JP2010097829A - Lighting system and vehicular lighting fixture - Google Patents

Lighting system and vehicular lighting fixture Download PDF

Info

Publication number
JP2010097829A
JP2010097829A JP2008267900A JP2008267900A JP2010097829A JP 2010097829 A JP2010097829 A JP 2010097829A JP 2008267900 A JP2008267900 A JP 2008267900A JP 2008267900 A JP2008267900 A JP 2008267900A JP 2010097829 A JP2010097829 A JP 2010097829A
Authority
JP
Japan
Prior art keywords
phosphor
light
visible light
infrared light
emits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008267900A
Other languages
Japanese (ja)
Inventor
Koichi Takayama
浩一 高山
Shuichi Taya
周一 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008267900A priority Critical patent/JP2010097829A/en
Publication of JP2010097829A publication Critical patent/JP2010097829A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system using a white LED, which can attain efficient and stable operation while emitting near infrared light together with visible light. <P>SOLUTION: A wavelength conversion layer for converting a part of visible light emitted by a semiconductor light emitting element includes a first phosphor having an emission peak in a predetermined visible light range and a second phosphor having an emission peak in each of the predetermined visible light range and a predetermined near infrared light range. A cover member is heated by absorbing the near infrared light. Since the fluorescence of the visible light emitted by the first phosphor and the second phosphor can be used, a sufficient emission quantity can be ensured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体発光素子(LED)を用いた照明装置、特に、車両用前照灯に関する。   The present invention relates to an illumination device using a semiconductor light emitting element (LED), and more particularly to a vehicle headlamp.

従来の放電ランプやハロゲンランプを用いた自動車用前照灯(ヘッドランプ)は、可視光のみならず赤外線も放射する為、ヘッドランプ前面が加熱され、悪天侯時にアウターカバーに雪の付着があっても自然に融解する機能があった。   Conventional automotive headlamps using discharge lamps and halogen lamps emit not only visible light but also infrared rays, so the front of the headlamp is heated and snow adheres to the outer cover during bad weather. Even if there was, it had the function of melting naturally.

近年、発光効率の高い白色LEDを用いた自動車用ヘッドライトが実用化されている。この白色LEDは、青色LEDに黄色蛍光体を組み合わせたものであり、黄色蛍光体としては、Yl512:Ce3+が使用されている。白色LEDを用いたヘッドランプは、発熱が少なく高効率である事が長所であるが、赤外線を放射しないため、悪天侯時にヘッドランプ前面のアウターカバーに積もった雪や氷が融けないという問題があった。 In recent years, automotive headlights using white LEDs with high luminous efficiency have been put into practical use. This white LED is a combination of a blue LED and a yellow phosphor, and Y 3 A 15 O 12 : Ce 3+ is used as the yellow phosphor. The advantage of headlamps using white LEDs is that they produce less heat and are highly efficient. However, they do not emit infrared rays, so the problem is that the snow and ice that accumulates on the outer cover on the front of the headlamps do not melt during bad weather. was there.

この問題を解決するため、特許文献1〜4には、ヘッドランプ内部に融雪のための加熱部品や発熱体、温風を制御する部品を備えた構成が開示されている。   In order to solve this problem, Patent Documents 1 to 4 disclose a configuration in which a heating component for melting snow, a heating element, and a component for controlling hot air are provided in the headlamp.

一方、特許文献5には、LED素子に可視波長範囲に発光する蛍光体と赤外線波長範囲に発光する蛍光体とを組み合わせて、可視光と近赤外光に発光スペクトルをもつ発光素子が提案されている。   On the other hand, Patent Document 5 proposes a light-emitting element having an emission spectrum for visible light and near-infrared light by combining an LED element with a phosphor that emits light in the visible wavelength range and a phosphor that emits light in the infrared wavelength range. ing.

非特許文献1には、近赤外に発光を持つ蛍光体として、イットリウムアルミニウム酸化物のガーネット結晶構造にCeとErを添加したYAG:Ce,Er蛍光体が開示されている。この蛍光体は、CeからErへのエネルギー移動により、Er由来の1400〜1700nmの近赤外領域に発光を持つことが分かっている。非特許文献1によれば、YAG結晶にErのみを添加してもErの近赤外発光は微弱で、Ceを同時に添加したときに明るい発光が得られるとある(非特許文献1の図2(d))。   Non-Patent Document 1 discloses a YAG: Ce, Er phosphor in which Ce and Er are added to a garnet crystal structure of yttrium aluminum oxide as a phosphor having light emission in the near infrared. This phosphor is known to have light emission in the near infrared region of 1400 to 1700 nm derived from Er due to energy transfer from Ce to Er. According to Non-Patent Document 1, even when Er alone is added to a YAG crystal, the near-infrared emission of Er is weak, and bright emission is obtained when Ce is added simultaneously (FIG. 2 of Non-Patent Document 1). (D)).

Er以外にYAG結晶のイットリウム原子位置を置換しうる3価の元素で、近赤外発光を示す希土類元素としては、Tm、Dy、Nd、Pr、Ybなどが知られている。これらの元素を添加しても、近赤外領域に発光を得ることが可能である。   Tm, Dy, Nd, Pr, Yb, and the like are known as rare earth elements that emit near-infrared light and are trivalent elements that can replace the yttrium atom position of the YAG crystal in addition to Er. Even if these elements are added, light emission in the near infrared region can be obtained.

特開2004−296212号公報(図1符号9)Japanese Patent Laying-Open No. 2004-296212 (reference numeral 9 in FIG. 1) 特開2004−314902号公報(図1符号140)JP 2004-314902 A (reference numeral 140 in FIG. 1) 特開2005−190825号公報(図1符号12)Japanese Patent Laying-Open No. 2005-190825 (reference numeral 12 in FIG. 1) 特開2006−244884号公報(図2符号10)Japanese Patent Laying-Open No. 2006-244848 (reference numeral 10 in FIG. 2) 特開2006−60238号公報JP 2006-60238 A Appl Phys Lett 2007:Vol191 No15 Page151107Appl Phys Lett 2007: Vol191 No15 Page151107

しかしながら、自動車前照灯に特許文献1〜4に記載の構成を採用すると、装置が大きくなり設計の自由度が低下するとともに、コストがかかる。   However, when the configurations described in Patent Documents 1 to 4 are adopted for the automobile headlamp, the apparatus becomes large and the degree of freedom in design is reduced, and the cost is increased.

一方、特許文献5に記載のように可視光を発する蛍光体と赤外光を発する蛍光体とを混合して用いる場合、車両用前照灯のように大きな光量が必要な用途では、可視光量の確保と蛍光体の発熱が問題になる。というのは、可視光を発する蛍光体と赤外光を発する蛍光体とを混合して用いた場合、可視光を発する蛍光体の割合が減少してしまうため、十分な可視光量を確保することが難しくなる。   On the other hand, when a phosphor that emits visible light and a phosphor that emits infrared light are mixed and used as described in Patent Document 5, in applications that require a large amount of light, such as a vehicle headlamp, the visible light amount And the heat generation of the phosphor are problems. This is because when a phosphor that emits visible light and a phosphor that emits infrared light are used in combination, the ratio of the phosphor that emits visible light decreases, so that a sufficient amount of visible light is secured. Becomes difficult.

また、一般に、蛍光体の励起波長と蛍光波長との差はストークスシフトと呼ばれており、このシフト量が大きくなると、蛍光体のエネルギーロスも大きくなる。このため赤外光を発する蛍光体は、可視光を発する蛍光体と比較してエネルギーロスが大きく、発熱量が大きい。蛍光体は一般的に温度上昇によって変換効率が低下する特性(温度消光)を持っているため、赤外光を発する蛍光体が発熱して熱が蓄積されると温度消光につながる。蛍光体の温度消光は、白色LEDの白色光の色度変化をもたらす。自動車前照灯は、法規により色度範囲が定められているため、色度の変化は大きな問題になる。特許文献5の可視光蛍光体と赤外光蛍光体の混合物に代えて、非特許文献1に記載の蛍光体を用いたとしても光量確保とストークスシフトによる発熱の問題は同様に生じる。   In general, the difference between the excitation wavelength of the phosphor and the fluorescence wavelength is called a Stokes shift, and the energy loss of the phosphor increases as the shift amount increases. Therefore, a phosphor that emits infrared light has a large energy loss and a large amount of heat generation compared to a phosphor that emits visible light. Since the phosphor generally has a characteristic (temperature quenching) in which the conversion efficiency decreases due to a temperature rise, if the phosphor emitting infrared light generates heat and accumulates heat, it leads to temperature quenching. The temperature quenching of the phosphor causes a change in the chromaticity of the white light of the white LED. In automobile headlamps, the chromaticity range is determined by laws and regulations, so a change in chromaticity is a big problem. Even if the phosphor described in Non-Patent Document 1 is used instead of the mixture of the visible light phosphor and the infrared light phosphor disclosed in Patent Document 5, the problem of heat generation due to the securing of the light amount and the Stokes shift similarly occurs.

本発明の目的は、可視光とともに近赤外光を発しながら、高効率で安定な動作を実現することができる白色LEDを用いる照明装置を提供することにある。   The objective of this invention is providing the illuminating device using white LED which can implement | achieve highly efficient and stable operation | movement, emitting near infrared light with visible light.

上記目的を達成するために、本発明によれば、可視光を発する半導体発光素子と、半導体発光素子の発する光の一部を吸収して蛍光を発する蛍光体を含む波長変換層とを有する照明装置であって、蛍光体は、所定の可視光域に発光ピークを有する蛍光を発する第1の蛍光体と、所定の可視光域と所定の近赤外光域にそれぞれ発光ピークを有する蛍光を発する第2の蛍光体とを含むものが提供される。このように、可視光域と近赤外光域に蛍光を発する第2の蛍光体を、可視光域のみに蛍光を発する第1の蛍光体とを組み合わせて用いることにより、近赤外光をカバー部材に吸収させてカバー部材を加熱することができる。また、第1の蛍光体のみならず第2の蛍光体の可視光の蛍光を利用することができるため、十分な可視光量を得ることができる。
第2の蛍光体の前記所定の近赤外光域は、カバー部材を構成する材料の近赤外光の吸収帯の少なくとも一部と重なるように構成することが好ましい。これにより、効率よくカバー部材を加熱することができる。
In order to achieve the above object, according to the present invention, an illumination having a semiconductor light emitting element that emits visible light and a wavelength conversion layer that includes a phosphor that emits fluorescence by absorbing part of the light emitted by the semiconductor light emitting element. The phosphor is a first phosphor that emits fluorescence having a light emission peak in a predetermined visible light region, and fluorescence having light emission peaks in a predetermined visible light region and a predetermined near infrared light region, respectively. And a second phosphor that emits. Thus, by using the second phosphor that emits fluorescence in the visible light region and the near infrared light region in combination with the first phosphor that emits fluorescence only in the visible light region, near infrared light can be obtained. The cover member can be heated by being absorbed by the cover member. In addition, since the visible light fluorescence of the second phosphor as well as the first phosphor can be used, a sufficient visible light amount can be obtained.
The predetermined near-infrared light region of the second phosphor is preferably configured to overlap at least part of the near-infrared light absorption band of the material constituting the cover member. Thereby, a cover member can be heated efficiently.

例えば、半導体発光素子の発する光の波長は波長440nm以上480nmとし、所定の可視光域は、波長530nm以上570nm以下、所定の近赤外光域は、波長1150nm以上2000nm以下に設定する。   For example, the wavelength of light emitted from the semiconductor light emitting element is set to a wavelength of 440 nm to 480 nm, the predetermined visible light region is set to a wavelength of 530 nm to 570 nm, and the predetermined near infrared light region is set to a wavelength of 1150 nm to 2000 nm.

例えば波長変換層は、半導体発光素子に接触するように配置された第1の層とその外側の第2の層の2層構造とすることが可能である。第1の層には第2の蛍光体が含有され、第2の層には第1の蛍光体が含有されるように構成する。これにより、ストークスシフトに起因する第2の蛍光体の熱を半導体発光素子を介して排熱することができるため、温度消光を防止して安定した発光を得ることができる。   For example, the wavelength conversion layer can have a two-layer structure of a first layer disposed so as to be in contact with the semiconductor light emitting element and a second layer outside the first layer. The first layer contains the second phosphor, and the second layer contains the first phosphor. As a result, the heat of the second phosphor caused by the Stokes shift can be exhausted through the semiconductor light emitting element, so that temperature quenching can be prevented and stable light emission can be obtained.

また、例えば波長変換層は、樹脂に蛍光体の粒子を混合した構成とすることができ、第2の蛍光体の粒子の少なくとも一部は、半導体発光素子と直接接触するように配置することも可能である。これにより、ストークスシフトに起因する第2の蛍光体の熱を半導体発光素子を介して排熱することができ、安定した発光を得ることができる。   Further, for example, the wavelength conversion layer may be configured by mixing phosphor particles in a resin, and at least a part of the second phosphor particles may be disposed so as to be in direct contact with the semiconductor light emitting device. Is possible. Accordingly, the heat of the second phosphor caused by the Stokes shift can be exhausted through the semiconductor light emitting element, and stable light emission can be obtained.

第2の蛍光体としては、例えばYとAlの酸化物で結晶構造がガーネット構造であって、Er、Tm、Dy、Nd、Pr、YbおよびTiのうちの1以上の元素と、Ceとを添加したものを用いる。   As the second phosphor, for example, an oxide of Y and Al having a garnet structure and one or more elements of Er, Tm, Dy, Nd, Pr, Yb and Ti, and Ce Use the added one.

例えばカバー部材の材料としては、近赤外光に吸収帯をもつ樹脂を用いる。もしくは、近赤外光に吸収帯をもつ化合物を含有する樹脂を用いる。   For example, as a material for the cover member, a resin having an absorption band in near infrared light is used. Alternatively, a resin containing a compound having an absorption band in near infrared light is used.

また、本発明の別の態様によれば、以下のような車両用灯具が提供される。すなわち可視光を発する半導体発光素子と、半導体発光素子の発する光の一部を吸収して蛍光を発する蛍光体を含む波長変換層と、可視光を透過して外部に放出するカバー部材とを有する車両用灯具であって、蛍光体は、所定の可視光域に発光ピークを有する蛍光を発する第1の蛍光体と、前記所定の可視光域と所定の近赤外光域にそれぞれ発光ピークを有する蛍光を発する第2の蛍光体とを含む。所定の近赤外光域は、カバー部材を構成する材料の近赤外光の吸収帯の少なくとも一部と重なっている。これにより、十分な光量の可視光の蛍光を確保しながら、カバー部に近赤外光を吸収させ、加熱することができる。   According to another aspect of the present invention, the following vehicular lamp is provided. That is, it has a semiconductor light emitting element that emits visible light, a wavelength conversion layer that includes a phosphor that emits fluorescence by absorbing part of the light emitted from the semiconductor light emitting element, and a cover member that transmits visible light and emits it to the outside. In the vehicular lamp, the phosphor includes a first phosphor that emits fluorescence having a light emission peak in a predetermined visible light region, and a light emission peak in each of the predetermined visible light region and a predetermined near infrared light region. And a second phosphor that emits fluorescence. The predetermined near-infrared light region overlaps at least a part of the near-infrared light absorption band of the material constituting the cover member. Accordingly, the near infrared light can be absorbed by the cover portion and heated while securing a sufficient amount of visible light fluorescence.

本発明によれば、可視光とともに近赤外光を発しながら、高効率で安定な動作を実現することができる白色LEDを用いる照明装置を提供することができる。これにより、近赤外光により照明装置のカバーを加熱し、特別な加熱機構を備えることなく融雪機能を持たせることができる。また、十分な可視光量を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the illumination apparatus using white LED which can implement | achieve highly efficient and stable operation | movement can be provided, emitting near infrared light with visible light. Thereby, the cover of an illuminating device can be heated with near-infrared light, and a snow melting function can be provided without providing a special heating mechanism. In addition, a sufficient visible light amount can be obtained.

以下、本発明の一実施の形態のLED照明装置を用いた自動車用前照灯について説明する。   Hereinafter, an automotive headlamp using an LED lighting device according to an embodiment of the present invention will be described.

本実施の形態のLED照明装置は、青色光(波長440〜480nm)を発する発光素子(LED素子)と、青色光を励起光とし黄色の蛍光(ピーク波長530〜570nm)を発光する第1の蛍光体と、青色発光を励起光とし黄色の蛍光および近赤外光の蛍光(ピーク波長1150〜2000nm)を発する第2の蛍光体とを組み合わせ、青色光と黄色光とを混色して白色光を得る。第2の蛍光体が発する近赤外光は、自動車用前照灯のカバーに吸収され、カバーを加熱する。第2の蛍光体はストークスシフトにより発熱するが、本実施形態ではこの熱を効率よく排熱する構造とする。   The LED illumination device of the present embodiment includes a light emitting element (LED element) that emits blue light (wavelength 440 to 480 nm), and a first light that emits yellow fluorescence (peak wavelength 530 to 570 nm) using blue light as excitation light. A combination of a phosphor and a second phosphor that emits yellow fluorescence and near-infrared fluorescence (peak wavelength: 1150 to 2000 nm) using blue light emission as excitation light, and mixes blue and yellow light to produce white light. Get. Near-infrared light emitted from the second phosphor is absorbed by the cover of the automotive headlamp and heats the cover. The second phosphor generates heat due to the Stokes shift. In this embodiment, the second phosphor has a structure that efficiently exhausts this heat.

図1(a),(b)はそれぞれ、本実施形態の自動車用前照灯の正面図と、A−A’断面図である。自動車用前照灯は、ハイビーム7と、3台のロービーム8と、フォグランプ11、方向指示器10、ポジションランプ9とを含み、その前面はアウターカバー23により覆われている。   FIGS. 1A and 1B are a front view and an A-A ′ cross-sectional view, respectively, of the automotive headlamp of the present embodiment. The automotive headlamp includes a high beam 7, three low beams 8, a fog lamp 11, a direction indicator 10, and a position lamp 9, and the front surface thereof is covered with an outer cover 23.

ハイビーム7および3台のロービーム8は、光源としてLED発光装置6を用いるLED照明装置である。ハイビーム7は、4つのLED発光装置6と、これを搭載してその熱を排熱するヒートシンク部(不図示)と、反射鏡7aと、光学系7bを備えている。3台のロービーム8はそれぞれ、ひとつのLED発光装置6と反射鏡8aとレンズ等の光学系8bとを備えている。   The high beam 7 and the three low beams 8 are LED illumination devices that use the LED light emitting device 6 as a light source. The high beam 7 includes four LED light emitting devices 6, a heat sink (not shown) on which the LED light emitting devices 6 are mounted to exhaust the heat, a reflecting mirror 7 a, and an optical system 7 b. Each of the three low beams 8 includes one LED light emitting device 6, a reflecting mirror 8a, and an optical system 8b such as a lens.

LED発光装置6の構成を図2に断面図を用いて説明する。基板20には一対の電極5が備えられ、その上にLED素子1が搭載されている。LED素子1は、下面と上面に図示していない電極パッドを備え、下面電極パッドは一対の電極5の一方と半田等で接合され、上面電極パッドは一対の電極5の他方とボンディングワイヤ21により接続されている。LED素子1の上面には、2種類の蛍光体粒子3、4を含有する樹脂2で形成されたドーム状の波長変換層22が配置されている。   The configuration of the LED light-emitting device 6 will be described with reference to a cross-sectional view in FIG. The substrate 20 is provided with a pair of electrodes 5 on which the LED element 1 is mounted. The LED element 1 includes electrode pads (not shown) on the lower surface and the upper surface, the lower electrode pads are bonded to one of the pair of electrodes 5 by solder or the like, and the upper electrode pad is bonded to the other of the pair of electrodes 5 by a bonding wire 21. It is connected. On the upper surface of the LED element 1, a dome-shaped wavelength conversion layer 22 formed of a resin 2 containing two types of phosphor particles 3 and 4 is disposed.

LED素子1の発光波長範囲は、440nm以上480nm以下である。樹脂2はLED素子1の放出する上記波長範囲の青色光に対して透明である。例えば、シリコーン樹脂を用いることができる。   The emission wavelength range of the LED element 1 is not less than 440 nm and not more than 480 nm. The resin 2 is transparent to blue light in the above wavelength range emitted from the LED element 1. For example, a silicone resin can be used.

波長変換層22に含有される2種類の蛍光体粒子のうち第1の蛍光体粒子3は、青色光を励起光とし黄色の蛍光(ピーク波長530nm以上570nm以下)を発光する。第2の蛍光体粒子3は、可視光と近赤外光の蛍光を発し、可視光の波長範囲は黄色(ピーク波長530nm以上570nm以下)であり、近赤外光の波長範囲はアウターカバー23の吸収波長と少なくとも一部が重なるように設計されている。   Of the two types of phosphor particles contained in the wavelength conversion layer 22, the first phosphor particles 3 emit yellow fluorescence (peak wavelength: 530 nm or more and 570 nm or less) using blue light as excitation light. The second phosphor particles 3 emit visible and near-infrared fluorescence, the wavelength range of visible light is yellow (peak wavelength of 530 nm or more and 570 nm or less), and the wavelength range of near-infrared light is the outer cover 23. It is designed to overlap at least partly with the absorption wavelength.

本実施形態ではアウターカバー23としては、自動車前照灯のカバーとして一般的で、透明度が高く耐侯性に優れるポリカーボネートを用いる。一般的なポリカーボネートは、図3の近赤外域の透過率測定結果を示すように1650nm付近に強い吸収を持っている。これはポリカーボネート樹脂に含まれるカルボニル化合物特有のものである。また、水の吸収スペクトルは図4の通りであり、1100nm以上の近赤外線を吸収する。   In the present embodiment, the outer cover 23 is made of polycarbonate, which is a general cover for automobile headlamps and has high transparency and excellent weather resistance. A general polycarbonate has strong absorption in the vicinity of 1650 nm as shown in the near-infrared transmittance measurement result of FIG. This is peculiar to the carbonyl compound contained in the polycarbonate resin. Moreover, the absorption spectrum of water is as FIG. 4, and absorbs near infrared rays of 1100 nm or more.

よって、第2の蛍光体粒子4の近赤外光の波長範囲は、1100nm以上であることが望ましく、特に好ましくは1650nm付近にピークを持つことである。本実施形態では、黄色光のみならず、1150nm以上2000nm以下の近赤外光の蛍光を発する第2の蛍光体粒子4を用いる。これにより、近赤外光でアウターカバー23を加熱して悪天候における雪や氷の付着による不具合を解消することができる。   Therefore, the wavelength range of the near infrared light of the second phosphor particles 4 is desirably 1100 nm or more, and particularly preferably has a peak in the vicinity of 1650 nm. In the present embodiment, the second phosphor particles 4 that emit not only yellow light but also near infrared light of 1150 nm to 2000 nm are used. Thereby, the outer cover 23 can be heated with near-infrared light, and the malfunction by the adhesion of snow and ice in bad weather can be eliminated.

第1の蛍光体粒子3としては、YAG:Ce等YAG(Y3Al5O12)系蛍光体粒子を用いることができる。第2の蛍光体粒子4としては、YAG:Ce,Er等、YAG系結晶にCeとErを添加した蛍光体を用いることができる。この蛍光体は、CeからErへのエネルギー移動によりEr由来の1400nm〜1700nmの近赤外領域に発光を生じる。また、Erに代えて、YAG結晶のイットリウム原子位置を置換しうる3価の元素Tm、Dy、Nd、Pr、Ybを添加することも可能である。これらの元素を添加した場合も、近赤外領域に発光を得ることができる。 As the first phosphor particles 3, YAG (Y 3 Al 5 O 12 ) -based phosphor particles such as YAG: Ce can be used. As the second phosphor particle 4, a phosphor in which Ce and Er are added to a YAG crystal, such as YAG: Ce, Er, can be used. This phosphor emits light in the near-infrared region of 1400 nm to 1700 nm derived from Er by energy transfer from Ce to Er. Further, in place of Er, a trivalent element Tm, Dy, Nd, Pr, or Yb capable of substituting the yttrium atom position of the YAG crystal can be added. Even when these elements are added, light emission can be obtained in the near infrared region.

第2の蛍光体粒子4は、可視光を励起光として、可視光と近赤外光の蛍光を放出するためストークスシフト(励起波長と蛍光波長との差)が大きい。このため第2の蛍光体4は、第1の蛍光体粒子3と比較してエネルギーロスが大きく、発熱量も大きくなる。そこで本実施形態では、第2の蛍光体粒子4をLED素子1に直接接するか、もしくは、薄い樹脂2を介して近接するように波長変換層22を構成している。具体的には、波長変換層23は、LED素子1に接する下側層と、その上に搭載された上側層とに分かれ、下側層には第2の蛍光体粒子4のみが含有され、上側層には第1の蛍光体粒子3のみが含有されている。これにより、第2の蛍光体粒子4の発熱をLED素子1および基板20を介して、基板20を搭載するヒートシンクへ効率的に排熱することができるため、蛍光体4や蛍光体3が高温になるのを防止でき、温度消光を防ぐことができる。また、排熱をスムーズにすることにより、LED素子1の温度上昇も抑制でき、LED照明装置6の高効率化、高安定化、高信頼性化を図ることができる。   The second phosphor particles 4 have a large Stokes shift (difference between the excitation wavelength and the fluorescence wavelength) because visible light is used as excitation light and fluorescence of visible light and near infrared light is emitted. For this reason, the second phosphor 4 has a larger energy loss and a larger amount of heat generation than the first phosphor particles 3. Therefore, in the present embodiment, the wavelength conversion layer 22 is configured so that the second phosphor particles 4 are in direct contact with the LED element 1 or are close to each other through the thin resin 2. Specifically, the wavelength conversion layer 23 is divided into a lower layer in contact with the LED element 1 and an upper layer mounted thereon, and the lower layer contains only the second phosphor particles 4; The upper layer contains only the first phosphor particles 3. Thereby, since the heat generated by the second phosphor particles 4 can be efficiently exhausted to the heat sink on which the substrate 20 is mounted via the LED element 1 and the substrate 20, the phosphor 4 and the phosphor 3 are heated to a high temperature. Can be prevented and temperature quenching can be prevented. Further, by smoothing the exhaust heat, the temperature rise of the LED element 1 can be suppressed, and the LED lighting device 6 can be highly efficient, highly stable, and highly reliable.

このような2層構造の波長変換層22を備えたLED発光装置6は以下のように製造することができる。   The LED light emitting device 6 including the wavelength conversion layer 22 having such a two-layer structure can be manufactured as follows.

まず、電極5があらかじめ備えられた基板20を用意し、別途製造しておいた青色LED素子1を一方の電極5上に半田等で接合する。LED素子1の上面の電極パッドと他方の電極5とをワイヤ21によりワイヤボンディングする。   First, a substrate 20 provided with an electrode 5 in advance is prepared, and a separately manufactured blue LED element 1 is joined to one electrode 5 with solder or the like. The electrode pad on the upper surface of the LED element 1 and the other electrode 5 are wire-bonded by a wire 21.

第1の蛍光体粒子3と第2の蛍光体粒子4を所定の割合でそれぞれ樹脂材料に分散しておく。まず、第2の蛍光体粒子4が分散された樹脂材料をディスペンサ等を用いてLED素子1の上面に所定量滴下し、塗膜を形成した後、加熱等して硬化させる。これにより、第2の蛍光体粒子4が分散された波長変換層22の下側層が形成される。このあと、下側層の上に、第1の蛍光体粒子3が分散された樹脂材料を所定量滴下し、表面張力で盛り上がった塗膜を形成した後、加熱等して硬化させる。これにより、第1の蛍光体粒子3が分散された波長変換層22の上側層が形成される。以上によりLED発光装置6が製造される。LED発光装置6をヒートシンクに搭載し、反射鏡7a,8aおよび光学系7b、8b等と組み合わせてハイビーム7やロービーム8(LED照明装置)を組み立てる。   The first phosphor particles 3 and the second phosphor particles 4 are respectively dispersed in a resin material at a predetermined ratio. First, a predetermined amount of a resin material in which the second phosphor particles 4 are dispersed is dropped onto the upper surface of the LED element 1 using a dispenser or the like to form a coating film, and then cured by heating or the like. Thereby, the lower layer of the wavelength conversion layer 22 in which the second phosphor particles 4 are dispersed is formed. Thereafter, a predetermined amount of a resin material in which the first phosphor particles 3 are dispersed is dropped on the lower layer to form a coating film that is raised by surface tension, and then cured by heating or the like. Thereby, the upper layer of the wavelength conversion layer 22 in which the first phosphor particles 3 are dispersed is formed. Thus, the LED light emitting device 6 is manufactured. The LED light emitting device 6 is mounted on a heat sink, and the high beam 7 and the low beam 8 (LED illumination device) are assembled by combining with the reflecting mirrors 7a and 8a and the optical systems 7b and 8b.

ハイビーム7およびロービーム8と、ポジションランプ9、方向指示器10、フォグランプ11等を図1の所定位置に配置し、アウターカバー23を取り付け自動車用前照灯を完成させる。   The high beam 7 and the low beam 8, the position lamp 9, the direction indicator 10, the fog lamp 11 and the like are arranged at predetermined positions in FIG. 1, and the outer cover 23 is attached to complete the automotive headlamp.

本実施形態の自動車用前照灯において、ハイビーム7やロービーム8のLED素子1を点灯させると青色光が出射され、波長変換層22を通過する。青色光の一部は、第2の蛍光体粒子4と第1の蛍光体粒子3を励起し、第2の蛍光体粒子4からは黄色の蛍光(ピーク波長530〜570nm)と近赤外光の蛍光(ピーク波長1150〜2000nm)が放出される。第1の蛍光体粒子3からは黄色の蛍光が放出される。   In the automotive headlamp of the present embodiment, when the LED elements 1 of the high beam 7 and the low beam 8 are turned on, blue light is emitted and passes through the wavelength conversion layer 22. Part of the blue light excites the second phosphor particles 4 and the first phosphor particles 3, and yellow fluorescence (peak wavelength 530 to 570 nm) and near infrared light are emitted from the second phosphor particles 4. Of fluorescence (peak wavelength 1150-2000 nm) is emitted. Yellow fluorescence is emitted from the first phosphor particles 3.

第1および第2の蛍光体粒子3、4から放出された黄色の蛍光は、波長変換層22を透過した青色光と混合されて白色光となる。白色光は、光学系7b、8bを通過し、さらにアウターカバー23を通過して、自動車の前方に照射される。アウターカバー23を構成する材料(ポリカーボネート)は図3に示した透過スペクトルから明らかなように、可視光の吸収が小さいため、白色光はほとんどアウターカバー23に吸収されることなく通過する。   The yellow fluorescence emitted from the first and second phosphor particles 3 and 4 is mixed with the blue light transmitted through the wavelength conversion layer 22 to become white light. The white light passes through the optical systems 7b and 8b, passes through the outer cover 23, and is irradiated to the front of the automobile. As is clear from the transmission spectrum shown in FIG. 3, the material constituting the outer cover 23 (polycarbonate) has little absorption of visible light, so that white light passes through the outer cover 23 almost without being absorbed.

第2の蛍光体粒子4から放出された近赤外光の蛍光(ピーク波長1150〜2000nm)は、光学系7b、8bを通過し、さらにアウターカバー23に入射する。アウターカバー23を構成する材料は図3の透過スペクトルのように1670nm付近を吸収ピークとして1000nm以上の近赤外領域の光を吸収するため性質を有するため、近赤外光の蛍光の多くはアウターカバー23で吸収される。これにより、アウターカバー23は加熱され、アウターカバー23に付着した雪や氷を融かすことができる。また、水自体も図4の透過スペクトルのように900nm以上の近赤外光を吸収するため、雪や氷自体を直接第2の蛍光体粒子4から放出された近赤外光により加熱し融かす作用も得られる。   Near-infrared fluorescence (peak wavelength 1150 to 2000 nm) emitted from the second phosphor particles 4 passes through the optical systems 7 b and 8 b and further enters the outer cover 23. Since the material constituting the outer cover 23 has a property to absorb light in the near-infrared region of 1000 nm or more with an absorption peak near 1670 nm as in the transmission spectrum of FIG. 3, most of the fluorescence of the near-infrared light is outer. Absorbed by the cover 23. Thereby, the outer cover 23 is heated and the snow and ice adhering to the outer cover 23 can be melted. Further, since water itself absorbs near-infrared light having a wavelength of 900 nm or more as shown in the transmission spectrum of FIG. 4, snow and ice itself are directly heated and melted by the near-infrared light emitted from the second phosphor particles 4. A dull action is also obtained.

このように、本実施形態によれば、可視光を発する第1の蛍光体と、可視光および近赤外光を発する第2の蛍光体とを組み合わせることにより、LEDを光源とする自動車用前照灯でありながら、発熱体等の特別な構成を設けることなく、アウターカバーを加熱することができ、融雪機能を持たせることができる。   As described above, according to the present embodiment, by combining the first phosphor that emits visible light and the second phosphor that emits visible light and near-infrared light, the front of an automobile using an LED as a light source is combined. Although it is an illumination lamp, the outer cover can be heated without providing a special structure such as a heating element, and a snow melting function can be provided.

しかも、本実施形態では可視光と近赤外光を発する第2の蛍光体粒子4をLED素子1に近接して配置し、その外側に第1の蛍光体粒子3を配置している。これにより、ストークスシフトに起因する第2の蛍光体粒子4の発熱をLED素子1および基板20を介してヒートシンクに効率よく逃すことができるため、温度上昇による蛍光体の温度消光やLED素子1の発光効率の低下を防止できる。   In addition, in the present embodiment, the second phosphor particles 4 that emit visible light and near-infrared light are disposed close to the LED element 1, and the first phosphor particles 3 are disposed outside the second phosphor particles 4. As a result, the heat generation of the second phosphor particles 4 caused by the Stokes shift can be efficiently released to the heat sink via the LED element 1 and the substrate 20. A decrease in luminous efficiency can be prevented.

本実施形態では第2の蛍光体粒子4として単に近赤外光を発する蛍光体ではなく、近赤外光と可視光の両方を放出する蛍光体を用いている。これにより、第1の蛍光体粒子3の発する黄色蛍光と第2の蛍光体粒子4の発する黄色蛍光とを合わせて、十分な光量の黄色蛍光を得ることができる。したがって、自動車前照灯のような大きな光量が要求される白色LEDであっても、赤外光によるアウターカバーの加熱と、可視光色変換とを両立させることができる。   In the present embodiment, the second phosphor particles 4 are not simply phosphors that emit near-infrared light, but phosphors that emit both near-infrared light and visible light. Thereby, the yellow fluorescence emitted from the first phosphor particles 3 and the yellow fluorescence emitted from the second phosphor particles 4 can be combined to obtain yellow fluorescence with a sufficient amount of light. Therefore, even in the case of a white LED that requires a large amount of light, such as an automobile headlamp, heating of the outer cover by infrared light and visible light color conversion can both be achieved.

このとき、波長変換層22はドーム形状であり、端面を有していない形状であるため、半導体発光素子1からの光は正面方向に立ちあげられて出射される。これにより半導体発光素子1の正面の輝度分布は、非照射領域から照射領域の立ち上がりが急峻になるという効果も得られる。   At this time, since the wavelength conversion layer 22 has a dome shape and does not have an end face, the light from the semiconductor light emitting element 1 is raised in the front direction and emitted. As a result, the luminance distribution on the front surface of the semiconductor light emitting element 1 also has an effect that the rising of the irradiation region from the non-irradiation region becomes steep.

なお、上述の実施形態では、波長変換層22を形成する際に、樹脂材料をLED素子1の上に滴下する方法を用いたが、この手法に限らず他の方法を用いることも可能である。例えば、スクリーン印刷やステンシル印刷等の印刷工程を用いることが可能である。この場合、まず第2の蛍光体粒子4を添加した樹脂材料をLED素子1上に印刷して、図5のように波長変換層22の下側層22aを形成し、その上に第1の蛍光体粒子3を添加した樹脂材料を印刷して上側層22bを形成することにより、LED素子1に近接して第2の蛍光体粒子4を配置した波長変換層22を形成することができる。   In the above-described embodiment, when the wavelength conversion layer 22 is formed, a method of dropping a resin material on the LED element 1 is used. However, the present invention is not limited to this method, and other methods can be used. . For example, a printing process such as screen printing or stencil printing can be used. In this case, first, the resin material added with the second phosphor particles 4 is printed on the LED element 1 to form the lower layer 22a of the wavelength conversion layer 22 as shown in FIG. By printing the resin material to which the phosphor particles 3 are added to form the upper layer 22b, the wavelength conversion layer 22 in which the second phosphor particles 4 are arranged close to the LED element 1 can be formed.

さらに別の手法としては、樹脂材料に第1の蛍光体粒子3と第2の蛍光体粒子4とを混合し、LED素子1上に滴下し、先に第2の蛍光体粒子4を沈降させることにより、下側層に第2の蛍光体粒子4が集まった波長変換層22を形成することも可能である。この場合、第2の蛍光体粒子4が第1の蛍光体粒子3よりも先に沈降するように、第2の蛍光体粒子の表面にあらかじめコーティング加工等を施したり、マイクロカプセル化しておくことが可能である。   As yet another method, the first phosphor particles 3 and the second phosphor particles 4 are mixed in a resin material, dropped onto the LED element 1, and the second phosphor particles 4 are first settled. Accordingly, it is possible to form the wavelength conversion layer 22 in which the second phosphor particles 4 are gathered in the lower layer. In this case, the surface of the second phosphor particles is preliminarily coated or microencapsulated so that the second phosphor particles 4 settle before the first phosphor particles 3. Is possible.

本実施形態のLED発光装置6はLED素子1を1個だけ備えた構成であったが、複数のLED素子を備える構成にすることが可能である。これにより、さらなるアウターカバー23の温度上昇が期待できる。   Although the LED light-emitting device 6 of this embodiment was the structure provided with only one LED element 1, it can be set as the structure provided with a some LED element. Thereby, the temperature rise of the outer cover 23 can be expected.

また、今回用いたアウターカバー23として通常のポリカーボネート製のものを用いたが、1450〜1700nmの近赤外部に吸収を持つ染料等の化合物を含有させることも可能である。ポリカーボネート自身の近赤外光の吸収に染料による近赤外光の吸収が加わるため、更に効率的な温度上昇が期待できる。   Moreover, although the thing made from a normal polycarbonate was used as the outer cover 23 used this time, it is also possible to contain compounds, such as dye which has absorption in the near infrared part of 1450-1700 nm. Since the absorption of near-infrared light by the dye is added to the absorption of near-infrared light of the polycarbonate itself, a more efficient temperature rise can be expected.

本実施形態の自動車用前照灯は、従来のように導風部品や発熱部品とその制御システムを導入する必要がなく、単純な構造でアウターカバー23を加熱して融雪機能を実現することが出来る。   The automotive headlamp according to the present embodiment does not require the introduction of wind guide parts and heat generating parts and its control system as in the prior art, and can achieve a snow melting function by heating the outer cover 23 with a simple structure. I can do it.

本発明は、LED発光装置及びそれを用いた車両用照明装置の他に、一般照明装置にも適用することができる。   The present invention can be applied to general lighting devices in addition to LED light emitting devices and vehicle lighting devices using the LED light emitting devices.

以下、本発明の実施例について説明する。本実施例では、可視光のみを発光する蛍光体粒子と、可視光および近赤外光を発光する蛍光体粒子を製造し、その組成と光学特性を調べた。さらに、これらの蛍光体粒子を用いて図2のLED発光装置6と自動車用前照灯を製造し、アウターカバーの温度上昇を測定した。以下、詳細に説明する。   Examples of the present invention will be described below. In this example, phosphor particles emitting only visible light and phosphor particles emitting visible light and near-infrared light were produced, and their compositions and optical properties were examined. Furthermore, the LED light-emitting device 6 and the automotive headlamp of FIG. 2 were manufactured using these phosphor particles, and the temperature rise of the outer cover was measured. Details will be described below.

<蛍光体粒子の製造>
出発材料として酸化イットリウム(純度4N)、α型アルミナ(純度2N)、酸化第二セリウム(純度4N)、酸化エルビウム(純度3N)、フラックスとしてフッ化バリウム(純度2N)の粉末をそれぞれ用意した。これらを表1の試料1〜5の配合比でそれぞれ秤量した。

Figure 2010097829
<Manufacture of phosphor particles>
As starting materials, powders of yttrium oxide (purity 4N), α-type alumina (purity 2N), cerium oxide (purity 4N), erbium oxide (purity 3N), and barium fluoride (purity 2N) as flux were prepared. These were weighed at the blending ratios of Samples 1 to 5 in Table 1, respectively.
Figure 2010097829

秤量した材料をアルミナボールとエタノールと共に円筒状1Lポリビニル容器にいれ、回転台で100rpm、5時間混合を行った。混合後のアルミナボールを取り除いたスラリーを吸引濾過し、ガラスビーカーに入れ、100℃、15時間乾燥炉で乾燥した。   The weighed material was placed in a cylindrical 1 L polyvinyl container together with alumina balls and ethanol, and mixed on a rotary table at 100 rpm for 5 hours. The slurry after removing the mixed alumina balls was suction filtered, put into a glass beaker, and dried in a drying oven at 100 ° C. for 15 hours.

乾燥後は、アルミナ乳鉢で粉砕し、#300のナイロンメッシュを通し、得られた粉末をアルミナルツボにいれ、焼成炉内に配置した。還元雰囲気で焼成を行う為に、焼成前に炉内をメカニカルブースタポンプで20Paまで真空に引いた後、水素を4%含んだ窒素ガス(純度4N以上)を導入し0.1MPaとした。   After drying, it was pulverized in an alumina mortar, passed through a # 300 nylon mesh, and the resulting powder was placed in an alumina crucible and placed in a firing furnace. In order to perform firing in a reducing atmosphere, the inside of the furnace was evacuated to 20 Pa with a mechanical booster pump before firing, and then nitrogen gas containing 4% of hydrogen (purity 4 N or more) was introduced to 0.1 MPa.

その後1500℃で2時間の焼成を行った。焼成後はアルミナ乳鉢と乳棒で粗粉砕し、#300のナイロンメッシュを通して黄色の蛍光体粉末を得た。得られた粉末を2規定濃度の硝酸水溶液とイオン交換水で洗浄、乾燥し、#300のナイロンメッシュを通して目的の蛍光体粒子の試料1〜5を得た。   Thereafter, baking was performed at 1500 ° C. for 2 hours. After firing, the mixture was coarsely pulverized with an alumina mortar and pestle to obtain a yellow phosphor powder through a # 300 nylon mesh. The obtained powder was washed with a 2N concentration nitric acid aqueous solution and ion-exchanged water and dried to obtain target phosphor particle samples 1 to 5 through a # 300 nylon mesh.

<蛍光体粒子の特性評価評価>
(結晶構造)
得られた蛍光体粒子の試料2について、粉末X線回折装置(Bruker製D8Advance)を用いて結晶構造の同定を行った。測定の結果を図6に示す。測定に用いたX線はCu・Kα線である。図6の測定結果より、ICDD(International Centre for Diffraction Data)に登録されているYAl12と同じ回折線パターンが得られていることが確認できた。このことから、試料2はYAGを主相とすることが確認された。また、他の試料1、3〜5も同様の製造方法を用いているためYAGを主相とすると推測される。
<Characteristic evaluation of phosphor particles>
(Crystal structure)
About the obtained phosphor particle sample 2, the crystal structure was identified using a powder X-ray diffractometer (D8 Advance manufactured by Bruker). The measurement results are shown in FIG. X-rays used for the measurement are Cu · Kα rays. From the measurement results of FIG. 6, it was confirmed that the same diffraction line pattern as that of Y 3 Al 5 O 12 registered in ICDD (International Center for Diffraction Data) was obtained. From this, it was confirmed that Sample 2 has YAG as the main phase. In addition, since other samples 1 and 3 to 5 use the same manufacturing method, it is assumed that YAG is the main phase.

(組成分析)
蛍光体粒子の試料1〜5について、各元素の定量分析を行った。定量分析には、株式会社リガク製 蛍光X線分析装置ZSXPrimusIIを用いた。得られた結果(組成)を表1は下段に示した。

Figure 2010097829
(Composition analysis)
Quantitative analysis of each element was performed on samples 1 to 5 of the phosphor particles. For quantitative analysis, a fluorescent X-ray analyzer ZSXPrimusII manufactured by Rigaku Corporation was used. The obtained results (composition) are shown in Table 1 below.
Figure 2010097829

(蛍光特性の測定)
まず、試料1〜5について、可視光域の蛍光特性(色度x,y、可視光発光強度)を測定した。
(Measurement of fluorescence characteristics)
First, the fluorescence characteristics (chromaticity x, y, visible light emission intensity) in the visible light range were measured for samples 1 to 5.

可視光部分の蛍光特性測定系の構成は次の通りである。励起光源としてキセノンランプを用い、その発光を分光器に通して450nmの単色光を得た。この光を測定する蛍光体に照射し、青色光の反射光と蛍光体の発光の両方を積分球で集光し、超高感度瞬間マルチ測光システム(大塚電子製MPCD-7000)により発光スペクトルの測定、ならびに、色度x,yと輝度の測定を行った。色度の測定は得られた発光スペクトルのうち、蛍光体の発光が大部分を占める480〜780nmの部分について行った。   The configuration of the fluorescence characteristic measurement system for the visible light portion is as follows. A xenon lamp was used as an excitation light source, and the emitted light was passed through a spectrometer to obtain 450 nm monochromatic light. The phosphor is irradiated with this light, and both the reflected light of the blue light and the emission of the phosphor are collected by an integrating sphere, and the emission spectrum is measured with an ultra-sensitive instantaneous multi-photometry system (MPCD-7000 manufactured by Otsuka Electronics). Measurements and chromaticity x, y and luminance were performed. The measurement of chromaticity was performed on a portion of 480 to 780 nm, in which the emission of the phosphor occupies most of the obtained emission spectrum.

試料2の発光スペクトルは図7に示すように可視光域については550nm付近に発光ピークを有していた。   As shown in FIG. 7, the emission spectrum of Sample 2 had an emission peak in the vicinity of 550 nm in the visible light region.

試料1〜5の色度x,yと、相対輝度(試料5の輝度に対する相対値)を表2に示した。   Table 2 shows the chromaticity x and y of samples 1 to 5 and the relative luminance (relative value to the luminance of sample 5).

つぎに、試料1〜5について、近赤外光の蛍光特性の評価を行った。この評価は、試料1〜5をそれぞれ用いて図8に示した評価用LED発光装置を作成し、その発光特性を測定することにより行った。   Next, the samples 1 to 5 were evaluated for near-infrared fluorescence characteristics. This evaluation was performed by preparing the LED light-emitting device for evaluation shown in FIG. 8 using each of samples 1 to 5, and measuring the light emission characteristics.

評価用LED発光装置は、図8に示すように、樹脂基板30の上にリン青銅に銀メッキ処理をした電極5を配置し、発光波長450nm、上面0.3mm角のInGaN系青色発光LED素子31を接合した。LED素子31の周囲にはランプハウス12を搭載した。このパッケージのLED素子31上に、蛍光体粒子34(試料1〜5のうちのいずれか)とシリコーン樹脂32が重量比で1:9となるように配合したペーストを充填した。蛍光体入り樹脂が充填されたパッケージを、150℃、4時間加熱炉に入れ、シリコーン樹脂を硬化、固定化した。   As shown in FIG. 8, the evaluation LED light-emitting device has an electrode 5 in which phosphor bronze is silver-plated on a resin substrate 30 and has an emission wavelength of 450 nm and an upper surface of 0.3 mm square InGaN-based blue light-emitting LED element. 31 were joined. A lamp house 12 is mounted around the LED element 31. On the LED element 31 of this package, a paste was blended so that the phosphor particles 34 (any one of the samples 1 to 5) and the silicone resin 32 were in a weight ratio of 1: 9. The package filled with the phosphor-containing resin was placed in a heating furnace at 150 ° C. for 4 hours to cure and fix the silicone resin.

得られた発光装置に、20mAの直流電流を通電し発光特性(発光スペクトル)を測定した。測定はオプトリサーチ社製 多目的分光放射計MSR・7000Nを用いて、250nm〜2000nmの範囲で行った。   The obtained light emitting device was supplied with a direct current of 20 mA, and the light emission characteristics (emission spectrum) were measured. The measurement was performed in a range of 250 nm to 2000 nm using a multipurpose spectroradiometer MSR • 7000N manufactured by Opto Research.

蛍光体粒子34として試料1の蛍光体を用いた評価用LED発光装置の発光スペクトルと、試料5の蛍光体を用いた評価用LED発光装置の発光スペクトルを図9にそれぞれ示す。図9から明らかなように試料1の評価用LED発光装置は、可視光部と近赤外光部に発光ピークを有するのに対し、試料5の評価用LED発光装置は、可視光部のみに発光ピークを有していた。   FIG. 9 shows the emission spectrum of the evaluation LED light-emitting device using the phosphor of sample 1 as the phosphor particle 34 and the emission spectrum of the evaluation LED light-emitting device using the phosphor of sample 5 respectively. As is clear from FIG. 9, the evaluation LED light-emitting device of sample 1 has emission peaks in the visible light portion and the near-infrared light portion, whereas the evaluation LED light-emitting device of sample 5 is only in the visible light portion. It had an emission peak.

また、試料2〜4については、発光スペクトルを図示してないが、いずれも可視光と近赤外光に発光ピークを有していた。試料3が近赤外光の強度が最も大きく、これを1として他の試料の近赤外光の相対強度を表2に示す。表2より、Ceを添加しない試料4は近赤外光強度が最も低かった。   Moreover, although the emission spectrum was not illustrated about the samples 2-4, all had the emission peak in visible light and near-infrared light. Sample 3 has the highest intensity of near-infrared light. With this as 1, the relative intensity of near-infrared light of other samples is shown in Table 2. From Table 2, the sample 4 to which no Ce was added had the lowest near-infrared light intensity.

試料1、2、3、4は、Yに対するモル比でそれぞれCe:Er=2:1、2:2、2:3、0:2で配合しており、Erの配合比を増やすと可視光の発光が減少し近赤外光が増加するが、Erのみの添加では可視光・赤外光の発光が大幅に少なくなることが分かる。赤外強度の観点からは、Ce,Erの組み合わせの比は試料2が望ましい。可視光強度の点からは試料5が望ましい。近赤外光部と可視光部の発光強度を両立させるため、本実施例では可視光のみを発する蛍光体の試料5と、可視光および近赤外光を発する蛍光体の試料2を組み合わせて用いる。   Samples 1, 2, 3, and 4 are blended at a molar ratio of Y: Ce: Er = 2: 1, 2: 2, 2: 3, 0: 2, respectively, and visible light increases when the Er blending ratio is increased. It can be seen that the near-infrared light is increased and the emission of visible light and infrared light are significantly reduced by adding Er alone. From the viewpoint of infrared intensity, the ratio of the combination of Ce and Er is preferably sample 2. Sample 5 is desirable in terms of visible light intensity. In order to make the emission intensity of the near-infrared light part and visible light part compatible, in this embodiment, the phosphor sample 5 that emits only visible light and the phosphor sample 2 that emits visible light and near-infrared light are combined. Use.

<LED発光装置の製造>
試料5の蛍光体と、可視光および近赤外光を発する試料2の蛍光体を組み合わせて図1のLED発光装置を製造した。
<Manufacture of LED light emitting device>
The LED light emitting device of FIG. 1 was manufactured by combining the phosphor of sample 5 and the phosphor of sample 2 that emits visible light and near infrared light.

予め電極5が配置されたセラミック基板20に、発光波長450nm、上面0.9mm角のInGaN系青色発光LED素子1を接合し、パッケージを製造した。蛍光体粒子4として試料2を、蛍光体粒子3として試料5を用意し、それぞれシリコーン樹脂材料と混合した。蛍光体粒子とシリコーン樹脂の重量比はいずれも3:7となるように調整した。試料2の蛍光体を配合したシリコーン樹脂材料をディスペンサーを用いてLED素子1上に塗布した。その上に、試料5の蛍光体を配合したシリコーン樹脂材料を塗布した。パッケージは、150℃、4時間加熱炉に入れ加熱した。これによりシリコーン樹脂2を硬化させ、固定化し、下側層に試料2の蛍光体が含まれ、上側層に試料5の蛍光体が含まれる波長変換層22を形成した。これにより実施例のLED発光装置を製造した。   An InGaN-based blue light-emitting LED element 1 having an emission wavelength of 450 nm and an upper surface of 0.9 mm square was bonded to the ceramic substrate 20 on which the electrodes 5 were previously arranged, thereby manufacturing a package. Sample 2 was prepared as phosphor particle 4 and sample 5 was prepared as phosphor particle 3, and each was mixed with a silicone resin material. The weight ratio between the phosphor particles and the silicone resin was adjusted to be 3: 7. A silicone resin material containing the phosphor of Sample 2 was applied onto the LED element 1 using a dispenser. On top of this, a silicone resin material containing the phosphor of Sample 5 was applied. The package was heated in a heating furnace at 150 ° C. for 4 hours. Thereby, the silicone resin 2 was cured and fixed, and the wavelength conversion layer 22 including the phosphor of the sample 2 in the lower layer and the phosphor of the sample 5 in the upper layer was formed. This manufactured the LED light-emitting device of the Example.

また、比較例として試料5の蛍光体配合のシリコーン樹脂材料のみを塗布して波長変換層22を形成したLED発光装置6を製造した。   Further, as a comparative example, an LED light-emitting device 6 in which the wavelength conversion layer 22 was formed by applying only the phosphor-blended silicone resin material of Sample 5 was manufactured.

<LED発光装置の評価>
得られたLED発光装置6に700mAの直流電流を通電し、発光特性を測定した。可視光域の測定には、Labsphere社製の分光光度計DA-2100を用いて色度測定を行った。得られた色度は、(x,y)=(0.318、0.347)でSAE(Society of Automobile Engineers)のヘッドライト色度規格内に入る値であった。
<Evaluation of LED light emitting device>
A 700 mA direct current was passed through the obtained LED light emitting device 6 to measure the light emission characteristics. For measurement in the visible light region, chromaticity measurement was performed using a spectrophotometer DA-2100 manufactured by Labsphere. The obtained chromaticity was (x, y) = (0.318, 0.347) and was a value falling within the headlight chromaticity standard of SAE (Society of Automobile Engineers).

赤外域については、大塚電子製MCPD-5000を用いて発光スペクトルと軸上出力を測定した。図10に実施例と比較例のLED発光装置の赤外域の発光スペクトルを示す。実施例のLED発光装置6は、試料2と試料5の蛍光体を含むため、赤外域(1450〜1700nm)にEr由来の発光スペクトルが多数観測された。これに対し、試料5の蛍光体のみを含む比較例のLED発光装置は、赤外域に発光は観測できなかった。   For the infrared region, the emission spectrum and axial output were measured using MCPD-5000 manufactured by Otsuka Electronics. FIG. 10 shows emission spectra in the infrared region of the LED light emitting devices of the example and the comparative example. Since the LED light-emitting device 6 of Example contains the phosphors of Sample 2 and Sample 5, many emission spectra derived from Er were observed in the infrared region (1450 to 1700 nm). On the other hand, the LED light emitting device of the comparative example including only the phosphor of the sample 5 could not observe light emission in the infrared region.

<自動車用前照灯の評価>
上記実施例のLED発光装置6と比較例のLED発光装置を用いて、反射鏡13とポリカーボネート製のアウターカバー23とを備える図11の構成の自動車用前照灯を製造した。
<Evaluation of automotive headlamps>
Using the LED light-emitting device 6 of the above example and the LED light-emitting device of the comparative example, an automotive headlamp having the configuration of FIG. 11 including the reflecting mirror 13 and the polycarbonate outer cover 23 was manufactured.

アウターカバー23の外側および内側には、熱電対を配置した。LED発光装置6に700mAの直流電流を通電し、アウターカバー23の温度上昇を測定した。測定は、アウターカバー23には水や氷の付着がない乾燥状態で行った。測定結果を図12に示す。   Thermocouples were disposed outside and inside the outer cover 23. A 700 mA direct current was passed through the LED light emitting device 6 and the temperature rise of the outer cover 23 was measured. The measurement was performed in a dry state where the outer cover 23 did not adhere to water or ice. The measurement results are shown in FIG.

本実施例の試料2および試料5の2種類の蛍光体粒子を含むLED発光装置6を用いた自動車用前照灯はカバー23内外の温度が上昇したが、試料1の蛍光体のみをLED発光装置の自動車用前照灯では温度上昇は少ない。   In the automotive headlamp using the LED light emitting device 6 including the two types of phosphor particles of the sample 2 and the sample 5 of this example, the temperature inside and outside the cover 23 rose, but only the phosphor of the sample 1 emitted the LED. The temperature rise is small in the automotive headlamp.

本実施例の測定に用いたLED発光装置6はLED素子1を1個だけ備えた構成であったが、実際の自動車用前照灯は複数のLED素子を備えることが多く、しかもLED発光装置6がカバー23によりほぼ密閉されるので、さらなるカバー23の温度上昇が期待できる。   Although the LED light-emitting device 6 used for the measurement of the present embodiment has a configuration including only one LED element 1, an actual automotive headlamp often includes a plurality of LED elements, and the LED light-emitting device. 6 is almost sealed by the cover 23, so that a further temperature rise of the cover 23 can be expected.

本実施形態の自動車用前照灯の(a)正面図、(b)A−A’断面図。The (a) front view and (b) A-A 'sectional view of the automotive headlamp of this embodiment. 図1の自動車用前照灯に用いられるLED発光装置6の断面図。Sectional drawing of the LED light-emitting device 6 used for the vehicle headlamp of FIG. ポリカーボネートの近赤外域透過スペクトルを示すグラフ。The graph which shows the near-infrared region transmission spectrum of a polycarbonate. 水の近赤外域透過スペクトルを示すグラフ。The graph which shows the near infrared region transmission spectrum of water. 本実施形態の印刷により波長変換層を構成したLED発光装置6の断面図。Sectional drawing of the LED light-emitting device 6 which comprised the wavelength conversion layer by printing of this embodiment. 本実施例の蛍光体粒子(試料2)のX線回折パターンを示すグラフ。The graph which shows the X-ray-diffraction pattern of the fluorescent substance particle (sample 2) of a present Example. 本実施例の蛍光体粒子(試料2)の可視光域の蛍光の分光スペクトルを示すグラフ。The graph which shows the fluorescence spectrum of the visible region of the fluorescent substance particle (sample 2) of a present Example. 実施例の蛍光体粒子の蛍光特性の評価に用いた評価用LED発光装置の断面図。Sectional drawing of the LED light-emitting device for evaluation used for evaluation of the fluorescence characteristic of the fluorescent substance particle of an Example. 試料2と試料5を蛍光体粒子をそれぞれ用いた評価用LED発光装置の発光スペクトルを示すグラフ。The graph which shows the emission spectrum of the LED light-emitting device for evaluation which used the fluorescent substance particle for the sample 2 and the sample 5, respectively. 実施例のLED発光装置(試料2+試料5)と比較例のLED発光装置(試料5のみ)の赤外域発光スペクトルを示すグラフ。The graph which shows the infrared region emission spectrum of the LED light-emitting device (sample 2 + sample 5) of an Example, and the LED light-emitting device (sample 5 only) of a comparative example. 実施例の自動車用前照灯の構成を示す断面図。Sectional drawing which shows the structure of the automotive headlamp of an Example. 実施例と比較例の自動車用前照灯のアウターカバーの温度上昇を示すグラフ。The graph which shows the temperature rise of the outer cover of the headlamp for motor vehicles of an Example and a comparative example.

符号の説明Explanation of symbols

1…LED素子、2…樹脂、3…第1の蛍光体、4…第2の蛍光体、5…電極、6…LED発光装置、7…ハイビーム、7a…反射鏡、7b…光学系、8…ロービーム、8a…反射鏡、8b…光学系、9…ポジションランプ、10…方向指示器、11…フォグランプ、13…反射鏡、20…基板、21…ワイヤ、22…波長変換層、22a…下側層、22b…上側層、23…アウターカバー、30…基板、31…LED素子、32…シリコーン樹脂、34…蛍光体、35…電極。   DESCRIPTION OF SYMBOLS 1 ... LED element, 2 ... Resin, 3 ... 1st fluorescent substance, 4 ... 2nd fluorescent substance, 5 ... Electrode, 6 ... LED light-emitting device, 7 ... High beam, 7a ... Reflector, 7b ... Optical system, 8 ... Low beam, 8a ... Reflector, 8b ... Optical system, 9 ... Position lamp, 10 ... Direction indicator, 11 ... Fog lamp, 13 ... Reflector, 20 ... Substrate, 21 ... Wire, 22 ... Wavelength conversion layer, 22a ... Bottom Side layer, 22b ... upper layer, 23 ... outer cover, 30 ... substrate, 31 ... LED element, 32 ... silicone resin, 34 ... phosphor, 35 ... electrode.

Claims (9)

可視光を発する半導体発光素子と、該半導体発光素子の発する光の一部を吸収して蛍光を発する蛍光体を含む波長変換層とを有し、
前記蛍光体は、所定の可視光域に発光ピークを有する蛍光を発する第1の蛍光体と、前記所定の可視光域と所定の近赤外光域にそれぞれ発光ピークを有する蛍光を発する第2の蛍光体とを含むことを特徴とする照明装置。
A semiconductor light emitting element that emits visible light, and a wavelength conversion layer that includes a phosphor that emits fluorescence by absorbing a part of the light emitted by the semiconductor light emitting element,
The phosphor has a first phosphor that emits fluorescence having a light emission peak in a predetermined visible light region, and a second phosphor that emits fluorescence having a light emission peak in each of the predetermined visible light region and a predetermined near infrared light region. And a phosphor.
請求項1に記載の照明装置において、前記半導体発光素子および前記波長変換層から発せられた可視光を透過して外部に放出するカバー部材をさらに有し、
前記第2の蛍光体の前記所定の近赤外光域は、前記カバー部材を構成する材料の近赤外光の吸収帯の少なくとも一部と重なっていることを特徴とする照明装置。
The illumination device according to claim 1, further comprising a cover member that transmits visible light emitted from the semiconductor light emitting element and the wavelength conversion layer and emits the visible light to the outside.
The lighting device according to claim 1, wherein the predetermined near-infrared light region of the second phosphor overlaps at least a part of a near-infrared light absorption band of a material constituting the cover member.
請求項1または2に記載の照明装置において、前記波長変換層は、前記半導体発光素子に接触するように配置された第1の層とその外側の第2の層の2層構造であり、前記第1の層には前記第2の蛍光体が含有され、前記第2の層には前記第1の蛍光体が含有されていることを特徴とする照明装置。   3. The lighting device according to claim 1, wherein the wavelength conversion layer has a two-layer structure of a first layer disposed so as to contact the semiconductor light emitting element and a second layer outside the first layer. The lighting device, wherein the first layer contains the second phosphor, and the second layer contains the first phosphor. 請求項2に記載の照明装置において、前記半導体発光素子の発する光の波長は波長440nm以上480nmであり、前記蛍光の前記所定の可視光域は、波長530nm以上570nm以下であり、前記所定の近赤外光域は、波長1150nm以上2000nm以下であることを特徴とする照明装置。   3. The illumination device according to claim 2, wherein a wavelength of light emitted from the semiconductor light emitting element is a wavelength of 440 nm to 480 nm, and the predetermined visible light region of the fluorescence is a wavelength of 530 nm to 570 nm, The infrared light region has a wavelength of 1150 nm to 2000 nm. 請求項1ないし4のいずれか1項に記載の照明装置において、前記波長変換層は、樹脂に前記蛍光体の粒子を混合した構成であり、前記第2の蛍光体の粒子の少なくとも一部は、前記半導体発光素子と直接接触するように配置されていることを特徴とする照明装置。   5. The illumination device according to claim 1, wherein the wavelength conversion layer has a configuration in which particles of the phosphor are mixed in a resin, and at least a part of the particles of the second phosphor is formed. The lighting device is arranged so as to be in direct contact with the semiconductor light emitting element. 請求項1ないし5のいずれか1項に記載の照明装置において、前記第2の蛍光体は、YとAlの酸化物で結晶構造がガーネット構造であり、Er、Tm、Dy、Nd、Pr、YbおよびTiのうちの1以上の元素と、Ceとが添加されたものであることを特徴とする照明装置。   6. The lighting device according to claim 1, wherein the second phosphor is an oxide of Y and Al and has a garnet structure as a crystal structure, and Er, Tm, Dy, Nd, Pr, A lighting device, wherein one or more elements of Yb and Ti and Ce are added. 請求項1ないし6のいずれか1項に記載の照明装置において、前記カバー部材の材料は、近赤外光に吸収帯をもつ樹脂であることを特徴とする照明装置。   The lighting device according to any one of claims 1 to 6, wherein the material of the cover member is a resin having an absorption band in near infrared light. 請求項1ないし7のいずれか1項に記載の照明装置において、前記カバー部材の材料は、近赤外光に吸収帯をもつ化合物を含有する樹脂であることを特徴とする照明装置。   The lighting device according to any one of claims 1 to 7, wherein a material of the cover member is a resin containing a compound having an absorption band in near infrared light. 可視光を発する半導体発光素子と、該半導体発光素子の発する光の一部を吸収して蛍光を発する蛍光体を含む波長変換層と、前記可視光を透過して外部に放出するカバー部材とを有し、
前記蛍光体は、所定の可視光域に発光ピークを有する蛍光を発する第1の蛍光体と、前記所定の可視光域と所定の近赤外光域にそれぞれ発光ピークを有する蛍光を発する第2の蛍光体とを含み、
前記所定の近赤外光域は、前記カバー部材を構成する材料の近赤外光の吸収帯の少なくとも一部と重なっていることを特徴とする車両用灯具。
A semiconductor light emitting element that emits visible light; a wavelength conversion layer that includes a phosphor that emits fluorescence by absorbing a part of the light emitted from the semiconductor light emitting element; and a cover member that transmits the visible light and emits it to the outside. Have
The phosphor has a first phosphor that emits fluorescence having a light emission peak in a predetermined visible light region, and a second phosphor that emits fluorescence having a light emission peak in each of the predetermined visible light region and a predetermined near infrared light region. Phosphors, and
The vehicle lamp according to claim 1, wherein the predetermined near-infrared light region overlaps at least a part of a near-infrared light absorption band of a material constituting the cover member.
JP2008267900A 2008-10-16 2008-10-16 Lighting system and vehicular lighting fixture Withdrawn JP2010097829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267900A JP2010097829A (en) 2008-10-16 2008-10-16 Lighting system and vehicular lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267900A JP2010097829A (en) 2008-10-16 2008-10-16 Lighting system and vehicular lighting fixture

Publications (1)

Publication Number Publication Date
JP2010097829A true JP2010097829A (en) 2010-04-30

Family

ID=42259370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267900A Withdrawn JP2010097829A (en) 2008-10-16 2008-10-16 Lighting system and vehicular lighting fixture

Country Status (1)

Country Link
JP (1) JP2010097829A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238497A (en) * 2010-05-12 2011-11-24 Stanley Electric Co Ltd Lamp fitting using led light source unit
JP2012531043A (en) * 2009-06-19 2012-12-06 ハネウェル・インターナショナル・インコーポレーテッド Phosphor conversion infrared LED related applications
WO2013183142A1 (en) * 2012-06-07 2013-12-12 株式会社 日立製作所 Rail vehicle equipped with led headlight
CN105400515A (en) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 Light emitting material and preparation method thereof
CN105514250A (en) * 2015-12-02 2016-04-20 蒋金元 Light source and packaging method thereof
WO2016170966A1 (en) * 2015-04-20 2016-10-27 ソニー株式会社 Light source device, projection display device, and display system
WO2017038385A1 (en) * 2015-09-03 2017-03-09 株式会社小糸製作所 Water heating device and lamp using same
GB2561464A (en) * 2012-06-07 2018-10-17 Hitachi Ltd Rail vehicle equipped with LED headlight
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device
US10851296B2 (en) 2016-05-30 2020-12-01 Nichia Corporation Fluorescent material having a composition of rare earth aluminum-gallate
US11489093B2 (en) 2019-07-31 2022-11-01 Nichia Corporation Illumination device and infrared camera-equipped illumination device
JP7452086B2 (en) 2020-02-26 2024-03-19 サンケン電気株式会社 light emitting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531043A (en) * 2009-06-19 2012-12-06 ハネウェル・インターナショナル・インコーポレーテッド Phosphor conversion infrared LED related applications
JP2011238497A (en) * 2010-05-12 2011-11-24 Stanley Electric Co Ltd Lamp fitting using led light source unit
GB2561464B (en) * 2012-06-07 2019-04-10 Hitachi Ltd Rail vehicle equipped with LED headlight
WO2013183142A1 (en) * 2012-06-07 2013-12-12 株式会社 日立製作所 Rail vehicle equipped with led headlight
GB2517332A (en) * 2012-06-07 2015-02-18 Hitachi Ltd Rail vehicle equipped with LED headlight
JPWO2013183142A1 (en) * 2012-06-07 2016-01-21 株式会社日立製作所 Rail vehicle with LED headlamp
GB2517332B (en) * 2012-06-07 2018-10-24 Hitachi Ltd Rail vehicle equipped with LED headlight
GB2561464A (en) * 2012-06-07 2018-10-17 Hitachi Ltd Rail vehicle equipped with LED headlight
JPWO2016170966A1 (en) * 2015-04-20 2018-03-08 ソニー株式会社 Light source device, projection display device, and display system
WO2016170966A1 (en) * 2015-04-20 2016-10-27 ソニー株式会社 Light source device, projection display device, and display system
WO2017038385A1 (en) * 2015-09-03 2017-03-09 株式会社小糸製作所 Water heating device and lamp using same
JPWO2017038385A1 (en) * 2015-09-03 2018-06-21 株式会社小糸製作所 Water heating device and lamp using the same
US10724704B2 (en) 2015-09-03 2020-07-28 Koito Manufacturing Co., Ltd. Water heating device and lamp using same
CN105400515A (en) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 Light emitting material and preparation method thereof
CN105514250A (en) * 2015-12-02 2016-04-20 蒋金元 Light source and packaging method thereof
US10851296B2 (en) 2016-05-30 2020-12-01 Nichia Corporation Fluorescent material having a composition of rare earth aluminum-gallate
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device
JP7226789B2 (en) 2019-05-10 2023-02-21 国立研究開発法人物質・材料研究機構 light emitting device
JP7412036B2 (en) 2019-05-10 2024-01-12 国立研究開発法人物質・材料研究機構 Near-infrared emitting phosphor and light emitting device
US11489093B2 (en) 2019-07-31 2022-11-01 Nichia Corporation Illumination device and infrared camera-equipped illumination device
JP7452086B2 (en) 2020-02-26 2024-03-19 サンケン電気株式会社 light emitting device

Similar Documents

Publication Publication Date Title
JP2010097829A (en) Lighting system and vehicular lighting fixture
JP5941243B2 (en) Light emitting device, vehicle lamp using the same, and headlamp
JP6372764B2 (en) Light emitting device
JP5672619B2 (en) Rare earth aluminum garnet type phosphor and light emitting device using the same
KR101021210B1 (en) Light emitting device
TWI403570B (en) Fluorescent material and method of manufacturing the same, fluorescent material containing composition, light emitting device and use thereof
WO2017164214A1 (en) Light source apparatus and light-emitting apparatus
TW201024393A (en) Doped garnet phosphors having a red shift for pcleds
KR20180107203A (en) Wavelength converting member, method of manufacturing the same, and light emitting device
CN104520407B (en) Equipment for providing electromagnetic radiation
KR20110104981A (en) Light emitting device with phosphor wavelength conversion
US8816377B2 (en) Phosphor and light emitting device
CN101138278A (en) Illumination system comprising a radiation source and a fluorescent material
WO2009096082A1 (en) Luminescent material
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
KR102044140B1 (en) Wavelength converting member and light emitting device
EP3451031B1 (en) Wavelength conversion member, production method therefor, and light emitting device
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
KR102255213B1 (en) Phosphor and light emitting device including the phosphor
JP5683625B2 (en) Light emitting device, vehicle lamp using the same, and headlamp
TWI822983B (en) Phosphor and its manufacturing method and light emitting element
JP5795971B2 (en) Phosphor and light emitting device
CN117178380A (en) Light emitting device, headlight, and vehicle provided with same
CN112608739A (en) Red phosphor and light-emitting device using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110