JP2011108672A - White light emitting apparatus and lighting fitting for vehicle using the same - Google Patents

White light emitting apparatus and lighting fitting for vehicle using the same Download PDF

Info

Publication number
JP2011108672A
JP2011108672A JP2008035462A JP2008035462A JP2011108672A JP 2011108672 A JP2011108672 A JP 2011108672A JP 2008035462 A JP2008035462 A JP 2008035462A JP 2008035462 A JP2008035462 A JP 2008035462A JP 2011108672 A JP2011108672 A JP 2011108672A
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
emitting device
white light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008035462A
Other languages
Japanese (ja)
Inventor
Hisayoshi Daicho
久芳 大長
Masanori Mizuno
正宣 水野
Akira Yamamoto
明 山元
Yoshinobu Miyamoto
快暢 宮本
Bong Goo Yun
奉九 尹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2008035462A priority Critical patent/JP2011108672A/en
Priority to PCT/JP2009/052821 priority patent/WO2009104653A1/en
Publication of JP2011108672A publication Critical patent/JP2011108672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white light emitting apparatus using a semiconductor light emitting element and a phosphor that is efficiently excited on light of the semiconductor light emitting element and emits light, capable of emitting a white light with a high luminescence intensity and having good temperature characteristics; and to provide a lighting fitting for vehicles using the white light emitting apparatus. <P>SOLUTION: There are provided the white light emitting apparatus and the lighting fitting for vehicles using the light emitting apparatus. The white light emitting apparatus comprises a semiconductor light emitting element having an emission spectrum peak in a wavelength range of 370 to 480 nm and two or more phosphors that are excited on light emitted from the semiconductor light emitting element to emit light. The apparatus includes, as the phosphors, a first phosphor represented by general formula Sr<SB>1-x-y</SB>Ba<SB>x</SB>Si<SB>2</SB>O<SB>2</SB>N<SB>2</SB>:Eu<SP>2+</SP><SB>y</SB>(wherein 0.3<x<1.0, 0.03<y<0.3, and x+y<1.0), and a second phosphor that is a cerium-activated YAG-based phosphor having a luminescence peak wavelength in a range of 510 to 600 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両用灯具に用いられる白色発光装置、及びこれを用いた車両用灯具に関する。
詳細には、半導体発光素子とこの半導体発光素子の光で効率よく励起され発光する蛍光体を用いて、車両用灯具に用いられる白色光源の色度規定の範囲内にある視感度の高い白色光を高い発光強度及び高い演色性で発光可能な白色発光装置、及びこれを用いた車両用灯具に関する。
The present invention relates to a white light emitting device used for a vehicular lamp, and a vehicular lamp using the white light emitting device.
Specifically, white light having high visibility within a chromaticity regulation range of a white light source used for a vehicle lamp using a semiconductor light emitting element and a phosphor that is efficiently excited and emitted by light of the semiconductor light emitting element. The present invention relates to a white light emitting device capable of emitting light with high light emission intensity and high color rendering properties, and a vehicular lamp using the white light emitting device.

近年、長寿命且つ消費電力が少ない白色発光装置として、青色光を発光する発光ダイオード(LED)やレーザダイオード(LD)等の半導体発光素子と、これらを励起光源とする蛍光体とを組み合わせ、両者から得られる発光の加色混合による合成スペクトルとして白色光を得るように構成された白色発光装置が注目されており、その用途として、車両用灯具、特に車両用前照灯の白色光源としての利用が期待されている。(特許文献1)
ここで、車両用灯具の白色光源は、色度規定により発光スペクトルが所定の色度座標(cx,cy)の範囲内にあることが要求されており、例えば、JIS:D5500によれば図1の色度図に示す領域Aの範囲内にあることが要求される。
尚、領域Aは下記式によって表される。
<車両用前照灯の白色光源の色度規定(JIS:D5500)>
黄色方向 cx≦0.50
青色方向 cx≧0.31
緑色方向 cy≦0.44 及び cy≦0.15+0.64cx
紫色方向 cy≧0.05+0.75cx 及び cy≧0.382
In recent years, as a white light emitting device with long life and low power consumption, a semiconductor light emitting diode (LED) or a laser diode (LD) emitting blue light and a phosphor using these as an excitation light source are combined. White light-emitting devices configured to obtain white light as a combined spectrum obtained by additive color mixing of light emission obtained from the above are attracting attention, and the use thereof is used as a white light source for vehicle lamps, particularly vehicle headlamps. Is expected. (Patent Document 1)
Here, the white light source of the vehicular lamp is required to have an emission spectrum within a range of predetermined chromaticity coordinates (cx, cy) according to chromaticity regulation. For example, according to JIS: D5500, FIG. It is required to be within the range of the area A shown in the chromaticity diagram.
The region A is represented by the following formula.
<Chromaticity regulation of white light source for vehicle headlamps (JIS: D5500)>
Yellow direction cx ≦ 0.50
Blue direction cx ≧ 0.31
Green direction cy ≦ 0.44 and cy ≦ 0.15 + 0.64cx
Purple direction cy ≧ 0.05 + 0.75 cx and cy ≧ 0.382

このような色度規定に合致した白色光を高い発光強度で発光可能とした白色発光装置の例として、青色波長域(420〜490nm)に発光ピーク波長を持つInGaN系の半導体発光素子と、510〜600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系の黄色蛍光体とを組み合わせて白色発光を実現する白色発光装置が知られている。(特許文献2)
特許公開2004−095480号公報 特許第3503139号公報
As an example of a white light emitting device that can emit white light meeting such chromaticity regulations with high light emission intensity, an InGaN-based semiconductor light emitting element having an emission peak wavelength in a blue wavelength range (420 to 490 nm), 510 There is known a white light emitting device that realizes white light emission in combination with a cerium-activated yttrium aluminum garnet (YAG) -based yellow phosphor having an emission peak wavelength between ˜600 nm. (Patent Document 2)
Japanese Patent Publication No. 2004-095480 Japanese Patent No. 3503139

ところで、青色光を発光する半導体発光素子と黄色蛍光体とを組み合わせた白色発光装置が再現可能な色度範囲は、半導体発光素子が発光する青色光の色度座標と蛍光体の発光する黄色光の色度座標とを結んだ直線により近似的に表すことができ、両者の発光強度を調整することで当該直線上における任意の色度座標の光を得ることができる。
図1の色度図に示す直線Lは、このような直線の一例であり、発光ピーク波長が450nmの青色半導体発光素子と色度座標がP(cx=0.43,cy= 0.54)である黄色蛍光体とを組み合わせた白色発光装置によって再現可能な色度範囲を示す直線である。
By the way, the chromaticity range that can be reproduced by a white light emitting device combining a semiconductor light emitting element that emits blue light and a yellow phosphor is the chromaticity coordinates of blue light emitted from the semiconductor light emitting element and the yellow light emitted from the phosphor. Can be approximately represented by a straight line connecting the chromaticity coordinates, and light having an arbitrary chromaticity coordinate on the straight line can be obtained by adjusting the emission intensity of the two.
A straight line L shown in the chromaticity diagram of FIG. 1 is an example of such a straight line, and a blue semiconductor light emitting element having an emission peak wavelength of 450 nm and chromaticity coordinates are P (cx = 0.43, cy = 0.54). It is a straight line which shows the chromaticity range reproducible with the white light-emitting device which combined yellow fluorescent substance which is.

ここで、人の目が明るさを感じる視感度は、青色光に比べ黄色光は約20倍高いことから、青色光と黄色光を加色混合した白色光の場合、同じ発光強度であっても黄色光成分が多い白色光のほうが人の目には明るく感じられる。このことは、前記直線L上の各色度座標の光は、同じ発光強度であれば黄色蛍光体側に近い方が人の目に明るく感じられることを示す。また、前記領域A(車両用灯具の白色光源の色度規定)の範囲内において最も視感度が高い色度座標は領域Aの黄色蛍光体側境界線と前記直線Lの交差点Xとなる。 Here, the visual sensitivity with which the human eye perceives brightness is about 20 times higher for yellow light than for blue light. Therefore, in the case of white light that is a mixture of blue light and yellow light, the luminous intensity is the same. However, white light with a lot of yellow light component feels brighter to human eyes. This means that the light of each chromaticity coordinate on the straight line L is felt brighter to the human eye when it has the same emission intensity, closer to the yellow phosphor side. Further, the chromaticity coordinate having the highest visibility within the range of the region A (the chromaticity regulation of the white light source of the vehicular lamp) is the intersection X between the yellow phosphor side boundary line of the region A and the straight line L.

従って、前記領域A(車両用灯具の白色光源の色度規定)の範囲内において白色光の視感度の高さを追求すると、交差点Xの座標がより黄色蛍光体側(図1中のX’側)へと近くなるように半導体発光素子の発光色と蛍光体の発光色を選択する必要がある。
具体的には、半導体発光素子の発光ピーク波長を450nm前後とした場合に、前記交差点Xの座標が視感度の高い範囲となるのは、黄色蛍光体のドミナント波長が575nm〜590nmの範囲である。
Accordingly, when the high visibility of white light is pursued within the range of the region A (the chromaticity regulation of the white light source of the vehicular lamp), the coordinates of the intersection X are on the yellow phosphor side (X ′ side in FIG. 1). It is necessary to select the light emission color of the semiconductor light emitting element and the light emission color of the phosphor so as to be close to.
Specifically, when the emission peak wavelength of the semiconductor light emitting device is around 450 nm, the coordinates of the intersection X are in the range where the visibility is high, the dominant wavelength of the yellow phosphor is in the range of 575 nm to 590 nm. .

しかし、従来知られた青色光を発光する半導体発光素子とYAG系蛍光体を組み合わせた白色発光装置においては、ドミナント波長が575nm〜590nmの範囲内において高い発光強度が得られるYAG系蛍光体が知られていないため、視感度の高い白色光を高い発光強度で発光可能な白色発光装置の実現が困難であった。 However, in the conventional white light emitting device combining a semiconductor light emitting element that emits blue light and a YAG phosphor, a YAG phosphor that has a high emission intensity within a dominant wavelength range of 575 nm to 590 nm is known. Therefore, it has been difficult to realize a white light emitting device capable of emitting white light with high luminous intensity with high emission intensity.

尚、前記YAG系の黄色蛍光体においては、ガドリニウムを混合することにより発光スペクトルのドミナント波長が長波長側へシフトすることが知られている。
そこで、発明者らは、ガドリニウムを含有していない一般式YAl12:Ceで表されるYAG系蛍光体(Phosphor Technology社(英)製:QUM58/F−U1、以下Gd非含有蛍光体)と、このYAG系蛍光体にガドリニウムを混入した一般式(Y,Gd)Al12:Ceで表される蛍光体(化成オプトニクス社製:P46−Y3、以下Gd含有蛍光体)について、これらの蛍光体の発光特性を測定したところ、下記の結果が得られた。
In the YAG yellow phosphor, it is known that the dominant wavelength of the emission spectrum is shifted to the longer wavelength side by mixing gadolinium.
Therefore, the inventors have a YAG-based phosphor represented by the general formula Y 3 Al 5 O 12 : Ce that does not contain gadolinium (manufactured by Phosphor Technology (UK): QUM58 / F-U1, hereinafter Gd-free) Phosphor), and a phosphor represented by the general formula (Y, Gd) 3 Al 5 O 12 : Ce mixed with gadolinium in this YAG-based phosphor (P46-Y3, manufactured by Kasei Optonics Co., Ltd., hereinafter Gd-containing fluorescence) When the emission characteristics of these phosphors were measured, the following results were obtained.

表1に、450nm励起下における各蛍光体の色度座標(cx, cy)、ピーク波長(nm)、及びドミナント波長(nm)を示す。

Figure 2011108672
Table 1 shows the chromaticity coordinates (cx, cy), peak wavelength (nm), and dominant wavelength (nm) of each phosphor under 450 nm excitation.
Figure 2011108672

また、図2に、Gd非含有蛍光体の発光スペクトル(実線)、及びGd含有蛍光体の発光スペクトル(点線)を示す。 FIG. 2 shows the emission spectrum (solid line) of the Gd-free phosphor and the emission spectrum (dotted line) of the Gd-containing phosphor.

表1及び図2から、Gd含有蛍光体はGd非含有蛍光体に対して、ピーク波長とドミナント波長がいずれも長波長であることが分かる。 From Table 1 and FIG. 2, it can be seen that the Gd-containing phosphor has a longer peak wavelength and dominant wavelength than the Gd-free phosphor.

図1の色度図は、Gd非含有蛍光体の色度座標をPとして、Gd含有蛍光体の色度座標をP´として示したものである。
この図1の色度座標から、色度座標がPからP´へシフトすると、発光ピーク波長が450nmの青色半導体発光素子と組み合わせた場合に再現可能な色度範囲は直線Lから点線L´へ、前記領域Aとの交差点はXからX´へとそれぞれシフトすることが分かる。
このことから、前記領域A内において、Gd含有蛍光体はGd非含有蛍光体よりも視感度の高い白色発光装置を実現可能であることが予想される。
The chromaticity diagram of FIG. 1 shows the chromaticity coordinates of the phosphor not containing Gd as P and the chromaticity coordinates of the phosphor containing Gd as P ′.
When the chromaticity coordinates are shifted from P to P ′ from the chromaticity coordinates of FIG. 1, the reproducible chromaticity range when combined with a blue semiconductor light emitting element having an emission peak wavelength of 450 nm is from a straight line L to a dotted line L ′. It can be seen that the intersection with the region A is shifted from X to X ′.
From this, in the region A, it is expected that the Gd-containing phosphor can realize a white light emitting device having higher visibility than the Gd-free phosphor.

しかし、本発明者らの測定結果によれば、前記Gd含有蛍光体は、前記Gd非含有蛍光体蛍光体に比べて、高温下における発光特性が低いことが分かった。
以下、その測定結果を詳述する。
However, according to the measurement results of the present inventors, it has been found that the Gd-containing phosphor has lower emission characteristics at high temperatures than the Gd-free phosphor phosphor.
Hereinafter, the measurement results will be described in detail.

図3は、温度条件の変化による蛍光体の発光特性の変化(以下、温度特性)を測定する装置を示す概略図である。
図3に示す測定装置10は、アルミ基板11の上面にサンプルセット用の開口部11aが形成され、アルミ基板内部には前記開口部の直下に位置する熱電対12及び面状ヒーター13が埋設されており、これらの熱電対12及び面状ヒーター13は温度コントローラーに接続されている。
開口部11aの上方には励起光を出射する集光レンズ14と、蛍光体の発光を受光する受光用石英ファイバー17が設置されている。
集光レンズ14には、励起光源としてのキセノンランプが石英ファイバー15及び分光器16aを介して接続されている。
受光用石英ファイバー17には、計測器としてのフォトマルが分光器16bを介して接続されている。
FIG. 3 is a schematic view showing an apparatus for measuring a change in the light emission characteristic of the phosphor due to a change in temperature condition (hereinafter, temperature characteristic).
In the measuring apparatus 10 shown in FIG. 3, an opening 11a for sample setting is formed on the upper surface of an aluminum substrate 11, and a thermocouple 12 and a planar heater 13 located immediately below the opening are embedded in the aluminum substrate. The thermocouple 12 and the planar heater 13 are connected to a temperature controller.
A condensing lens 14 that emits excitation light and a light receiving quartz fiber 17 that receives light emitted from the phosphor are installed above the opening 11a.
A xenon lamp as an excitation light source is connected to the condenser lens 14 via a quartz fiber 15 and a spectroscope 16a.
A photomultiplier as a measuring instrument is connected to the light receiving quartz fiber 17 via a spectroscope 16b.

上記のように構成された測定装置10において、各蛍光体の温度特性を下記の通り測定した。
まず、サンプルとなる各蛍光体18を開口部11aに充填し、充填表面をスキージ等で平滑面とした。
次に、温度コントローラーにより面状ヒーター13の出力を調整し、その出力に応じて変化するアルミ基板11の温度を熱電対12を介して温度コントローラーにフィードバックし、アルミ基板の温度を所定の温度で維持した。
このアルミ基板の温度を蛍光体18の温度と見なし、アルミ基板の温度が各温度条件に達してから10分経過した後に、キセノンランプ(ウシオ電機製:UXL−150D−O)の光を分光器16a(堀場製作所製:H−20UV)を介して450nmに分光した光を集光レンズ14より励起光として蛍光体18に照射し、発光した蛍光体の光を受光用石英ファイバー17及び分光器16b(堀場製作所:H−20VIS)を介してフォトマル(浜松ホトニクス製:R955−07)で測定した。
In the measuring apparatus 10 configured as described above, the temperature characteristics of each phosphor were measured as follows.
First, each phosphor 18 to be a sample was filled in the opening 11a, and the filling surface was smoothed with a squeegee or the like.
Next, the output of the planar heater 13 is adjusted by the temperature controller, and the temperature of the aluminum substrate 11 that changes in accordance with the output is fed back to the temperature controller via the thermocouple 12, and the temperature of the aluminum substrate is set to a predetermined temperature. Maintained.
The temperature of the aluminum substrate is regarded as the temperature of the phosphor 18, and after 10 minutes have passed since the temperature of the aluminum substrate reaches each temperature condition, the light of the xenon lamp (USHIO Inc .: UXL-150D-O) is used as the spectroscope. 16a (Horiba: H-20UV) is used to irradiate the phosphor 18 with excitation light from the condenser lens 14 as excitation light through the condenser lens 14, and the emitted phosphor light is received by the quartz fiber 17 for light reception and the spectrometer 16b. (Horiba Seisakusho: H-20VIS) was measured with Photomaru (manufactured by Hamamatsu Photonics: R955-07).

図4に、450nm励起下における前記Gd含有蛍光体及び前記Gd非含有蛍光体の温度特性を示す。
尚、図4におけるグラフの縦軸は、それぞれの蛍光体について、各温度条件下における積分発光強度を、30℃条件下における積分発光強度を100%とする比率として示したものである。
FIG. 4 shows temperature characteristics of the Gd-containing phosphor and the Gd-free phosphor under 450 nm excitation.
In addition, the vertical axis | shaft of the graph in FIG. 4 has shown the integral light emission intensity | strength in each temperature condition as a ratio which makes the integral light emission intensity | strength in 30 degreeC conditions 100% about each fluorescent substance.

この図4から、前記Gd含有蛍光体及び前記Gd非含有蛍光体は、いずれも温度条件が高温になるに従って積分発光強度が低下するが、Gd含有蛍光体はGd非含有蛍光体に比べてその維持率が低く、200℃条件下においては、Gd非含有蛍光体が80%程度の維持率であるのに対しGd含有蛍光体は50%程度の維持率であり、約1.6倍以上の発光強度の差が生じていることが分かる。 From FIG. 4, the Gd-containing phosphor and the Gd-free phosphor both have lower integrated emission intensity as the temperature conditions become higher, but the Gd-containing phosphor is less in comparison with the Gd-free phosphor. The retention rate is low, and under 200 ° C., the Gd-free phosphor has a retention rate of about 80%, whereas the Gd-containing phosphor has a retention rate of about 50%, which is about 1.6 times or more. It can be seen that there is a difference in emission intensity.

以上より、Gd含有蛍光体はガドリニウムの影響により発光スペクトルのドミナント波長が長波長側へシフトするが、高温下における発光特性は低下することが分かった。
そのため、Gd含有蛍光体は大電流を必要とするため発熱量が大きい高出力の白色発光装置での利用が不向きであり、Gd含有蛍光体を利用した高出力の白色発光装置の実現は困難であった。
From the above, it has been found that the dominant wavelength of the emission spectrum of the Gd-containing phosphor shifts to the longer wavelength side due to the influence of gadolinium, but the emission characteristics at high temperatures deteriorate.
For this reason, the Gd-containing phosphor requires a large current, and thus is not suitable for use in a high-output white light-emitting device that generates a large amount of heat, and it is difficult to realize a high-output white light-emitting device using the Gd-containing phosphor. there were.

本発明は、上記のような事情を鑑みてなされたものであり、その目的は、半導体発光素子とこの半導体発光素子の光で効率よく励起され発光する蛍光体を用いた白色発光装置であって、車両用灯具に用いられる白色光源の色度規定の範囲内にある白色光を高い発光強度で発光可能であり、且つ高温下においても発光特性が低下しない良好な温度特性を有する白色発光装置、及びこれを用いた車両用灯具を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object thereof is a white light emitting device using a semiconductor light emitting element and a phosphor that is efficiently excited by the light of the semiconductor light emitting element to emit light. A white light emitting device capable of emitting white light within a chromaticity stipulated range of a white light source used for a vehicular lamp at a high emission intensity and having good temperature characteristics that do not deteriorate the light emission characteristics even at high temperatures; And it aims at providing the vehicular lamp using this.

本発明者らは、上記課題を解決すべく研究を重ねた結果、一般式がSr1−x−yBaSi:Eu2+ (但し、xは0.25<x<1.0、yは0.03<y<0.3 x+yは0.3<x+y<1.0の範囲である)で表される蛍光体は、370〜480nmの波長域で効率良く励起され黄色成分を多く含む可視光を高い発光強度で発光すること、及び高温下においても発光特性が低下しない良好な温度特性を有することを新たに見出し、この蛍光体を用いて白色発光装置を構成することで本発明を完成するに至った。 As a result of repeated studies to solve the above problems, the present inventors have obtained a general formula of Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y (where x is 0.25 <x < 1.0 and y are 0.03 <y <0.3, and x + y is in the range of 0.3 <x + y <1.0), and the phosphor is efficiently excited in the wavelength range of 370 to 480 nm. Newly discovered that visible light containing a large amount of yellow component emits light with high emission intensity and that the light emission characteristics do not deteriorate even at high temperatures, and a white light emitting device is configured using this phosphor. Thus, the present invention has been completed.

すなわち本発明の請求項1に係る白色発光装置は、車両用灯具に用いられる白色発光装置であって、370〜480nmの波長域に発光スペクトルのピークを持つ半導体発光素子と、前記半導体発光素子の発する光により励起され可視光を発光する少なくとも2種以上の蛍光体を備えた白色発光装置において、前記蛍光体として、一般式Sr1−x−yBaSi:Eu2+ (但し、xは0.25<x<1.0、yは0.03<y<0.3 x+yは0.3<x+y<1.0の範囲である)で表される第一の蛍光体と、510〜600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系蛍光体である第二の蛍光体とを備えることを特徴とする。 That is, the white light emitting device according to claim 1 of the present invention is a white light emitting device used for a vehicle lamp, and includes a semiconductor light emitting element having an emission spectrum peak in a wavelength region of 370 to 480 nm, and the semiconductor light emitting element. In a white light emitting device including at least two kinds of phosphors that are excited by emitted light and emit visible light, the phosphors have the general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y Where x is 0.25 <x <1.0, y is 0.03 <y <0.3 x + y is in the range of 0.3 <x + y <1.0. And a second phosphor which is a cerium activated yttrium aluminum garnet (YAG) phosphor having an emission peak wavelength between 510 and 600 nm.

ここで、前記第一の蛍光体は、前記一般式で表される蛍光体であればその具体的な化学組成は特に限定されるものではないが、発光装置の色度の観点から、前記一般式のxが0.425≦x≦0.750、yが0.150≦y≦0.200、x+yが0.575≦x+y≦0.950の範囲にある第一の蛍光体を用いることが好ましい。 Here, the specific chemical composition of the first phosphor is not particularly limited as long as it is a phosphor represented by the general formula, but from the viewpoint of chromaticity of a light emitting device, the general phosphor It is preferable to use a first phosphor in which x in the formula is in a range of 0.425 ≦ x ≦ 0.750, y is in a range of 0.150 ≦ y ≦ 0.200, and x + y is in a range of 0.575 ≦ x + y ≦ 0.950. preferable.

前記第二の蛍光体は、510〜600nmの間に発光ピーク波長を持つセリウム付活のYAG系蛍光体であればその具体的な種類は特に限定されるものではないが、ガドリニウムを含有しないYAG系蛍光体であれば、高温化における温度特性の低下が少なく、その優れた発光特性を十分に利用した白色発光装置を得ることができる。 The second phosphor is not particularly limited as long as it is a cerium-activated YAG phosphor having an emission peak wavelength between 510 and 600 nm, but it does not contain gadolinium. If the phosphor is a phosphor, there is little decrease in temperature characteristics when the temperature is increased, and a white light emitting device that fully utilizes its excellent light emission characteristics can be obtained.

前記第一の蛍光体及び第二の蛍光体について、その発光スペクトルのドミナント波長は特に限定されるものではないが、視感度が高く、色温度3000K〜4000Kの暖色系の白色光を発光する白色発光装置を得るためには、前記第一の蛍光体の発光スペクトルのドミナント波長が570〜590nmの波長域にあり、前記第二の蛍光体の発光スペクトルのドミナント波長が565〜573nmの波長域にあることを特徴とする請求項1〜3のいずれかに記載の白色発光装置。 The dominant wavelength of the emission spectrum of the first phosphor and the second phosphor is not particularly limited, but is white that emits warm white light with high visual sensitivity and a color temperature of 3000K to 4000K. In order to obtain a light emitting device, the dominant wavelength of the emission spectrum of the first phosphor is in the wavelength range of 570 to 590 nm, and the dominant wavelength of the emission spectrum of the second phosphor is in the wavelength range of 565 to 573 nm. The white light emitting device according to claim 1, wherein the white light emitting device is provided.

また、同様の理由により、前記第一の蛍光体の発光スペクトルのピーク波長が565〜610nmの波長域にあり、前記第二の蛍光体の発光スペクトルのピーク波長が540〜560nmの波長域にあることがより好ましい。 For the same reason, the peak wavelength of the emission spectrum of the first phosphor is in the wavelength range of 565 to 610 nm, and the peak wavelength of the emission spectrum of the second phosphor is in the wavelength range of 540 to 560 nm. It is more preferable.

前記第一の蛍光体及び前記第二の蛍光体の合成スペクトルのピーク波長及び半減値は特に限定されるものではないが、白色発光装置の演色性の観点から、ピーク波長が570〜585nmの波長域にあり、半値幅が80nm以上であることが好ましい。 The peak wavelength and half value of the synthetic spectrum of the first phosphor and the second phosphor are not particularly limited, but from the viewpoint of color rendering properties of the white light emitting device, the peak wavelength is 570 to 585 nm. It is preferable that the full width at half maximum is 80 nm or more.

前記蛍光体の製造方法は特に限定されるものではないが、前記蛍光体の製造方法として、SrCO、BaCO、SiO及びEuの混合物を還元雰囲気中で1次焼成して作製したユーロピウム付活のオルソ珪酸塩を前駆体とし、この前駆体とSi及びNHClの混合物を還元雰囲気中で2次焼成することで、黄〜橙色の波長域に良好な発光強度を持つ蛍光体が得られる。 The method for producing the phosphor is not particularly limited, but as the method for producing the phosphor, a mixture of SrCO 3 , BaCO 3 , SiO 2 and Eu 2 O 3 is primarily fired in a reducing atmosphere. Luminous intensity in the yellow to orange wavelength region is obtained by using the europium-activated orthosilicate as a precursor and firing the mixture of this precursor with Si 3 N 4 and NH 4 Cl in a reducing atmosphere. A phosphor having

前記半導体発光素子は、370〜480nmの波長域に発光スペクトルのピークを持つものであれば特に限定されるものではないが、前記蛍光体の励起波長域の観点から、発光スペクトルのピークが430nm〜470nmの波長域にあることが好ましく、好適な例として、450nm付近の波長域の発光特性が良好であるInGaN系LEDを挙げることができる。 The semiconductor light emitting device is not particularly limited as long as it has an emission spectrum peak in a wavelength range of 370 to 480 nm. From the viewpoint of the excitation wavelength range of the phosphor, the emission spectrum peak is from 430 nm to 430 nm. It is preferably in the wavelength region of 470 nm, and a suitable example is an InGaN-based LED having good light emission characteristics in the wavelength region near 450 nm.

本発明の請求項9に係る車両用灯具は、上記の白色発光装置を光源として用いることを特徴とする。 The vehicular lamp according to claim 9 of the present invention is characterized in that the white light emitting device is used as a light source.

上記のように発光装置を構成することにより、車両用灯具に用いられる白色光源の色度規定の範囲内にある白色光を高い発光強度で発光可能であり、且つ高温下においても発光特性が低下しない良好な温度特性を有する白色発光装置、及びこれを用いた車両用灯具を得ることができる。 By configuring the light-emitting device as described above, it is possible to emit white light within a chromaticity stipulated range of a white light source used in a vehicle lamp with high light emission intensity, and the light emission characteristics deteriorate even at high temperatures. A white light emitting device having good temperature characteristics and a vehicle lamp using the same can be obtained.

以下、本発明の実施の形態を図面を用いて説明するが、本発明は以下の例示などによって何ら制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

図5は、本発明の白色発光装置の実施形態を示す概略断面図である。
図5に示す白色発光装置20は、基板21上に一対の電極22a(陽極)及び22b(陰極)が形成されている。電極22a上には半導体発光素子23がマウント部材24により固定されている。半導体発光素子23と電極22aは前記マウント部材24により通電されており、半導体発光素子23と電極22bはワイヤー25により通電されている。半導体発光素子の上23には蛍光層26が形成されている。
FIG. 5 is a schematic cross-sectional view showing an embodiment of the white light emitting device of the present invention.
In the white light emitting device 20 shown in FIG. 5, a pair of electrodes 22 a (anode) and 22 b (cathode) are formed on a substrate 21. A semiconductor light emitting element 23 is fixed on the electrode 22 a by a mount member 24. The semiconductor light emitting element 23 and the electrode 22 a are energized by the mount member 24, and the semiconductor light emitting element 23 and the electrode 22 b are energized by the wire 25. A fluorescent layer 26 is formed on the top 23 of the semiconductor light emitting device.

基板21は、導電性を有しないが熱伝導性は高い材料によって形成されることが好ましく、例えば、セラミック基板(窒化アルミニウム基板、アルミナ基板、ムライト基板、ガラスセラミック基板)やガラスエポキシ基板等を用いることができる。 The substrate 21 is preferably formed of a material having no electrical conductivity but high thermal conductivity. For example, a ceramic substrate (aluminum nitride substrate, alumina substrate, mullite substrate, glass ceramic substrate), a glass epoxy substrate, or the like is used. be able to.

電極22a及び22bは、金や銅等の金属材料によって形成された導電層である。 The electrodes 22a and 22b are conductive layers formed of a metal material such as gold or copper.

半導体発光素子23は、本発明の白色発光装置に用いられる発光素子の一例であり、例えば、紫外線又は短波長可視光を発光するLEDやLD等を用いることができる。具体例として、InGaN系の化合物半導体を挙げることができる。InGaN系の化合物半導体は、Inの含有量によって発光波長域が変化する。Inの含有量が多いと発光波長が長波長となり、少ない場合は短波長となる傾向を示す。 The semiconductor light-emitting element 23 is an example of a light-emitting element used in the white light-emitting device of the present invention. For example, an LED or LD that emits ultraviolet light or short-wavelength visible light can be used. Specific examples include InGaN-based compound semiconductors. The emission wavelength range of the InGaN-based compound semiconductor varies depending on the In content. When the In content is large, the emission wavelength becomes a long wavelength, and when it is small, the wavelength tends to be a short wavelength.

マウント部材24は、例えば銀ペースト等の導電性接着材または金錫共晶はんだ等であり、半導体発光素子23の下面を電極22aに固定し、半導体発光素子23の下面側電極と基板21上の電極22aを電気的に接続する。 The mounting member 24 is, for example, a conductive adhesive such as silver paste or gold-tin eutectic solder, and the lower surface of the semiconductor light emitting element 23 is fixed to the electrode 22a. The electrode 22a is electrically connected.

ワイヤー25は、金ワイヤー等の導電部材であり、例えば超音波熱圧着等により半導体発光素子23の上面側電極及び電極22bに接合され、両者を電気的に接続する。 The wire 25 is a conductive member such as a gold wire, and is bonded to the upper surface side electrode of the semiconductor light emitting element 23 and the electrode 22b by, for example, ultrasonic thermocompression bonding, and electrically connects both.

蛍光層26には、後述する蛍光体がバインダー部材によって半導体発光素子23の上面を覆う膜状に封止されている。このような蛍光層26は、例えば、液状又はゲル状のバインダー部材に蛍光体を混入した蛍光体ペーストを作製した後、当該蛍光体ペーストを半導体発光素子23の上面に塗布し、その後に塗布した蛍光体ペーストのバインダー部材を硬化することにより形成することができる。
バインダー部材としては、例えば、シリコーン樹脂やフッ素樹脂等を用いることができる。
In the fluorescent layer 26, a phosphor described later is sealed in a film shape covering the upper surface of the semiconductor light emitting element 23 with a binder member. For example, the phosphor layer 26 is prepared by preparing a phosphor paste in which a phosphor is mixed in a liquid or gel binder member, and then applying the phosphor paste on the upper surface of the semiconductor light emitting element 23. It can be formed by curing the binder member of the phosphor paste.
As the binder member, for example, a silicone resin or a fluorine resin can be used.

本発明の白色発光装置に用いられる第一の蛍光体は、一般式Sr1−x−yBaSi:Eu2+ (但し、xは0.25<x<1.0、yは0.03<y<0.3 x+yは0.3<x+y<1.0の範囲である)で表される蛍光体である。
この第一の蛍光体は、例えば、SrCO、BaCO、SiO、Euの混合粉末を還元雰囲気中で焼成し、ユーロピウム付活のオルソ珪酸塩を前駆体として作製する。この前駆体を粉砕し、SiとNHClを加え、還元雰囲気中で焼成することで得ることができる。
The first phosphor used in the white light emitting device of the present invention has a general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y (where x is 0.25 <x <1.0). , Y is 0.03 <y <0.3 x + y is in the range of 0.3 <x + y <1.0).
This first phosphor is produced, for example, by firing a mixed powder of SrCO 3 , BaCO 3 , SiO 2 , Eu 2 O 3 in a reducing atmosphere and using europium-activated orthosilicate as a precursor. This precursor can be pulverized, added with Si 3 N 4 and NH 4 Cl, and fired in a reducing atmosphere.

本発明の白色発光装置に用いられる第ニの蛍光体は、510〜600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系蛍光体であり、例えば、一般式(Y1−x−y,Gd)Al12:Ce(但し、xは0≦x<0.9、yは0<y<0.1の範囲である)で表される蛍光体等である。
この第二の蛍光体は、例えば、Al、Y、Gd、CeOの混合粉末を大気雰囲気中で焼成することで得ることができる。
The second phosphor used in the white light emitting device of the present invention is a cerium-activated yttrium aluminum garnet (YAG) phosphor having an emission peak wavelength between 510 and 600 nm. Y 1-xy , Gd x ) Al 5 O 12 : Ce y (where x is in the range of 0 ≦ x <0.9 and y is in the range of 0 <y <0.1). Etc.
This second phosphor can be obtained, for example, by firing a mixed powder of Al 2 O 3 , Y 2 O 3 , Gd 2 O 3 , and CeO 2 in the air atmosphere.

蛍光層26には、上記第一の蛍光体及び第二の蛍光体に加え、これらとは異なる発光特性を有する1種又は複数種類の蛍光体を混入することができる。これらの蛍光体の配合量を変化させることにより白色発光装置から得られる白色光の色度を調整することができる。 In addition to the first phosphor and the second phosphor, one or more types of phosphors having emission characteristics different from these can be mixed in the phosphor layer 26. The chromaticity of white light obtained from the white light emitting device can be adjusted by changing the blending amount of these phosphors.

また、蛍光層26には、種々の物性を有する蛍光体以外の物質を混入することもできる。例えば、金属酸化物、フッ素化合物、硫化物等のバインダー部材よりも屈折率の高い物質を蛍光層26に混入することにより、蛍光層26の屈折率を高めることができる。これにより、半導体発光素子23から発生する光が蛍光層26入射する際に生ずる全反射を低減させ、蛍光層26への励起光の取り込み効率を向上させるという効果が得られる。更に、混入する物質の粒子径をナノサイズにすることで、蛍光層26の透明度を低下させることなく屈折率を高めることができる。
また、アルミナ、ジルコニア、酸化チタン等の平均粒径0.3〜2μm程度の白色粉末を光散乱剤として蛍光層26に混入することもできる。これにより、発光面の輝度、色度むらを防止することができる。
Further, the phosphor layer 26 can be mixed with substances other than phosphors having various physical properties. For example, the refractive index of the fluorescent layer 26 can be increased by mixing the fluorescent layer 26 with a material having a higher refractive index than that of a binder member such as a metal oxide, a fluorine compound, or a sulfide. As a result, it is possible to reduce the total reflection that occurs when the light generated from the semiconductor light emitting element 23 enters the fluorescent layer 26 and to improve the efficiency of capturing excitation light into the fluorescent layer 26. Furthermore, the refractive index can be increased without reducing the transparency of the fluorescent layer 26 by making the particle size of the mixed substance nano-sized.
In addition, white powder having an average particle size of about 0.3 to 2 μm, such as alumina, zirconia, or titanium oxide, can be mixed in the fluorescent layer 26 as a light scattering agent. Thereby, unevenness in luminance and chromaticity of the light emitting surface can be prevented.

以上のように構成された白色発光装置において、電極22a、22bに対し駆動電流を印加すると、半導体発光素子23が通電され、半導体発光素子23は蛍光層26へ向けて青色光を含む固有の波長域の光を照射する。この光の一部は蛍光層26内の蛍光体の励起に用いられ、残りの光は蛍光層26を透過してそのまま外部へと照射される。蛍光体は半導体発光素子23からの光により励起され固有の波長域の光を照射する。蛍光層26を透過した半導体発光素子23からの光と蛍光体が発する光を加色混合することにより白色光を得ることができる。 In the white light emitting device configured as described above, when a driving current is applied to the electrodes 22a and 22b, the semiconductor light emitting element 23 is energized, and the semiconductor light emitting element 23 has a specific wavelength including blue light toward the fluorescent layer 26. Irradiate area light. A part of this light is used to excite the phosphor in the fluorescent layer 26, and the remaining light passes through the fluorescent layer 26 and is directly irradiated to the outside. The phosphor is excited by light from the semiconductor light emitting element 23 and emits light in a specific wavelength range. White light can be obtained by additively mixing the light from the semiconductor light emitting element 23 that has passed through the fluorescent layer 26 and the light emitted from the phosphor.

以上のように構成された発光装置について、以下、実施例を用いて更に具体的に説明するが、下記の発光装置の原料、製造方法、蛍光体の化学組成等の記載は本発明の発光装置の実施形態を何ら制限するものではない。 The light-emitting device configured as described above will be described in more detail with reference to the following examples. However, the following description of the light-emitting device, the manufacturing method, the chemical composition of the phosphor, and the like will be given below. The embodiment is not limited in any way.

まず、本実施例の発光装置において用いた蛍光体について詳述する。 First, the phosphor used in the light emitting device of this example will be described in detail.

<第一の蛍光体1>
Sr0.05Ba0.75Si:Eu2+ 0.2で表される蛍光体。
本蛍光体の製造は、まず、SrCOを0.114g、BaCOを2.277g、Euを0.541g、SiOを0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.1Ba1.5SiO:Eu2+ 0.4を得た。
次に、上記前駆体を2.451g、Siを0.935g、NHClをフラックスとして0.034gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200〜1400℃で6時間焼成し、第一の蛍光体1を得た。
<First phosphor 1>
A phosphor represented by Sr 0.05 Ba 0.75 Si 2 O 2 N 2 : Eu 2+ 0.2 .
First, 0.114 g of SrCO 3 , 2.277 g of BaCO 3 , 0.541 g of Eu 2 O 3 and 0.462 g of SiO 2 were weighed, and each raw material was put in an alumina mortar. The mixture was pulverized for 20 minutes, the mixture was put in an alumina crucible, the lid was closed, and the mixture was calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and the precursor Sr 0.1 Ba1 . 5 SiO 4 : Eu 2+ 0.4 was obtained.
Next, 2.451 g of the above precursor, 0.935 g of Si 3 N 4 and 0.034 g of NH 4 Cl as a flux were weighed, and each raw material was put in an alumina mortar and mixed and ground for about 20 minutes. The first phosphor 1 was obtained by placing the lid in an alumina crucible and firing the lid at a reducing atmosphere H 2 / N 2 (5/95), 1200 to 1400 ° C. for 6 hours.

<第一の蛍光体2>
Sr0.425Ba0.425Si:Eu2+ 0.15で表される蛍光体。
本蛍光体の製造は、まず、SrCOを1.321g、BaCOを1.766g、Euを0.556g、SiOを0.632gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.85Ba0.85SiO:Eu2+ 0.3を得た。
次に、上記前駆体を3.289g、Siを1.403g、NHClをフラックスとして0.047gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200〜1400℃で6時間焼成し、第一の蛍光体2を得た。
<First phosphor 2>
A phosphor represented by Sr 0.425 Ba 0.425 Si 2 O 2 N 2 : Eu 2+ 0.15 .
In the production of this phosphor, first, 1.321 g of SrCO 3 , 1.766 g of BaCO 3 , 0.556 g of Eu 2 O 3 and 0.632 g of SiO 2 were weighed, and each raw material was put in an alumina mortar. The mixture was pulverized for 20 minutes, the mixture was put in an alumina crucible, the lid was closed, and the mixture was calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and the precursor Sr 0.85 Ba 0. 85 SiO 4 : Eu 2+ 0.3 was obtained.
Next, 3.289 g of the above precursor, 1.403 g of Si 3 N 4 and 0.047 g of NH 4 Cl as a flux were weighed, each raw material was placed in an alumina mortar and mixed and ground for about 20 minutes. An alumina crucible was put on the lid and the mixture was fired at a reducing atmosphere H 2 / N 2 (5/95) at 1200 to 1400 ° C. for 6 hours to obtain a first phosphor 2.

<第一の蛍光体3>
Sr0.225Ba0.675Si:Eu2+ 0.1で表される蛍光体。
本蛍光体の製造は、まず、SrCOを0.511g、BaCOを2.049g、Euを0.271g、SiOを0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr0.45Ba1.35SiO:Eu2+ 0.20を得た。
次に、上記前駆体を2.315g、Siを0.935g、NHClをフラックスとして0.03gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200〜1400℃で6時間焼成し、第一の蛍光体3を得た。
<First phosphor 3>
A phosphor represented by Sr 0.225 Ba 0.675 Si 2 O 2 N 2 : Eu 2+ 0.1 .
Production of the phosphor, first, 0.511 g of SrCO 3, 2.049g of BaCO 3, 0.271 g of Eu 2 O 3, a SiO 2 0.462 g were weighed, approximately putting the raw materials into an alumina mortar The mixture was pulverized for 20 minutes, the mixture was put in an alumina crucible, the lid was closed, and the mixture was calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and the precursor Sr 0.45 Ba1 . 35 SiO 4 : Eu 2+ 0.20 was obtained.
Next, 2.315 g of the precursor, 0.935 g of Si 3 N 4 and 0.03 g of NH 4 Cl as a flux were weighed, each raw material was put in an alumina mortar and mixed and ground for about 20 minutes. An alumina crucible was put on the lid, and it was fired at a reducing atmosphere H 2 / N 2 (5/95), 1200 to 1400 ° C. for 6 hours to obtain the first phosphor 3.

<参考用蛍光体1>
Sr0.93Si:Eu2+ 0.07表される蛍光体。
本蛍光体の製造は、まず、SrCOを3.051g、Euを0.274g、SiOを0.668gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr1.86SiO:Eu2+ 0.14を得た。
次に、上記前駆体を2.763g、Siを1.403g、NHClをフラックスとして0.04gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200〜1400℃で6時間焼成し、参考用蛍光体1を得た。
<Reference phosphor 1>
A phosphor represented by Sr 0.93 Si 2 O 2 N 2 : Eu 2+ 0.07 .
In the production of this phosphor, first, 3.051 g of SrCO 3 , 0.274 g of Eu 2 O 3 and 0.668 g of SiO 2 were weighed, and each raw material was put in an alumina mortar and mixed and ground for about 20 minutes. The mixture was put in an alumina crucible, covered, and calcined in a reducing atmosphere H 2 / N 2 (5/95) in an electric furnace at 1100 ° C. for 3 hours to obtain a precursor Sr 1.86 SiO 4 : Eu 2+ 0.14 . It was.
Next, 2.763 g of the precursor, 1.403 g of Si 3 N 4 and 0.04 g of NH 4 Cl as a flux were weighed, each raw material was put in an alumina mortar and mixed and ground for about 20 minutes. An alumina crucible was put on the lid and the mixture was baked at a reducing atmosphere H 2 / N 2 (5/95), 1200 to 1400 ° C. for 6 hours to obtain a reference phosphor 1.

<参考用蛍光体2>
Sr0.67Ba0.25Si:Eu2+ 0.08で表される蛍光体。
本蛍光体の製造は、まず、SrCOを0.152g、BaCOを0.759g、Euを0.217g、SiOを0.462gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1100℃の電気炉で3時間焼成し、前駆体Sr1.34Ba0.5SiO:Eu2+ 0.16を得た。
次に、上記前駆体を2.017g、Siを0.935g、NHClをフラックスとして0.03gそれぞれ秤量し、各原料をアルミナ乳鉢に入れ約20分混合粉砕し、この混合物をアルミナ坩堝に入れ蓋をし、還元雰囲気H/N(5/95)、1200〜1400℃で6時間焼成し、参考用蛍光体2を得た。
<Reference phosphor 2>
A phosphor represented by Sr 0.67 Ba 0.25 Si 2 O 2 N 2 : Eu 2+ 0.08 .
Production of the phosphor, first, 0.152 g of SrCO 3, 0.759 g of BaCO 3, 0.217 g of Eu 2 O 3, a SiO 2 0.462 g were weighed, approximately putting the raw materials into an alumina mortar The mixture was pulverized for 20 minutes, the mixture was put in an alumina crucible, the lid was closed, and the mixture was calcined in a reducing atmosphere H 2 / N 2 (5/95), 1100 ° C. for 3 hours, and the precursor Sr 1.34 Ba 0. 5 SiO 4 : Eu 2+ 0.16 was obtained.
Next, 2.017 g of the precursor, 0.935 g of Si 3 N 4 and 0.03 g of NH 4 Cl as a flux were weighed, each raw material was put in an alumina mortar and mixed and ground for about 20 minutes. A lid was placed in an alumina crucible, and firing was performed in a reducing atmosphere H 2 / N 2 (5/95) at 1200 to 1400 ° C. for 6 hours to obtain a reference phosphor 2.

<第二の蛍光体1>
第二の蛍光体1として、YAl12:Ceで表される蛍光体(Phosphor Technology社(英)製:QUM58/F−U1)を用いた。
この蛍光体は、ガドリニウムを含有していないYAG系蛍光体の一例である。
<Second phosphor 1>
As the second phosphor 1, a phosphor represented by Y 3 Al 5 O 12 : Ce (manufactured by Phosphor Technology (UK): QUM58 / F-U1) was used.
This phosphor is an example of a YAG phosphor that does not contain gadolinium.

<第二の蛍光体2>
第二の蛍光体2として、(Y,Gd)Al12:Ceで表される蛍光体(化成オプトニクス社製:P46−Y3)を用いた。
この蛍光体は、ガドリニウムを含有しているYAG系蛍光体の一例である。
<Second phosphor 2>
As the second phosphor 2, a phosphor represented by (Y, Gd) 3 Al 5 O 12 : Ce (P46-Y3, manufactured by Kasei Optonix) was used.
This phosphor is an example of a YAG-based phosphor containing gadolinium.

<混合蛍光体1>
前記第1の蛍光体1及び前記第二の蛍光体1を、これらの重量比が第1の蛍光体1:第二の蛍光体1=1:2.5となるように混合した混合蛍光体1を作製した。
<Mixed phosphor 1>
A mixed phosphor in which the first phosphor 1 and the second phosphor 1 are mixed so that the weight ratio of the first phosphor 1 and the second phosphor 1 is 1: 2.5. 1 was produced.

<蛍光体の発光特性の評価結果>
以下、第一の蛍光体1〜5、第二の蛍光体1〜2、及び混合蛍光体1について測定した450nm励起下における各種の発光特性を詳述する。
<Evaluation results of emission characteristics of phosphor>
Hereinafter, various emission characteristics under 450 nm excitation measured for the first phosphors 1 to 5, the second phosphors 1 to 2, and the mixed phosphor 1 will be described in detail.

図6に第一の蛍光体1の励起スペクトルを示す。
この図6から、第一の蛍光体1は、励起スペクトルのピークが400〜470nmにブロードに存在することが分かる。
このことから、第一の蛍光体1は、370〜480nmの波長域に発光スペクトルのピークを持つ半導体発光素子の光により効率良く励起され、発光可能であることが分かる。
FIG. 6 shows the excitation spectrum of the first phosphor 1.
From FIG. 6, it can be seen that the first phosphor 1 has a broad excitation spectrum peak at 400 to 470 nm.
From this, it can be seen that the first phosphor 1 is efficiently excited by the light of the semiconductor light emitting element having the emission spectrum peak in the wavelength range of 370 to 480 nm and can emit light.

表1に、450nm励起下における各蛍光体の積分発光強度比、色度座標(cx,cy)、及びドミナント波長(nm)を示す。
尚、積分発光強度比は、第二の蛍光体2の積分発光強度を100としたときの相対値として示す。

Figure 2011108672
Table 1 shows the integrated emission intensity ratio, chromaticity coordinates (cx, cy), and dominant wavelength (nm) of each phosphor under 450 nm excitation.
The integrated emission intensity ratio is shown as a relative value when the integrated emission intensity of the second phosphor 2 is 100.
Figure 2011108672

表2から、第一の蛍光体1〜3は、いずれも第二の蛍光体2(Gd含有蛍光体)より強い積分発光強度を示しており、色度座標がcx=0.47〜0.52、cy=0.47〜0.51の範囲内にあることが分かる。
また、第一の蛍光体1〜3、及び参考用蛍光体1〜2は、いずれも一般式Sr1−x−yBaSi:Eu2+ (但し、xは0.25<x<1.0、yは0.03<y<0.3 x+yは0.3<x+y<1.0の範囲である)で表されるで示される蛍光体であるが、いずれも第二の蛍光体1(Gd非含有蛍光体)より発光スペクトルのドミナント波長が長波長となることが分かる。
From Table 2, the first phosphors 1 to 3 all show an integrated emission intensity stronger than that of the second phosphor 2 (Gd-containing phosphor), and the chromaticity coordinates are cx = 0.47-0. 52, cy = 0.47 to 0.51.
The first phosphors 1 to 3 and the reference phosphors 1 to 2 are all represented by the general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y (where x is 0. 25 <x <1.0, y is 0.03 <y <0.3, and x + y is in the range of 0.3 <x + y <1.0). It can be seen that the dominant wavelength of the emission spectrum is longer than that of the second phosphor 1 (Gd-free phosphor).

図7に、450nm励起下における第一の蛍光体1の発光スペクトル(点線)、第一の蛍光体2の発光スペクトル(実線)、第一の蛍光体3の発光スペクトル(一点鎖線)、及び第二の蛍光体1(Gd非含有蛍光体)の発光スペクトル(二点鎖線)を示す。
尚、図7におけるグラフの縦軸は各蛍光体の相対的な発光強度を示すものである。
FIG. 7 shows the emission spectrum (dotted line) of the first phosphor 1 under 450 nm excitation, the emission spectrum (solid line) of the first phosphor 2, the emission spectrum (dotted line) of the first phosphor 3, and The emission spectrum (two-dot chain line) of the second phosphor 1 (Gd-free phosphor) is shown.
In addition, the vertical axis | shaft of the graph in FIG. 7 shows the relative light emission intensity of each fluorescent substance.

この図7から、各蛍光体の発光スペクトルのピーク波長は、第一の蛍光体1が585〜595nm、第一の蛍光体2が565〜580nm、第一の蛍光体3が565〜580nm、第二の蛍光体1(Gd非含有蛍光体)が540〜550nmの波長域にあり、第一の蛍光体1〜3はいずれも第二の蛍光体1より発光スペクトルのピーク波長が長波長側にあることが分かる。 From FIG. 7, the peak wavelengths of the emission spectra of the respective phosphors are 585 to 595 nm for the first phosphor 1, 565 to 580 nm for the first phosphor 2, 565 to 580 nm for the first phosphor 3, The second phosphor 1 (Gd-free phosphor) is in the wavelength range of 540 to 550 nm, and the first phosphors 1 to 3 all have a longer emission spectrum peak wavelength than the second phosphor 1. I understand that there is.

また、図7から、第一の蛍光体1〜3の発光スペクトルは、波形においては目立った違いが無く、いずれも半値幅は80〜110であることが分かる。 Further, it can be seen from FIG. 7 that the emission spectra of the first phosphors 1 to 3 have no noticeable difference in waveform, and the full widths at half maximum are 80 to 110.

図8に、450nm励起下における第一の蛍光体1の発光スペクトル(点線)、第二の蛍光体1の発光スペクトル(一点鎖線)、及び混合蛍光体1の発光スペクトル(実線)を示す。
尚、図8におけるグラフの縦軸は各蛍光体の相対的な発光強度を示すものである。
In FIG. 8, the emission spectrum (dotted line) of the 1st fluorescent substance 1 under 450 nm excitation, the emission spectrum (one-dot chain line) of the 2nd fluorescent substance 1, and the emission spectrum (solid line) of the mixed fluorescent substance 1 are shown.
In addition, the vertical axis | shaft of the graph in FIG. 8 shows the relative light emission intensity | strength of each fluorescent substance.

この図8から、混合蛍光体1は、発光スペクトルが第一の蛍光体1と第二の蛍光体1の中間に位置し、ピーク波長は第一の蛍光体1よりも短波長側で第二の蛍光体1よりも長波長側にあることが分かる。
また、図8より、混合蛍光体1の発光スペクトルは第一の蛍光体1及び第二の蛍光体1よりもブロードな波形であることが分かる。
また、表2より、混合蛍光体1の発光色度は第二の蛍光体2より長波長にあることが判る。
From FIG. 8, the mixed phosphor 1 has an emission spectrum located between the first phosphor 1 and the second phosphor 1, and the peak wavelength is shorter than the first phosphor 1 on the second wavelength side. It turns out that it exists in the long wavelength side rather than the fluorescent substance 1 of this.
Further, it can be seen from FIG. 8 that the emission spectrum of the mixed phosphor 1 has a broader waveform than the first phosphor 1 and the second phosphor 1.
Further, it can be seen from Table 2 that the emission chromaticity of the mixed phosphor 1 is longer than that of the second phosphor 2.

図9の色度図に、第一の蛍光体1〜3の色度座標Y1〜Y3と、及び参考用蛍光体1〜2の色度座標Y4〜Y5を示す。
この図9の色度図から、Y1〜Y5は仮想の直線である点線D上にほぼ並んで位置していることがわかる。
このことから、一般式Sr1−x−yBaSi:Eu2+ で示される蛍光体の色度座標は、前記点線D上において前記一般式のx及びyの値に応じたいずれかの地点に位置し、前記一般式のxの値が0.425≦x≦0.75であり、x+yが0.575≦x+y≦0.95の範囲内にある蛍光体の色度座標はY3よりもY1側に位置し、前記一般式のxの値が0≦x<0.425でx+yが0.07≦x+y<0.575の範囲内にある蛍光体の色度座標はY2よりもY5側に位置することが予想される。
The chromaticity diagram of FIG. 9 shows the chromaticity coordinates Y1 to Y3 of the first phosphors 1 to 3 and the chromaticity coordinates Y4 to Y5 of the reference phosphors 1 to 2.
From the chromaticity diagram of FIG. 9, it can be seen that Y1 to Y5 are located substantially side by side on the dotted line D, which is a virtual straight line.
From this, the chromaticity coordinates of the phosphor represented by the general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y are the values of x and y in the general formula on the dotted line D. The color of the phosphor that is located at any point according to the formula, the value of x in the general formula is 0.425 ≦ x ≦ 0.75, and x + y is in the range of 0.575 ≦ x + y ≦ 0.95 The chromaticity coordinates of the phosphor is located on the Y1 side of Y3, and the value of x in the general formula is in the range of 0 ≦ x <0.425 and x + y is in the range of 0.07 ≦ x + y <0.575. Is expected to be located on the Y5 side of Y2.

図10の色度図に、第一の蛍光体1の色度座標Y1、第二の蛍光体1〜2の色度座標Y6〜7、及び混合蛍光体の色度座標Y8を示す。 The chromaticity diagram of FIG. 10 shows chromaticity coordinates Y1 of the first phosphor 1, chromaticity coordinates Y6 to 7 of the second phosphors 1 and 2, and chromaticity coordinates Y8 of the mixed phosphor.

この図10の色度図及び表1から、混合蛍光体1の色度座標Y8は、混合されている第一の蛍光体1の影響により第二の蛍光体1単独の色度座標Y6よりも長波長側へシフトしており、混合蛍光体1は第二の蛍光体1単独よりも長波のドミナント波長を有している。
このことから、第二の蛍光体1よりも長波のドミナント波長を示している第一の蛍光体1〜3は、いずれも第二の蛍光体1と混合することにより、第二の蛍光体1単独よりも長波のドミナント波長を有する合成スペクトルを得られることが予想される。
From the chromaticity diagram of FIG. 10 and Table 1, the chromaticity coordinate Y8 of the mixed phosphor 1 is more than the chromaticity coordinate Y6 of the second phosphor 1 alone due to the influence of the mixed first phosphor 1. Shifting to the long wavelength side, the mixed phosphor 1 has a dominant wavelength longer than that of the second phosphor 1 alone.
From this, the 1st fluorescent substance 1-3 which has shown the dominant wavelength longer wave than the 2nd fluorescent substance 1 is mixed with the 2nd fluorescent substance 1, and 2nd fluorescent substance 1 It is expected that a composite spectrum having a dominant wavelength longer than that of the single wave can be obtained.

<加色混合による白色光化の検討>
前述の通り、発光スペクトルのピーク波長が450nmである半導体発光素子と各蛍光体の加色混合によって再現可能な色度範囲は、図9及び図10の色度図における当該半導体発光素子の色度座標ポイントBと各蛍光体の色度座標ポイントY1〜Y8とを結んだ直線L1〜L8により近似的に表すことができる。
この図9及び図10の色度図より、直線L4〜5(参考用蛍光体1〜2)は車両用前照灯の白色光源の色度規定(JISD5500)の範囲を示す領域Aの範囲を通過しないため、これらの参考用蛍光体1〜2を単独で青色発光の半導体発光素子と組み合わせた場合には、前記色度規定を満たす白色光の発光は不可能であることが予想される。
<Examination of white light by additive color mixing>
As described above, the chromaticity range that can be reproduced by additive mixing of a semiconductor light emitting device having a peak wavelength of emission spectrum of 450 nm and each phosphor is the chromaticity range of the semiconductor light emitting device in the chromaticity diagrams of FIGS. 9 and 10. It can be represented approximately by straight lines L1 to L8 connecting the coordinate point B and the chromaticity coordinate points Y1 to Y8 of each phosphor.
From the chromaticity diagrams of FIGS. 9 and 10, the straight lines L4 to 5 (reference phosphors 1 to 2) indicate the range of the area A indicating the range of the chromaticity regulation (JIS D5500) of the white light source of the vehicle headlamp. Therefore, when these reference phosphors 1 and 2 are combined with a blue light emitting semiconductor light emitting element alone, it is expected that white light emission satisfying the chromaticity rule is impossible.

一方、上記以外の直線L1〜3(第一の蛍光体1〜3)、L6〜7(第二の蛍光体1〜2)及びL8(混合蛍光体)は、いずれも領域Aの範囲を通過するため、これらの蛍光体と青色発光の半導体発光素子とを組み合わせることにより前記色度規定を満たす白色光の発光が可能であることが予想される。 On the other hand, the straight lines L1 to 3 (first phosphors 1 to 3), L6 to 7 (second phosphors 1 to 2), and L8 (mixed phosphor) other than the above all pass through the range of the region A. Therefore, it is expected that white light that satisfies the chromaticity specification can be emitted by combining these phosphors with a blue light emitting semiconductor light emitting element.

これらの蛍光体について、領域Aの黄色蛍光体側境界線との交差点であるポイントX1〜3及びポイントX6〜8を比較すると、第二の蛍光体1(Gd非含有蛍光体)は、そのポイントX6が他の蛍光体のポイントよりも黄色蛍光体から離れた位置にあることから、これを用いた白色発光装置は他の蛍光体よりも得られる白色光の視感度が低いことが予想される。
第二の蛍光体2(Gd含有蛍光体)は、そのポイントX7が第二の蛍光体1のポイントX
6よりも黄色蛍光体側に位置していることから、第二の蛍光体1よりも視感度の高い白色光が得られる可能性があるが、上述の通り温度特性が低いという問題がある。
When these phosphors are compared with the points X1 to 3 and the points X6 to 8 which are the intersections with the yellow phosphor side boundary line in the region A, the second phosphor 1 (Gd-free phosphor) has the point X6. Is located farther from the yellow phosphor than the points of the other phosphors, the white light emitting device using this is expected to have lower visibility of white light obtained than the other phosphors.
The second phosphor 2 (Gd-containing phosphor) has a point X7 that is point X of the second phosphor 1.
Since it is located closer to the yellow phosphor than 6, white light with higher visibility than the second phosphor 1 may be obtained, but there is a problem that the temperature characteristics are low as described above.

これらの蛍光体に対し、第一の蛍光体1と第二の蛍光体1を混合した混合蛍光体1は、そのポイントX8がX6(第二の蛍光体1)やX7(第二の蛍光体2)よりも黄色蛍光体側に位置しており、これを用いた白色発光装置は第二の蛍光体1及び2よりも視感度が高い白色光を得られることが予想される。
更に、後述するように、第1の蛍光体は優れた温度特性を備えていることから、混合蛍光体1は、第二の蛍光体1(Gd非含有蛍光体)単独では困難であった視感度の高い白色光を得ることができ、且つ第二の蛍光体2(Gd含有蛍光体)が問題とする温度特性についても優れた白色発光装置を得ることができると予想される。
For these phosphors, the mixed phosphor 1 in which the first phosphor 1 and the second phosphor 1 are mixed, the point X8 is X6 (second phosphor 1) or X7 (second phosphor). It is expected that the white light emitting device using this is located on the yellow phosphor side of 2), and can obtain white light having higher visibility than the second phosphors 1 and 2.
Furthermore, as will be described later, since the first phosphor has excellent temperature characteristics, the mixed phosphor 1 is difficult to view with the second phosphor 1 (Gd-free phosphor) alone. It is expected that a white light-emitting device can be obtained that can obtain white light with high sensitivity and that is excellent in temperature characteristics that are a problem of the second phosphor 2 (Gd-containing phosphor).

図11及び図12は、上記した図3に示す測定装置10を用いて測定した、450nm励起下における各蛍光体の温度特性を示すグラフである。
尚、図11及び図12におけるグラフの縦軸は、それぞれの蛍光体について、各温度条件下における積分発光強度を、30℃条件下における積分発光強度を100%とする比率として示したものである。
11 and 12 are graphs showing temperature characteristics of the respective phosphors under excitation with 450 nm, measured using the measurement apparatus 10 shown in FIG. 3 described above.
The vertical axis of the graphs in FIGS. 11 and 12 shows the integrated luminescence intensity under each temperature condition for each phosphor as a ratio with the integrated luminescence intensity at 30 ° C. as 100%. .

図11は第一の蛍光体1〜3と第二の蛍光体2(Gd含有蛍光体)との温度特性を比較したグラフである。このグラフから、第一の蛍光体1〜3は第二の蛍光体2(Gd含有蛍光体)に比べて温度条件の上昇に伴う積分発光強度の低下率が低く、優れた温度特性を有することが分かる。特に、200℃条件下においては、第二の蛍光体2(Gd含有蛍光体)が50%程度まで低下しているのに対し、第一の蛍光体1〜3はいずれも75%以上を維持していることが分かる。 FIG. 11 is a graph comparing the temperature characteristics of the first phosphors 1 to 3 and the second phosphor 2 (Gd-containing phosphor). From this graph, the first phosphors 1 to 3 have a lower rate of decrease in the integrated emission intensity due to the increase in temperature conditions than the second phosphor 2 (Gd-containing phosphor), and have excellent temperature characteristics. I understand. In particular, under the condition of 200 ° C., the second phosphor 2 (Gd-containing phosphor) is reduced to about 50%, while the first phosphors 1 to 3 all maintain 75% or more. You can see that

また、図12は混合蛍光体1と第二の蛍光体2(Gd含有蛍光体)との温度特性を比較したグラフである。このグラフから、混合蛍光体1は200℃の条件下においても80%以上の維持率を確保しており、第二の蛍光体2よりも優れた温度特性を有することが分かる。 FIG. 12 is a graph comparing temperature characteristics of the mixed phosphor 1 and the second phosphor 2 (Gd-containing phosphor). From this graph, it can be seen that the mixed phosphor 1 has a maintenance rate of 80% or more even under the condition of 200 ° C. and has temperature characteristics superior to those of the second phosphor 2.

次に、実施例の発光装置の構成について詳述する。
尚、下記発光装置の構成は、用いた蛍光体の種類を除き、実施例及び比較例について共通の構成である。
Next, the structure of the light-emitting device of an Example is explained in full detail.
In addition, the structure of the following light-emitting device is a structure common to an Example and a comparative example except the kind of used fluorescent substance.

<発光装置の構成>
本実施例の発光装置は、上記の実施形態において下記の具体的な構成を用いたものである。
まず、基板21として窒化アルミニウム基板を用い、その表面に金を用いて電極22a(陽極)及び電極22b(陰極)を形成した。
また、半導体発光素子23として、455nmに発光ピークを持つ1mm四方のLED(Cree社製:C460−EZ1000)を用い、前記電極22a(陽極)上にディスペンサーを用いて滴下した銀ペースト(エイブルスティック社製:84−1LMISR4)の上に当該LEDの下面を接着させ、当該銀ペーストを175℃環境下で1時間硬化させた。
また、ワイヤー25としてΦ45μmの金ワイヤーを用い、この金ワイヤーを超音波熱圧着にてLEDの上面側電極及び電極22b(陰極)に接合した。
また、バインダー部材としてシリコーン樹脂(東レダウコーニングシリコーン社製:JCR6126)を用い、これに各種蛍光体を混入した30vol%蛍光体ペーストを作製し、当該蛍光体ペーストを半導体発光素子23の上面に塗布した。塗布量は所望の色度が得られるように膜厚を調整しながら塗布した。
塗布した蛍光体ペーストを80℃環境下で40分、その後に150℃環境下で60分のステップ硬化にて固定化することで蛍光層26を形成した。
<Configuration of light emitting device>
The light emitting device of this example uses the following specific configuration in the above embodiment.
First, an aluminum nitride substrate was used as the substrate 21, and an electrode 22a (anode) and an electrode 22b (cathode) were formed using gold on the surface.
Further, a 1 mm square LED having a light emission peak at 455 nm (manufactured by Cree: C460-EZ1000) was used as the semiconductor light emitting element 23, and a silver paste (Able Stick Co., Ltd.) dropped using a dispenser on the electrode 22a (anode). The lower surface of the LED was bonded onto the product: 84-1LMISS4), and the silver paste was cured for 1 hour in a 175 ° C. environment.
Further, a Φ45 μm gold wire was used as the wire 25, and this gold wire was bonded to the upper electrode of the LED and the electrode 22b (cathode) by ultrasonic thermocompression bonding.
Further, a silicone resin (manufactured by Toray Dow Corning Silicone Co., Ltd .: JCR6126) is used as a binder member, and a 30 vol% phosphor paste in which various phosphors are mixed is prepared, and the phosphor paste is applied to the upper surface of the semiconductor light emitting device 23. did. The coating amount was applied while adjusting the film thickness so as to obtain a desired chromaticity.
The phosphor layer 26 was formed by fixing the applied phosphor paste by step curing for 40 minutes in an 80 ° C. environment and then for 60 minutes in a 150 ° C. environment.

以上の蛍光体及び発光装置の構成に基づいて下記実施例及び比較例を作製した。
<実施例>
本実施例は、前記混合蛍光体1を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図10の色度図における領域Aの範囲内に入るように調整した発光装置を作製した。
<比較例>
本比較例は、前記第二の蛍光体2を用いて蛍光体ペーストを作製し、当該蛍光体ペーストを用いて塗布量を図10の色度図における領域Aの範囲内に入るように調整した発光装置を作製した。
The following examples and comparative examples were produced based on the configuration of the phosphor and the light emitting device.
<Example>
In this example, a phosphor paste was prepared using the phosphor mixture 1, and a light emitting device in which the coating amount was adjusted using the phosphor paste so as to fall within the range of region A in the chromaticity diagram of FIG. Was made.
<Comparative example>
In this comparative example, a phosphor paste was prepared using the second phosphor 2, and the coating amount was adjusted using the phosphor paste so as to fall within the region A in the chromaticity diagram of FIG. A light emitting device was manufactured.

<実施例の評価>
以下、実施例及び比較例について行った各種発光特性の測定結果を示す。
まず、各発光装置に積分球内で電流100mAを10m秒間投入し発光させ、分光器(Instrument System社製:CAS140B−152)で光束比、色度座標(cx,cy)、及び演色性(Ra)を測定した。その結果を表3に示す。
尚、光束比は、比較例の発光装置に100mA通電したときの光束を1.00としたときの相対値として示す。

Figure 2011108672
<Evaluation of Examples>
Hereinafter, measurement results of various light emission characteristics performed for Examples and Comparative Examples are shown.
First, a current of 100 mA is applied to each light emitting device in an integrating sphere for 10 msec to emit light, and the light ratio, chromaticity coordinates (cx, cy), and color rendering (Ra ) Was measured. The results are shown in Table 3.
The luminous flux ratio is shown as a relative value when the luminous flux when a current of 100 mA is supplied to the light emitting device of the comparative example is 1.00.
Figure 2011108672

この表3から、実施例は比較例に比べて光束が20%大きく、且つ演色性はほぼ同等の性能を確保していることが分かる。また、実施例の発光色度は黄色寄りの白色であり、良好な視感度が得られることが分かる。 From Table 3, it can be seen that the light intensity of the example is 20% larger than that of the comparative example, and that the color rendering properties are almost equal. In addition, the light emission chromaticity of the example is white that is closer to yellow, and it can be seen that good visibility is obtained.

次に、各発光装置の温度特性を評価するため、図12に示すように、実施例及び比較例の発光装置20をアルミ製ヒートシンク27上に設置し、この発光装置に100mAの駆動電流を印加して恒温槽内において各雰囲気温度下で20分間放置した後、発光強度を瞬間マルチ測光システム(大塚電子社製:MCPD−1000)で測定した。その測定結果を以下に示す。 Next, in order to evaluate the temperature characteristics of each light emitting device, as shown in FIG. 12, the light emitting devices 20 of the example and the comparative example are installed on an aluminum heat sink 27, and a drive current of 100 mA is applied to the light emitting device. Then, after leaving in a thermostatic chamber at each ambient temperature for 20 minutes, the emission intensity was measured with an instantaneous multi-photometry system (manufactured by Otsuka Electronics Co., Ltd .: MCPD-1000). The measurement results are shown below.

表4は、各雰囲気温度下で測定した積分発光強度を、発光装置の全発光波長域(380〜780nm)と、蛍光体の発光波長域(500〜780nm)とに分け、それぞれの発光装置について0℃条件下における積分発光強度を100%とする比率として示したものである。

Figure 2011108672
Table 4 shows the integrated light emission intensity measured under each ambient temperature divided into the total light emission wavelength region (380 to 780 nm) of the light emitting device and the light emission wavelength region (500 to 780 nm) of the phosphor. This is shown as a ratio with the integrated light emission intensity at 0 ° C. as 100%.
Figure 2011108672

この表4から、発光装置の全発光波長域、及び蛍光体の発光波長域のいずれについても、実施例は比較例よりも高い維持率を示しており、実施例は良好な温度特性を有することが分かる。 From Table 4, the example shows a higher maintenance ratio than the comparative example for all the emission wavelength range of the light emitting device and the emission wavelength range of the phosphor, and the example has good temperature characteristics. I understand.

図14に、実施例の発光装置について、100mAの駆動電流における0℃条件下の発光スペクトル(実線)と80℃条件下の発光スペクトル(点線)を示す。 FIG. 14 shows an emission spectrum (solid line) under a 0 ° C. condition and a light emission spectrum (dotted line) under an 80 ° C. condition at a driving current of 100 mA.

図15に、比較例の発光装置について、100mAの駆動電流における0℃条件下の発光スペクトル(実線)と80℃条件下の発光スペクトル(点線)を示す。 FIG. 15 shows an emission spectrum (solid line) under a 0 ° C. condition and a light emission spectrum (dotted line) under an 80 ° C. condition at a driving current of 100 mA.

図14及び図15から、いずれの発光装置も温度上昇により発光強度が低下するが、実施例の発光装置は比較例の発光装置に比べて高い発光強度を維持していることが分かる。 14 and 15, it can be seen that the light emission intensity of each light-emitting device decreases with temperature rise, but the light-emitting device of the example maintains a higher light emission intensity than the light-emitting device of the comparative example.

以上、本発明の蛍光体を実施例に沿って説明したが、本発明はこれらの実施例に限られるものではなく、種々の変更、改良、組み合わせ、利用形態等が考えられることは言うまでもない。 As described above, the phosphor of the present invention has been described with reference to the examples. However, the present invention is not limited to these examples, and it is needless to say that various modifications, improvements, combinations, usage forms, and the like can be considered.

本発明の白色発光装置は、白色光源を用いた車両用灯具であって機能色が白色系のもの、例えばヘッドランプ、フォグランプ、コーナーリングランプ、ライセンスプレートランプ、バックアップランプ、ルームランプ等に利用することができる。
また、本発明の白色発光装置は、白色光源とカラーフィルター等を組み合わせた車両用灯具であって機能色が白色系以外のもの、例えばテールランプ、ストップランプ、ターンシグナルランプ等に利用することもできる。
The white light emitting device of the present invention is a vehicular lamp using a white light source and having a white functional color, for example, a head lamp, a fog lamp, a cornering lamp, a license plate lamp, a backup lamp, a room lamp, etc. Can do.
Further, the white light emitting device of the present invention is a vehicular lamp that is a combination of a white light source and a color filter, and can be used for a functional color other than a white system, for example, a tail lamp, a stop lamp, a turn signal lamp, or the like. .

Gd非含有蛍光体及びGd含有蛍光体の色度座標、並びにこれらの蛍光体を用いた白色発光装置の再現可能な色度範囲等を示す色度図である。FIG. 4 is a chromaticity diagram showing chromaticity coordinates of a Gd-free phosphor and a Gd-containing phosphor, and a reproducible chromaticity range of a white light emitting device using these phosphors. Gd非含有蛍光体の発光スペクトル(実線)及びGd含有蛍光体の発光スペクトル(点線)を示す図面である。It is drawing which shows the emission spectrum (solid line) of Gd non-containing fluorescent substance, and the emission spectrum (dotted line) of Gd containing fluorescent substance. 蛍光体の温度特性を測定する装置を示す概略図である。It is the schematic which shows the apparatus which measures the temperature characteristic of fluorescent substance. Gd含有蛍光体及びGd非含有蛍光体の温度特性を示す図面である。It is drawing which shows the temperature characteristic of Gd containing fluorescent substance and Gd non-containing fluorescent substance. 本発明の発光装置の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the light-emitting device of this invention. 第一の蛍光体1の励起スペクトルを示す図面である。1 is a drawing showing an excitation spectrum of a first phosphor 1. 第一の蛍光体1の発光スペクトル(点線)、第一の蛍光体2の発光スペクトル(実線)、第一の蛍光体3の発光スペクトル(一点鎖線)、及び第二の蛍光体1の発光スペクトル(二点鎖線)を示す図面である。The emission spectrum of the first phosphor 1 (dotted line), the emission spectrum of the first phosphor 2 (solid line), the emission spectrum of the first phosphor 3 (dashed line), and the emission spectrum of the second phosphor 1 It is drawing which shows (two-dot chain line). 第一の蛍光体1の発光スペクトル(点線)、第二の蛍光体1の発光スペクトル(一点鎖線)、及び混合蛍光体1の発光スペクトル(実線)を示す図面である。It is drawing which shows the emission spectrum (dotted line) of the 1st fluorescent substance 1, the emission spectrum (one-dot chain line) of the 2nd fluorescent substance 1, and the emission spectrum (solid line) of the mixed fluorescent substance 1. FIG. 各蛍光体の色度座標及びこれらの蛍光体を用いた白色発光装置の再現可能な色度範囲等を示す色度図である。It is a chromaticity diagram showing the chromaticity coordinates of each phosphor and the reproducible chromaticity range of a white light emitting device using these phosphors. 各蛍光体の色度座標及びこれらの蛍光体を用いた白色発光装置の再現可能な色度範囲等を示す色度図である。It is a chromaticity diagram showing the chromaticity coordinates of each phosphor and the reproducible chromaticity range of a white light emitting device using these phosphors. 各蛍光体の温度特性を示す図面である。It is drawing which shows the temperature characteristic of each fluorescent substance. 混合蛍光体1及び第二の蛍光体2の温度特性を示す図面である。4 is a diagram illustrating temperature characteristics of the mixed phosphor 1 and the second phosphor 2. 温度特性を測定する際における発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device at the time of measuring a temperature characteristic. 実施例の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of an Example. 比較例の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of a comparative example.

符号の説明Explanation of symbols

10:測定装置
11:アルミ基板
11a:開口部
12:熱電対
13:面状ヒーター
14:集光レンズ
15:石英ファイバー
16a、16b:分光器
17:受光用石英ファイバー
18:蛍光体
20:白色発光装置
21:基板
22a:電極(陽極)
22b:電極(陰極)
23:半導体発光素子
24:マウント部材
25:ワイヤー
26:蛍光層
27:ヒートシンク
10: Measuring device 11: Aluminum substrate 11a: Opening 12: Thermocouple 13: Planar heater 14: Condensing lens 15: Quartz fiber 16a, 16b: Spectrometer 17: Receiving quartz fiber 18: Phosphor 20: White light emission Device 21: substrate 22a: electrode (anode)
22b: Electrode (cathode)
23: Semiconductor light emitting element 24: Mount member 25: Wire 26: Fluorescent layer 27: Heat sink

Claims (9)

車両用灯具に用いられる白色発光装置であって、
370〜480nmの波長域に発光スペクトルのピークを持つ半導体発光素子と、前記半導体発光素子の発する光により励起され可視光を発光する少なくとも2種以上の蛍光体を備え、
前記蛍光体として、一般式Sr1−x−yBaSi:Eu2+ (但し、xは0.25<x<1.0、yは0.03<y<0.3 x+yは0.3<x+y<1.0の範囲である)で表される第一の蛍光体と、510〜600nmの間に発光ピーク波長を持つセリウム付活のイットリウム・アルミニウム・ガーネット(YAG)系蛍光体である第二の蛍光体とを備えることを特徴とする白色発光装置。
A white light emitting device used for a vehicle lamp,
A semiconductor light emitting device having an emission spectrum peak in a wavelength region of 370 to 480 nm, and at least two or more kinds of phosphors that are excited by light emitted from the semiconductor light emitting device to emit visible light,
As the phosphor, the general formula Sr 1-xy Ba x Si 2 O 2 N 2 : Eu 2+ y (where x is 0.25 <x <1.0, y is 0.03 <y <0. 3 x + y is in the range of 0.3 <x + y <1.0) and cerium-activated yttrium aluminum garnet (YAG) having an emission peak wavelength between 510-600 nm. And a second phosphor which is a system phosphor.
前記一般式のxが0.425≦x≦0.750、yが0.150≦y≦0.200、x+yが0.575≦x+y≦0.950の範囲であることを特徴とする請求項1に記載の白色発光装置。 The x in the general formula is in the range of 0.425 ≦ x ≦ 0.750, y is in the range of 0.150 ≦ y ≦ 0.200, and x + y is in the range of 0.575 ≦ x + y ≦ 0.950. The white light emitting device according to 1. 前記第二の蛍光体がガドリニウムを含有しないことを特徴とする請求項2に記載の白色発光装置。 The white light emitting device according to claim 2, wherein the second phosphor does not contain gadolinium. 前記第一の蛍光体の発光スペクトルのドミナント波長が570〜590nmの波長域にあり、前記第二の蛍光体の発光スペクトルのドミナント波長が565〜573nmの波長域にあることを特徴とする請求項1〜3のいずれかに記載の白色発光装置。 The dominant wavelength of the emission spectrum of the first phosphor is in a wavelength range of 570 to 590 nm, and the dominant wavelength of the emission spectrum of the second phosphor is in a wavelength range of 565 to 573 nm. The white light-emitting device in any one of 1-3. 前記第一の蛍光体の発光スペクトルのピーク波長が565〜610nmの波長域にあり、前記第二の蛍光体の発光スペクトルのピーク波長が540〜560nmの波長域にあることを特徴とする1〜4のいずれかに記載の白色発光装置。 The peak wavelength of the emission spectrum of the first phosphor is in a wavelength range of 565 to 610 nm, and the peak wavelength of the emission spectrum of the second phosphor is in a wavelength range of 540 to 560 nm. 5. The white light emitting device according to any one of 4 above. 前記第一の蛍光体及び前記第二の蛍光体の合成スペクトルのドミナント波長が570〜585nmの波長域にあり、半値幅が80nm以上であることを特徴とする請求項1〜5のいずれかに記載の白色発光装置。 The dominant wavelength of the synthetic spectrum of said 1st fluorescent substance and said 2nd fluorescent substance exists in the wavelength range of 570-585 nm, and a half value width is 80 nm or more, The any one of Claims 1-5 characterized by the above-mentioned. The white light emitting device described. 前記第一の蛍光体及び前記第二の蛍光体は、SrCO、BaCO、SiO及びEuの混合物を還元雰囲気中で1次焼成して作製したユーロピウム付活のオルソ珪酸塩を前駆体とし、この前駆体とSi及びNHClの混合物を還元雰囲気中で2次焼成することで得られることを特徴とする請求項1〜6のいずれかに記載の白色発光装置。 The first phosphor and the second phosphor are europium-activated orthosilicates prepared by first firing a mixture of SrCO 3 , BaCO 3 , SiO 2 and Eu 2 O 3 in a reducing atmosphere. A white light-emitting device according to any one of claims 1 to 6, wherein the white light-emitting device is obtained by secondarily firing a mixture of the precursor, Si 3 N 4 and NH 4 Cl in a reducing atmosphere as a precursor. . 前記半導体発光素子のピーク波長が430nm〜470nmの波長域にあるInGaN系LEDであることを特徴とする請求項1〜7のいずれかに記載の白色発光装置。 The white light-emitting device according to claim 1, wherein the semiconductor light-emitting element is an InGaN-based LED having a peak wavelength in a wavelength range of 430 nm to 470 nm. 請求項1〜8のいずれかに記載の白色発光装置を光源とした車両用灯具。 The vehicle lamp which used the white light-emitting device in any one of Claims 1-8 as a light source.
JP2008035462A 2008-02-18 2008-02-18 White light emitting apparatus and lighting fitting for vehicle using the same Pending JP2011108672A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008035462A JP2011108672A (en) 2008-02-18 2008-02-18 White light emitting apparatus and lighting fitting for vehicle using the same
PCT/JP2009/052821 WO2009104653A1 (en) 2008-02-18 2009-02-18 White light emitting device and lighting fitting for vehicles using the white light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035462A JP2011108672A (en) 2008-02-18 2008-02-18 White light emitting apparatus and lighting fitting for vehicle using the same

Publications (1)

Publication Number Publication Date
JP2011108672A true JP2011108672A (en) 2011-06-02

Family

ID=40985531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035462A Pending JP2011108672A (en) 2008-02-18 2008-02-18 White light emitting apparatus and lighting fitting for vehicle using the same

Country Status (2)

Country Link
JP (1) JP2011108672A (en)
WO (1) WO2009104653A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122304A (en) * 2012-12-21 2014-07-03 Toshiba Corp Yellow phosphor and method for manufacturing the same
JP2014130688A (en) * 2012-12-28 2014-07-10 Stanley Electric Co Ltd Vehicle turn signal lighting appliance
JP2014535175A (en) * 2011-11-14 2014-12-25 ケーエルエー−テンカー コーポレイション High throughput high temperature test method and system for high brightness light emitting diodes
JP2015032439A (en) * 2013-08-02 2015-02-16 スタンレー電気株式会社 Vehicle headlight
JP2015131898A (en) * 2014-01-10 2015-07-23 電気化学工業株式会社 Fluorescent material and light-emitting device
JP2018518565A (en) * 2015-06-08 2018-07-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Composite oxynitride ceramic converter and light source provided with the converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526698B2 (en) 2009-10-16 2014-06-18 デクセリアルズ株式会社 Light reflective conductive particles, anisotropic conductive adhesive, and light emitting device
JP2014030026A (en) * 2013-08-30 2014-02-13 Dexerials Corp Anisotropic conducting adhesive material, and light-emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466446B2 (en) * 2002-10-16 2010-05-26 日亜化学工業株式会社 Light emitting device using oxynitride phosphor
JP4880329B2 (en) * 2006-03-06 2012-02-22 株式会社小糸製作所 Vehicle lighting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014535175A (en) * 2011-11-14 2014-12-25 ケーエルエー−テンカー コーポレイション High throughput high temperature test method and system for high brightness light emitting diodes
JP2014122304A (en) * 2012-12-21 2014-07-03 Toshiba Corp Yellow phosphor and method for manufacturing the same
JP2014130688A (en) * 2012-12-28 2014-07-10 Stanley Electric Co Ltd Vehicle turn signal lighting appliance
JP2015032439A (en) * 2013-08-02 2015-02-16 スタンレー電気株式会社 Vehicle headlight
JP2015131898A (en) * 2014-01-10 2015-07-23 電気化学工業株式会社 Fluorescent material and light-emitting device
JP2018518565A (en) * 2015-06-08 2018-07-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Composite oxynitride ceramic converter and light source provided with the converter

Also Published As

Publication number Publication date
WO2009104653A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5099418B2 (en) Lighting device
WO2009104653A1 (en) White light emitting device and lighting fitting for vehicles using the white light emitting device
JP5092667B2 (en) Light emitting device
US20070090381A1 (en) Semiconductor light emitting device
KR20100097097A (en) Light-emitting device, vehicular lighting fixture comprising the device, and head lamp
EP2544252A1 (en) Light emitting device
JP7454785B2 (en) Phosphors and light emitting devices using them
JP2011159809A (en) White light-emitting device
JP5370047B2 (en) Color rendering improvement method for white light emitting device and white light emitting device
JP5635268B2 (en) White light emitting device and vehicle lamp using the same
JP5323308B2 (en) Light emitting module
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP2009040944A (en) Phosphor, phosphor-containing composition, light emitter, lighting apparatus, and image display device
JP5462211B2 (en) White light emitting device
WO2009104652A1 (en) White light emitting device and lighting fitting for vehicles using the white light emitting device
JP6083048B2 (en) Phosphor and light emitting device
JP5471021B2 (en) Phosphor and phosphor manufacturing method, phosphor-containing composition, light emitting device, illumination device, and image display device
JP2006332202A (en) Light emitting device, manufacturing method thereof, and lighting apparatus using it, backlight for image display apparatus, and image display apparatus
JP2013168658A (en) Light-emitting device, and vehicular lighting appliance and headlamp using the same
JP2010013608A (en) Phosphor and emitter
EP3916073B1 (en) Light emitting device
WO2009093611A1 (en) Light emitting module using phosphor and lighting fixture for vehicle using same
JP2015002182A (en) Illumination apparatus
JP2013089769A (en) Light emitting module
JP2006100623A (en) Light emitting device and lighting device