductor chip 100 is reduced, and the first semiconductor chip 100 can perform more stable operation.

このように、アンプ回路114の上方に、熱的に連結されている第1の熱伝導部材112が設けられていることで、アンプ回路114からの発熱を効率的に放熱することが可能となる。このような構成とすることで、アンプ回路114からの発熱によるセンサー部110の温度上昇を軽減することができる。また、第1の熱伝導部材112は、アンプ回路114と電気的には接続されていないので、第1の半導体チップ100は、より安定した動作を行うことができる。   Thus, by providing the thermally coupled first heat conducting member 112 above the amplifier circuit 114, it is possible to efficiently dissipate heat generated from the amplifier circuit 114. . With such a configuration, a temperature rise of the sensor unit 110 due to heat generation from the amplifier circuit 114 can be reduced. In addition, since the first heat conducting member 112 is not electrically connected to the amplifier circuit 114, the first semiconductor chip 100 can perform more stable operation.

[3.まとめ]
上記構成の半導体装置では、アンプ回路114の上方に第1の熱伝導部材112が設けられている。このような構成により、アンプ回路114からの発熱によるセンサー部110の温度上昇を軽減することができる。これにより、半導体装置で構成される画質の劣化を抑制することができる。また、画素周辺部に発熱部が存在する場合であっても、半導体装置の回路部の放熱性を確保し、画質の劣化を抑制することができる。
[3. Summary]
In the semiconductor device having the above configuration, the first heat conducting member 112 is provided above the amplifier circuit 114. With such a configuration, the temperature rise of the sensor unit 110 due to heat generation from the amplifier circuit 114 can be reduced. As a result, it is possible to suppress deterioration in image quality constituted by the semiconductor device. In addition, even when a heat generating portion exists in the periphery of the pixel, heat dissipation of the circuit portion of the semiconductor device can be ensured and deterioration in image quality can be suppressed.

また、このようにイメージセンサである第1の半導体チップ100と駆動回路120およびAFE回路121が形成された第2の半導体チップ101とを、パッケージ102内に収容したので、例えばデジタルスチルカメラに半導体装置を組み込む際、別途、駆動回路120およびAFE回路121が形成された半導体チップを組み込む必要がない。したがって、その分、デジタルスチルカメラの組み込み作業負荷を軽減することができる。   In addition, since the first semiconductor chip 100 as the image sensor and the second semiconductor chip 101 on which the drive circuit 120 and the AFE circuit 121 are formed are accommodated in the package 102, for example, a digital still camera has a semiconductor. When incorporating the device, it is not necessary to separately incorporate a semiconductor chip on which the drive circuit 120 and the AFE circuit 121 are formed. Therefore, it is possible to reduce the installation work load of the digital still camera.

また、本実施の形態に係る半導体装置では、第1の半導体チップ100が高い平面精度で形成される基板部102aの上に配置されているため、第1の半導体チップ100とパッケージ102(基板部102a)とを精度よく平行に配置することができる。したがって、デジタルスチルカメラ等に半導体装置を組み込む際、センサー部110をデジタルスチルカメラ等のレンズの光軸に対して垂直に精度よく配置することができる。結果として、センサー部110とレンズとの距離が焦点距離に一致しなくなることによる画像の歪みまたはボケ等による画質の劣化を抑制することができる。   Further, in the semiconductor device according to the present embodiment, the first semiconductor chip 100 and the package 102 (substrate portion) are disposed because the first semiconductor chip 100 is disposed on the substrate portion 102a formed with high planar accuracy. 102a) can be arranged in parallel with high accuracy. Therefore, when the semiconductor device is incorporated into a digital still camera or the like, the sensor unit 110 can be accurately arranged perpendicular to the optical axis of the lens of the digital still camera or the like. As a result, it is possible to suppress image quality deterioration due to image distortion or blurring caused by the distance between the sensor unit 110 and the lens not matching the focal length.

なお、ここでの「平行」とは、完全に平行であるものだけでなく、平行となるように設計されたものであり、製造誤差等により設計値からずれたものも含んでいる。   Here, “parallel” means not only completely parallel but also designed so as to be parallel, and includes those deviated from design values due to manufacturing errors or the like.

(第1の実施の形態の変形例)
次に、第1の実施の形態の変形例について説明する。以下、第1の実施の形態と同一の構成については説明を省略し、相違点を中心に説明する。
(Modification of the first embodiment)
Next, a modification of the first embodiment will be described. Hereinafter, the description of the same configuration as that of the first embodiment will be omitted, and the description will focus on the differences.

図3は、第1の実施の形態の変形例に係る半導体装置を示した断面図である。図3に示す半導体装置では、第1の熱伝導部材112aが第1の接続部材108及び第2の接続部材109と同一材料で形成されている。   FIG. 3 is a cross-sectional view showing a semiconductor device according to a modification of the first embodiment. In the semiconductor device shown in FIG. 3, the first heat conducting member 112 a is formed of the same material as the first connecting member 108 and the second connecting member 109.

これにより、第1の熱伝導部材112aと第1の接続部材108とを同時に形成することが可能となり、製造プロセスを簡略化することができる。なお、第2の接続部材109も、第1の熱伝導部材112a及び第1の接続部材108と同一材料で形成されてもよい。   As a result, the first heat conducting member 112a and the first connecting member 108 can be formed at the same time, and the manufacturing process can be simplified. The second connecting member 109 may also be formed of the same material as the first heat conducting member 112a and the first connecting member 108.

図4A及び図4Bは、第1の実施の形態の変形例に係る半導体装置を示した断面図である。図4Aに示す半導体装置では、第1の熱伝導部材112bと第2の半導体チップ101とが接した構成となっている。より具体的には、第1の熱伝導部材112bと第2の半導体チップ101とは、互いの側面で接している。これにより、アンプ回路114で発生した熱を、第1の熱伝導部材112を介して第2の半導体チップ101に逃がすことができる。したがって、第2の半導体チップ101を放熱板として活用することができ、放熱効果を高めることができる。   4A and 4B are cross-sectional views illustrating a semiconductor device according to a modification of the first embodiment. In the semiconductor device shown in FIG. 4A, the first heat conducting member 112b and the second semiconductor chip 101 are in contact with each other. More specifically, the first heat conducting member 112b and the second semiconductor chip 101 are in contact with each other on the side surfaces. Thereby, the heat generated in the amplifier circuit 114 can be released to the second semiconductor chip 101 via the first heat conducting member 112. Therefore, the second semiconductor chip 101 can be used as a heat dissipation plate, and the heat dissipation effect can be enhanced.

また、図4Bに示す半導体装置のように、第1の半導体チップ100と第2の半導体チップの間に挟みこむような形で第1の熱伝導部材112cが形成されていてもよい。このような構成により、第1の熱伝導部材112cと第2の半導体チップ101との接触面積が増大するため、放熱効果を高めることができる。なお、第2の半導体チップ101の厚みを大きくすることで、第2の半導体チップ101の熱容量を増やすことができるので、放熱効果をより高めることができる。   Further, as in the semiconductor device shown in FIG. 4B, the first heat conducting member 112c may be formed so as to be sandwiched between the first semiconductor chip 100 and the second semiconductor chip. With such a configuration, the contact area between the first heat conducting member 112c and the second semiconductor chip 101 increases, so that the heat dissipation effect can be enhanced. In addition, since the heat capacity of the second semiconductor chip 101 can be increased by increasing the thickness of the second semiconductor chip 101, the heat dissipation effect can be further enhanced.

図4A及び図4Bでは、第1の熱伝導部材112bまたは112cと第2の半導体チップ101の接しかたの一例を示したが、この構成に限るものではなく、第1の熱伝導部材112b又は112cが第2の半導体チップ101と接していれば、他のいかなる構成も可能である。   4A and 4B show an example of how the first heat conducting member 112b or 112c is in contact with the second semiconductor chip 101. However, the present invention is not limited to this configuration, and the first heat conducting member 112b or 112c is not limited to this configuration. Any other configuration is possible as long as is in contact with the second semiconductor chip 101.

図5は、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。なお、図5に示す半導体装置では、透光性カバー103の図示を省略している。   FIG. 5 is a plan view showing a semiconductor device according to another modification of the first embodiment. Note that the translucent cover 103 is not shown in the semiconductor device shown in FIG.

図5に示す半導体装置では、第1の熱伝導部材112dが連続的に形成される。すなわち、第1の熱伝導部材112は、センサー部110と第2の半導体チップ101との間に設けられた複数のアンプ回路114ごとに複数個設けられるのではなく、複数のアンプ回路114にわたって連続的に1つ形成されてもよい。これにより、第1の熱伝導部材112とアンプ回路114との接触面積が増え、放熱効果を高めることができる。また、第1の半導体チップ100と第2の半導体チップ101との間に充填されるアンダーフィル樹脂107がセンサー部110へ染み出すのを防ぐ効果も期待される。   In the semiconductor device shown in FIG. 5, the first heat conducting member 112d is continuously formed. That is, a plurality of the first heat conducting members 112 are not provided for each of the plurality of amplifier circuits 114 provided between the sensor unit 110 and the second semiconductor chip 101, but are continuous over the plurality of amplifier circuits 114. One may be formed. Thereby, the contact area of the 1st heat conductive member 112 and the amplifier circuit 114 increases, and can improve the thermal radiation effect. In addition, an effect of preventing the underfill resin 107 filled between the first semiconductor chip 100 and the second semiconductor chip 101 from leaking into the sensor unit 110 is also expected.

なお、第1の半導体チップ100と第2の半導体チップ101との間に充填されるアンダーフィル樹脂107は、第1の接続部材108を覆っていればよく、第1の熱伝導部材112dを覆う必要はない。そのため、第1の熱伝導部材112dを連続的に形成することにより、アンダーフィル樹脂107がセンサー部110へ染み出すのを防ぐ効果もある。   The underfill resin 107 filled between the first semiconductor chip 100 and the second semiconductor chip 101 only needs to cover the first connection member 108 and covers the first heat conducting member 112d. There is no need. Therefore, by continuously forming the first heat conductive member 112d, there is an effect of preventing the underfill resin 107 from leaking into the sensor unit 110.

図6は、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。なお、図6に示す半導体装置では、透光性カバー103の図示を省略している。   FIG. 6 is a plan view showing a semiconductor device according to another modification of the first embodiment. Note that the translucent cover 103 is not shown in the semiconductor device shown in FIG.

図6に示す半導体装置では、第1の熱伝導部材112eの形状は、第1の接続部材108及び第2の接続部材109と同一の形状に形成されている。一例として、図6に示すように、第1の接続部材108および第2の接続部材109は、上面から見た形状が円形の形状を有している。したがって、第1の熱伝導部材112eの上面から見た形状も、円形の形状に形成されている。   In the semiconductor device shown in FIG. 6, the first heat conducting member 112 e is formed in the same shape as the first connecting member 108 and the second connecting member 109. As an example, as shown in FIG. 6, the first connecting member 108 and the second connecting member 109 have a circular shape when viewed from above. Therefore, the shape seen from the upper surface of the first heat conducting member 112e is also formed in a circular shape.

これにより、第1の熱伝導部材112と第1の接続部材108と第2の接続部材109とを同一の条件で形成することができ、製造プロセスを容易にすることができる。   Thereby, the 1st heat conductive member 112, the 1st connection member 108, and the 2nd connection member 109 can be formed on the same conditions, and a manufacturing process can be made easy.

図7A〜図7Cは、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。   7A to 7C are plan views showing a semiconductor device according to another modification of the first embodiment.

図7Aに示す半導体装置では、半導体装置は第2の熱伝導部材123aを備え、第2の半導体チップ101とパッケージ102とが第2の熱伝導部材123aで熱的に連結されている。具体的には、図7Aに示すように、第2の熱伝導部材123aの一端側において、基板部102aに対向する面の一部は、第2の半導体チップ101の上面に接続されている。また、第2の熱伝導部材123aの他端側は、パッケージ102の側壁部104に埋め込まれて接続されている。   In the semiconductor device shown in FIG. 7A, the semiconductor device includes a second heat conductive member 123a, and the second semiconductor chip 101 and the package 102 are thermally connected by the second heat conductive member 123a. Specifically, as shown in FIG. 7A, on one end side of the second heat conducting member 123 a, a part of the surface facing the substrate portion 102 a is connected to the upper surface of the second semiconductor chip 101. The other end side of the second heat conducting member 123 a is embedded and connected to the side wall portion 104 of the package 102.

これにより、アンプ回路114で発生した熱を、第2の半導体チップ101と第2の熱伝導部材123aとを介してパッケージ102に逃がすことができ、放熱効果を高めることができる。   Thereby, the heat generated in the amplifier circuit 114 can be released to the package 102 via the second semiconductor chip 101 and the second heat conducting member 123a, and the heat dissipation effect can be enhanced.

また、図7Bに示す半導体装置においては、第2の熱伝導部材123bは、図7Aに示した第2の熱伝導部材123aと同様、第2の熱伝導部材123bの一端側において、基板部102aに対向する面の一部が、第2の半導体チップ101の上面に接続されている。また、第2の熱伝導部材123bの他端側は、基板部102aの方向へ折り曲げられ、第2の熱伝導部材123bが側壁部104および基板部102aの両方に接するように構成されている。   In the semiconductor device shown in FIG. 7B, the second heat conducting member 123b is similar to the second heat conducting member 123a shown in FIG. 7A on the one end side of the second heat conducting member 123b. A part of the surface opposite to the upper surface of the second semiconductor chip 101 is connected. The other end of the second heat conducting member 123b is bent in the direction of the substrate portion 102a, and the second heat conducting member 123b is configured to contact both the side wall portion 104 and the substrate portion 102a.

このような構成とすることで、側壁部104および基板部102aが、第2の熱伝導部材123bを設ける際のガイドとして機能するため、第2の熱伝導部材123bの位置合わせを容易に行うことができる。さらに、第2の熱伝導部材123bが、側壁部104および基板部102aの両方に接するようにすることで、第2の熱伝導部材123bとパッケージ102との接触面積が増え、より効率的に第2の半導体チップ101から第2の熱伝導部材123bを介してパッケージ102側へ、アンプ回路114の熱を放熱することができる。   With such a configuration, the side wall portion 104 and the substrate portion 102a function as a guide when the second heat conductive member 123b is provided, so that the second heat conductive member 123b can be easily aligned. Can do. Furthermore, by making the second heat conducting member 123b contact both the side wall portion 104 and the substrate portion 102a, the contact area between the second heat conducting member 123b and the package 102 is increased, and the second heat conducting member 123b is more efficiently used. The heat of the amplifier circuit 114 can be radiated from the second semiconductor chip 101 to the package 102 via the second heat conducting member 123b.

なお、第2の熱伝導部材123bは、必ずしも側壁部104と基板部102aとの両方に接している必要はなく、第2の熱伝導部材123bが側壁部104のみに接していることとしてもよい。   The second heat conducting member 123b is not necessarily in contact with both the side wall portion 104 and the substrate portion 102a, and the second heat conducting member 123b may be in contact with only the side wall portion 104. .

なお、図7A及び図7Bに示す半導体装置においては、第2の熱伝導部材123aまたは123bが板状の形状である場合を例示したが、第2の熱伝導部材の形状はこれに限定されない。   In the semiconductor device shown in FIGS. 7A and 7B, the case where the second heat conductive member 123a or 123b has a plate shape is illustrated, but the shape of the second heat conductive member is not limited thereto.

例えば、図7Cに示す第2の熱伝導部材123cのように、上述したような熱伝導性に優れる樹脂材料を、第2の半導体チップ101と、側壁部104と、基板部102aとに接するように充填することにより、第2の熱伝導部材123cを形成することとしてもよい。このように図7Cに示す方法で第2の熱伝導部材123cを形成することは、アンダーフィル樹脂107をパッケージ102内に流し込むことで第2の熱伝導部材123cを簡易に形成することができるという利点がある。   For example, like the second heat conducting member 123c shown in FIG. 7C, the resin material having excellent heat conductivity as described above is in contact with the second semiconductor chip 101, the side wall portion 104, and the substrate portion 102a. It is good also as forming the 2nd heat conductive member 123c by filling. Thus, forming the second heat conductive member 123c by the method shown in FIG. 7C means that the second heat conductive member 123c can be easily formed by pouring the underfill resin 107 into the package 102. There are advantages.

図8は、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。なお、図8に示す半導体装置では、透光性カバー103の図示を省略している。   FIG. 8 is a plan view showing a semiconductor device according to another modification of the first embodiment. Note that the translucent cover 103 is not shown in the semiconductor device shown in FIG.

図8に示す半導体装置では、第1の熱伝導部材112fのセンサー部110に対向する辺の長さは、第2の半導体チップ101のセンサー部110に対向する辺の長さよりも長くなっている。ここで、第1の熱伝導部材112fのセンサー部110に対向する辺の長さは、第2の半導体チップ101のセンサー部110に対向する辺の長さと同等であってもよい。すなわち、第1の熱伝導部材112fのセンサー部110に対向する辺の長さは、第2の半導体チップ101のセンサー部110に対向する辺の長さと同等の長さ以上に形成されていればよい。   In the semiconductor device shown in FIG. 8, the length of the side of the first heat conducting member 112 f that faces the sensor unit 110 is longer than the length of the side of the second semiconductor chip 101 that faces the sensor unit 110. . Here, the length of the side facing the sensor unit 110 of the first heat conducting member 112 f may be equal to the length of the side facing the sensor unit 110 of the second semiconductor chip 101. That is, if the length of the side facing the sensor unit 110 of the first heat conducting member 112f is equal to or longer than the length of the side facing the sensor unit 110 of the second semiconductor chip 101, Good.

これにより、第1の熱伝導部材112fと第1の半導体チップ100との接触面積が増えるので、アンプ回路114で発生した熱を第1の半導体チップ100を介して放熱することができる。したがって、アンプ回路114で発生した熱の放熱効果をより高めることができる。加えて、第1の熱伝導部材112fにより、第1の半導体チップ100と第2の半導体チップ101との間に充填されるアンダーフィル樹脂107がセンサー部110へ染み出すのを防ぐことができる。   As a result, the contact area between the first heat conducting member 112f and the first semiconductor chip 100 increases, so that the heat generated in the amplifier circuit 114 can be dissipated through the first semiconductor chip 100. Therefore, the heat dissipation effect of the heat generated in the amplifier circuit 114 can be further enhanced. In addition, the first heat conductive member 112f can prevent the underfill resin 107 filled between the first semiconductor chip 100 and the second semiconductor chip 101 from leaking into the sensor unit 110.

図9は、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。なお、図9に示す半導体装置では、透光性カバー103の図示を省略している。   FIG. 9 is a plan view showing a semiconductor device according to another modification of the first embodiment. Note that the translucent cover 103 is not shown in the semiconductor device shown in FIG.

図9に示す半導体装置では、第1の熱伝導部材112gがセンサー部110の外周を囲うように形成されている。具体的には、図9に示すように、第1の熱伝導部材112gは、センサー部110の外周を矩形形状に囲むように構成されている。これにより、第1の半導体チップ100において、センサー部110およびセンサー部110の外周付近の温度を均一化する効果を高めることができる。   In the semiconductor device shown in FIG. 9, the first heat conducting member 112 g is formed so as to surround the outer periphery of the sensor unit 110. Specifically, as shown in FIG. 9, the first heat conducting member 112g is configured to surround the outer periphery of the sensor unit 110 in a rectangular shape. Thereby, in the 1st semiconductor chip 100, the effect of equalizing temperature near the perimeter of sensor part 110 and sensor part 110 can be heightened.

図10は、第1の実施の形態の他の変形例に係る半導体装置を示した平面図である。なお、図10に示す半導体装置では、透光性カバー103の図示を省略している。   FIG. 10 is a plan view showing a semiconductor device according to another modification of the first embodiment. Note that the translucent cover 103 is not shown in the semiconductor device shown in FIG.

図10に示す半導体装置では、第1の熱伝導部材112hがパッケージ102と熱的に接続されている。具体的には、図10に示すように、第1の熱伝導部材112hは、センサー部110の外周を矩形形状に囲むと共に、矩形形状の四隅がパッケージ102の側壁部104と接続されるように第1の熱伝導部材112hが延びた構成となっている。   In the semiconductor device shown in FIG. 10, the first heat conducting member 112 h is thermally connected to the package 102. Specifically, as illustrated in FIG. 10, the first heat conducting member 112 h surrounds the outer periphery of the sensor unit 110 in a rectangular shape, and the four corners of the rectangular shape are connected to the side wall portion 104 of the package 102. The first heat conducting member 112h is extended.

これにより、アンプ回路114で発生した熱をパッケージ102に逃がすことができ、放熱効果を高めることができる。   Thereby, the heat generated in the amplifier circuit 114 can be released to the package 102, and the heat dissipation effect can be enhanced.

ここでは、第1の熱伝導部材112とパッケージ102の接続方法の一例を示したが、この構成に限るものではない。上述した変形例に限らず、第1の熱伝導部材112がパッケージ102と熱的に接続されていれば、他のいかなる接続方法も可能である。例えば、上述した変形例では、第1の熱伝導部材112hはパッケージ102の側壁部104に接続されているが、第1の熱伝導部材112hは基板部102aまたは透光性カバー103に接続される構成であってもよい。   Here, an example of a method for connecting the first heat conducting member 112 and the package 102 is shown, but the present invention is not limited to this configuration. Any other connection method is possible as long as the first heat conducting member 112 is thermally connected to the package 102 without being limited to the above-described modification. For example, in the modified example described above, the first heat conductive member 112h is connected to the side wall portion 104 of the package 102, but the first heat conductive member 112h is connected to the substrate portion 102a or the translucent cover 103. It may be a configuration.

(第2の実施の形態)
次に、第2の実施の形態について説明する。
(Second Embodiment)
Next, a second embodiment will be described.

図11は、第2の実施の形態に係る半導体装置の構成を模式的に示す断面図である。以下、第1の実施の形態との相違点を中心に説明するため、説明を簡略化したり、省略したりする構成もある。   FIG. 11 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the second embodiment. Hereinafter, in order to describe mainly the differences from the first embodiment, there is a configuration in which the description is simplified or omitted.

本実施の形態に係る半導体装置が第1の実施の形態に係る半導体装置と相違する点は、第2の半導体チップ101からの信号を第1の半導体チップ100に接続する第2の接続部材109の下方に貫通電極124およびはんだボール125が設けられている点である。   The semiconductor device according to the present embodiment is different from the semiconductor device according to the first embodiment in that a second connection member 109 that connects a signal from the second semiconductor chip 101 to the first semiconductor chip 100. The through electrode 124 and the solder ball 125 are provided below the electrode.

詳細には、図11に示すように、第1の半導体チップ100には、第2の半導体チップ101配置された一の面から他の面へ貫通孔が形成されている。そして、当該貫通孔の内部に導電性材料が充填されることで、貫通電極124が形成されている。   Specifically, as shown in FIG. 11, the first semiconductor chip 100 is formed with a through hole from one surface where the second semiconductor chip 101 is disposed to the other surface. The through electrode 124 is formed by filling the inside of the through hole with a conductive material.

また、第1の半導体チップ100の基板部102aと対向する面に位置する貫通電極124の端部には、貫通電極124と電気的に接続されるはんだボール125が配置されている。これにより、第2の半導体チップ101は、貫通電極124とはんだボール125とを介してパッケージ102と接続されている。   A solder ball 125 that is electrically connected to the through electrode 124 is disposed at the end of the through electrode 124 that is located on the surface of the first semiconductor chip 100 that faces the substrate portion 102a. Thereby, the second semiconductor chip 101 is connected to the package 102 via the through electrode 124 and the solder ball 125.

このような構成により、アンプ回路114で発生した熱を、貫通電極124を通してパッケージ102に放熱することができる。したがって、アンプ回路114の放熱性をより高めることができる。   With such a configuration, heat generated in the amplifier circuit 114 can be radiated to the package 102 through the through electrode 124. Therefore, the heat dissipation of the amplifier circuit 114 can be further improved.

(第3の実施の形態)
図12は、第3の実施の形態に係る半導体装置の構成を模式的に示す断面図である。以下、第1の実施の形態との相違点を中心に説明するため、説明を簡略化したり、省略したりする構成もある。
(Third embodiment)
FIG. 12 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the third embodiment. Hereinafter, in order to describe mainly the differences from the first embodiment, there is a configuration in which the description is simplified or omitted.

本実施の形態に係る半導体装置が第1の実施の形態と相違する点は、第2の半導体チップ101がパッケージ102に直接的に接するように設けられている点である。より詳しくは、図12に示すように、パッケージ102における天井部、すなわち、透光性カバー103の下面と第2の半導体チップ101の上面とが接している点である。   The semiconductor device according to the present embodiment is different from the first embodiment in that the second semiconductor chip 101 is provided so as to be in direct contact with the package 102. More specifically, as shown in FIG. 12, the ceiling portion of the package 102, that is, the lower surface of the translucent cover 103 and the upper surface of the second semiconductor chip 101 are in contact.

これにより、アンプ回路114で発生した熱を、第2の半導体チップ101を介してパッケージ102に放熱することができる。したがって、アンプ回路114の放熱性をより高めることができる。   Thereby, the heat generated in the amplifier circuit 114 can be radiated to the package 102 via the second semiconductor chip 101. Therefore, the heat dissipation of the amplifier circuit 114 can be further improved.

さらに、パッケージ102における第2の半導体チップ101と接する天井部(透光性カバー103の下面)が、パッケージ102内に含まれる気体よりも熱伝導率が高い材料で構成されており、この天井部が熱伝導部材として機能する。これにより、アンプ回路114の発熱を第1の熱伝導部材112と、第2の半導体チップ101と、パッケージ102とを通して放熱できる。したがって、アンプ回路114の放熱効果をより高めることができる。   Furthermore, the ceiling part (the lower surface of the translucent cover 103) in contact with the second semiconductor chip 101 in the package 102 is made of a material having a higher thermal conductivity than the gas contained in the package 102. Functions as a heat conducting member. Thereby, the heat generated by the amplifier circuit 114 can be radiated through the first heat conducting member 112, the second semiconductor chip 101, and the package 102. Therefore, the heat dissipation effect of the amplifier circuit 114 can be further enhanced.

なお、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形を行ってもよい。   The present invention is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the gist of the present invention.

例えば、上述した半導体装置では、第1の半導体チップがCCD(Charge Coupled Device)イメージセンサの場合を説明したが、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、その他のメカニズムによるイメージセンサであってもよい。また、被写体像を撮像して画像データを生成するものであればよい。   For example, in the above-described semiconductor device, the case where the first semiconductor chip is a CCD (Charge Coupled Device) image sensor has been described, but a CMOS (Complementary Metal Oxide Semiconductor) image sensor or an image sensor based on another mechanism may be used. Good. Moreover, what is necessary is just to image a subject image and generate image data.

また、第2の半導体チップに実装する回路は、駆動回路、AFE回路、TGに限らず、それらを含まないものであっても、もしくはその他の機能を備えたものであってもよい。画像電気信号を受けてデジタル信号を出力するものであれば、物理的にどのように構成してもよい。   Further, the circuit mounted on the second semiconductor chip is not limited to the driving circuit, the AFE circuit, and the TG, and may be a circuit that does not include them, or may have other functions. Any configuration may be used physically as long as it receives an electrical image signal and outputs a digital signal.

また、第2の半導体チップの代わりに、もしくは第2の半導体チップに加えて、半導体チップ以外の電子部品を配置してもよい。また、AFE回路の機能は、ADCは必須だが、その他の機能は選択的に配置してもよい。   Further, instead of the second semiconductor chip or in addition to the second semiconductor chip, electronic components other than the semiconductor chip may be arranged. Further, the ADC function is essential for the function of the AFE circuit, but other functions may be selectively arranged.

また、第1の熱伝導部材は、アルミニウム、銅、ステンレス等の金属材料、エポキシ樹脂、アクリル樹脂、シリコーン樹脂等の熱伝導性の高い樹脂材料、または、これらの樹脂材料を布状に形成した熱伝導性シートに限らず、その他の材料であってもよい。   The first heat conducting member is a metal material such as aluminum, copper, or stainless steel, a resin material having high heat conductivity such as an epoxy resin, an acrylic resin, or a silicone resin, or these resin materials are formed in a cloth shape. Not only a heat conductive sheet but other materials may be used.

また、第1の熱伝導部材の形状および大きさは、上述した実施の形態に示したものに限らず、適宜変更してもよい。   Further, the shape and size of the first heat conducting member are not limited to those shown in the above-described embodiment, and may be changed as appropriate.

また、半導体装置には、上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る半導体装置を備えた各種デバイスなども本開示に含まれる。例えば、本発明に係る半導体装置を備えたムービーカメラも本開示に含まれる。   Further, the semiconductor device includes other embodiments realized by combining arbitrary components in the above-described embodiments, and various modifications conceivable by those skilled in the art without departing from the gist of the present invention. The present disclosure also includes modifications obtained by applying the above, various devices including the semiconductor device according to the present invention, and the like. For example, a movie camera including the semiconductor device according to the present invention is also included in the present disclosure.

本発明に係る半導体装置は、センサーチップとADコンバータチップのCoCの構成において、第1の半導体チップのセンサー部と接続部材とを結ぶ回路上での発熱が大きい場合にでも、センサー部の温度分布を軽減し画素特性の向上が期待される。   In the semiconductor device according to the present invention, in the CoC configuration of the sensor chip and the AD converter chip, even when the heat generated on the circuit connecting the sensor unit and the connection member of the first semiconductor chip is large, the temperature distribution of the sensor unit Is expected to improve pixel characteristics.

100 第1の半導体チップ
101 第2の半導体チップ
102 パッケージ
102a 基板部
103 透光性カバー
104 側壁部
105 電極パッド
106 外部リード線
107 アンダーフィル樹脂
108 第1の接続部材
109 第2の接続部材
110 センサー部(光電変換部)
111 外部リード線
112、112a、112b、112c、112d、112e、112f、112g、112h 第1の熱伝導部材
113 電極パッド
114 アンプ回路(回路部)
115 光電変換回路
116 垂直転送部(電極パッド)
117 水平転送部(電極パッド)
119 出力回路部
120 駆動回路
121 AFE回路
122 TG
123a、123b、123c 第2の熱伝導部材
124 貫通電極
125 はんだボール
DESCRIPTION OF SYMBOLS 100 1st semiconductor chip 101 2nd semiconductor chip 102 Package 102a Substrate part 103 Translucent cover 104 Side wall part 105 Electrode pad 106 External lead wire 107 Underfill resin 108 1st connection member 109 2nd connection member 110 Sensor Part (photoelectric conversion part)
111 External lead wires 112, 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h First heat conducting member 113 Electrode pad 114 Amplifier circuit (circuit part)
115 Photoelectric conversion circuit 116 Vertical transfer unit (electrode pad)
117 Horizontal transfer unit (electrode pad)
119 Output circuit section 120 Drive circuit 121 AFE circuit 122 TG
123a, 123b, 123c Second heat conducting member 124 Through electrode 125 Solder ball

Claims (13)

センサー部を有する第1の半導体チップと、
前記第1の半導体チップ上の前記センサー部を避けた領域に配置された第2の半導体チップと、
前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する第1の接続部材と、
前記第1の半導体チップに形成され、前記センサー部と前記第1の接続部材とを電気的に接続する回路部と、
前記回路部の上方に配置され、前記回路部と電気的に接続されておらず、かつ、前記回路部と熱的に連結されている第1の熱伝導部材と、を備える
半導体装置。
A first semiconductor chip having a sensor portion;
A second semiconductor chip disposed in a region avoiding the sensor portion on the first semiconductor chip;
A first connecting member for electrically connecting the first semiconductor chip and the second semiconductor chip;
A circuit portion formed on the first semiconductor chip and electrically connecting the sensor portion and the first connecting member;
A semiconductor device comprising: a first heat conducting member that is disposed above the circuit unit, is not electrically connected to the circuit unit, and is thermally coupled to the circuit unit.
前記センサー部は受光素子であり、前記第2の半導体チップはADコンバータである
請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein the sensor unit is a light receiving element, and the second semiconductor chip is an AD converter.
前記第1の熱伝導部材は、金属材料で構成されている
請求項1または2に記載の半導体装置。
The semiconductor device according to claim 1, wherein the first heat conducting member is made of a metal material.
前記第1の熱伝導部材は、前記第1の接続部材と同一の材料で構成されている
請求項1〜3のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein the first heat conducting member is made of the same material as the first connecting member.
前記第1の熱伝導部材は、第2の半導体チップと接している
請求項1〜4のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein the first heat conducting member is in contact with a second semiconductor chip.
前記第1の熱伝導部材は、複数の前記回路部の上方において、複数の前記回路部にわたって連続的に形成されている
請求項1〜5のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein the first heat conducting member is formed continuously over the plurality of circuit units above the plurality of circuit units.
前記第1の熱伝導部材の形状は、前記第1の接続部材の形状と同一の形状である
請求項1〜5のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein a shape of the first heat conducting member is the same shape as a shape of the first connecting member.
前記半導体装置は、さらに、
前記第1の半導体チップおよび前記第2の半導体チップを収容するとともに、少なくとも前記センサー部と対向する領域が透光性材料で形成されたパッケージと、
前記第2の半導体チップと前記パッケージとを熱的に連結する第2の熱伝導部材とを備える
請求項1〜7のいずれか1項に記載の半導体装置。
The semiconductor device further includes:
A package in which the first semiconductor chip and the second semiconductor chip are accommodated, and at least a region facing the sensor unit is formed of a translucent material;
The semiconductor device according to claim 1, further comprising a second heat conductive member that thermally connects the second semiconductor chip and the package.
前記第1の熱伝導部材の前記センサー部に対向する辺の長さは、前記第2の半導体チップの前記センサー部に対向する辺の長さ以上の長さである
請求項1〜8のいずれか1項に記載の半導体装置。
The length of the side facing the sensor part of the first heat conducting member is longer than the length of the side facing the sensor part of the second semiconductor chip. 2. The semiconductor device according to claim 1.
前記第1の熱伝導部材は、前記センサー部の外周を囲んで形成されている
請求項1〜9のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein the first heat conducting member is formed so as to surround an outer periphery of the sensor unit.
前記半導体装置は、さらに、
前記第1の半導体チップおよび前記第2の半導体チップを収容するとともに、少なくとも前記センサー部と対向する領域が透光性材料で形成されたパッケージを備え、
前記第1の熱伝導部材は、前記パッケージと熱的に接続されている
請求項1〜10のいずれか1項に記載の半導体装置。
The semiconductor device further includes:
A package in which the first semiconductor chip and the second semiconductor chip are accommodated and at least a region facing the sensor unit is formed of a translucent material;
The semiconductor device according to claim 1, wherein the first heat conducting member is thermally connected to the package.
前記第1の半導体チップは、前記第1の半導体チップと前記第2の半導体チップとを電気的に接続する第2の接続部材を有し、
前記第2の接続部材の下部に、前記第1の半導体チップの一の面から他の面へ貫通する貫通電極を有している
請求項1〜11のいずれか1項に記載の半導体装置。
The first semiconductor chip has a second connection member that electrically connects the first semiconductor chip and the second semiconductor chip;
The semiconductor device according to claim 1, further comprising a through electrode penetrating from one surface of the first semiconductor chip to another surface at a lower portion of the second connection member.
前記パッケージにおいて、前記第1の半導体チップおよび前記第2の半導体チップの上方に設けられた天井部の下面は、前記第2の半導体チップの上面と接している
請求項1〜12のいずれか1項に記載の半導体装置。
In the said package, the lower surface of the ceiling part provided above the said 1st semiconductor chip and the said 2nd semiconductor chip is in contact with the upper surface of the said 2nd semiconductor chip. The semiconductor device according to item.
JP2013268055A 2013-12-25 2013-12-25 Semiconductor device Pending JP2017037865A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013268055A JP2017037865A (en) 2013-12-25 2013-12-25 Semiconductor device
PCT/JP2014/005540 WO2015097962A1 (en) 2013-12-25 2014-11-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268055A JP2017037865A (en) 2013-12-25 2013-12-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2017037865A true JP2017037865A (en) 2017-02-16

Family

ID=53477882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268055A Pending JP2017037865A (en) 2013-12-25 2013-12-25 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2017037865A (en)
WO (1) WO2015097962A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264455B1 (en) 2016-06-30 2021-05-26 Nxp B.V. A flip chip circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929919B2 (en) * 2006-08-22 2012-05-09 株式会社デンソー Semiconductor integrated circuit device
JP2008177241A (en) * 2007-01-16 2008-07-31 Toshiba Corp Semiconductor package
JP2009118145A (en) * 2007-11-06 2009-05-28 Canon Inc Semiconductor unit and camera
JP2010021451A (en) * 2008-07-14 2010-01-28 Panasonic Corp Solid-state imaging device and its manufacturing method
JP2012124305A (en) * 2010-12-08 2012-06-28 Panasonic Corp Semiconductor module

Also Published As

Publication number Publication date
WO2015097962A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
KR101711007B1 (en) Image sensor module having image sensor package
JP5794002B2 (en) Solid-state imaging device, electronic equipment
CN110265368B (en) Shooting unit and shooting device
US10750112B2 (en) Substrate structures for image sensor modules and image sensor modules including the same
JP2008219704A (en) Semiconductor device
JP2012009547A (en) Solid imaging device and electronic apparatus
JP2011018747A (en) Imaging unit
JP4270455B2 (en) Solid-state imaging device
JP2012124305A (en) Semiconductor module
JP2008227653A (en) Semiconductor device having imaging element
JP2012044091A (en) Imaging device, imaging module, and camera
JP5716321B2 (en) Imaging device
JP2013222772A (en) Image pickup element package and image pickup device
WO2015097962A1 (en) Semiconductor device
JP2010205780A (en) Imaging unit
JP2013201568A (en) Imaging module
JP6666027B2 (en) Semiconductor device and imaging device
US10972642B2 (en) Imager and imaging device
US11064099B2 (en) Imager and imaging device
JP2013223164A (en) Imaging module
JP6191254B2 (en) Imaging unit and imaging apparatus
JP2011198863A (en) Solid-state imaging device
JP7214870B2 (en) Imaging element unit and imaging device
JPWO2014118833A1 (en) Multilayer semiconductor device
JP2013201567A (en) Imaging apparatus and electronic apparatus