JP7412036B2 - Near-infrared emitting phosphor and light emitting device - Google Patents
Near-infrared emitting phosphor and light emitting device Download PDFInfo
- Publication number
- JP7412036B2 JP7412036B2 JP2022209217A JP2022209217A JP7412036B2 JP 7412036 B2 JP7412036 B2 JP 7412036B2 JP 2022209217 A JP2022209217 A JP 2022209217A JP 2022209217 A JP2022209217 A JP 2022209217A JP 7412036 B2 JP7412036 B2 JP 7412036B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- phosphor
- light emitting
- infrared
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 164
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 13
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 description 39
- 238000000295 emission spectrum Methods 0.000 description 24
- 239000002245 particle Substances 0.000 description 23
- 229920005989 resin Polymers 0.000 description 22
- 239000011347 resin Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 16
- 239000011701 zinc Substances 0.000 description 15
- 230000005284 excitation Effects 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000011575 calcium Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000634 powder X-ray diffraction Methods 0.000 description 7
- 229910004283 SiO 4 Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000000695 excitation spectrum Methods 0.000 description 6
- 229910017625 MgSiO Inorganic materials 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 5
- 229910000423 chromium oxide Inorganic materials 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000002284 excitation--emission spectrum Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 240000009038 Viola odorata Species 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明は、近赤外発光蛍光体、および、発光光源と蛍光体とを備えた発光装置に関する。詳細には、本発明は、近赤外光を発する近赤外発光蛍光体、および、発光光源と蛍光体とを備え近赤外光を発する発光装置に関する。 The present invention relates to a near-infrared emitting phosphor and a light emitting device including a light emitting source and a phosphor. Specifically, the present invention relates to a near-infrared light-emitting phosphor that emits near-infrared light, and a light-emitting device that includes a light-emitting light source and a phosphor and emits near-infrared light.
近赤外光を発する発光装置として、GaInAs等のGaAs系あるいはInP系化合物半導体などを用いた発光ダイオード(LED)が知られている。これらのLEDは、各種リモコンセンサー、セキュリティー、車載カメラ、パッケージや内容物、異物の検査等に広く用いられている。また、近赤外領域の光は生体透過性に優れることから、医療、農業、食品分野などにおける品質検査用途あるいは血液中のヘモグロビン、酸素濃度などのバイタル情報の測定などに好適である。また、近赤外光は熱源としても利用できるためLED信号機の着雪対策などに用いる発光装置としても切望されている。 A light emitting diode (LED) using a GaAs-based compound semiconductor such as GaInAs or an InP-based compound semiconductor is known as a light-emitting device that emits near-infrared light. These LEDs are widely used in various remote control sensors, security, in-vehicle cameras, and inspection of packages, contents, and foreign objects. Furthermore, since light in the near-infrared region has excellent permeability to living organisms, it is suitable for quality inspection purposes in the medical, agricultural, and food fields, and for measuring vital information such as hemoglobin and oxygen concentration in blood. In addition, near-infrared light can also be used as a heat source, so it is highly desired as a light-emitting device for use in measures such as snow accumulation in LED traffic lights.
しかしながら、LEDにより得られる近赤外光は半価幅が狭く、特定の波長の光しか利用できないため、様々な波長成分の光を含むことが望ましい医療用装置や分光分析に用いる光源としては不十分であった。 However, near-infrared light obtained by LEDs has a narrow half-width and can only be used at specific wavelengths, making it unsuitable for use as a light source for medical equipment or spectroscopic analysis, which preferably contains light of various wavelength components. That was enough.
近赤外領域で発光する蛍光体の一つとして、Cr4+を添加した蛍光体が知られている(例えば、非特許文献1および非特許文献2を参照)。 As one type of phosphor that emits light in the near-infrared region, a phosphor doped with Cr 4+ is known (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
非特許文献1は、Zn2SiO4,Mg2SiO4,Li2MgSiO4,Li2ZnSiO4にCr4+を添加したナノ蛍光体を含有するガラスセラミックスが、800nmの波長を有する光で励起された際の発光特性を報告している。しかしながら、ガラスセラミックスは高温に溶融したガラスを冷却固化した後、所望の形状に加工しなければならないことから高価であり、普及の妨げとなっていた。 Non-Patent Document 1 discloses that a glass ceramic containing a nanophosphor in which Cr 4+ is added to Zn 2 SiO 4 , Mg 2 SiO 4 , Li 2 MgSiO 4 , Li 2 ZnSiO 4 is excited with light having a wavelength of 800 nm. We report the luminescence characteristics when However, glass ceramics are expensive because glass molten at high temperature must be cooled and solidified and then processed into a desired shape, which has hindered their widespread use.
非特許文献2には、Li2MgSiO4、Li2ZnSiO4にCr4+を添加した蛍光体を、760nmの波長を有する光で励起させた際の発光特性などが報告されているが、近赤外域での発光強度が十分ではなかった。 Non-Patent Document 2 reports the emission characteristics of phosphors made by adding Cr 4+ to Li 2 MgSiO 4 or Li 2 ZnSiO 4 when excited with light having a wavelength of 760 nm. The luminescence intensity in the outer area was not sufficient.
従来の近赤外発光の照明装置は半値幅が狭い特定の波長成分だけから構成されており、幅広い波長が求められる生体用途や分析機器用途には不適であった。また、青色LEDと蛍光体とを組み合わせた白色LEDの類推から青色LEDと近赤外発光の蛍光体とを組み合わせた発光装置が期待される。 Conventional near-infrared light emitting illumination devices are composed only of specific wavelength components with narrow half-widths, making them unsuitable for biological applications or analytical instrument applications that require a wide range of wavelengths. Further, based on the analogy of a white LED that is a combination of a blue LED and a phosphor, a light emitting device that is a combination of a blue LED and a phosphor that emits near infrared light is expected.
本発明は上記事情に鑑みてなされたものであり、近赤外光を発する近赤外発光蛍光体および発光装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a near-infrared emitting phosphor that emits near-infrared light and a light-emitting device.
発明者らは、かかる状況の下で、発光光源と蛍光体とから構成される発光装置であって、赤色励起で高い発光強度を有する蛍光体を用いることで、幅広いスペクトル成分を持ち発光強度が高い近赤外光を発する発光装置を見いだした。また、それに適した蛍光体を見いだした。その構成は以下に記載の通りである。 Under such circumstances, the inventors developed a light-emitting device composed of a light-emitting source and a phosphor, and by using a phosphor that has a high emission intensity upon red excitation, a light-emitting device with a wide range of spectral components and a high emission intensity was developed. We have discovered a light-emitting device that emits high-intensity near-infrared light. We also discovered a phosphor suitable for this purpose. Its configuration is as described below.
本発明による近赤外発光する近赤外発光蛍光体は、M(1)2M(2)M(3)O4結晶(ただし、M(1)は、Liおよび/またはNaである金属元素、M(2)は、Zn、Mg、CaおよびSrからなる群から少なくとも1つ選択された金属元素、M(3)はGeである元素)にCrが添加されており、これにより上記課題を解決する。
前記近赤外光は、1050nm以上1350nm以下の波長範囲にピークを有し、前記ピークの半値幅は、150nm以上であってよい。
前記M(1)は、Liであってよい。
前記M(2)は、ZnおよびMgからなる群から少なくとも1つ選択された金属元素であってよい。
600nm以上800nm以下の波長範囲を有する光で励起されてよい。
前記M(1)2M(2)M(3)O4結晶は、Li2MgGeO4またはLi2ZnGeO4であってよい。
本発明による発光光源と蛍光体とを備える発光装置は、前記蛍光体は上記近赤外発光蛍光体を含有し、これにより上記課題を解決する。
前記発光光源は、600nm以上800nm以下の波長範囲にピークを持つ光を発してよい。
前記発光光源は、300nm以上480nm以下の波長範囲にピークを持つ光を発し、前記蛍光体は、前記発光光源によって励起されて600nm以上800nm以下の波長範囲にピークを持つ赤色蛍光体をさらに含有してよい。
前記赤色蛍光体が、αサイアロン:Eu、Ca2Si5N8:Eu、(Ca,Sr)2Si5N8:Eu、CaAlSiN3:Eu、および、(Ca,Sr)AlSiN3:Euからなる群から少なくとも1つ選択される蛍光体であってよい。
前記発光光源は、発光ダイオード(LED:light emitting diode)、レーザダイオード(LD)、無機エレクトロルミネッセンス(無機EL)、および、有機エレクトロルミネッセンス(有機EL)からなる群から少なくとも1つ選択されてよい。
The near-infrared-emitting phosphor that emits near-infrared light according to the present invention is a M(1) 2 M(2) M(3) O 4 crystal (where M(1) is a metal element such as Li and/or Na). , M(2) is a metal element selected from at least one of the group consisting of Zn, Mg, Ca, and Sr, and M(3) is an element consisting of Ge) to which Cr is added, thereby solving the above problems. solve.
The near-infrared light may have a peak in a wavelength range of 1050 nm or more and 1350 nm or less, and the half width of the peak may be 150 nm or more.
The M(1) may be Li.
The M(2) may be at least one metal element selected from the group consisting of Zn and Mg.
It may be excited with light having a wavelength range of 600 nm or more and 800 nm or less.
The M(1) 2 M(2) M(3) O 4 crystal may be Li 2 MgGeO 4 or Li 2 ZnGeO 4 .
In a light-emitting device including a light-emitting light source and a phosphor according to the present invention, the phosphor contains the near-infrared-emitting phosphor, thereby solving the above problem.
The light emitting light source may emit light having a peak in a wavelength range of 600 nm or more and 800 nm or less.
The light emitting light source emits light having a peak in a wavelength range of 300 nm or more and 480 nm or less, and the phosphor further contains a red phosphor that is excited by the light emitting light source and has a peak in a wavelength range of 600 nm or more and 800 nm or less. It's okay.
The red phosphor is made of α-sialon:Eu, Ca2Si5N8 : Eu , ( Ca,Sr) 2Si5N8 :Eu, CaAlSiN3 :Eu, and (Ca,Sr) AlSiN3 :Eu. The phosphor may be at least one selected from the group consisting of:
The light emitting light source may be at least one selected from the group consisting of a light emitting diode (LED), a laser diode (LD), an inorganic electroluminescent (inorganic EL), and an organic electroluminescent (organic EL).
本発明の発光装置は、発光光源と蛍光体とを備え、蛍光体が少なくとも励起されて近赤外光を発する近赤外発光蛍光体を含有する。これにより、近赤外光を発する発光装置を提供できる。特に、蛍光体の発する近赤外光が、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅が150nm以上であるため、幅広いスペクトル成分をもつ近赤外光を発する発光装置となる。このような発光装置は近赤外光ランプとして優れている。 The light-emitting device of the present invention includes a light-emitting source and a phosphor, and includes at least a near-infrared-emitting phosphor that is excited and emits near-infrared light. Thereby, a light-emitting device that emits near-infrared light can be provided. In particular, the near-infrared light emitted by the phosphor has a peak in the wavelength range of 1050 nm or more and 1350 nm or less, and its half-width is 150 nm or more, resulting in a light-emitting device that emits near-infrared light with a wide range of spectral components. . Such a light emitting device is excellent as a near-infrared lamp.
以下、本発明を詳しく説明する。
(実施の形態1)
実施の形態1では、赤色励起によって近赤外光を発する蛍光体と、発光光源とを用いた近赤外光を発する発光装置を説明する。
図1は、本発明の発光装置を示す模式図である。
The present invention will be explained in detail below.
(Embodiment 1)
In Embodiment 1, a light emitting device that emits near infrared light using a phosphor that emits near infrared light when excited by red light and a light emitting source will be described.
FIG. 1 is a schematic diagram showing a light emitting device of the present invention.
図1には、発光装置1の具体例として砲弾型発光ダイオードランプが示される。発光装置として発光ダイオードランプは、発光光源4と、蛍光体として励起されて近赤外光を発する近赤外発光蛍光体7とを備え、これにより近赤外光を発する。 FIG. 1 shows a bullet-shaped light emitting diode lamp as a specific example of the light emitting device 1. As shown in FIG. As a light emitting device, a light emitting diode lamp includes a light emitting source 4 and a near infrared emitting phosphor 7 that is excited as a phosphor and emits near infrared light, thereby emitting near infrared light.
図1の発光装置1では、リードワイヤ2にある素子載置用の凹部2aに発光光源4が載置されており、リードワイヤ2と発光光源4の下部電極4aとが電気的に接続され、発光光源4の上部電極4bとリードワイヤ3とがボンディングワイヤ5によって電気的に接続されている。発光光源4は、近赤外発光蛍光体7が分散した第一の樹脂6によって被覆され、素子全体が第二の樹脂8で封止されている。図1では具体的な構成例を示したが、一例であって、当業者であれば、通常の範囲内で容易に改変する。 In the light emitting device 1 of FIG. 1, a light emitting source 4 is placed in a recess 2a for mounting an element in a lead wire 2, and the lead wire 2 and a lower electrode 4a of the light emitting source 4 are electrically connected. The upper electrode 4b of the light emitting source 4 and the lead wire 3 are electrically connected by a bonding wire 5. The light emitting source 4 is covered with a first resin 6 in which a near-infrared emitting phosphor 7 is dispersed, and the entire device is sealed with a second resin 8. Although FIG. 1 shows a specific configuration example, it is just an example, and those skilled in the art can easily modify it within the normal range.
本発明の発光装置は、発光光源と蛍光体から構成され、かかる蛍光体を励起することにより近赤外光を発する。 The light emitting device of the present invention includes a light emitting source and a phosphor, and emits near-infrared light by exciting the phosphor.
本発明の近赤外発光蛍光体7は、好ましくは、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である。これにより、本発明の発光装置1は、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅が150nm以上であるため、幅広いスペクトル成分をもつ近赤外光を発することができる。半値幅の上限は特に規定しないが、300nm以下であれば、幅広いスペクトル成分を有する近赤外光を発する発光装置1を提供できる。 The near-infrared emitting phosphor 7 of the present invention preferably has a peak in a wavelength range of 1050 nm or more and 1350 nm or less, and has a half width of 150 nm or more. Thereby, the light emitting device 1 of the present invention has a peak in the wavelength range of 1050 nm or more and 1350 nm or less and has a half width of 150 nm or more, so it can emit near-infrared light having a wide range of spectral components. Although the upper limit of the half-value width is not particularly defined, as long as it is 300 nm or less, it is possible to provide the light-emitting device 1 that emits near-infrared light having a wide range of spectral components.
本発明の近赤外発光蛍光体7は、主に赤色光、好ましくは、600nm以上800nm以下の波長範囲を有する光で励起されて、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅が150nm以上の光の成分を発光する材料であれば、その種類を特に規定しないが、好ましくは、4価のCrを含む無機結晶であり、4価のCr由来の発光により近赤外光を発する蛍光体を用いると、発光強度が高いので好ましい。 The near-infrared emitting phosphor 7 of the present invention is mainly excited by red light, preferably light having a wavelength range of 600 nm or more and 800 nm or less, and has a peak in the wavelength range of 1050 nm or more and 1350 nm or less, and has a peak in the wavelength range of 1050 nm or more and 1350 nm or less. As long as the material emits a light component with a value width of 150 nm or more, its type is not particularly specified, but it is preferably an inorganic crystal containing tetravalent Cr, and emits near-infrared light due to the emission derived from tetravalent Cr. It is preferable to use a phosphor that emits , since the emission intensity is high.
本発明の近赤外発光蛍光体7の無機結晶は、好ましくは、M(1)2M(2)M(3)O4結晶(ただし、M(1)は、Liおよび/またはNaの金属元素、M(2)は、Zn、Mg、CaおよびSrからなる群から少なくとも1つ選択される金属元素、M(3)はSiおよび/またはGeである元素)にCrが添加されている。これにより、特に発光強度が高いので好ましい。このような蛍光体としては、Zn2SiO4:Cr4+、Mg2SiO4:Cr4+、Li2MgSiO4:Cr4+、Li2ZnSiO4:Cr4+などを挙げることができる。ここで、「:Cr4+」とは、それぞれの母体材料に4価のCrが添加されていることを意図する。 The inorganic crystal of the near-infrared emitting phosphor 7 of the present invention is preferably an M(1) 2 M(2) M(3) O 4 crystal (wherein M(1) is a metal of Li and/or Na). The element M(2) is a metal element selected from at least one of the group consisting of Zn, Mg, Ca, and Sr, and M(3) is an element of Si and/or Ge, to which Cr is added. This is preferable since the emission intensity is particularly high. Examples of such phosphors include Zn 2 SiO 4 :Cr 4+ , Mg 2 SiO 4 :Cr 4+ , Li 2 MgSiO 4 :Cr 4+ , Li 2 ZnSiO 4 :Cr 4+ and the like. Here, ":Cr 4+ " means that tetravalent Cr is added to each base material.
これらの蛍光体は、上述した600nm以上800nm以下の波長範囲にピーク有する赤色光のみならず、380nm以上480nm以下の波長範囲にピークを有する光(青紫色および青色)によっても励起され、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅が150nm以上を有する近赤外光を発することができる。 These phosphors are excited not only by red light having a peak in the wavelength range of 600 nm to 800 nm, but also by light (blue-violet and blue) having a peak in the wavelength range of 380 nm to 480 nm, and in the range of 1050 nm to 1350 nm. It is possible to emit near-infrared light having a peak in the following wavelength range and a half-width of 150 nm or more.
このような近赤外発光蛍光体7の製造方法は特に制限されないが、例えば、M(1)を含有する化合物、M(2)を含有する化合物、および、M(3)を含有する化合物の混合物を、金属元素の組成比が上述の無機結晶の組成比となるように調製した出発原料を焼成すればよい。化合物は、それぞれの金属元素を含有する、ケイ化物、酸化物、炭酸塩等であり得る。焼成は、二段階焼成を行ってもよい、例えば、700℃より高く1500℃以下の温度範囲であり、酸素を含有する雰囲気中の第一の焼成、次いで、500℃以上1200℃以下の温度範囲であり、アルゴン等の不活性ガス雰囲気中の第二の焼成を行ってもよい。 The method for producing such a near-infrared emitting phosphor 7 is not particularly limited, but for example, a compound containing M(1), a compound containing M(2), and a compound containing M(3) are used. The mixture may be prepared by firing a starting material prepared such that the composition ratio of metal elements becomes the composition ratio of the above-mentioned inorganic crystal. The compounds can be silicides, oxides, carbonates, etc. containing the respective metal elements. Firing may be performed in two stages, for example, a first firing in an oxygen-containing atmosphere, with a temperature range of higher than 700°C and lower than 1500°C, followed by a temperature range of higher than 500°C and lower than 1200°C. The second firing may be performed in an inert gas atmosphere such as argon.
なかでも、本発明の近赤外発光蛍光体7の無機結晶は、好ましくは、Siを含み、無機結晶中のSi元素に対し1原子%以上6原子%のCrを含有する。これにより、特に近赤外域の発光強度が高いので、好ましい。Crが10原子%を超えると、濃度消光が生じ外部量子効率が低下する恐れがある。 Among these, the inorganic crystal of the near-infrared emitting phosphor 7 of the present invention preferably contains Si, and contains Cr of 1 at % or more and 6 at % with respect to the Si element in the inorganic crystal. This is preferable because the emission intensity is particularly high in the near-infrared region. When Cr exceeds 10 atomic %, concentration quenching may occur and the external quantum efficiency may decrease.
発光装置1に適用する蛍光体は、好ましくは、0.1μm以上50μm以下のメジアン平均粒径を有する粉末である。これにより、LEDを構成する光透過体(図1では第一の樹脂6とする)への分散が容易であるため、発光強度が高くなる。なお、光透過体は、アクリル樹脂、シリコーン樹脂、ガラス等が挙げられ、これらの材料は、発光光源4からの光に対して透光性に優れており、蛍光体を高効率で励起させることができる。 The phosphor used in the light emitting device 1 is preferably a powder having a median particle size of 0.1 μm or more and 50 μm or less. This facilitates dispersion into the light transmitting body (the first resin 6 in FIG. 1) constituting the LED, thereby increasing the emission intensity. Note that examples of the light transmitting material include acrylic resin, silicone resin, glass, etc., and these materials have excellent translucency for the light from the light emitting light source 4, and can excite the phosphor with high efficiency. Can be done.
メジアン平均粒径d50とは、以下のように定義される。粒子径は、沈降法による測定においては沈降速度が等価な球の直径として、レーザ散乱法においては散乱特性が等価な球の直径として定義される。また、粒子径の分布を粒度(粒径)分布という。粒径分布において、ある粒子径より大きい質量の総和が、全粉体のそれの50%を占める場合の粒子径が、平均粒径d50として定義される。この定義および用語は、いずれも当業者において周知であり、例えば、JISZ8901「試験用粉体および試験用粒子」、または、粉体工学会編「粉体の基礎物性」(ISBN4-526-05544-1)の第1章等諸文献に記載されている。本発明においては、分散剤としてヘキサメタクリン酸ナトリウムを添加した水に試料を分散させ、レーザ散乱式の測定装置を使用して、粒子径に対する体積換算の積算頻度分布を測定した。なお、体積換算と重量換算の分布は等しい。この積算(累積)頻度分布における50%に相当する粒子径を求めて、メジアン平均粒径d50とした。以下、本明細書において、平均粒径は、上述のレーザ散乱法による粒度分布測定手段によって測定した粒度分布の中央価(d50)に基づくことに留意されたい。平均粒径を求める手段については、上述以外にも多様な手段が開発され、現在も続いている現状にあり、測定値に若干の違いが生じることもあり得るが、平均粒径それ自体の意味、意義は明確であり、必ずしも上記手段に限定されないことを理解されたい。 The median average particle diameter d50 is defined as follows. The particle size is defined as the diameter of a sphere with an equivalent sedimentation velocity when measured by a sedimentation method, and as the diameter of a sphere with an equivalent scattering property when measured by a laser scattering method. Further, the distribution of particle sizes is referred to as particle size (particle size) distribution. In the particle size distribution, the particle size when the sum of the masses larger than a certain particle size accounts for 50% of the total mass of the entire powder is defined as the average particle size d50. These definitions and terms are well known to those skilled in the art; for example, JIS Z8901 "Test Powders and Test Particles" or "Basic Physical Properties of Powders" edited by the Japan Society of Powder Engineering (ISBN4-526-05544- It is described in various documents such as Chapter 1 of 1). In the present invention, a sample was dispersed in water to which sodium hexamemethacrylate was added as a dispersant, and a volume-converted integrated frequency distribution with respect to particle diameter was measured using a laser scattering measuring device. Note that the distribution in terms of volume and weight is the same. The particle diameter corresponding to 50% in this integrated (cumulative) frequency distribution was determined and defined as the median average particle diameter d50. Hereinafter, it should be noted that in this specification, the average particle size is based on the median value (d50) of the particle size distribution measured by the particle size distribution measuring means using the laser scattering method described above. Various methods for determining the average particle size other than those mentioned above have been developed and are still in use today, and although there may be slight differences in the measured values, the meaning of the average particle size itself is It should be understood that the meaning is clear and not necessarily limited to the above means.
発光装置1に適用する蛍光体は、好ましくは、1以上20以下の一次粒子の平均アスペクト比を有する粉末である。これにより、LEDを構成する光透過体(図1では第一の樹脂6)への分散が容易であるため、発光強度が高くなるので、好ましい。一次粒子の平均アスペクト比は、走査型電子顕微鏡写真の5視野中の粒子100個を無作為に選び、それらの粒子の長径と短径とを測定し、長径/短径の値をアスペクト比として算出し、アスペクト比が20以下の粒子の割合を計算することにより求める。 The phosphor applied to the light emitting device 1 is preferably a powder having an average aspect ratio of primary particles of 1 or more and 20 or less. This is preferable because it can be easily dispersed into the light transmitting body (first resin 6 in FIG. 1) constituting the LED, increasing the emission intensity. The average aspect ratio of primary particles can be determined by randomly selecting 100 particles in 5 fields of view of a scanning electron microscope photograph, measuring the major axis and minor axis of the particles, and using the value of major axis / minor axis as the aspect ratio. It is determined by calculating the proportion of particles with an aspect ratio of 20 or less.
発光装置1に適用する発光光源4は、近赤外発光蛍光体7を励起し得る限り特に波長に制限はないが、好ましくは、600nm以上800nm以下の波長範囲にピークを持つ光を発する。これにより、本発明の近赤外発光蛍光体7が600nm~800nmの範囲の光を効率良く吸収し、発光強度が高くなる。 The light emitting light source 4 applied to the light emitting device 1 is not particularly limited in wavelength as long as it can excite the near-infrared emitting phosphor 7, but preferably emits light having a peak in the wavelength range of 600 nm or more and 800 nm or less. As a result, the near-infrared emitting phosphor 7 of the present invention efficiently absorbs light in the range of 600 nm to 800 nm, increasing the emission intensity.
発光光源4は、好ましくは、光ダイオード(LED:light emitting diode)、レーザダイオード(LD)、無機エレクトロルミネッセンス(無機EL)、および、有機エレクトロルミネッセンス(有機EL)からなる群から少なくとも1つ選択される。これらの発光光源は、上述の波長範囲の光を発することができる。 The light emitting light source 4 is preferably at least one selected from the group consisting of a light emitting diode (LED), a laser diode (LD), an inorganic electroluminescent (inorganic EL), and an organic electroluminescent (organic EL). Ru. These light emitting sources are capable of emitting light in the wavelength ranges mentioned above.
発光光源4は、さらに好ましくは、600nm以上800nm以下の波長範囲にピークを持つ光を発する、GaAs、AlGaAs、GaP、GaAlP、および、AlGaInPからなる群から少なくとも1つ選択された半導体を用いたLEDまたはレーザダイオードである。中でも赤色LEDが安価で発光強度が高いため好ましい。このようなLEDまたはレーザダイオードとしては、GaAs、AlGaAs、GaP、GaAlP、AlGaInP系が、赤色発光が強く本発明の蛍光体を励起しやすいので好ましい。 More preferably, the light emitting light source 4 is an LED using at least one semiconductor selected from the group consisting of GaAs, AlGaAs, GaP, GaAlP, and AlGaInP, which emits light having a peak in a wavelength range of 600 nm or more and 800 nm or less. Or a laser diode. Among them, red LEDs are preferred because they are inexpensive and have high luminous intensity. As such an LED or laser diode, GaAs, AlGaAs, GaP, GaAlP, and AlGaInP are preferable because they emit strong red light and easily excite the phosphor of the present invention.
発光光源4がLEDである場合、発光装置は、励起用LEDと蛍光体を用いて特開平5-152609号公報、特開平7-99345号公報などに記載されているような公知の方法により製造することができる。 When the light emitting source 4 is an LED, the light emitting device can be manufactured by a known method such as that described in JP-A-5-152609 and JP-A-7-99345 using an excitation LED and a phosphor. can do.
このような発光装置1は、リードワイヤ2を介して発光光源4に電気が流れると、発光光源4が赤色光、例えば、600nm以上800nm以下の波長範囲にピークを持つ光を発する。近赤外発光蛍光体7は、発光光源4が発した赤色光によって励起され、近赤外光、例えば、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である光を発する。このようにして、本発明の発光装置1は動作する。 In such a light emitting device 1, when electricity flows to the light emitting light source 4 via the lead wire 2, the light emitting light source 4 emits red light, for example, light having a peak in a wavelength range of 600 nm or more and 800 nm or less. The near-infrared-emitting phosphor 7 is excited by the red light emitted by the light-emitting light source 4, and emits near-infrared light, for example, light having a peak in a wavelength range of 1050 nm or more and 1350 nm or less, and whose half-value width is 150 nm or more. emits. In this manner, the light emitting device 1 of the present invention operates.
図2は、本発明の別の発光装置を示す模式図である。 FIG. 2 is a schematic diagram showing another light emitting device of the present invention.
図2には、発光装置11の具体例として基板実装用チップ型発光ダイオードランプが示される。発光装置11として発光ダイオードランプは、発光光源14と、蛍光体として励起されて近赤外光を発する近赤外発光蛍光体17とを備え、これにより近赤外光を発する。 FIG. 2 shows a chip-type light-emitting diode lamp for mounting on a board as a specific example of the light-emitting device 11. The light emitting diode lamp as the light emitting device 11 includes a light emitting source 14 and a near infrared emitting phosphor 17 that is excited as a phosphor and emits near infrared light, thereby emitting near infrared light.
図2の発光装置11では、基板19上に固定されたリードワイヤ12にある発光光源14が載置されており、リードワイヤ12と発光光源14の下部電極14aとが電気的に接続され、発光光源14の上部電極14bとリードワイヤ13とがボンディングワイヤ15によって電気的に接続されている。近赤外発光蛍光体17が分散した第一の樹脂16によって、発光光源14が被覆され、素子全体が第二の樹脂18で封止されている。基板19上には中央部に穴の開いた形状である壁面部材20が固定されている。図2では具体的な構成例を示したが、一例であって、当業者であれば、通常の範囲内で容易に改変する。 In the light emitting device 11 shown in FIG. 2, the light emitting source 14 is mounted on a lead wire 12 fixed on a substrate 19, and the lead wire 12 and the lower electrode 14a of the light emitting source 14 are electrically connected to emit light. The upper electrode 14b of the light source 14 and the lead wire 13 are electrically connected by a bonding wire 15. The light emitting source 14 is covered with a first resin 16 in which a near-infrared emitting phosphor 17 is dispersed, and the entire device is sealed with a second resin 18. A wall member 20 having a hole in the center is fixed on the substrate 19. Although FIG. 2 shows a specific configuration example, it is just an example, and those skilled in the art can easily modify it within the normal range.
ここで、発光光源14および近赤外発光蛍光体17は、それぞれ、図1で説明した発光光源4および近赤外発光蛍光体7と同様であるため説明を省略する。また、図1と同様の構成要素には、同様の名称を付け、その説明を省略する。 Here, the light-emitting light source 14 and the near-infrared-emitting phosphor 17 are the same as the light-emitting light source 4 and the near-infrared-emitting phosphor 7 described in FIG. 1, respectively, so the description thereof will be omitted. Further, the same components as in FIG. 1 are given the same names, and the explanation thereof will be omitted.
このような発光装置11は、リードワイヤ12を介して発光光源14に電気が流れると、発光光源14が赤色光、例えば、600nm以上800nm以下の波長範囲にピークを持つ光を発する。近赤外発光蛍光体17は、発光光源14が発した赤色光によって励起され、近赤外光、例えば、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である光を発する。このようにして、本発明の発光装置11は動作する。 In such a light emitting device 11, when electricity flows to the light emitting light source 14 via the lead wire 12, the light emitting light source 14 emits red light, for example, light having a peak in a wavelength range of 600 nm or more and 800 nm or less. The near-infrared light-emitting phosphor 17 is excited by the red light emitted by the light-emitting light source 14, and emits near-infrared light, for example, light having a peak in a wavelength range of 1050 nm or more and 1350 nm or less, and whose half-width is 150 nm or more. emits. In this manner, the light emitting device 11 of the present invention operates.
図1および図2において、近赤外発光蛍光体4として、例えば、上述した、Zn2SiO4:Cr4+、Mg2SiO4:Cr4+、Li2MgSiO4:Cr4+、Li2ZnSiO4:Cr4+などに代表される無機結晶を用いた場合、発光光源4、14は、赤色光を発するもの以外にも、380nm以上480nm以下の波長範囲にピークを有する光(青紫色および青色)を発するものも採用できることは言うまでもない。 1 and 2, as the near-infrared emitting phosphor 4, for example, the above-mentioned Zn 2 SiO 4 :Cr 4+ , Mg 2 SiO 4 :Cr 4+ , Li 2 MgSiO 4 :Cr 4+ , Li 2 ZnSiO 4 : When an inorganic crystal such as Cr 4+ is used, the light emitting sources 4 and 14 emit not only red light but also light (blue-violet and blue) having a peak in the wavelength range of 380 nm to 480 nm. Needless to say, things can also be adopted.
この場合、発光光源は、LEDまたはレーザダイオードを採用でき、これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する光源となり得る。 In this case, the light emitting source can be an LED or a laser diode, and these light emitting elements include those made of nitride semiconductors such as GaN and InGaN, and the light source emits light of a predetermined wavelength by adjusting the composition. It can be.
(実施の形態2)
実施の形態2では、赤色励起によって近赤外光を発する蛍光体と、発光光源とを用いた近赤外光を発する別の発光装置を説明する。
(Embodiment 2)
In Embodiment 2, another light emitting device that emits near infrared light using a phosphor that emits near infrared light when excited by red light and a light emitting source will be described.
実施の形態2は、図1および図2において、発光光源4および14が、300nm以上480nm以下の波長範囲にピークを持つ光を発し、かつ、蛍光体として、近赤外発光蛍光体7および17に加えて、発光光源によって励起されて赤色発光する赤色蛍光体をさらに含有する点が異なる。 In Embodiment 2, in FIGS. 1 and 2, light emitting sources 4 and 14 emit light having a peak in a wavelength range of 300 nm or more and 480 nm or less, and near-infrared emitting phosphors 7 and 17 are used as phosphors. The difference is that in addition to the above, it further contains a red phosphor that emits red light when excited by the light emission source.
発光光源は、300nm以上480nm以下の波長範囲にピークを持つ光を発する。このような発光光源は、上述した発光ダイオード、LD、無機EL、および、有機ELからなる群から少なくとも1つ選択される。中でも、発光光源は、LEDまたはレーザダイオードが好ましい。これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する光源となり得る。 The light emitting light source emits light having a peak in a wavelength range of 300 nm or more and 480 nm or less. Such a light emitting light source is at least one selected from the group consisting of the above-mentioned light emitting diode, LD, inorganic EL, and organic EL. Among these, the light emitting light source is preferably an LED or a laser diode. Some of these light emitting elements are made of nitride semiconductors such as GaN and InGaN, and by adjusting the composition, they can become light sources that emit light of a predetermined wavelength.
赤色蛍光体は、発光光源が発する300nm以上480nm以下の波長範囲にピークを持つ光によって励起され、600nm以上800nm以下の波長範囲にピークを持つ光(赤色光)を発する。これにより、赤色蛍光体からの赤色光は、近赤外発光蛍光体を励起し、近赤外光、例えば、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である光を発する。 The red phosphor is excited by light emitted from a light emitting source and has a peak in a wavelength range of 300 nm or more and 480 nm or less, and emits light (red light) that has a peak in a wavelength range of 600 nm or more and 800 nm or less. Thereby, the red light from the red phosphor excites the near-infrared emitting phosphor, and the near-infrared light has a peak in the wavelength range of 1050 nm or more and 1350 nm or less, and its half-width is 150 nm or more. emit light.
赤色蛍光体は、300nm以上480nm以下の波長範囲の光を600nm以上800nm以下の波長範囲にピークを有する光に変換できるものであれば材料を規定しないが、なかでもαサイアロン:Eu(例えば、特開2002-363554号公報)、Ca2Si5N8:Eu、(Ca,Sr)2Si5N8:Eu、CaAlSiN3:Eu(例えば、国際公開第2005/052087号パンプレット)および(Ca,Sr)AlSiN3:Euからなる群などは変換効率が高いため好ましい。ここで、「:Eu」とは、それぞれの母体材料にEuが添加されていることを意図する。 The material of the red phosphor is not specified as long as it can convert light in the wavelength range of 300 nm or more and 480 nm or less into light having a peak in the wavelength range of 600 nm or more and 800 nm or less; 2002-363554), Ca 2 Si 5 N 8 :Eu, (Ca,Sr) 2 Si 5 N 8 :Eu, CaAlSiN 3 :Eu (for example, International Publication No. 2005/052087 pamphlet) and (Ca , Sr) AlSiN 3 :Eu, etc. are preferable because they have high conversion efficiency. Here, ":Eu" means that Eu is added to each base material.
例えば、図1に示す発光装置1の場合、リードワイヤ2を介して発光光源に電気が流れると、発光光源が青色光、例えば、300nm以上480nm以下の波長範囲にピークを持つ光を発する。赤色蛍光体は、この青色光によって励起され、青色光を600nm以上800nm以下の波長範囲にピークを有する光に変換する。次いで、近赤外発光蛍光体7は、変換された600nm以上800nm以下の波長範囲にピークを有する光によって励起され、近赤外光、例えば、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である光を発する。このようにして、本発明の発光装置1は動作する。 For example, in the case of the light emitting device 1 shown in FIG. 1, when electricity flows to the light emitting source through the lead wire 2, the light emitting source emits blue light, for example, light having a peak in the wavelength range of 300 nm to 480 nm. The red phosphor is excited by this blue light and converts the blue light into light having a peak in the wavelength range of 600 nm or more and 800 nm or less. Next, the near-infrared emitting phosphor 7 is excited by the converted light having a peak in the wavelength range of 600 nm or more and 800 nm or less, and near-infrared light, for example, having a peak in the wavelength range of 1050 nm or more and 1350 nm or less, It emits light whose half width is 150 nm or more. In this manner, the light emitting device 1 of the present invention operates.
同様に、図2に示す発光装置11の場合、リードワイヤ12を介して発光光源に電気が流れると、発光光源が青色光、例えば、300nm以上480nm以下の波長範囲にピークを持つ光を発する。赤色蛍光体は、この青色光によって励起され、青色光を600nm以上800nm以下の波長範囲にピークを有する光に変換する。次いで、近赤外発光蛍光体7は、変換された600nm以上800nm以下の波長範囲にピークを有する光によって励起され、近赤外光、例えば、1050nm以上1350nm以下の波長範囲にピークを有し、その半値幅は150nm以上である光を発する。このようにして、本発明の発光装置11は動作する。 Similarly, in the case of the light emitting device 11 shown in FIG. 2, when electricity flows to the light emitting source through the lead wire 12, the light emitting source emits blue light, for example, light having a peak in the wavelength range of 300 nm to 480 nm. The red phosphor is excited by this blue light and converts the blue light into light having a peak in the wavelength range of 600 nm or more and 800 nm or less. Next, the near-infrared emitting phosphor 7 is excited by the converted light having a peak in the wavelength range of 600 nm or more and 800 nm or less, and near-infrared light, for example, having a peak in the wavelength range of 1050 nm or more and 1350 nm or less, It emits light whose half width is 150 nm or more. In this manner, the light emitting device 11 of the present invention operates.
[近赤外発光蛍光体の製造]
<蛍光体A>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がZnであり、M(3)がSiであるLi2ZnSiO4:Cr4+を製造した。
[Manufacture of near-infrared emitting phosphor]
<Phosphor A>
As a near-infrared emitting phosphor, Li 2 ZnSiO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Zn, and M(3) is Si.
原料粉末には、炭酸リチウム粉末、酸化亜鉛粉末、二酸化ケイ素粉末および酸化クロム粉末を用いた。金属原子の比が
Li:Zn:Si:Cr=2:1:0.96:0.04
となるよう秤取し、エタノールを加えたのち遊星ボールミルを用いて2時間混合を行った。得られた混合スラリーを乾燥、解砕し、空気中1050℃、6時間、第一の焼成を行った。第一の焼成で得られた生成物を十分に解砕し、4体積%の水素ガスを含有し残部がArガスである混合ガス気流中700℃、6時間、第二の焼成を行った。
As raw material powders, lithium carbonate powder, zinc oxide powder, silicon dioxide powder, and chromium oxide powder were used. The ratio of metal atoms is Li:Zn:Si:Cr=2:1:0.96:0.04
After adding ethanol, the mixture was mixed for 2 hours using a planetary ball mill. The obtained mixed slurry was dried, crushed, and first fired in air at 1050° C. for 6 hours. The product obtained in the first calcination was thoroughly crushed, and a second calcination was performed at 700° C. for 6 hours in a mixed gas flow containing 4% by volume of hydrogen gas and the remainder being Ar gas.
得られた生成物について粉末X線回折およびエネルギー分散型元素分析器(EDS;ブルカー・エイエックスエス社製QUANTAX)を備えた走査型電子顕微鏡(SEM;日立ハイテクノロジーズ社製のSU1510)を用いて、生成物に含まれる元素の分析を行った。また、得られた生成物の発光スペクトルを、マルチチャンネル型分光光度計(大塚電子製、MCPD916型)を用いて測定した。発光スペクトルを図3に示す。マルチチャンネル型分光光度計を用いて、蛍光体Aについて種々の励起波長を用いて発光スペクトルを測定した。励起スペクトルを図4に示す。 The obtained product was analyzed using a scanning electron microscope (SEM; SU1510, manufactured by Hitachi High-Technologies) equipped with powder X-ray diffraction and an energy dispersive elemental analyzer (EDS; QUANTAX, manufactured by Bruker AXS). , the elements contained in the product were analyzed. Further, the emission spectrum of the obtained product was measured using a multi-channel spectrophotometer (Model MCPD916, manufactured by Otsuka Electronics). The emission spectrum is shown in Figure 3. Using a multichannel spectrophotometer, the emission spectrum of phosphor A was measured using various excitation wavelengths. The excitation spectrum is shown in Figure 4.
<蛍光体B1~B5>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がZnであり、M(3)がSiであるLi2ZnSiO4:Cr4+を製造した。
<Phosphors B1 to B5>
As a near-infrared emitting phosphor, Li 2 ZnSiO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Zn, and M(3) is Si.
金属原子の比として、
Li:Zn:Si:Cr=2:1:1-x:x
となるよう秤取した以外は、蛍光体Aと同様の条件で合成した。蛍光体B1~B5は、それぞれ、x=0.005、0.01、0.02、0.03および0.05の生成物である。得られた生成物について、X線粉末回析を行い、発光スペクトル(励起波長は620nmとした)を測定した。結果を表2に示す。
As the ratio of metal atoms,
Li:Zn:Si:Cr=2:1:1-x:x
It was synthesized under the same conditions as phosphor A, except that it was weighed so that Phosphors B1-B5 are products of x=0.005, 0.01, 0.02, 0.03 and 0.05, respectively. The obtained product was subjected to X-ray powder diffraction to measure the emission spectrum (excitation wavelength was 620 nm). The results are shown in Table 2.
<蛍光体C>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がMgであり、M(3)がSiであるLi2MgSiO4:Cr4+を製造した。
<Phosphor C>
As a near-infrared emitting phosphor, Li 2 MgSiO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Mg, and M(3) is Si.
原料粉末には、炭酸リチウム粉末、酸化マグネシウム粉末、二酸化ケイ素粉末および酸化クロム粉末を用いた。金属原子の比として、
Li:Mg:Si:Cr=2:1:0.99:0.01
となるよう秤取した以外は、蛍光体Aと同様の条件で合成した。
As raw material powders, lithium carbonate powder, magnesium oxide powder, silicon dioxide powder, and chromium oxide powder were used. As the ratio of metal atoms,
Li:Mg:Si:Cr=2:1:0.99:0.01
It was synthesized under the same conditions as phosphor A, except that it was weighed so that
得られた生成物について、X線粉末回析を行い、励起発光スペクトルを測定した。結果を図5に示す。 The obtained product was subjected to X-ray powder diffraction to measure the excitation emission spectrum. The results are shown in Figure 5.
<蛍光体D>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がCaであり、M(3)がSiであるLi2CaSiO4:Cr4+を製造した。
<Phosphor D>
As a near-infrared emitting phosphor, Li 2 CaSiO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Ca, and M(3) is Si.
原料粉末には、炭酸リチウム粉末、酸化カルシウム粉末、二酸化ケイ素粉末および酸化クロム粉末を用いた。金属原子の比として、
Li:Ca:Si:Cr=2:1:0.99:0.01
となるよう秤取した以外は、蛍光体Aと同様の条件で合成した。
Lithium carbonate powder, calcium oxide powder, silicon dioxide powder, and chromium oxide powder were used as raw material powders. As the ratio of metal atoms,
Li:Ca:Si:Cr=2:1:0.99:0.01
It was synthesized under the same conditions as phosphor A, except that it was weighed so that
得られた生成物について、X線粉末回析を行い、励起発光スペクトルを測定した。結果を図6に示す。 The obtained product was subjected to X-ray powder diffraction to measure the excitation emission spectrum. The results are shown in FIG.
<蛍光体E>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がMgであり、M(3)がGeであるLi2MgGeO4:Cr4+を製造した。
<Phosphor E>
As a near-infrared emitting phosphor, Li 2 MgGeO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Mg, and M(3) is Ge.
原料粉末には、炭酸リチウム粉末、酸化マグネシウム粉末、酸化ゲルマニウム粉末及び酸化クロム粉末を用いた。金属原子の比として、
Li:Mg:Ge:Cr=2:1:0.99:0.01
となるよう秤取した以外は、蛍光体Aと同様の条件で合成した。
As raw material powders, lithium carbonate powder, magnesium oxide powder, germanium oxide powder, and chromium oxide powder were used. As the ratio of metal atoms,
Li:Mg:Ge:Cr=2:1:0.99:0.01
It was synthesized under the same conditions as phosphor A, except that it was weighed so that
得られた生成物について、X線粉末回析を行い、励起発光スペクトルを測定した。結果を図7に示す。 The obtained product was subjected to X-ray powder diffraction to measure the excitation emission spectrum. The results are shown in FIG.
<蛍光体F>
近赤外発光蛍光体として、M(1)がLiであり、M(2)がZnであり、M(3)がGeであるLi2ZnGeO4:Cr4+を製造した。
<Phosphor F>
As a near-infrared emitting phosphor, Li 2 ZnGeO 4 :Cr 4+ was produced in which M(1) is Li, M(2) is Zn, and M(3) is Ge.
原料粉末には、炭酸リチウム粉末、酸化亜鉛粉末、酸化ゲルマニウム粉末および酸化クロム粉末を用いた。金属原子の比として、
Li:Zn:Ge:Cr=2:1:0.99:0.01
となるよう秤取した以外は、蛍光体Aと同様の条件で合成した。
As raw material powders, lithium carbonate powder, zinc oxide powder, germanium oxide powder, and chromium oxide powder were used. As the ratio of metal atoms,
Li:Zn:Ge:Cr=2:1:0.99:0.01
It was synthesized under the same conditions as phosphor A, except that it was weighed so that
得られた生成物について、X線粉末回析を行い、励起発光スペクトルを測定した。結果を図8に示す。 The obtained product was subjected to X-ray powder diffraction to measure the excitation emission spectrum. The results are shown in FIG.
表1に蛍光体A~Fをまとめて示し、以上の結果を説明する。 Table 1 shows the phosphors A to F together, and the above results will be explained.
EDSによれば、蛍光体Aは、Li、Zn、Si、CrおよびOの元素の存在が確認され、Li:Zn:Si:O:Crの含有原子数の比は、Li:Zn:Si:Cr:O=2:1:0.96:0.04:4であることが測定された。また、粉末X線回折パターンから蛍光体Aは、Li2ZnSiO4の結晶パターンに良好に一致した。このことから、蛍光体Aは、Li2ZnSiO4にCrが添加された物質であり、その組成は仕込み組成に一致することが分かった。なお、蛍光体B~蛍光体Fも同様に、仕込み組成を反映した目的の結晶構造を有する生成物が得られたことを確認した。 According to EDS, the presence of elements Li, Zn, Si, Cr, and O is confirmed in phosphor A, and the ratio of the number of atoms contained in Li:Zn:Si:O:Cr is Li:Zn:Si: It was determined that Cr:O=2:1:0.96:0.04:4. Furthermore, the powder X-ray diffraction pattern of the phosphor A matched well with the crystal pattern of Li 2 ZnSiO 4 . From this, it was found that the phosphor A is a material in which Cr is added to Li 2 ZnSiO 4 and its composition matches the charged composition. In addition, it was confirmed that products having the desired crystal structures reflecting the charged compositions were similarly obtained for Phosphors B to Phosphors F.
図3は、蛍光体Aの発光スペクトルを示す図である。
図4は、蛍光体Aの励起スペクトルを示す図である。
FIG. 3 is a diagram showing the emission spectrum of phosphor A.
FIG. 4 is a diagram showing the excitation spectrum of phosphor A.
図3は、蛍光体Aを650nmで励起させた際の発光スペクトルを示す。図3によれば、蛍光体Aは、650nmの励起により、1240nmにピークを有する近赤外発光を示した。また、蛍光体Aのピークの半価幅は、230nmだった。 FIG. 3 shows the emission spectrum when phosphor A is excited at 650 nm. According to FIG. 3, phosphor A exhibited near-infrared emission having a peak at 1240 nm upon excitation at 650 nm. Further, the half width of the peak of phosphor A was 230 nm.
図4によれば、蛍光体Aは、380nm以上480nm以下および600nm以上800nm以下の波長範囲を有する光で効率よく励起され、1240nmにピークを有する近赤外光を発することが分かった。好ましくは、600nm以上660nm以下の波長範囲を有する赤色の光で励起されると、近赤外光の発光強度が高くなり得る。 According to FIG. 4, it was found that phosphor A is efficiently excited by light having a wavelength range of 380 nm or more and 480 nm or less and 600 nm or more and 800 nm or less, and emits near-infrared light having a peak at 1240 nm. Preferably, when excited with red light having a wavelength range of 600 nm or more and 660 nm or less, the emission intensity of near-infrared light can be increased.
次に、蛍光体B1~B5の発光強度と発光波長とを表2にまとめて示す。なお、発光強度は、蛍光体Aの発光強度に対する相対強度で表す。 Next, Table 2 summarizes the emission intensities and emission wavelengths of the phosphors B1 to B5. Note that the emission intensity is expressed as a relative intensity to the emission intensity of the phosphor A.
表2によれば、蛍光体B1~B5は、いずれも、Crの添加量に関わらず、600nm以上800nm以下の波長範囲にピークを有する光で励起されて、1050nm以上1350nm以下の波長範囲にピークを有する近赤外光を発することが分かった。 According to Table 2, all of the phosphors B1 to B5 are excited by light having a peak in the wavelength range of 600 nm or more and 800 nm or less, and have a peak in the wavelength range of 1050 nm or more and 1350 nm or less, regardless of the amount of Cr added. It was found that it emits near-infrared light with .
さらに、表2によれば、Crの添加量が多くなるにつれて、発光強度が高くなり、好ましくは、Crの添加量xが0.01以上0.06以下(Siに対して1原子%以上6原子%以下)において、発光強度が増大し得、より好ましくは、Crの添加量xが0.03以上0.05以下(Siに対して3原子%以上5原子%以下)において、発光強度がより増大し得ることが分かった。 Further, according to Table 2, as the amount of Cr added increases, the emission intensity increases, and preferably, the amount x of Cr added is 0.01 or more and 0.06 or less (1 atomic % or more and 6 % or less), and more preferably, when the amount x of Cr added is 0.03 or more and 0.05 or less (3 atomic% or more and 5 atomic% or less relative to Si), the luminescence intensity increases. It was found that it could be increased further.
図5は、蛍光体Cの発光スペクトルを示す図である。
図6は、蛍光体Dの発光スペクトルを示す図である。
図7は、蛍光体Eの発光スペクトルを示す図である。
図8は、蛍光体Fの発光スペクトルを示す図である。
FIG. 5 is a diagram showing the emission spectrum of phosphor C.
FIG. 6 is a diagram showing the emission spectrum of phosphor D.
FIG. 7 is a diagram showing the emission spectrum of the phosphor E.
FIG. 8 is a diagram showing the emission spectrum of the phosphor F.
図5~図8は、いずれも、蛍光体を650nmで励起させた際の発光スペクトルを示す。また、発光強度は、蛍光体Aの発光強度に対する相対強度を示す。 5 to 8 all show emission spectra when the phosphor is excited at 650 nm. Furthermore, the emission intensity indicates the relative intensity to the emission intensity of the phosphor A.
蛍光体C~Fは、いずれも、600nm以上800nm以下の波長範囲にピークを有する光で励起されて、1050nm以上1350nm以下の波長範囲にピークを有する近赤外光を発することが分かった。簡単のため、各蛍光体の相対強度、発光波長および半値幅を表3にまとめて示す。 It was found that all of the phosphors C to F are excited by light having a peak in the wavelength range of 600 nm or more and 800 nm or less, and emit near-infrared light that has a peak in the wavelength range of 1050 nm or more and 1350 nm or less. For simplicity, the relative intensity, emission wavelength, and half-width of each phosphor are summarized in Table 3.
[発光装置]
合成した近赤外発光蛍光体を用いて発光装置を作製した。
[Light emitting device]
A light-emitting device was fabricated using the synthesized near-infrared emitting phosphor.
<実施例1>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aを用いて製作した。まず、リードワイヤ2にある素子蔵置用の凹部2aに発光光源4として赤色発光ダイオード素子を、導電性ペーストを用いてボンディングし、リードワイヤ2と赤色発光ダイオード素子の下部電極4aとを電気的に接続するとともに、赤色発光ダイオード素子を固定した。次に、赤色発光ダイオード素子の上部電極4bとリードワイヤ3とを、ボンディングワイヤ5によってワイヤボンディングし、電気的に接続した。そして、予め作製しておいた近赤外発光蛍光体7を、赤色発光ダイオード素子を被覆するようにして凹部2aにディスペンサで適量塗布し硬化させ、第一の樹脂6を形成した。最後に、キャスティング法により凹部2aを含むリードワイヤ2の先端部2b、赤色発光ダイオード素子、近赤外発光蛍光体7を分散した第一の樹脂6の全体を第二の樹脂8で封止した。第一の樹脂6は、屈折率1.6のエポキシ樹脂を、第二の樹脂8は屈折率1.36のエポキシ樹脂を使用した。
<Example 1>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A as the near-infrared emitting phosphor 7. First, a red light emitting diode element as the light emitting light source 4 is bonded to the recess 2a for element storage in the lead wire 2 using conductive paste, and the lead wire 2 and the lower electrode 4a of the red light emitting diode element are electrically connected. At the same time, the red light emitting diode element was fixed. Next, the upper electrode 4b of the red light emitting diode element and the lead wire 3 were wire-bonded using the bonding wire 5 to electrically connect them. Then, an appropriate amount of the near-infrared emitting phosphor 7 prepared in advance was applied to the recessed portion 2a with a dispenser so as to cover the red light emitting diode element and cured, thereby forming the first resin 6. Finally, the entire first resin 6 in which the tip 2b of the lead wire 2 including the recess 2a, the red light emitting diode element, and the near-infrared light emitting phosphor 7 were dispersed was sealed with the second resin 8 by a casting method. . The first resin 6 used was an epoxy resin with a refractive index of 1.6, and the second resin 8 used an epoxy resin with a refractive index of 1.36.
本発光装置の製造では、近赤外発光蛍光体7として蛍光体A(メジアン平均粒径は0.1μm以上50μm以下であり、一次粒子の平均アスペクト比は20以下であった)を40質量%の濃度でエポキシ樹脂に混ぜ、これをディスペンサにより適量滴下して、蛍光体を分散した第一の樹脂を形成した。導電性端子に電流を流すと、赤色発光ダイオード素子は660nmの赤色光を発し、この赤色光に励起されて発光波長1240nm、半価幅230nmの近赤外光を発した。これは、蛍光体単体の発光スペクトル形状と同等であった。赤色発光ダイオード素子で励起することにより、近赤外域の発光効率は高かった。 In manufacturing this light emitting device, 40% by mass of phosphor A (median average particle size was 0.1 μm or more and 50 μm or less, and average aspect ratio of primary particles was 20 or less) was used as the near-infrared emitting phosphor 7. An appropriate amount of this was added dropwise using a dispenser to form a first resin in which the fluorescent material was dispersed. When a current was passed through the conductive terminal, the red light emitting diode element emitted red light of 660 nm, and was excited by this red light to emit near-infrared light with an emission wavelength of 1240 nm and a half width of 230 nm. This was equivalent to the emission spectrum shape of a single phosphor. By excitation with a red light emitting diode element, the luminous efficiency in the near-infrared region was high.
<実施例2>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aを用いて製作した。発光光源4として青色発光ダイオード素子を用いた以外は実施例1と同様であるため説明を省略する。
<Example 2>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A as the near-infrared emitting phosphor 7. Since this example is the same as Example 1 except that a blue light emitting diode element is used as the light emitting light source 4, the explanation will be omitted.
導電性端子に電流を流すと、青色発光ダイオード素子は450nmの青色光を発し、この青色光に励起されて発光波長1240nm、半価幅230nmの近赤外光を発した。これは、蛍光体単体の発光スペクトル形状と同等であった。 When a current was passed through the conductive terminal, the blue light emitting diode element emitted blue light of 450 nm, and was excited by this blue light to emit near-infrared light with an emission wavelength of 1240 nm and a half width of 230 nm. This was equivalent to the emission spectrum shape of a single phosphor.
<実施例3>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aを用いて製作した。発光光源4として紫外発光ダイオード素子を用いた以外は実施例1と同様であるため説明を省略する。
<Example 3>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A as the near-infrared emitting phosphor 7. This example is the same as Example 1 except that an ultraviolet light emitting diode element is used as the light emitting light source 4, so the explanation will be omitted.
導電性端子に電流を流すと、紫外発光ダイオード素子は385nmの紫外光を発し、この紫外光に励起されて発光波長1240nm、半価幅230nmの近赤外光を発した。これは、蛍光体単体の発光スペクトル形状と同等であった。 When a current was passed through the conductive terminal, the ultraviolet light emitting diode element emitted ultraviolet light of 385 nm, and was excited by the ultraviolet light to emit near-infrared light with an emission wavelength of 1240 nm and a half width of 230 nm. This was equivalent to the emission spectrum shape of a single phosphor.
<実施例4>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aを用い、発光光源4として青色発光ダイオード素子を用い製作した。近赤外発光蛍光体7として蛍光体Aに加えて赤色蛍光体としてCaAlSiN3:Eu蛍光体を用いた。詳細には、蛍光体Aを25質量%、CaAlSiN3:Eu蛍光体を26質量%の濃度でエポキシ樹脂に混ぜ、これをディスペンサにより適量滴下して、蛍光体を分散した第一の樹脂を形成した。これ以外は実施例1と同様であるため説明を省略する。CaAlSiN3:Eu蛍光体は、国際公開第2005/052087号に記載の方法により製造し、その励起および発光スペクトルを図9に示す。
<Example 4>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A as the near-infrared emitting phosphor 7 and a blue light emitting diode element as the light emitting light source 4. In addition to the phosphor A as the near-infrared emitting phosphor 7, a CaAlSiN 3 :Eu phosphor was used as a red phosphor. Specifically, 25% by mass of phosphor A and 26% by mass of CaAlSiN 3 :Eu phosphor were mixed into epoxy resin, and an appropriate amount of this was dropped using a dispenser to form a first resin in which the phosphor was dispersed. did. Other than this, the explanation is omitted because it is the same as in the first embodiment. The CaAlSiN 3 :Eu phosphor was manufactured by the method described in International Publication No. 2005/052087, and its excitation and emission spectra are shown in FIG. 9.
図9は、CaAlSiN3:Eu蛍光体の励起および発光スペクトルである。 FIG. 9 is the excitation and emission spectra of CaAlSiN 3 :Eu phosphor.
図9に示されるように、CaAlSiN3:Eu蛍光体は、300nm以上480nm以下の波長範囲にピークを持つ光によって励起され、600nm以上800nm以下の波長範囲にピークを有する赤色蛍光体であった。 As shown in FIG. 9, the CaAlSiN 3 :Eu phosphor was a red phosphor that was excited by light having a peak in the wavelength range of 300 nm or more and 480 nm or less, and had a peak in the wavelength range of 600 nm or more and 800 nm or less.
導電性端子に電流を流すと、青色発光ダイオード素子は450nmの青色光を発し、CaAlSiN3:Eu蛍光体が発する赤色光とともに本発明の蛍光体を励起し、発光波長1240nm、半価幅230nmの近赤外光を発した。これは、蛍光体単体の発光スペクトル形状と同等であった。近赤外域の発光強度は、実施例2より高かった。これは、LEDの青色光が第二の蛍光体により赤色に変換された後に近赤外光に変換されたことにより、第一の蛍光体の励起効率が高くなったためである。 When a current is passed through the conductive terminal, the blue light emitting diode element emits blue light of 450 nm, which excites the phosphor of the present invention together with the red light emitted by the CaAlSiN 3 :Eu phosphor, resulting in an emission wavelength of 1240 nm and a half width of 230 nm. It emitted near-infrared light. This was equivalent to the emission spectrum shape of a single phosphor. The emission intensity in the near-infrared region was higher than that in Example 2. This is because the blue light of the LED was converted to red by the second phosphor and then converted to near-infrared light, which increased the excitation efficiency of the first phosphor.
<実施例5>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aを、発光光源4として赤色発光ダイオードを用いて製作した。第一の樹脂6は、屈折率1.51のシリコーン樹脂を、第二の樹脂8は屈折率1.41のシリコーン樹脂を使用した以外は実施例1と同様であるため説明を省略する。
<Example 5>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A as the near-infrared emitting phosphor 7 and a red light emitting diode as the light emitting light source 4. The first resin 6 is a silicone resin with a refractive index of 1.51, and the second resin 8 is a silicone resin with a refractive index of 1.41.
導電性端子に電流を流すと、赤色発光ダイオード素子は660nmの赤色光を発し、この赤色光に励起されて発光波長1240nm、半価幅230nmの近赤外光を発した。これは、蛍光体単体の発光スペクトル形状と同等であった。 When a current was passed through the conductive terminal, the red light emitting diode element emitted red light of 660 nm, and was excited by this red light to emit near-infrared light with an emission wavelength of 1240 nm and a half width of 230 nm. This was equivalent to the emission spectrum shape of a single phosphor.
<実施例6>
図1に示す砲弾型発光ダイオードランプ1を、近赤外発光蛍光体7として蛍光体Aおよび蛍光体Cを用い、発光光源4として赤色発光ダイオード素子を用い製作した。蛍光体Aおよび蛍光体Cをそれぞれ20質量%の濃度でエポキシ樹脂に混ぜ、これをディスペンサにより適量滴下して、蛍光体を分散した第一の樹脂を形成した。これ以外は実施例1と同様であるため説明を省略する。
<Example 6>
A bullet-shaped light emitting diode lamp 1 shown in FIG. 1 was manufactured using phosphor A and phosphor C as the near-infrared emitting phosphor 7 and a red light emitting diode element as the light emitting light source 4. Phosphor A and Phosphor C were each mixed in an epoxy resin at a concentration of 20% by mass, and an appropriate amount of this was dropped using a dispenser to form a first resin in which the phosphors were dispersed. Other than this, the explanation is omitted because it is the same as in the first embodiment.
導電性端子に電流を流すと、赤色発光ダイオード素子は660nmの赤色光を発し、この赤色光に励起されて発光波長1190nm、半価幅280nmの近赤外光を発した。 When a current was passed through the conductive terminal, the red light emitting diode element emitted red light of 660 nm, and was excited by this red light to emit near-infrared light with an emission wavelength of 1190 nm and a half width of 280 nm.
<実施例7>
図2に示す基板実装用チップ型発光ダイオード11を、近赤外発光蛍光体7として蛍光体Aを用いて製作した。下部電極14a上に発光光源4として青色発光ダイオードが位置し、上部電極14bとボンディングワイヤ5で接続されている。製造手順は、基板19としてアルミナセラミックス基板にリードワイヤ12、13および壁面部材20を固定する部分を除いては、実施例1の製造手順と略同様である。本実施例では、壁面部材20を白色のシリコーン樹脂によって構成し、樹脂16と樹脂18とには同一のエポキシ樹脂を用いた。近赤外発光蛍光体7としては、蛍光体Aを用い、近赤外光を発することが確認された。
<Example 7>
A chip-type light emitting diode 11 for board mounting shown in FIG. 2 was manufactured using phosphor A as the near-infrared emitting phosphor 7. A blue light emitting diode is placed on the lower electrode 14a as a light emitting source 4, and is connected to the upper electrode 14b with a bonding wire 5. The manufacturing procedure is substantially the same as that of Example 1, except for the part where the lead wires 12, 13 and the wall member 20 are fixed to the alumina ceramic substrate as the substrate 19. In this embodiment, the wall member 20 is made of white silicone resin, and the resin 16 and resin 18 are made of the same epoxy resin. Phosphor A was used as the near-infrared emitting phosphor 7, and it was confirmed that it emits near-infrared light.
本発明の発光装置は、発光光源と蛍光体から構成される発光装置であって、本発明の蛍光体を用いることで、十分に広い半価幅と十分に高い輝度を有する近赤外発光装置とすることが出来る。今後、医療用装置や分光分析に用いる光源のみならず、ハロゲンランプ代替用途や白色LEDランプやLED信号機等の融雪対策、凍結防止対策などとしても大いに活用され、産業の発展に大きく寄与することが期待できる。 The light emitting device of the present invention is a light emitting device composed of a light emitting source and a phosphor, and by using the phosphor of the present invention, the near infrared light emitting device has a sufficiently wide half width and a sufficiently high luminance. It can be done. In the future, it will be used not only as a light source for medical equipment and spectroscopic analysis, but also as a substitute for halogen lamps, and as a countermeasure against snow melting and freezing in white LED lamps, LED traffic lights, etc., and will greatly contribute to the development of industry. You can expect it.
1 発光装置(砲弾型発光ダイオードランプ)
2、3 リードワイヤ
4 発光光源
5 ボンディングワイヤ
6 第一の樹脂
7 近赤外発光蛍光体
8 第二の樹脂
11 発光装置(基板実装用チップ型白色発光ダイオードランプ)
12、13 リードワイヤ
14 発光光源
15 ボンディングワイヤ
16 第一の樹脂
17 近赤外発光蛍光体
18 第二の樹脂
19 基板
20 壁面部材
1 Light emitting device (shell type light emitting diode lamp)
2, 3 Lead wire 4 Light emitting light source 5 Bonding wire 6 First resin 7 Near-infrared emitting phosphor 8 Second resin 11 Light emitting device (chip type white light emitting diode lamp for board mounting)
12, 13 lead wire 14 light emitting light source 15 bonding wire 16 first resin 17 near-infrared emitting phosphor 18 second resin 19 substrate 20 wall member
Claims (11)
前記ピークの半値幅は、150nm以上である、請求項1に記載の近赤外発光蛍光体。 The near-infrared light has a peak in a wavelength range of 1050 nm or more and 1350 nm or less,
The near-infrared emitting phosphor according to claim 1, wherein the half width of the peak is 150 nm or more.
前記蛍光体は、請求項1~6のいずれかに記載の近赤外発光蛍光体を含有する、発光装置。 A light emitting device comprising a light emitting source and a phosphor,
A light emitting device, wherein the phosphor contains the near-infrared emitting phosphor according to any one of claims 1 to 6.
前記蛍光体は、前記発光光源によって励起されて600nm以上800nm以下の波長範囲にピークを持つ赤色蛍光体をさらに含有する、請求項7に記載の発光装置。 The light emitting light source emits light having a peak in a wavelength range of 300 nm or more and 480 nm or less,
The light emitting device according to claim 7, wherein the phosphor further contains a red phosphor that is excited by the light emission source and has a peak in a wavelength range of 600 nm or more and 800 nm or less.
The light emitting light source is at least one selected from the group consisting of a light emitting diode (LED), a laser diode (LD), an inorganic electroluminescent (inorganic EL), and an organic electroluminescent (organic EL). The light emitting device according to any one of Items 7 to 10.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022209217A JP7412036B2 (en) | 2019-05-10 | 2022-12-27 | Near-infrared emitting phosphor and light emitting device |
JP2023209292A JP2024022662A (en) | 2019-05-10 | 2023-12-12 | Near-infrared light-emitting phosphor and light-emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019089539A JP7226789B2 (en) | 2019-05-10 | 2019-05-10 | light emitting device |
JP2022209217A JP7412036B2 (en) | 2019-05-10 | 2022-12-27 | Near-infrared emitting phosphor and light emitting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019089539A Division JP7226789B2 (en) | 2019-05-10 | 2019-05-10 | light emitting device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023209292A Division JP2024022662A (en) | 2019-05-10 | 2023-12-12 | Near-infrared light-emitting phosphor and light-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023052099A JP2023052099A (en) | 2023-04-11 |
JP7412036B2 true JP7412036B2 (en) | 2024-01-12 |
Family
ID=73221068
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019089539A Active JP7226789B2 (en) | 2019-05-10 | 2019-05-10 | light emitting device |
JP2022209217A Active JP7412036B2 (en) | 2019-05-10 | 2022-12-27 | Near-infrared emitting phosphor and light emitting device |
JP2023209292A Pending JP2024022662A (en) | 2019-05-10 | 2023-12-12 | Near-infrared light-emitting phosphor and light-emitting device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019089539A Active JP7226789B2 (en) | 2019-05-10 | 2019-05-10 | light emitting device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023209292A Pending JP2024022662A (en) | 2019-05-10 | 2023-12-12 | Near-infrared light-emitting phosphor and light-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP7226789B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7452086B2 (en) * | 2020-02-26 | 2024-03-19 | サンケン電気株式会社 | light emitting device |
US20240052240A1 (en) * | 2020-12-24 | 2024-02-15 | Nichia Corporation | Oxide fluorescent material, light emitting device, and method for producing oxide fluorescent material |
WO2022176596A1 (en) | 2021-02-22 | 2022-08-25 | パナソニックIpマネジメント株式会社 | Inspection device and inspection method |
EP4300606A4 (en) * | 2021-02-24 | 2024-10-09 | Panasonic Intellectual Property Man Co Ltd | Light emitting device and electronic apparatus using same |
JP7455396B2 (en) * | 2021-07-20 | 2024-03-26 | フェニックス電機株式会社 | broadband light emitting device |
JPWO2023120034A1 (en) | 2021-12-21 | 2023-06-29 | ||
KR20240121858A (en) | 2021-12-21 | 2024-08-09 | 덴카 주식회사 | Phosphor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097829A (en) | 2008-10-16 | 2010-04-30 | Stanley Electric Co Ltd | Lighting system and vehicular lighting fixture |
JP2017014476A (en) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | Tellurium compound nanoparticle and composite nanoparticle and manufacturing method therefor |
JP2019067880A (en) | 2017-09-29 | 2019-04-25 | 日亜化学工業株式会社 | Manufacturing method of light-emitting device and light-emitting device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3668770B2 (en) | 2001-06-07 | 2005-07-06 | 独立行政法人物質・材料研究機構 | Oxynitride phosphor activated with rare earth elements |
JP4317478B2 (en) | 2004-03-31 | 2009-08-19 | 三菱化学株式会社 | Phosphor-type light emitting device and endoscope device using the same as an illumination source |
JP4546176B2 (en) | 2004-07-16 | 2010-09-15 | 京セラ株式会社 | Light emitting device |
JP2010182809A (en) | 2009-02-04 | 2010-08-19 | Stanley Electric Co Ltd | Semiconductor light-emitting apparatus |
US9537022B2 (en) | 2012-08-02 | 2017-01-03 | Epistar Corporation | Wavelength converting material |
WO2016194876A1 (en) | 2015-05-29 | 2016-12-08 | シチズン電子株式会社 | Light emitting device and manufacturing method thereof |
JP2017054994A (en) | 2015-09-10 | 2017-03-16 | パナソニックIpマネジメント株式会社 | Light emitting device and luminaire |
JP2017152566A (en) | 2016-02-25 | 2017-08-31 | シャープ株式会社 | Light-emitting device, backlight, and display device |
KR102100213B1 (en) | 2016-03-14 | 2020-04-13 | 미쓰이금속광업주식회사 | Phosphor |
JP2019087711A (en) | 2017-11-10 | 2019-06-06 | 三菱ケミカル株式会社 | Infrared light-emitting device and phosphor |
-
2019
- 2019-05-10 JP JP2019089539A patent/JP7226789B2/en active Active
-
2022
- 2022-12-27 JP JP2022209217A patent/JP7412036B2/en active Active
-
2023
- 2023-12-12 JP JP2023209292A patent/JP2024022662A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097829A (en) | 2008-10-16 | 2010-04-30 | Stanley Electric Co Ltd | Lighting system and vehicular lighting fixture |
JP2017014476A (en) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | Tellurium compound nanoparticle and composite nanoparticle and manufacturing method therefor |
JP2019067880A (en) | 2017-09-29 | 2019-04-25 | 日亜化学工業株式会社 | Manufacturing method of light-emitting device and light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2024022662A (en) | 2024-02-16 |
JP2023052099A (en) | 2023-04-11 |
JP2020188044A (en) | 2020-11-19 |
JP7226789B2 (en) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7412036B2 (en) | Near-infrared emitting phosphor and light emitting device | |
US7402943B2 (en) | Oxynitride phosphor and a light emitting device | |
TWI399422B (en) | Fluorescence material and manufacture thereof and luminaire | |
TWI404792B (en) | A phosphor and a method for manufacturing the same, and a light-emitting device using the same | |
TWI391472B (en) | Phosphor, production method thereof, and light-emitting apparatus using phosphor | |
TWI384053B (en) | Fluorescence material and manufacture thereof and luminaire | |
JP5129283B2 (en) | Phosphor, phosphor manufacturing method, light emitting device, and light emitting module | |
WO2011016486A1 (en) | Fluorescent substance, process for producing same, and luminescent device including same | |
JPWO2005090517A1 (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE | |
JP2005286312A (en) | Light emitting device and lighting apparatus | |
US20240010914A1 (en) | Phosphor powder, light-emitting device, image display device, and illumination device | |
TWI458806B (en) | Method for manufacturing β type sialon, β type sialon and light emitting device | |
JP2007059898A (en) | Semiconductor light-emitting device | |
JP2008028042A (en) | Light emitting device | |
US20230407172A1 (en) | Phosphor powder, light-emitting device, image display device, and illumination device | |
WO2022123997A1 (en) | Phosphor powder, light-emitting device, image display device, and illumination device | |
TW201500520A (en) | Phosphor | |
US20230407171A1 (en) | Phosphor powder, light-emitting device, image display device, and illumination device | |
WO2020235297A1 (en) | α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE | |
JP2018150433A (en) | Orange phosphor and light-emitting device | |
JP2011225803A (en) | Fluorescent material, method for manufacturing the same, and light-emitting device having the same | |
WO2024101330A1 (en) | Phosphor and light-emitting device | |
WO2024101352A1 (en) | Phosphor and light-emitting device | |
TW202436591A (en) | Phosphor and light emitting device | |
JP5646567B2 (en) | Method for manufacturing phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7412036 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |