JP2013168658A - Light-emitting device, and vehicular lighting appliance and headlamp using the same - Google Patents

Light-emitting device, and vehicular lighting appliance and headlamp using the same Download PDF

Info

Publication number
JP2013168658A
JP2013168658A JP2013053603A JP2013053603A JP2013168658A JP 2013168658 A JP2013168658 A JP 2013168658A JP 2013053603 A JP2013053603 A JP 2013053603A JP 2013053603 A JP2013053603 A JP 2013053603A JP 2013168658 A JP2013168658 A JP 2013168658A
Authority
JP
Japan
Prior art keywords
light
emitting device
lamp
chromaticity
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013053603A
Other languages
Japanese (ja)
Other versions
JP5683625B2 (en
Inventor
Yasuyuki Miyake
康之 三宅
Shuichi Taya
周一 田谷
Akifumi Ochiai
昭文 落合
Hideyuki Emoto
秀幸 江本
Masahiro Ibukiyama
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd, Denki Kagaku Kogyo KK filed Critical Stanley Electric Co Ltd
Priority to JP2013053603A priority Critical patent/JP5683625B2/en
Publication of JP2013168658A publication Critical patent/JP2013168658A/en
Application granted granted Critical
Publication of JP5683625B2 publication Critical patent/JP5683625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device which efficiently emits light by reducing a color change with a temperature change even if used in a high-temperature environment.SOLUTION: A light-emitting device is configured by combining a light source which emits exciting light with a phosphor which emits light by absorbing the exciting light. Within a range of environmental temperatures from -20°C to 85°C, a variation of all light flux is within ±30% and on chromaticity coordinates (CIE1931), chromaticity of light to be emitted ranges in x≥0.545, y≥0.39 and y≤x-0.12. Preferably, within the range of environmental temperatures from -20°C to 85°C, on the chromaticity coordinates (CIE1931), the variation of chromaticity ranges in Δx≤0.03 and Δy≤0.03.

Description

本発明は、半導体発光素子(LED)と新規な蛍光体を組み合わせた発光装置及びそれを利用した照明装置に関し、特に発光色がアンバー色である車両用灯具およびヘッドランプに関する。   The present invention relates to a light emitting device combining a semiconductor light emitting element (LED) and a novel phosphor and an illumination device using the same, and more particularly to a vehicular lamp and a headlamp whose emission color is amber.

従来、アンバー色を発光する車両用灯具、例えば方向指示器には、アンバー色を着色した電球を内蔵したものが用いられてきたが、電球のもつ欠点、すなわち多大な消費電力や小型化の制限を解決するものとして、LEDを利用したものが提案され、実用化されている。   Conventionally, a vehicle lamp that emits amber color, for example, a direction indicator, which has a built-in amber colored light bulb, has been used. However, there are disadvantages of the light bulb, that is, a large amount of power consumption and restrictions on miniaturization. As a solution to this problem, a device using an LED has been proposed and put into practical use.

アンバー色のLEDとして、約580〜610nmに発光スペクトルを有するAlGaInP半導体やGaAsP半導体が知られている。しかし、これらLEDは周囲温度が高くなると発光強度は大きく低下するという問題がある。このためリアコンビネーションランプなどの周囲温度が高温になるような用途では、必要な光量を満たすために、数多くのアンバーLEDを用意する必要があり、高コスト化と設置場所確保による灯具デザインの制限を引き起こしていた。またヘッドランプに組み込まれたターンシグナルランプは、エンジンに距離が近く、特に周囲温度が高いため、上記アンバーLEDでは必要な光量を確保できなかった。   As an amber LED, an AlGaInP semiconductor or a GaAsP semiconductor having an emission spectrum at about 580 to 610 nm is known. However, these LEDs have a problem that the light emission intensity greatly decreases as the ambient temperature increases. For this reason, in applications where the ambient temperature is high, such as rear combination lamps, it is necessary to prepare a large number of amber LEDs to meet the required light intensity, which limits the design of lamps by increasing costs and securing the installation location. It was causing. Further, since the turn signal lamp incorporated in the headlamp is close to the engine and has a particularly high ambient temperature, the above-described amber LED cannot secure a necessary light amount.

これに対し、青色LEDとLEDの発光により長波長光を発光する蛍光体とを組み合わせてアンバー色を実現する灯具も提案されている(特許文献1)。特許文献1には、青色LEDと組み合わせる長波長用蛍光体として、(Ca,Sr)2Si5N8:Euを用いることが記載されている。 On the other hand, the lamp which implement | achieves amber color combining the fluorescent substance which light-emits long wavelength light by light emission of blue LED and LED is also proposed (patent document 1). Patent Document 1 describes that (Ca, Sr) 2 Si 5 N 8 : Eu is used as a long-wavelength phosphor combined with a blue LED.

しかしこの蛍光体は、半値幅が約100nmと広く、視感度の低い長波長成分が多いため、効率が低いという問題がある。また残光特性を持つため、点滅させて使用する用途では、非発光時の残光が視認性を低下させるという問題がある。さらに特許文献1に記載されたアンバー色の灯具では、LEDからの発光を遮断するための光学フィルタが必須である。   However, since this phosphor has a wide half-value width of about 100 nm and many long wavelength components with low visibility, there is a problem that efficiency is low. Moreover, since it has an afterglow characteristic, there is a problem that the afterglow at the time of non-light emission deteriorates visibility in an application in which it is blinked. Furthermore, in the amber-colored lamp described in Patent Document 1, an optical filter for blocking light emitted from the LED is essential.

特開2005−123165号公報JP-A-2005-123165

本発明は、温度の高い環境で使用されても温度変化に伴う色の変化が少なく、効率よく発光する発光装置を提供することを課題とする。また本発明は、上記発光装置を利用して、視認性に優れた車両用灯具を提供することを課題とする。   An object of the present invention is to provide a light-emitting device that emits light efficiently with little color change due to temperature change even when used in a high-temperature environment. Moreover, this invention makes it a subject to provide the vehicle lamp excellent in visibility using the said light-emitting device.

本発明は、LEDと蛍光体を組み合わせた発光装置において、新規な蛍光体を用いることにより上記課題を解決したものである。   This invention solves the said subject by using a novel fluorescent substance in the light-emitting device which combined LED and fluorescent substance.

即ち、本発明の発光装置は、励起光を発する光源と、その励起光を吸収して光を発する蛍光体を組み合わせてなる発光装置であって、環境温度が−20℃から85℃の範囲において、全光束の変化量が±30%以内であり、発する光の色度が色度座標(CIE1931)上でx≧0.545、y≧0.39、y≦x−0.12であることを特徴とする。That is, the light-emitting device of the present invention is a light-emitting device that combines a light source that emits excitation light and a phosphor that emits light by absorbing the excitation light, and has an ambient temperature in the range of −20 ° C. to 85 ° C. The change amount of the total luminous flux is within ± 30%, and the chromaticity of the emitted light is x ≧ 0.545, y ≧ 0.39, y ≦ x−0.12 on the chromaticity coordinates (CIE1931). It is characterized by.
蛍光体として一般式:(Ca  As a phosphor, a general formula: (Ca αα 、Eu, Eu ββ )(Si、Al)) (Si, Al) 1212 (O、N)(O, N) 1616 (但し、1.5<α+β<2.2、かつ0<β<0.2、O/N(However, 1.5 <α + β <2.2 and 0 <β <0.2, O / N
≦0.04)で示されるα型サイアロンを主成分とし比表面積が0.1〜0.35m.Ltoreq.0.04) and a specific surface area of 0.1 to 0.35 m. 2 /gである蛍光体を用いる。A phosphor of / g is used.

また本発明の車両用灯具は、上記発光装置を用いたものである。   A vehicle lamp according to the present invention uses the light emitting device.

本発明の発光装置の一実施形態を示す図。The figure which shows one Embodiment of the light-emitting device of this invention. 本発明の車両用灯具の一実施形態を示す図。The figure which shows one Embodiment of the vehicle lamp of this invention. 本発明の発光装置を用いたヘッドランプの一実施形態を示す図。The figure which shows one Embodiment of the headlamp using the light-emitting device of this invention. 実施例の発光装置の発光スペクトルを示す図。The figure which shows the emission spectrum of the light-emitting device of an Example. 実施例の発光装置の光束の温度依存性を示す図。The figure which shows the temperature dependence of the light beam of the light-emitting device of an Example. 実施例の発光装置の色度の温度依存性を示す図。The figure which shows the temperature dependence of chromaticity of the light-emitting device of an Example.

以下、本発明の発光装置および車両用灯具の実施の形態を説明する。
まず本発明の発光装置を構成する蛍光体について詳述する。
Hereinafter, embodiments of the light-emitting device and the vehicular lamp of the present invention will be described.
First, the phosphor constituting the light emitting device of the present invention will be described in detail.

本発明の発光装置が用いるα型サイアロンは、一般式:M(Si,Al)12(O,N)16で表され、元素Mとして、Caを使用し、その一部に発光中心となるEuを導入したEu付活Ca−α−サイアロン蛍光体である。一般に、Eu付活Ca−α−サイアロン蛍光体は、紫外〜青色の幅広い波長域の光で励起され、黄〜橙色の可視発光を示すが、本発明で用いるサイアロン蛍光体は、サイアロン結晶内の酸素含有率を低くするとともに、Ca(Euを含む)の固溶濃度を高かめることにより、橙〜赤色の長波長発光を実現したものである。具体的には波長範囲420〜480nmの励起によってアンバー色の発光を示す。 The α-sialon used by the light-emitting device of the present invention is represented by the general formula: M z (Si, Al) 12 (O, N) 16 , and Ca is used as the element M, and a part thereof is the emission center. This is an Eu-activated Ca-α-sialon phosphor into which Eu is introduced. In general, Eu-activated Ca-α-sialon phosphors are excited by light in a wide wavelength range from ultraviolet to blue, and show visible light emission of yellow to orange. By reducing the oxygen content and increasing the solid solution concentration of Ca (including Eu), long-wavelength emission from orange to red is realized. Specifically, amber light emission is exhibited by excitation in the wavelength range of 420 to 480 nm.

上述したα型サイアロン蛍光体は、例えば、(a)窒化ケイ素と、(b)窒化アルミニウムと、(c)Ca含有化合物と、(d)Eu含有化合物と、(e)α型サイアロンとからなる原料混合粉末を窒素雰囲気中、1650〜1850℃で加熱処理することによりα型サイアロンを得て、分級処理のみにより、平均粒径が15〜25μmの粉末を得ることにより製造することができる。この方法は、原料混合粉末中にα型サイアロン(e)を含有させるとともに、分級処理のみで平均粒径15〜25μmの粉末を得ることが特徴であり、この方法により得られる蛍光体は、比表面積が小さく、発光効率に優れ、且つ発光色の温度依存性が小さく、高温の環境においても色の変化が少ない。   The α-type sialon phosphor described above includes, for example, (a) silicon nitride, (b) aluminum nitride, (c) a Ca-containing compound, (d) an Eu-containing compound, and (e) an α-type sialon. The raw material mixed powder can be produced by heat-treating the raw material mixed powder at 1650 to 1850 ° C. in a nitrogen atmosphere to obtain α-sialon, and only by classification treatment to obtain a powder having an average particle size of 15 to 25 μm. This method is characterized in that α-sialon (e) is contained in the raw material mixed powder, and a powder having an average particle size of 15 to 25 μm is obtained only by classification treatment. The surface area is small, the luminous efficiency is excellent, the temperature dependence of the luminescent color is small, and the color change is small even in a high temperature environment.

蛍光体中のCaとEuのモル比(α+β)は、1.5を超え、2.2以下である。α+βが1.5以下では、ピーク波長が595nm以上の蛍光が得難い。また(α+β)が2.2を越えると、蛍光特性に悪影響を及ぼす第二相が生成しやすくなる。またEuの固溶量(βの値)は、0.2未満である。0.2以上では、蛍光ピーク波長がシフトし、アンバー色が得にくく、また発光効率が低下する。   The molar ratio (α + β) of Ca and Eu in the phosphor exceeds 1.5 and is 2.2 or less. When α + β is 1.5 or less, it is difficult to obtain fluorescence having a peak wavelength of 595 nm or more. On the other hand, if (α + β) exceeds 2.2, a second phase that adversely affects the fluorescence characteristics is likely to be generated. Further, the solid solution amount (value of β) of Eu is less than 0.2. If it is 0.2 or more, the fluorescence peak wavelength shifts, it is difficult to obtain an amber color, and the light emission efficiency decreases.

酸素と窒素の比率O/N比は0.04以下である。0.04を超えると、ピーク波長が595nm以上の蛍光が得にくいだけでなく、Ca及びEuの固溶限界量が少なくなり、α+β>1.5を実現することが困難になる。   The ratio O / N of oxygen and nitrogen is 0.04 or less. If it exceeds 0.04, it is difficult not only to obtain fluorescence having a peak wavelength of 595 nm or more, but also the solid solution limit amount of Ca and Eu decreases, and it becomes difficult to realize α + β> 1.5.

比表面積は0.1〜0.35m/gである。0.35m2/gより大きい場合は、一次粒子が十分に発達しておらず、あるいは、蛍光体粒子表面に凹凸があり、その結果として、60%以上の高い発光効率が得られない。また、比表面積が0.1m2/gより小さいと、粒径が大きくなり過ぎて、発光装置の組み立て時に用いるディスペンサー用ノズルが詰まるなどの不都合が起きる場合がある。
なお本発明において、比表面積は、BET法に基き測定し、BET多点解析により求めた値である。
The specific surface area is 0.1 to 0.35 m 2 / g. When it is larger than 0.35 m 2 / g, the primary particles are not sufficiently developed, or the surface of the phosphor particles is uneven, and as a result, a high luminous efficiency of 60% or more cannot be obtained. On the other hand, if the specific surface area is smaller than 0.1 m 2 / g, the particle size becomes too large, and there may be a problem that the dispenser nozzle used at the time of assembling the light emitting device is clogged.
In the present invention, the specific surface area is a value obtained by BET multipoint analysis after measurement based on the BET method.

本発明の発光装置は、蛍光体として上記α型サイアロン蛍光体を用いたことを除き、公知の発光装置と同様であり、構造や型は特に限定されない。
図1に第1の実施の形態として、本発明が適用される典型的な発光装置を示す。この発光装置は、ガラス繊維、エポキシ樹脂などの絶縁物により構成されているランプハウス3にアノード/カソード両極用の電極4、5が設置されており、LED2はエポキシ樹脂等の接着剤によりランプハウス3上に固定されている。LED2のアノード/カソード各電極は、対応する引き出し電極4、5と導電性ワイヤー6によって電気的接合がなされている。ランプハウス3にはほぼ中央に凹部が形成ており、その凹部内に橙色蛍光体と樹脂1を充填し発光素子を構成している。
The light emitting device of the present invention is the same as a known light emitting device except that the α-sialon phosphor is used as the phosphor, and the structure and type are not particularly limited.
FIG. 1 shows a typical light emitting device to which the present invention is applied as a first embodiment. In this light-emitting device, anode / cathode electrodes 4 and 5 are installed in a lamp house 3 made of an insulating material such as glass fiber or epoxy resin, and the LED 2 is lamp housed by an adhesive such as epoxy resin. 3 is fixed. The anode / cathode electrodes of the LED 2 are electrically joined by corresponding lead electrodes 4 and 5 and conductive wires 6. The lamp house 3 is formed with a concave portion at substantially the center, and the orange phosphor and the resin 1 are filled in the concave portion to constitute a light emitting element.

青色LED2としては、ピーク波長が420〜480nmの範囲にある公知の青色LEDを用いることができる。具体的には、GaN系化合物半導体、InGaN系化合物半導体、ZnO系化合物半導体、ZnSe系化合物半導体などが例示できる。   As the blue LED 2, a known blue LED having a peak wavelength in the range of 420 to 480 nm can be used. Specific examples include GaN-based compound semiconductors, InGaN-based compound semiconductors, ZnO-based compound semiconductors, and ZnSe-based compound semiconductors.

凹部を充填する封止材である樹脂としては、LED2からの発光ピーク波長よりも短波長領域まで透明であり、蛍光体を混合できる材料であればよい。具体的には熱硬化樹脂、光硬化性樹脂や低融点ガラスなどが挙げられる。特にエポキシ樹脂、シリコーン樹脂、エポキシ基を有するポリジメチルシロキサン誘導体、オキセタン樹脂、アクリル樹脂、シクロオレフィン樹脂等の熱硬化樹脂が好ましい。これら樹脂は、1種または2種以上を混合して用いることができる。   As a resin that is a sealing material filling the concave portion, any material that is transparent up to a wavelength region shorter than the emission peak wavelength from the LED 2 and can be mixed with a phosphor may be used. Specifically, thermosetting resin, photocurable resin, low melting point glass, and the like can be given. Particularly preferred are thermosetting resins such as epoxy resins, silicone resins, polydimethylsiloxane derivatives having an epoxy group, oxetane resins, acrylic resins and cycloolefin resins. These resins can be used alone or in combination of two or more.

本発明の発光装置の発する光の色度は、好ましくは、色度座標(CIE1931)上でx≧0.545、y≧0.39、y≦x−0.12である。このような色度は、ピーク波長が420〜480nmの範囲にある青色LEDと上述したα型サイアロン蛍光体とを組み合わせることにより実現できるが、この色度範囲から逸脱しない範囲で、上述したアンバー色蛍光体以外の蛍光体を含んでいてもよい。   The chromaticity of light emitted from the light emitting device of the present invention is preferably x ≧ 0.545, y ≧ 0.39, and y ≦ x−0.12 on the chromaticity coordinates (CIE1931). Such chromaticity can be realized by combining a blue LED having a peak wavelength in the range of 420 to 480 nm with the above-described α-sialon phosphor, but the above-described amber color is within a range not departing from this chromaticity range. A phosphor other than the phosphor may be included.

他の蛍光体としては、ユーロピウム付活のM2SiO4(M=Mg、Ca、Sr、Ba)、ユーロピウム付活のM2Si58(M=Mg、Ca、Sr、Ba)、ユーロピウム付活のM3SiO5(M=Mg、Ca、Sr、Ba)、ユーロピウム付活のMAlSiN3(M=Mg、Ca、Sr、Ba)、セリウム付活のA3512(A=Y、Gd、Lu、Tb、B=Al、Ga)などの一般的に知られている蛍光体を1種または2種以上を混合して用いることができる。また必要に応じて各波長変換材用材料に、励起光および波長変換された光の反射を補助するために硫酸バリウム、酸化マグネシウム、酸化ケイ素などの散乱剤を混在させてもよい。 Other phosphors include europium activated M 2 SiO 4 (M = Mg, Ca, Sr, Ba), europium activated M 2 Si 5 N 8 (M = Mg, Ca, Sr, Ba), europium. Activated M 3 SiO 5 (M = Mg, Ca, Sr, Ba), europium activated MAlSiN 3 (M = Mg, Ca, Sr, Ba), cerium activated A 3 B 5 O 12 (A = Y, Gd, Lu, Tb, B = Al, Ga) and other generally known phosphors can be used singly or in combination of two or more. If necessary, each wavelength conversion material may be mixed with a scattering agent such as barium sulfate, magnesium oxide, or silicon oxide to assist reflection of excitation light and wavelength-converted light.

蛍光体は、上述した樹脂に適量混合させて用いることができる。樹脂に混合する場合の混合量は、特に限定されないが、通常樹脂の1〜50重量%程度である。また蛍光体を、ランプハウス3中に分散させることも可能である。   The phosphor can be used by mixing an appropriate amount of the above-described resin. The mixing amount in the case of mixing with the resin is not particularly limited, but is usually about 1 to 50% by weight of the resin. It is also possible to disperse the phosphor in the lamp house 3.

ランプハウス3と青色LED2および電極4、5は、ランプハウス3上に青色LED2が固定され、かつ、アノード/カソード用の各引き出し電極とLED2のアノード/カソード電極とが対応して電気的接合がなされていればよく、図1に示す形態のほか、種々の形態を取ることができる。例えば、図示しないが、LED2のアノード/カソード電極と対応する各引き出し電極とを、Au-Snなどの共晶材料やAuバンプ、異方性を有する導電性シート、Agペーストに代表されるような導電性樹脂等により、電気的に接合するとともにランプハウス3に固定する形態や、上記した材料によりLED2の片極のみを対応する引き出し電極に対し電気的に接合すると共にランプハウス3へ固定し、他方の極と対応する引き出し電極とを導電性ワイヤーにて電気的接合をとる形態などを取りえる。さらに、ランプハウス3がLED2の放熱性を向上させるために金属等の導電性材料で構成され、片極の引き出し電極5を兼ねるようにしてもよい。   The lamp house 3, the blue LED 2 and the electrodes 4, 5 are electrically connected so that the blue LED 2 is fixed on the lamp house 3, and each lead-out electrode for the anode / cathode and the anode / cathode electrode of the LED 2 correspond to each other. As long as it is made, it can take various forms in addition to the form shown in FIG. For example, although not shown, the anode / cathode electrodes of the LED 2 and the corresponding extraction electrodes are represented by eutectic materials such as Au-Sn, Au bumps, anisotropic conductive sheets, and Ag pastes. A form that is electrically joined and fixed to the lamp house 3 by a conductive resin or the like, and only one electrode of the LED 2 is electrically joined to a corresponding extraction electrode by the above-described material and is fixed to the lamp house 3. The other electrode and the extraction electrode corresponding to the other electrode can be electrically connected with a conductive wire. Further, the lamp house 3 may be made of a conductive material such as metal in order to improve the heat dissipation of the LED 2, and may also serve as a single electrode lead electrode 5.

ランプハウス3に形成された凹部の内側には、塗布、メッキ、または蒸着等により高反射率材を形成してもよい。凹部の形状は概円錐台形であることが望ましいが、概四角錐台形でもよい。凹部の側壁は傾斜していることが望ましいが、用途によっては、ほぼ垂直であってもよい。   A high reflectance material may be formed inside the recess formed in the lamp house 3 by coating, plating, vapor deposition, or the like. The shape of the recess is preferably a substantially truncated cone, but may be a substantially quadrangular pyramid. Although it is desirable that the side wall of the recess be inclined, it may be substantially vertical depending on the application.

本発明の発光装置は、青色LEDの励起により発光する蛍光体として、特定のEu付活Ca−α型サイアロン蛍光体を用いたことにより、高温の環境においても色の変化が少なく、発光効率がよい。本発明の発光装置は、発光ピーク波長が420〜480nmであるLEDと上記α型サイアロン蛍光体を用いたことにより、その発光スペクトルにおいて波長500nm以下の領域の面積を発光スペクトルの面積の5%以下とすることができる。これにより、波長500nm以下の光を遮断するための光学フィルター等がなくても、色度座標(CIE1931)上でx≧0.545、y≧0.39、y≦x−0.12の色度を実現できる。   The light-emitting device of the present invention uses a specific Eu-activated Ca-α type sialon phosphor as a phosphor that emits light when excited by a blue LED, so that there is little color change even in a high-temperature environment, and luminous efficiency is low. Good. The light-emitting device of the present invention uses an LED having an emission peak wavelength of 420 to 480 nm and the α-sialon phosphor, so that the area of the emission spectrum having a wavelength of 500 nm or less is 5% or less of the area of the emission spectrum. It can be. As a result, even if there is no optical filter or the like for blocking light with a wavelength of 500 nm or less, the color of x ≧ 0.545, y ≧ 0.39, y ≦ x−0.12 on the chromaticity coordinates (CIE1931). Degree can be realized.

次に本発明の車両用灯具およびそれを組み込んだヘッドランプについて説明する。   Next, the vehicle lamp of the present invention and a headlamp incorporating the same will be described.

図2は、本発明の車両用灯具の一例を示す図である。この灯具は、発光素子21と、発光素子21を支持する支持部22と、略円弧状の形状を有するリフレクタ23と、リフレクタ23と対向して配置されたアウターレンズ24とを備えている。発光素子21は、図1に示す発光装置と同様の構造を持つ発光素子21で、外側からの光が直接発光素子21に当たらないようにするために、蛍光体を充填した発光素子の上面が、発光素子21とレンズ24とを結ぶ直線に対しほぼ直交する方向を向くように、支持部22に固定されている。発光素子21は、図示しない電源部に接続されている。リフレクタ23は、発光素子21が発光する光をレンズ24側に反射させるもので、少なくとも発光素子21に対向する表面が金属或いは白色の材料からなる。例えば、表面に蒸着、塗布等によりアルミニウムなどの金属膜や白色顔料の膜が形成されている。また図示しないが、必要に応じて色味を調整するための光学フィルターがアウターレンズと発光素子との間に配置される場合がある。   FIG. 2 is a diagram showing an example of a vehicular lamp according to the present invention. The lamp includes a light emitting element 21, a support portion 22 that supports the light emitting element 21, a reflector 23 having a substantially arc shape, and an outer lens 24 that is disposed to face the reflector 23. The light emitting element 21 is a light emitting element 21 having the same structure as that of the light emitting device shown in FIG. 1, and the upper surface of the light emitting element filled with the phosphor is arranged so that the light from the outside does not directly hit the light emitting element 21. The light emitting element 21 and the lens 24 are fixed to the support portion 22 so as to face a direction substantially orthogonal to the straight line connecting the light emitting element 21 and the lens 24. The light emitting element 21 is connected to a power supply unit (not shown). The reflector 23 reflects light emitted from the light emitting element 21 toward the lens 24, and at least a surface facing the light emitting element 21 is made of a metal or a white material. For example, a metal film such as aluminum or a white pigment film is formed on the surface by vapor deposition, coating, or the like. Although not shown, an optical filter for adjusting the color as needed may be disposed between the outer lens and the light emitting element.

このような構造により、発光素子21の非発光時には光学フィルターやアウターレンズの色が外部から見えない。発光時には、リフレクタ23で反射された光は、レンズ24を介して外部へ照射される。従って点灯時と非点灯時とで、色(見栄え)が全く異なり、視認性が良好である。   With such a structure, the color of the optical filter and the outer lens cannot be seen from the outside when the light emitting element 21 does not emit light. At the time of light emission, the light reflected by the reflector 23 is irradiated to the outside through the lens 24. Accordingly, the color (appearance) is completely different between lighting and non-lighting, and the visibility is good.

本発明の車両用灯具は、例えば、車載用ターンシグナルランプ、リアコンビネーションランプ、車内照明灯、メーター照明、スイッチ類照明など種々の車両用灯具に適用することができる。図3に、本発明が適用されるヘッドランプの一例を示す。図3(a)はその正面図、(b)はA−A断面図である。このヘッドランプは、ハイビームランプ31、ロービームランプ32、33、ポジションランプ34、ターンシグナルランプ35など複数の灯具から構成される。本発明の発光装置は、これら灯具のいずれにも適用することが可能であるが、特に、各国でアンバー色の色範囲が規格化されている車載用ターンシグナルランプに好適である。車載用ターンシグナルランプ用いられるアンバー色の色範囲は、日本では、JIS D5500において橙色範囲として、0.429≧y≧0.398、z≦0.007(但しz=1−x−y、xyzは色度座標)と規格化され、欧州では、ECE規則で、y≧0.39、y≧0.79−0.67x、y≦x−0.12と規格化されている。米国では、SAE J578c,J578dにおいて、y=0.39、y=0.79−0.67x、y≦x−0.12と規格化されている。   The vehicular lamp of the present invention can be applied to various vehicular lamps such as an in-vehicle turn signal lamp, a rear combination lamp, an in-vehicle illumination lamp, a meter illumination, and a switch illumination. FIG. 3 shows an example of a headlamp to which the present invention is applied. 3A is a front view thereof, and FIG. 3B is a cross-sectional view taken along the line AA. The headlamp is composed of a plurality of lamps such as a high beam lamp 31, low beam lamps 32 and 33, a position lamp 34, and a turn signal lamp 35. The light-emitting device of the present invention can be applied to any of these lamps, and is particularly suitable for a vehicle-mounted turn signal lamp whose amber color range is standardized in each country. In Japan, the amber color range used for in-vehicle turn signal lamps is 0.429 ≧ y ≧ 0.398, z ≦ 0.007 (provided that z = 1−xy, xyz) as orange ranges in JIS D5500. Is standardized as chromaticity coordinates), and in Europe, y ≧ 0.39, y ≧ 0.79−0.67x, and y ≦ x−0.12 are standardized by ECE rules. In the United States, SAE J578c and J578d are standardized as y = 0.39, y = 0.79−0.67x, and y ≦ x−0.12.

本発明の車両用灯具が用いる発光素子21は、色度座標(CIE1931)上でx≧0.545、y≧0.39、y≦x−0.12の色度範囲を実現できるので、上記規格を満たす車載用ターンシグナルランプを提供することができる。   The light emitting element 21 used by the vehicle lamp of the present invention can realize the chromaticity ranges of x ≧ 0.545, y ≧ 0.39, and y ≦ x−0.12 on the chromaticity coordinates (CIE1931). An in-vehicle turn signal lamp that satisfies the standards can be provided.

また本発明の車両用灯具は、光源である発光装置(発光素子21)自体が車載用ターンシグナルランプの色度規格範囲内であるため、光学フィルターを用いなくともターンシグナルランプを製造することが可能となる。光学フィルターを用いないため、発光ロスも少なくなり、効率も向上する。   In the vehicle lamp of the present invention, since the light-emitting device (light-emitting element 21), which is a light source, is within the chromaticity specification range of the vehicle-mounted turn signal lamp, the turn signal lamp can be manufactured without using an optical filter. It becomes possible. Since no optical filter is used, light emission loss is reduced and efficiency is improved.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

1.α型サイアロン蛍光体の製造
窒化ケイ素粉末61.2質量%、窒化アルミニウム粉末22.1質量%、窒化カルシウム粉末9.5質量%、フッ化カルシウム粉末5.0質量%、酸化ユーロピウム粉末2.2質量%を、乳鉢を用いて混合して、窒化ホウ素質坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素中、1750℃で16時間の加熱処理を行った。加熱処理により得られた粉末は、粉末X線回折測定の結果、α型サイアロンであることが確認された。
1. Production of α-sialon phosphor 61.2% by mass of silicon nitride powder, 22.1% by mass of aluminum nitride powder, 9.5% by mass of calcium nitride powder, 5.0% by mass of calcium fluoride powder, 2.2 europium oxide powder The mass% was mixed using a mortar, filled in a boron nitride crucible, and heat-treated at 1750 ° C. for 16 hours in nitrogen at atmospheric pressure with an electric furnace of a carbon heater. As a result of the powder X-ray diffraction measurement, the powder obtained by the heat treatment was confirmed to be α-sialon.

加熱処理により得られた粉末(α型サイアロン)15質量%、窒化ケイ素粉末53質量%、窒化アルミニウム粉末19.1質量%、窒化カルシウム粉末11質量%、酸化ユーロピウム粉末1.9質量%を混合して、窒化ホウ素質坩堝に充填し、カーボンヒーターの電気炉で、窒素雰囲気中、1750℃で16時間の加熱処理を行った。得られた試料を篩分級し、45μmの篩を通過した粉末を発光装置作成用の蛍光体とした。   15% by mass of powder (α-sialon) obtained by heat treatment, 53% by mass of silicon nitride powder, 19.1% by mass of aluminum nitride powder, 11% by mass of calcium nitride powder, and 1.9% by mass of europium oxide powder were mixed. Then, a boron nitride crucible was filled, and heat treatment was performed at 1750 ° C. for 16 hours in a nitrogen atmosphere in an electric furnace of a carbon heater. The obtained sample was classified with a sieve, and the powder that passed through the 45 μm sieve was used as a phosphor for producing a light emitting device.

この蛍光体について、粉末X線回折測定により結晶相を調べた結果、存在する結晶相はα型サイアロンのみであった。蛍光分光光度計で蛍光スペクトルを測定したところ、ピーク波長が600nmで、半値幅が85nmであった。比表面積は0.24m2/gであった。 As a result of examining the crystal phase of this phosphor by powder X-ray diffraction measurement, the existing crystal phase was only α-sialon. When the fluorescence spectrum was measured with a fluorescence spectrophotometer, the peak wavelength was 600 nm and the half width was 85 nm. The specific surface area was 0.24 m 2 / g.

蛍光体組成式、(Caα、Euβ)(Si、Al)12(O、N)16でおけるα+β、O/N比を表1に示すように変えて、上記と同様の製造方法により、複数種類の蛍光体(実施例1〜3、比較例1〜5)を作製した。但し、比較例5の蛍光体は、原料粉末としてα型サイアロンを除いた原料粉末を化学量論的比率で混合して用いた。 Production method similar to the above, except that the α + β, O / N ratio in the phosphor composition formula (Ca α , Eu β ) (Si, Al) 12 (O, N) 16 is changed as shown in Table 1. Thus, a plurality of types of phosphors (Examples 1 to 3, Comparative Examples 1 to 5) were produced. However, the phosphor of Comparative Example 5 was prepared by mixing raw material powder excluding α-sialon as a raw material powder in a stoichiometric ratio.

Figure 2013168658
Figure 2013168658

2.蛍光体の発光特性測定
実施例1〜3および比較例1〜5の蛍光体について、455nmの励起光で励起した場合の蛍光特性を測定した。結果を表1に示す。
2. Measurement of emission characteristics of phosphors The fluorescence characteristics of the phosphors of Examples 1 to 3 and Comparative Examples 1 to 5 when excited with excitation light of 455 nm were measured. The results are shown in Table 1.

実施例3(α+β=1.71)と、比較例1(α+β=1)および比較例2(α+β=2.5)との比較から、α+βが1.5以下では、ピーク波長が595nm以上の蛍光が得難く、2.2を越えるα型サイアロンを製造しようとすると、蛍光特性に悪影響を及ぼす第二相が生成しやすくなることがわかる。 From comparison between Example 3 (α + β = 1.71) and Comparative Example 1 (α + β = 1) and Comparative Example 2 (α + β = 2.5), the peak wavelength was found when α + β was 1.5 or less. It is difficult to obtain fluorescence with a wavelength of 595 nm or more, and it is found that when an α-sialon exceeding 2.2 is produced, a second phase that adversely affects the fluorescence characteristics is easily generated.

また実施例2(β=0.04)と比較例3(β=0.25)との比較から、α+βが同じであっても、Euの固溶量(β値)が0.2を超えると、蛍光ピーク波長もシフトし、発光効率が低下することがわかる。
実施例3(O/N=0.02)と比較例4(O/N比=0.06)の比較より、ピーク波長および発光効率のいずれについても、酸素と窒素の比率は0.04以下であることが好ましいことがわかる。
Further, from the comparison between Example 2 (β = 0.04) and Comparative Example 3 (β = 0.25), even if α + β is the same, if the solid solution amount (β value) of Eu exceeds 0.2, It can be seen that the fluorescence peak wavelength also shifts and the luminous efficiency decreases.
From comparison between Example 3 (O / N = 0.02) and Comparative Example 4 (O / N ratio = 0.06), the ratio of oxygen to nitrogen is 0.04 or less for both peak wavelength and luminous efficiency. It turns out that it is preferable.

比表面積に関しては、実施例1(0.24m2/g)と比較例5(0.42m2/g)との比較から、比表面積が0.35m2/gより大きいと、60%以上の高い発光効率が得られないことがわかる。 As for the specific surface area, a comparison between Example 1 (0.24 m 2 / g) and Comparative Example 5 (0.42 m 2 / g) shows that when the specific surface area is larger than 0.35 m 2 / g, high light emission of 60% or more. It turns out that efficiency cannot be obtained.

3.発光装置の作製
実施例1の蛍光体を、熱硬化型シリコーン樹脂100重量部に対し20重量部配合し、均一に撹拌した後、電極5及び青色LED(窒化ガリウム系化合物半導体LED、発光波長のピーク:約460nm)が固定されたランプハンス3に注入機で注入した。その後、150℃で1〜4時間加熱して樹脂を硬化し固定化し、図1に示すような発光装置を作製した。
3. Production of Light-Emitting Device After blending 20 parts by weight of the phosphor of Example 1 with 100 parts by weight of thermosetting silicone resin and stirring uniformly, the electrode 5 and blue LED (gallium nitride compound semiconductor LED, emission wavelength) It was injected into the lamp Hans 3 with a fixed peak (about 460 nm) with an injector. Thereafter, the resin was cured by heating at 150 ° C. for 1 to 4 hours to fix, and a light emitting device as shown in FIG. 1 was produced.

この発光装置の青色LEDに電流350mAを流し、積分球で全光束を測定するとともに、周囲温度25℃における発光スペクトルを測定した。発光スペクトルを図4に示す。その結果、全光束は約29ルーメン(lm)、ピーク波長は603nm、発光スペクトルの半値幅は86nmであった。また500nm以下の積分値は、全体の積分値に対して0.33%であった。発光時の色度座標はx、y=0.5798、0.4169であり、車載用ターンシグナルランプに用いられるアンバー色の範囲内にあることが確認された。   A current of 350 mA was passed through the blue LED of this light emitting device, and the total luminous flux was measured with an integrating sphere, and the emission spectrum at an ambient temperature of 25 ° C. was measured. The emission spectrum is shown in FIG. As a result, the total luminous flux was about 29 lumen (lm), the peak wavelength was 603 nm, and the half width of the emission spectrum was 86 nm. The integral value of 500 nm or less was 0.33% with respect to the total integral value. The chromaticity coordinates at the time of light emission were x, y = 0.5798, 0.4169, and it was confirmed that the chromaticity coordinates are within the range of amber color used for the on-vehicle turn signal lamp.

4.温度特性の評価
3.で作製した発光装置及び従来のAIGalnP半導体LEDについて、周囲温度を制御した状態で、350mAの電流を通電し、積分球で全光束及び色度を測定した。その結果を図5及び図6に示す。図5中、光束の強度は、周囲温度が25℃のときの光束に対する相対強度を表している。図6中、点線で囲った領域は、ECE方向指示器色度領域を示し、一点鎖線はCIE1971 Spectrum Locus (単色光軌跡)を示す。
4). 2. Evaluation of temperature characteristics With respect to the light-emitting device manufactured in step 1 and the conventional AIGalnP semiconductor LED, a current of 350 mA was applied with the ambient temperature controlled, and the total luminous flux and chromaticity were measured with an integrating sphere. The results are shown in FIGS. In FIG. 5, the intensity of the light beam represents the relative intensity with respect to the light beam when the ambient temperature is 25 ° C. In FIG. 6, a region surrounded by a dotted line indicates an ECE direction indicator chromaticity region, and a one-dot chain line indicates a CIE1971 Spectrum Locus (monochromatic light locus).

図5からも明らかなように、AIGalnP半導体LEDは、高温領域で光束が低下するのに対し、本発明の発光装置は高温領域でも光束の低下が少なかった。
また図6に示すように、AIGalnP半導体LEDは、周囲の温度変化に対する色度変化が大きく、方向指示器の色度領域から外れてしまうのに対し、本発明による発光装置では、周囲環境が100℃となっても色度変化は少なかった。
As apparent from FIG. 5, the light flux of the AIGalnP semiconductor LED decreases in the high temperature region, whereas the light emitting device of the present invention has a small decrease of the light flux in the high temperature region.
Further, as shown in FIG. 6, the AIGalnP semiconductor LED has a large chromaticity change with respect to the ambient temperature change and deviates from the chromaticity region of the direction indicator, whereas the light emitting device according to the present invention has an ambient environment of 100 Even at ℃, there was little change in chromaticity.

これらの結果から本発明の発光装置は、使用環境が高温であっても安定に光束を維持でき、色度変化が少ないことが確認された。   From these results, it was confirmed that the light-emitting device of the present invention can stably maintain the luminous flux even when the usage environment is high, and the chromaticity change is small.

本発明によれば、高温下でも安定に光束が維持でき色度変化の少ないアンバー色の発光装置が提供される。この発光装置は、車両用灯具、一般のアンバー色光源に適用することができ、特に周囲温度の高い車両用灯具に好適である。   According to the present invention, there is provided an amber light emitting device that can stably maintain a light beam even at high temperatures and has little chromaticity change. This light emitting device can be applied to a vehicular lamp and a general amber color light source, and is particularly suitable for a vehicular lamp having a high ambient temperature.

1・・・樹脂、2・・・青色LED、3・・・ランプハウス、4,5・・・電極、6・・・導電性ワイヤー、21・・・発光素子、23・・・リフレクタ、24・・・アウターレンズ。 DESCRIPTION OF SYMBOLS 1 ... Resin, 2 ... Blue LED, 3 ... Lamp house, 4, 5 ... Electrode, 6 ... Conductive wire, 21 ... Light emitting element, 23 ... Reflector, 24 ... Outer lens.

Claims (7)

励起光を発する光源と、その励起光を吸収して光を発する蛍光体を組み合わせてなる発光装置であって、環境温度が−20℃から85℃の範囲において、全光束の変化量が±30%以内であり、発する光の色度が色度座標(CIE1931)上でx≧0.545、y≧0.39、y≦x−0.12であることを特徴とする発光装置。A light-emitting device that combines a light source that emits excitation light and a phosphor that absorbs the excitation light and emits light. When the ambient temperature is in the range of −20 ° C. to 85 ° C., the amount of change in the total luminous flux is ± 30. A light emitting device characterized in that the chromaticity of emitted light is x ≧ 0.545, y ≧ 0.39, and y ≦ x−0.12 on chromaticity coordinates (CIE1931). 請求項1に記載の発光装置であって、環境温度が−20℃から85℃の範囲において、色度の変化量が色度座標(CIE1931)上でΔx≦0.03、Δy≦0.03であることを特徴とする発光装置。2. The light emitting device according to claim 1, wherein the change in chromaticity is Δx ≦ 0.03 and Δy ≦ 0.03 on the chromaticity coordinates (CIE1931) when the environmental temperature is in the range of −20 ° C. to 85 ° C. 3. A light emitting device characterized by the above. 請求項1または2に記載の発光装置を用いた車両用灯具。A vehicular lamp using the light-emitting device according to claim 1. 発光素子と、前記発光素子からの光を受け、反射するリフレクタと、リフレクタで反射された光を外部に照射するためのレンズとを備えた車両用灯具であって、発光素子として請求項1または2に記載の発光装置を用いたことを特徴とする車両用灯具。A vehicle lamp comprising: a light-emitting element; a reflector that receives and reflects light from the light-emitting element; and a lens for irradiating the light reflected by the reflector to the outside, wherein the light-emitting element is used as a light-emitting element. A vehicle lamp characterized by using the light-emitting device according to 2. 請求項4項に記載の車両用灯具であって、カラーフィルターを用いずに測定した発光スペクトルにおける500nm以下の領域の面積が、発光スペクトル全体の面積の5%以下であることを特徴とする車両用灯具。5. The vehicle lamp according to claim 4, wherein an area of a region of 500 nm or less in an emission spectrum measured without using a color filter is 5% or less of an area of the entire emission spectrum. Lamps. 請求項4項に記載の車両用灯具であって、発光素子の主発光方向が、灯具の主発光方向とほぼ直交していることを特徴とする車両用灯具。The vehicular lamp according to claim 4, wherein a main light emission direction of the light emitting element is substantially orthogonal to a main light emission direction of the lamp. 請求項3ないし6いずれか1項記載の灯具を組み込んだヘッドランプ。A headlamp incorporating the lamp according to any one of claims 3 to 6.
JP2013053603A 2013-03-15 2013-03-15 Light emitting device, vehicle lamp using the same, and headlamp Active JP5683625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013053603A JP5683625B2 (en) 2013-03-15 2013-03-15 Light emitting device, vehicle lamp using the same, and headlamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053603A JP5683625B2 (en) 2013-03-15 2013-03-15 Light emitting device, vehicle lamp using the same, and headlamp

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007269970A Division JP5941243B2 (en) 2007-10-17 2007-10-17 Light emitting device, vehicle lamp using the same, and headlamp

Publications (2)

Publication Number Publication Date
JP2013168658A true JP2013168658A (en) 2013-08-29
JP5683625B2 JP5683625B2 (en) 2015-03-11

Family

ID=49178795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053603A Active JP5683625B2 (en) 2013-03-15 2013-03-15 Light emitting device, vehicle lamp using the same, and headlamp

Country Status (1)

Country Link
JP (1) JP5683625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171775A1 (en) * 2018-03-06 2019-09-12 ソニー株式会社 Light-emitting element, light source device, and projector
US11745641B2 (en) 2018-11-01 2023-09-05 Lg Chem, Ltd. Vehicle lamp and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550462B1 (en) * 2018-03-09 2023-07-03 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537665A (en) * 2002-08-30 2005-12-08 ゲルコアー リミテッド ライアビリティ カンパニー LED flat light source and thin headlight provided with the same
WO2007004492A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
JP2007213862A (en) * 2006-02-07 2007-08-23 Koito Mfg Co Ltd Vehicular beacon light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537665A (en) * 2002-08-30 2005-12-08 ゲルコアー リミテッド ライアビリティ カンパニー LED flat light source and thin headlight provided with the same
WO2007004492A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
JP2007213862A (en) * 2006-02-07 2007-08-23 Koito Mfg Co Ltd Vehicular beacon light

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013064409; Rong-Jun Xie et al.: 'Optical Properties of Eu2+ in alpha-SiAlON' J. Phys. Chem. B. Vol.108,No.32, 20040720, 12027-12031, American Chemical Society *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171775A1 (en) * 2018-03-06 2019-09-12 ソニー株式会社 Light-emitting element, light source device, and projector
CN111788521A (en) * 2018-03-06 2020-10-16 索尼公司 Light-emitting element, light source device, and projector
JPWO2019171775A1 (en) * 2018-03-06 2021-03-18 ソニー株式会社 Light emitting element, light source device and projector
US11429015B2 (en) 2018-03-06 2022-08-30 Sony Corporation Light-emitting element, light source device and projector
US11745641B2 (en) 2018-11-01 2023-09-05 Lg Chem, Ltd. Vehicle lamp and method for manufacturing same

Also Published As

Publication number Publication date
JP5683625B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5941243B2 (en) Light emitting device, vehicle lamp using the same, and headlamp
JP6216761B2 (en) Color-stable manganese-doped phosphor
US10568172B2 (en) Dimmable solid-state light emitting devices
JP4543250B2 (en) Phosphor mixture and light emitting device
JP5676653B2 (en) Semiconductor light emitting device
US20070090381A1 (en) Semiconductor light emitting device
JP6200891B2 (en) Phosphor materials and related devices
WO2009128468A9 (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP4798335B2 (en) Phosphor and light source using phosphor
JP2009516774A (en) Charge compensated nitride phosphors for use in lighting applications
KR20100015323A (en) Red line emitting phosphors for use in led applications
JP2014514388A5 (en)
JP2004115633A (en) Silicate phosphor and light-emitting unit therewith
JP2010097829A (en) Lighting system and vehicular lighting fixture
JP2006310817A (en) Incandescent emitting device and luminaire
JP7454785B2 (en) Phosphors and light emitting devices using them
JP2007059898A (en) Semiconductor light-emitting device
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP5683625B2 (en) Light emitting device, vehicle lamp using the same, and headlamp
KR102255213B1 (en) Phosphor and light emitting device including the phosphor
JP5194395B2 (en) Oxynitride phosphor and light-emitting device using the same
JP4948015B2 (en) Aluminate blue phosphor and light emitting device using the same
JPWO2012014701A1 (en) Light emitting device
WO2023145774A1 (en) Fluorescent body, method for producing same, and light-emitting device
JP7361314B2 (en) Phosphors and light emitting devices using them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5683625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250