JP2010182809A - Semiconductor light-emitting apparatus - Google Patents

Semiconductor light-emitting apparatus Download PDF

Info

Publication number
JP2010182809A
JP2010182809A JP2009023898A JP2009023898A JP2010182809A JP 2010182809 A JP2010182809 A JP 2010182809A JP 2009023898 A JP2009023898 A JP 2009023898A JP 2009023898 A JP2009023898 A JP 2009023898A JP 2010182809 A JP2010182809 A JP 2010182809A
Authority
JP
Japan
Prior art keywords
resin member
light emitting
semiconductor light
resin
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009023898A
Other languages
Japanese (ja)
Inventor
Yasuji Chinone
康仁 千野根
Masaki Kajita
正喜 梶田
Kazuchika Hibiya
一親 日比谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009023898A priority Critical patent/JP2010182809A/en
Priority to CN201010112923.8A priority patent/CN101800281B/en
Publication of JP2010182809A publication Critical patent/JP2010182809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To radiate white light with small color tone unevenness to an irradiated surface, in a semiconductor light-emitting apparatus having a cavity structure package, which seals a semiconductor light-emitting element mounted in the cavity with a sealing resin which disperses one or more phosphors. <P>SOLUTION: In a semiconductor light-emitting apparatus, a red phosphor layer 7 is arranged so as to cover a blue LED element 5 mounted in a cavity 2. A green phosphor layer 8, a binder resin 9, and a second resin member 11 are sequentially arranged on the red phosphor layer. In addition, a relationship of a distance (a) from an upper surface 5a of the LED element 5 to an upper surface 10a of the first sealing resin 10, a thickness (b) of the second resin member 11, and a distance (c) from a light axis X to a periphery 11c, is set so that an angle θ between the light axis X of the LED element 5 and a line C crossing with the light axis X on the upper surface 5a of the LED element 5 and crossing with the periphery 11c of the upper surface 11a of the second resin member 11 becomes smaller than a critical angle τ of light ray incoming from the second resin member 11 to an air layer 12 (θ<τ). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体発光装置に関するものであり、詳しくは、半導体発光素子と一種または複数種の蛍光体との組み合わせからなる半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device comprising a combination of a semiconductor light emitting element and one or more kinds of phosphors.

半導体発光素子を発光源とし、該半導体発光素子の発光色とは異なる色調の光を照射光とする半導体発光装置は、一般的に可視光領域の短波長側あるいは紫外線領域に発光ピーク波長を有する半導体発光素子と一種以上の蛍光体との組み合わせにより構成される。   A semiconductor light-emitting device that uses a semiconductor light-emitting element as a light source and emits light having a color tone different from the emission color of the semiconductor light-emitting element generally has a light emission peak wavelength in the short wavelength side of the visible light region or in the ultraviolet region. It is comprised by the combination of a semiconductor light emitting element and 1 or more types of fluorescent substance.

例えば、半導体発光素子が青色光を発光する青色LED素子の場合、青色LED素子が発する青色光に励起されて青色の補色となる黄色光に波長変換する黄色蛍光体を用いることによって、青色LED素子から発せられた青色光の一部が黄色蛍光体を励起することにより波長変換された黄色光と、青色LED素子から発せられた青色光の一部との加法混色によって白色光を得ることができる。   For example, when the semiconductor light emitting element is a blue LED element that emits blue light, the blue LED element is obtained by using a yellow phosphor that is wavelength-converted to yellow light that is excited by blue light emitted from the blue LED element and becomes a complementary color of blue. White light can be obtained by additive color mixing of yellow light, which is part of the blue light emitted from the light, and wavelength-converted by exciting the yellow phosphor, and a part of the blue light emitted from the blue LED element. .

同様に、半導体発光素子が青色光を発光する青色LED素子の場合、青色LED素子が発する青色光に励起されて夫々緑色光及び赤色光に波長変換する緑色蛍光体及び赤色蛍光体の2種類の蛍光体からなる混合蛍光体を用いることによって、青色LED素子から発せられた青色光の一部が混合蛍光体を励起することにより波長変換された緑色光及び赤色光と、青色LED素子から発せられた青色光の一部との加法混色によって白色光を得ることができる。   Similarly, when the semiconductor light emitting element is a blue LED element that emits blue light, two types of green phosphor and red phosphor that are excited by the blue light emitted by the blue LED element and convert the wavelength to green light and red light, respectively. By using a mixed phosphor made of a phosphor, a part of the blue light emitted from the blue LED element is emitted from the blue LED element and green light and red light whose wavelengths are converted by exciting the mixed phosphor. White light can be obtained by additive color mixing with a part of the blue light.

また、半導体発光素子が紫外光を発する紫外LED素子の場合、紫外LED素子が発する紫外光に励起されて夫々青色光、緑色光及び赤色光に波長変換する青色蛍光体、緑色蛍光体及び赤色蛍光体の3種類の蛍光体からなる混合蛍光体を用いることによって、紫外LED素子から発せられた紫外光が混合蛍光体を励起することにより波長変換された青色光、緑色光及び赤色光の加法混色によって白色光を得ることができる。   Also, when the semiconductor light emitting device is an ultraviolet LED device that emits ultraviolet light, blue phosphor, green phosphor, and red fluorescence that are excited by the ultraviolet light emitted by the ultraviolet LED device and converted into blue light, green light, and red light, respectively. By using a mixed phosphor composed of three types of phosphors, an additive color mixture of blue light, green light and red light in which ultraviolet light emitted from an ultraviolet LED element is wavelength-converted by exciting the mixed phosphor Can produce white light.

更に、LED素子が発する種々の色調の光とその光で励起されて種々の波長に波長変換する蛍光体とを適宜に組み合わせることによって白色光以外の種々な色調の光を得ることができる。   Furthermore, light of various color tones other than white light can be obtained by appropriately combining light of various color tones emitted from the LED element and a phosphor that is excited by the light and converts the wavelength to various wavelengths.

具体的な半導体発光装置50としては、例えば、図6に示すような構成のものが従来より提案されている。   As a specific semiconductor light emitting device 50, for example, one having a configuration as shown in FIG. 6 has been conventionally proposed.

それは、キャビティ構造のパッケージ51の底面上に青色LED素子52が載置され、キャビティ内に充填された、透光性を有する熱硬化性のバインダー樹脂に赤色蛍光体と緑色蛍光体の混合蛍光体が分散されてなる封止樹脂によって青色LED素子52が樹脂封止された構成とされている。   This is because a blue LED element 52 is mounted on the bottom surface of a package 51 having a cavity structure, and a mixed phosphor of a red phosphor and a green phosphor is filled in a light-transmitting thermosetting binder resin. The blue LED element 52 is resin-sealed with a sealing resin in which is dispersed.

この場合、赤色蛍光体及び緑色蛍光体はバインダー樹脂よりも比重が大きく且つ赤色蛍光体の中位径が緑色蛍光体の中位径よりも大きくしてある。そのため、バインダー樹脂内において赤色蛍光体が緑色蛍光体よりも沈殿速度が速く、封止樹脂の充填後に十分な沈殿時間を設けることによりバインダー樹脂53の下部の青色LED素子52近傍に優先的に赤色蛍光体が堆積して赤色蛍光体層54を形成しその上に緑色蛍光体が堆積して緑色蛍光体層55を形成している。   In this case, the red phosphor and the green phosphor have a specific gravity larger than that of the binder resin, and the median diameter of the red phosphor is larger than the median diameter of the green phosphor. Therefore, the red phosphor has a faster precipitation rate than the green phosphor in the binder resin, and a red color is preferentially provided in the vicinity of the blue LED element 52 below the binder resin 53 by providing a sufficient settling time after filling with the sealing resin. A phosphor is deposited to form a red phosphor layer 54, and a green phosphor is deposited thereon to form a green phosphor layer 55.

このように、励起光源である青色LED素子52側に赤色蛍光体層54を配置することにより、青色LED素子52が発する青色光で励起された赤色蛍光体が発する赤色光では赤色蛍光体層54上に位置する緑色蛍光体層55における再吸収及び二次励起は行われず、発光装置の高輝度化及び発光装置からの照射光の色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)の防止が可能となる(例えば、特許文献1参照。)。   Thus, by arranging the red phosphor layer 54 on the side of the blue LED element 52 that is the excitation light source, the red phosphor layer 54 is used for the red light emitted from the red phosphor excited by the blue light emitted from the blue LED element 52. Re-absorption and secondary excitation are not performed in the green phosphor layer 55 located above, and the luminance of the light emitting device is increased and the color tone of the light emitted from the light emitting device is shifted to the red side (warm color side) (spectrum distribution). It is possible to prevent the shift to the long wavelength side (see, for example, Patent Document 1).

特開2005−277127号公報JP 2005-277127 A

ところで、上記半導体発光装置50は図からもわかるように、バインダー樹脂53の光出射面56は略平面状に形成されており、また、この光出射面56はバインダー樹脂53よりも屈折率が低い、半導体発光装置50外の空気層57との界面を形成している。   Incidentally, as can be seen from the drawing, the light emitting surface 56 of the binder resin 53 is formed in a substantially flat shape, and the light emitting surface 56 has a refractive index lower than that of the binder resin 53. An interface with the air layer 57 outside the semiconductor light emitting device 50 is formed.

そこで、青色LED素子52から発せられた青色光の一部は該青色LED素子52の近傍に位置する赤色蛍光体層54を励起して赤色光を発光させ、一部は赤色蛍光体層54を透過してその上に位置する緑色蛍光体層55を励起して緑色光を発光させ、一部は赤色蛍光体層54及び緑色蛍光体層55を青色光のまま通過する。   Therefore, part of the blue light emitted from the blue LED element 52 excites the red phosphor layer 54 located in the vicinity of the blue LED element 52 to emit red light, and part of the blue light emits the red phosphor layer 54. The green phosphor layer 55 that is transmitted therethrough is excited to emit green light, and part of the light passes through the red phosphor layer 54 and the green phosphor layer 55 as blue light.

そして、赤色光、緑色光及び青色光の混合光による白色光がバインダー樹脂53内を導光されて光出射面56に到達する。   Then, white light by the mixed light of red light, green light, and blue light is guided through the binder resin 53 and reaches the light emitting surface 56.

光出射面56に到達した白色光のうち、光出射面56の到達点において該光出射面56の法線Nとなす角(交角)θが臨界角τよりも小さい(θ<τ)光線Lαは光出射面56で屈折されて空気層57に向けて出射され、交角θが臨界角τと同じ(θ=τ)光線Lβは光出射面56と平行に進む。 Of the white light that has reached the light exit surface 56, the angle L (intersection angle) θ formed with the normal N of the light exit surface 56 at the arrival point of the light exit surface 56 is smaller than the critical angle τ (θ <τ). α is refracted by the light emitting surface 56 and emitted toward the air layer 57, and the light beam L β whose intersection angle θ is the same as the critical angle τ (θ = τ) travels parallel to the light emitting surface 56.

これに対し、交角θが臨界角τよりも大きい(θ>τ)光線Lγは光出射面56で反射(全反射)されて再度バインダー樹脂53側に戻るため光出射面56から空気層57に向けて出射されることはない。 On the other hand, the light beam L γ having the intersection angle θ larger than the critical angle τ (θ> τ) is reflected (totally reflected) by the light emitting surface 56 and returns to the binder resin 53 side again, so that the air layer 57 from the light emitting surface 56. It is not emitted toward

そこで、光出射面56で全反射されて再度バインダー樹脂53側に戻った光線Lγはパッケージ51の底面に向けて導光され、底面に到達した光線Lγは該底面で反射されて再再度バインダー樹脂53側に戻って光出射面56に向けて導光され、光出射面56で屈折されて空気層57に向けて出射される。 Therefore, the light beam L γ that has been totally reflected by the light emitting surface 56 and returned again to the binder resin 53 side is guided toward the bottom surface of the package 51, and the light beam L γ that has reached the bottom surface is reflected by the bottom surface and re-executed again. Returning to the binder resin 53 side, the light is guided toward the light emitting surface 56, refracted by the light emitting surface 56, and emitted toward the air layer 57.

このとき、光線Lγは、光出射面56で全反射されてからパッケージ51の底面で反射されて光出射面56から空気層57に向けて出射されるまでの間(光路進行中)に赤色蛍光体層54及び緑色蛍光体層55を夫々2回ずつ通過することになる。 At this time, the light ray L γ is red during the period from when it is totally reflected by the light emitting surface 56 to when it is reflected by the bottom surface of the package 51 and emitted from the light emitting surface 56 toward the air layer 57 (while the optical path is traveling). Each passes through the phosphor layer 54 and the green phosphor layer 55 twice.

すると、光線Lγは各蛍光体層54、55を通過する毎に該蛍光体層54、55を励起する青色光の光量が低減され、また、緑色蛍光体層55で発せられた緑色光で赤色蛍光体層54が励起(二次励起)されて赤色光の光量が増大すると共に赤色蛍光体層54の励起光となる緑色光の光量が低減する。 Then, each time the light beam L γ passes through each phosphor layer 54, 55, the amount of blue light that excites the phosphor layers 54, 55 is reduced, and the green light emitted from the green phosphor layer 55 is reduced. When the red phosphor layer 54 is excited (secondary excitation), the amount of red light increases and the amount of green light that serves as excitation light for the red phosphor layer 54 decreases.

その結果、白色光を照射する半導体発光装置50において、パッケージ51の底面での反射が繰り返されるにつれて照射光の色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)が部分的に大きくなり、照射光に色調むら有する発光装置となってしまう。   As a result, in the semiconductor light emitting device 50 that emits white light, as the reflection on the bottom surface of the package 51 is repeated, the color tone of the irradiated light shifts to the red side (warm color side) (shift to the long wavelength side of the spectrum distribution). ) Becomes partly large, resulting in a light emitting device having uneven color tone in the irradiated light.

そこで、光出射面での全反射を低減するために、バインダー樹脂の光出射面を空気層側に凸状の球面あるいは非球面とすることが考えられるが、キャビティ構造のパッケージにおいては、キャビティ内に充填した樹脂で球面あるいは非球面を形成することは製造上極めて実現が困難であり、実現したとしても自動機による吸着が困難なために配線基板上への自動実装に対応することは難しい。   Therefore, in order to reduce the total reflection at the light exit surface, it is conceivable to make the light exit surface of the binder resin convex spherical or aspherical to the air layer side. Forming a spherical surface or an aspherical surface with resin filled in is difficult to realize in manufacturing, and even if it is realized, it is difficult to support automatic mounting on a wiring board because it is difficult to attract by an automatic machine.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、キャビティ構造のパッケージを有しそのキャビティ内に実装された半導体発光素子を一種または複数種の蛍光体を分散した封止樹脂で樹脂封止した半導体発光装置において、照射面に色調むらの少ない白色光を照射することが可能な半導体発光装置を実現することにある。   Accordingly, the present invention was devised in view of the above problems, and the object of the present invention is to disperse one or more kinds of phosphors in a semiconductor light emitting device having a cavity structure package and mounted in the cavity. An object of the present invention is to realize a semiconductor light emitting device capable of irradiating white light with little color tone unevenness on an irradiated surface in a semiconductor light emitting device sealed with a sealing resin.

上記課題を解決するために、本発明の請求項1に記載された発明は、凹状のキャビティを有するパッケージと、
前記キャビティの底面上に実装された半導体発光素子と、
前記半導体発光素子を覆うように前記キャビティの底面側に位置する一種または複数種の蛍光体層と、
前記蛍光体層の上に位置し、前記蛍光体層を構成する蛍光体とで第1の封止樹脂を形成するバインダー樹脂と、
前記バインダー樹脂の上に配置された第2の樹脂部材とを備え、
前記第2の樹脂部材の上面は、前記半導体発光素子の上面の中心を通り該第2の樹脂部材の上面と交差する直線と、前記第2の樹脂部材の上面の前記直線との交点における法線とのなす角が、前記半導体発光素子の上面の中心からの入射光線に対する臨界角よりも小さくなるように設定されていることを特徴とするものである。
In order to solve the above problems, the invention described in claim 1 of the present invention includes a package having a concave cavity,
A semiconductor light emitting device mounted on the bottom surface of the cavity;
One or more phosphor layers located on the bottom side of the cavity so as to cover the semiconductor light emitting element;
A binder resin which is located on the phosphor layer and forms a first sealing resin with the phosphor constituting the phosphor layer;
A second resin member disposed on the binder resin,
The upper surface of the second resin member is a method at the intersection of a straight line passing through the center of the upper surface of the semiconductor light emitting element and intersecting the upper surface of the second resin member, and the straight line of the upper surface of the second resin member. The angle formed with the line is set to be smaller than the critical angle with respect to the incident light from the center of the upper surface of the semiconductor light emitting device.

また、本発明の請求項2に記載された発明は、請求項1において、前記第2の樹脂部材の上面は、平面形状、錐台形状及び三次元曲面形状の形状のうちいずれか1つであることを特徴とするものである。   In the invention described in claim 2 of the present invention, in claim 1, the upper surface of the second resin member is any one of a planar shape, a frustum shape, and a three-dimensional curved shape. It is characterized by being.

また、本発明の請求項3に記載された発明は、請求項1または2のいずれか1項において、前記第2樹脂部材の厚みにより、前記第2の樹脂部材の上面は、前記半導体発光素子の上面の中心を通り該第2の樹脂部材の上面と交差する直線と、前記第2の樹脂部材の上面の前記直線との交点における法線とのなす角が、前記半導体発光素子の上面の中心からの入射光線に対する臨界角よりも小さくなるように設定されていることを特徴とするものである。   According to a third aspect of the present invention, there is provided the semiconductor light emitting device according to any one of the first or second aspect, wherein the upper surface of the second resin member depends on the thickness of the second resin member. The angle formed by the normal line at the intersection of the straight line passing through the center of the upper surface of the second resin member and the straight line of the upper surface of the second resin member is the upper surface of the semiconductor light emitting element. It is characterized by being set to be smaller than the critical angle with respect to the incident light beam from the center.

また、本発明の請求項4に記載された発明は、請求項1から3のいずれか1項において、前記半導体発光素子は青色LED素子であり、且つ前記蛍光体層は前記キャビティの底面側から順に赤色蛍光体層、緑色蛍光体層であることを特徴とするものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the semiconductor light emitting element is a blue LED element, and the phosphor layer is from the bottom side of the cavity. A red phosphor layer and a green phosphor layer are arranged in this order.

また、本発明の請求項5に記載された発明は、請求項1から3のいずれか1項において、前記半導体発光素子は紫外LED素子であり、且つ前記蛍光体層は前記キャビティの底面側から順に赤色蛍光体層、緑色蛍光体層、青色蛍光体層であることを特徴とするものである。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the semiconductor light emitting element is an ultraviolet LED element, and the phosphor layer is formed from the bottom side of the cavity. A red phosphor layer, a green phosphor layer, and a blue phosphor layer are arranged in this order.

本発明の半導体発光装置を、キャビティ内の底面上に実装された半導体発光素子を覆うようにキャビティの底面側に一種または複数種の蛍光体層を配置し、その上に2種類の樹脂層を配置した。そして、上側樹脂層の上面を、半導体発光素子の上面の中心を通り該上側樹脂層の上面と交差する直線と、上側樹脂層の上面の前記直線との交点における法線とのなす角が、樹脂層側からの入射光線に対する臨界角よりも小さくなるように設定した。   In the semiconductor light emitting device of the present invention, one or a plurality of phosphor layers are arranged on the bottom surface side of the cavity so as to cover the semiconductor light emitting element mounted on the bottom surface in the cavity, and two kinds of resin layers are formed thereon. Arranged. And the angle formed by the normal line at the intersection of the straight line passing through the center of the upper surface of the semiconductor light emitting element and intersecting the upper surface of the upper resin layer with the straight line of the upper surface of the upper resin layer, the upper surface of the upper resin layer, It set so that it might become smaller than the critical angle with respect to the incident light from the resin layer side.

半導体発光装置をこのような構成とすることにより、半導体発光素子から発せられて外部に対する光出射面となる上側樹脂層の上面に到達した光及び半導体発光素子からの光で励起された蛍光体から発せられて上側樹脂層の上面に到達した光が共にその面で反射(全反射)されることなく外部に照射される。   By configuring the semiconductor light emitting device in such a manner, the light emitted from the semiconductor light emitting element and reaching the upper surface of the upper resin layer serving as a light emitting surface to the outside and the phosphor excited by the light from the semiconductor light emitting element Both of the light emitted and reaching the upper surface of the upper resin layer are irradiated to the outside without being reflected (total reflection) on the surface.

その結果、半導体発光装置からの照射光は、第1の封止樹脂の上面での全反射により、蛍光体を二次励起することが少なくなり、色調のシフトや色調のむらの少ない白色光を照射することが可能となる。   As a result, the irradiation light from the semiconductor light emitting device is less likely to cause secondary excitation of the phosphor due to total reflection on the upper surface of the first sealing resin, and irradiates white light with less color shift and uneven color tone. It becomes possible to do.

また、半導体発光装置からの照射光は、部分的に色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)を有することはなく、照射面に色調むらの少ない白色光を照射することが可能となった。   In addition, the irradiation light from the semiconductor light emitting device does not partially shift the color tone to the red side (warm color side) (shift to the long wavelength side of the spectrum distribution), and there is little color tone unevenness on the irradiated surface. It became possible to irradiate white light.

本発明の実施例1に係る説明図である。It is explanatory drawing which concerns on Example 1 of this invention. 本発明の実施例2に係る説明図である。It is explanatory drawing which concerns on Example 2 of this invention. 本発明の実施例2に係る応用例の説明図である。It is explanatory drawing of the application example which concerns on Example 2 of this invention. 本発明の実施例3に係る説明図である。It is explanatory drawing which concerns on Example 3 of this invention. 同じく、本発明の実施例3に係る説明図である。Similarly, it is explanatory drawing which concerns on Example 3 of this invention. 従来例に係る説明図である。It is explanatory drawing which concerns on a prior art example.

以下、この発明の好適な実施形態を図1〜図5を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIG. 1 to FIG. 5 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明の半導体発光装置に係る実施例1の説明図である。   FIG. 1 is an explanatory view of Example 1 according to the semiconductor light emitting device of the present invention.

本実施例の半導体発光装置30は、凹状のキャビティ2を有するパッケージ3の底部3aの上面側に互いに分離・独立した複数の導体パターン4a、4bが位置し、夫々パッケージ3を貫通して側面を経て底部3aの下面まで延長されている。パッケージ3はガラスエポキシ樹脂等の樹脂材料からなっている。   In the semiconductor light emitting device 30 of this embodiment, a plurality of conductor patterns 4a and 4b that are separated and independent from each other are positioned on the upper surface side of the bottom 3a of the package 3 having the concave cavity 2, and the side surfaces of the semiconductor light emitting device 30 penetrate through the package 3 respectively. It extends to the lower surface of the bottom 3a. The package 3 is made of a resin material such as glass epoxy resin.

パッケージ3の底部3aの上面側に位置する導体パターン4a上には、発光源となる半導体発光素子として青色光を発光する青色LED素子(以下、LED素子と略称する)5が導電性接合部材(図示せず)を介して固定され、LED素子5の下部電極と導体パターン4aとの電気的導通が図られている。一方、LED素子5の上部電極はボンディングワイヤ6を介して導体パターン4bに接続され、LED素子5の上部電極と導体パターン4bとの電気的導通が図られている。   A blue LED element (hereinafter abbreviated as an LED element) 5 that emits blue light as a semiconductor light emitting element serving as a light emitting source is provided on a conductive pattern 4a located on the upper surface side of the bottom 3a of the package 3 with a conductive bonding member ( The lower electrode of the LED element 5 and the conductor pattern 4a are electrically connected. On the other hand, the upper electrode of the LED element 5 is connected to the conductor pattern 4b through the bonding wire 6 so that the upper electrode of the LED element 5 and the conductor pattern 4b are electrically connected.

なお、LED素子は必ずしも該LED素子の電極と導体パターンとの接続をボンディングワイヤを介して行うタイプのものである必要はなく、バンプ電極を介して接続されるフリップチップタイプのものでもよい。   The LED element does not necessarily need to be of a type in which the electrode of the LED element and the conductor pattern are connected via a bonding wire, and may be of a flip chip type connected via a bump electrode.

LED素子5が配置されたキャビティ2内の下部には、励起光で励起されて赤色光を発光する赤色蛍光体7aと緑色光を発光する緑色蛍光体8aの2種類の蛍光体を透光性を有する熱硬化性のバインダー樹脂9に分散してなる第1の封止樹脂10が充填されている。このとき第1の封止樹脂10の上面10aは平面状に形成されている。   In the lower part of the cavity 2 where the LED element 5 is disposed, two types of phosphors, a red phosphor 7a that emits red light when excited by excitation light, and a green phosphor 8a that emits green light are translucent. Filled with a first sealing resin 10 which is dispersed in a thermosetting binder resin 9 having the following. At this time, the upper surface 10a of the first sealing resin 10 is formed in a planar shape.

この第1の封止樹脂10はキャビティ2内に充填後に十分な沈殿時間を設けることにより、バインダー樹脂9の下部のLED素子5近傍に優先的に赤色蛍光体7aが堆積して赤色蛍光体層7を形成されその上に緑色蛍光体8aが堆積して緑色蛍光体層8が形成されている。   The first sealing resin 10 is provided with a sufficient settling time after filling into the cavity 2, whereby the red phosphor 7 a is preferentially deposited near the LED element 5 below the binder resin 9 and the red phosphor layer. 7 is formed and a green phosphor 8a is deposited thereon to form a green phosphor layer 8.

つまり、発光源側から順に発光波長(蛍光波長)が長い蛍光体層を堆積させたものであり、その方法は種々考えられるが「背景技術」で述べたように、長波長の蛍光を発する蛍光体を短波長の蛍光を発する蛍光体よりも中位径を大きくすることにより沈澱速度の違いで積層順を制御することができる。   In other words, a phosphor layer having a long emission wavelength (fluorescence wavelength) is deposited in order from the emission source side, and various methods are conceivable, but as described in “Background Art”, fluorescence that emits long-wavelength fluorescence. By increasing the median diameter of the body compared to the phosphor emitting short wavelength fluorescence, the stacking order can be controlled by the difference in the precipitation rate.

キャビティ2内の、第1の封止樹脂10の上には透光性樹脂からなる第2の樹脂部材11が充填されており、その上面11aは平面状に形成されると共にパッケージ3の側壁部3bの上端部3dより上方に位置している。   A second resin member 11 made of a translucent resin is filled on the first sealing resin 10 in the cavity 2, and the upper surface 11 a is formed in a flat shape and the side wall portion of the package 3. It is located above the upper end 3d of 3b.

第1の封止樹脂10を構成するバインダー樹脂9と第2の樹脂部材11は異なる種類の樹脂でもよいし同一の種類の樹脂でもよいが、熱膨張率の違いによるバインダー樹脂9と第2の樹脂部材11との界面の剥離及び屈折率の違いによるバインダー樹脂9と第2の樹脂部材11との界面における光の全反射あるいは屈折を防止するために、同一種類の樹脂であることが好ましい。   The binder resin 9 and the second resin member 11 constituting the first sealing resin 10 may be different types of resin or the same type of resin. However, the binder resin 9 and the second resin member 11 differ depending on the difference in thermal expansion coefficient. In order to prevent total reflection or refraction of light at the interface between the binder resin 9 and the second resin member 11 due to separation at the interface with the resin member 11 and a difference in refractive index, the same type of resin is preferable.

その場合、バインダー樹脂9と第2の樹脂部材11はいずれもシリコーン樹脂またはエポキシ樹脂が好ましく、LED素子5の点灯時の発熱で近傍のバインダー樹脂9が熱膨張したときに、該LED素子5に対してその熱膨張による応力の影響が少ないシリコーン樹脂がより好ましい。   In that case, both the binder resin 9 and the second resin member 11 are preferably a silicone resin or an epoxy resin. When the nearby binder resin 9 is thermally expanded due to heat generated when the LED element 5 is turned on, the LED element 5 On the other hand, a silicone resin that is less affected by stress due to thermal expansion is more preferable.

また、バインダー樹脂9と第2の樹脂部材11の屈折率を共にnとし、第2の樹脂部材11の上面11aの接する空気層12の屈折率を1とすると、第2の樹脂部材11から空気層12に入射する光線の臨界角τはτ=sin−1(1/n)の関係となる。 Further, when both the refractive index of the binder resin 9 and the second resin member 11 are n, and the refractive index of the air layer 12 in contact with the upper surface 11a of the second resin member 11 is 1, the air from the second resin member 11 becomes air. The critical angle τ of the light incident on the layer 12 has a relationship of τ = sin −1 (1 / n).

そこで、LED素子5の主光出射面となる上面5aから第1の封止樹脂10の上面10aまでの距離をaとし、第2の樹脂部材11の厚みをbとし、LED素子5の上面5aの中心を通る光軸X上から第2の樹脂部材11の上面11aの外周11cまでの距離をcとすると、a、b、c及びτの関係がτ>tan−1(c/(a+b))となるように設定されている。 Therefore, the distance from the upper surface 5a serving as the main light emitting surface of the LED element 5 to the upper surface 10a of the first sealing resin 10 is a, the thickness of the second resin member 11 is b, and the upper surface 5a of the LED element 5 is. If the distance from the optical axis X passing through the center to the outer periphery 11c of the upper surface 11a of the second resin member 11 is c, the relationship between a, b, c and τ is τ> tan −1 (c / (a + b) ).

換言すると、LED素子5の上面5aの中心を通る光軸XとLED素子5の上面5aの中心を通り第2の樹脂部材11の上面11aの外周11cに交わる直線Cがなす角θが臨界角τよりも小さくなるように(θ<τ)aとbとcとの関係が設定されている。   In other words, an angle θ formed by a straight line C passing through the center of the upper surface 5a of the LED element 5 and the outer periphery 11c of the upper surface 11a of the second resin member 11 passing through the center of the upper surface 5a of the LED element 5 is a critical angle. The relationship between a, b, and c is set so as to be smaller than τ (θ <τ).

従って、上記a、b、c及びτの関係が満足されていれば第2の樹脂部材11の上面11aの形状は特に限定されるものではなく、例えば、矩形状でも円形状でもよい。円形状の場合はLED素子5の光軸X上を中心とする半径cの円形となる。   Therefore, the shape of the upper surface 11a of the second resin member 11 is not particularly limited as long as the relationship among a, b, c, and τ is satisfied. For example, the shape may be rectangular or circular. In the case of a circular shape, the LED element 5 has a circular shape with a radius c centered on the optical axis X.

また、第1の封止樹脂10の上面10aと第2の樹脂部材11の下面11bは互いの形状寸法が同一で全面に亘って重なり合って界面を形成していることが好ましく、前記界面と第2の樹脂部材の上面11aとは同一形状であることが好ましい。   Moreover, it is preferable that the upper surface 10a of the first sealing resin 10 and the lower surface 11b of the second resin member 11 have the same shape and dimension and overlap each other to form an interface. The upper surface 11a of the second resin member preferably has the same shape.

つまり、第1の封止樹脂10及び第2の樹脂部材11が充填されるキャビティ2を形成する、パッケージ3の側壁部3bの内周面3cは筒状またはLED素子5の照射方向に向けてLED素子5の光軸Xに対して離れる方向に開いた連続傾斜面からなることが好ましい。   That is, the inner peripheral surface 3c of the side wall 3b of the package 3 that forms the cavity 2 filled with the first sealing resin 10 and the second resin member 11 is directed to the cylindrical shape or the irradiation direction of the LED element 5. It is preferable that the LED element 5 is composed of a continuous inclined surface opened in a direction away from the optical axis X.

第1の封止樹脂10及び第2の樹脂部材11のキャビティ2内への充填はいずれもポッティングモールドによって行われ、第1の封止樹脂10を充填して常温硬化したパッケージ3上に、第2の樹脂部材11を充填して常温硬化するものである。これにより、第2の樹脂部材11の上面11aを略平面とすることができ、その上面11aを吸着面とし、配線基板上への自動実装の対応が可能となり、生産効率の向上を図ることができる。   The filling of the first sealing resin 10 and the second resin member 11 into the cavity 2 is performed by a potting mold. On the package 3 filled with the first sealing resin 10 and cured at room temperature, 2 resin members 11 are filled and cured at room temperature. As a result, the upper surface 11a of the second resin member 11 can be made substantially flat, and the upper surface 11a can be used as a suction surface to enable automatic mounting on the wiring board, thereby improving production efficiency. it can.

上記構成からなる半導体発光装置30は配線基板13に対して、パッケージ3内から延長された導体パターン4a、4bと配線基板13に形成された回路パターン13a、13bをはんだ等の導電性接合部材14を介して固定及び電気的導通が図られ、これにより半導体発光モジュール1が形成される。   In the semiconductor light emitting device 30 having the above-described configuration, the conductive patterns 4a and 4b extended from the package 3 and the circuit patterns 13a and 13b formed on the wiring substrate 13 are connected to the wiring substrate 13 with a conductive bonding member 14 such as solder. Thus, the semiconductor light emitting module 1 is formed.

そこで、このように構成された本実施例の半導体発光モジュール1において、LED素子5から第2の樹脂部材11の上面11aに向けて発せられた光線L1は、第1の封止樹脂10を構成する赤色蛍光体層7、緑色蛍光体層8、バインダー樹脂9及び第2の樹脂部材11を順次通過して第2の樹脂部材11の上面11aに到達する。   Therefore, in the semiconductor light emitting module 1 of the present example configured as described above, the light beam L1 emitted from the LED element 5 toward the upper surface 11a of the second resin member 11 constitutes the first sealing resin 10. The red phosphor layer 7, the green phosphor layer 8, the binder resin 9 and the second resin member 11 are sequentially passed to reach the upper surface 11 a of the second resin member 11.

第2の樹脂部材11の上面11aに到達した光線L1は該上面11aに対して臨界角τよりも小さい角度θで入射する。そのため、第2の樹脂部材11の上面11aに到達した光線Lのほとんどが該上面11aで全反射されることなくそのまま空気層12に出射される。 Light L1 that has reached the upper surface 11a of the second resin member 11 is incident at a small angle theta L than the critical angle τ with respect to the upper surface 11a. Therefore, most of the light beam L reaching the upper surface 11a of the second resin member 11 is emitted as it is to the air layer 12 without being totally reflected by the upper surface 11a.

また、LED素子5から第1の封止樹脂10を構成する赤色蛍光体層7、緑色蛍光体層8、バインダー樹脂9及び第2の樹脂部材11を順次通過して出射する光線L2は、一部が第2の樹脂部材11の側面で全反射し、同じく上面11aから出射する。   Also, the light beam L2 emitted from the LED element 5 through the red phosphor layer 7, the green phosphor layer 8, the binder resin 9 and the second resin member 11 constituting the first sealing resin 10 in sequence is The portion is totally reflected by the side surface of the second resin member 11 and is emitted from the upper surface 11a.

そのため、LED素子5から発せられて第2の樹脂部材11の上面11aに向かう光はほとんど全てが赤色蛍光体層7及び緑色蛍光体層8の夫々を1回ずつしか励起せず、青色光の光量低下及び青色光で励起された緑色蛍光体層8が発する緑色光で赤色蛍光体層7が励起される二次励起もない。   Therefore, almost all the light emitted from the LED element 5 toward the upper surface 11a of the second resin member 11 excites each of the red phosphor layer 7 and the green phosphor layer 8 only once, and the blue light There is no secondary excitation in which the red phosphor layer 7 is excited by the green light emitted by the green phosphor layer 8 that is excited by the blue light and the light amount is reduced.

その結果、半導体発光モジュール1からの照射光は、部分的に色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)を有することはなく、照射面に色調むらの少ない白色光を照射することが可能となる。   As a result, the irradiation light from the semiconductor light emitting module 1 does not partially shift the color tone to the red side (warm color side) (shift to the long wavelength side of the spectrum distribution), and uneven color tone on the irradiation surface. It is possible to irradiate with less white light.

図2は本発明の半導体発光装置に係る実施例2の説明図である。   FIG. 2 is an explanatory view of Example 2 according to the semiconductor light emitting device of the present invention.

本実施例の半導体発光装置30は上記実施例1に対して、LED素子から発せられて到達した光線のほとんどが全反射されることなくそのまま空気層に出射される、第2の樹脂部材の上面の面積を実施例1よりも大きくしたことが異なる。   The semiconductor light emitting device 30 according to the present embodiment is different from the first embodiment in that the upper surface of the second resin member is emitted to the air layer as it is without being totally reflected from the light beams emitted from the LED elements. The area is larger than that of the first embodiment.

これにより、半導体発光装置30は実施例1と同様に照射面に色調むらの少ない白色光を照射することが可能であると共に、LED素子で発せられた光の照射領域が実施例1よりも拡大して光の利用効率の向上が図られたものである。   As a result, the semiconductor light emitting device 30 can irradiate the irradiated surface with white light with less uneven color tone as in the first embodiment, and the irradiation area of the light emitted from the LED element is larger than that in the first embodiment. Thus, the utilization efficiency of light is improved.

具体的には、第1の封止樹脂10の上面10aが平面状に形成されると共にパッケージ3の側壁部3bの上端部3dと略面一となっており、その第1の封止樹脂10の上に位置する第2の樹脂部材11の上面11aが、光軸Xと交わる面を平面とする平面部11dと該平面部11dの外周11eからLED素子5の照射方向と反対方向に向けてLED素子5の光軸Xに対して離れる方向に開いた傾斜面部11fからなっている。   Specifically, the upper surface 10a of the first sealing resin 10 is formed in a flat shape and is substantially flush with the upper end portion 3d of the side wall portion 3b of the package 3, and the first sealing resin 10 The upper surface 11a of the second resin member 11 located above the flat surface portion 11d having a plane intersecting the optical axis X and the outer periphery 11e of the flat surface portion 11d is directed in the direction opposite to the irradiation direction of the LED element 5. It consists of an inclined surface portion 11 f that opens in a direction away from the optical axis X of the LED element 5.

そのうち、平面部11dは、実施例1と同様に第1の封止樹脂10を構成するバインダー樹脂9と第1の封止樹脂10の上に位置する第2の樹脂部材11の屈折率を共にnとし、第2の樹脂部材11の上面11aの接する空気層12の屈折率を1とし、LED素子5の主光出射面となる上面5aから第1の封止樹脂10の上面10aまでの距離をaとし、第2の樹脂部材11の下面11bから平面部11dまでの距離をbとし、LED素子5の主光出射面となる上面5aの中心を通る光軸X上から第2の樹脂部材11の平面部11dの外周11eまでの距離をcとすると、a、b、c及びτの関係がτ>tan−1(c/(a+b))となるように設定されている。 Among them, the flat surface portion 11d has both the refractive index of the binder resin 9 constituting the first sealing resin 10 and the second resin member 11 positioned on the first sealing resin 10 as in the first embodiment. n, the refractive index of the air layer 12 in contact with the upper surface 11a of the second resin member 11 is 1, and the distance from the upper surface 5a that is the main light emitting surface of the LED element 5 to the upper surface 10a of the first sealing resin 10 Is a, the distance from the lower surface 11b of the second resin member 11 to the flat surface portion 11d is b, and the second resin member from above the optical axis X passing through the center of the upper surface 5a serving as the main light emitting surface of the LED element 5. When the distance to the outer periphery 11e of the 11 flat portions 11d is c, the relationship between a, b, c, and τ is set to satisfy τ> tan −1 (c / (a + b)).

換言すると、LED素子5の上面5aの中心を通る光軸XとLED素子5の上面5aの中心を通り第2の樹脂部材11の平面部11dの外周11eに交わる直線Cがなす角θ1が臨界角τよりも小さくなるように(θ1<τ)aとbとcとの関係が設定されている。   In other words, the angle θ1 formed by the straight line C passing through the center of the upper surface 5a of the LED element 5 and the outer periphery 11e of the planar portion 11d of the second resin member 11 passing through the center of the upper surface 5a of the LED element 5 is critical. The relationship between a, b, and c is set so as to be smaller than the angle τ (θ1 <τ).

従って、上記a、b、c及びτの関係が満足されていれば第2の樹脂部材11の平面部11dの形状は特に限定されるものではなく、例えば、矩形状でも円形状でもよい。円形状の場合はLED素子5の光軸X上を中心とする半径cの円形となる。   Accordingly, the shape of the flat surface portion 11d of the second resin member 11 is not particularly limited as long as the relationship among a, b, c, and τ is satisfied. For example, the shape may be rectangular or circular. In the case of a circular shape, the LED element 5 has a circular shape with a radius c centered on the optical axis X.

一方、傾斜面部11fは、上端を平面部11dの外周11eとし、下端をパッケージ3の側壁部3bの上端部3dとする連続傾斜面であり、LED素子5の上面5aの中心を通り傾斜面部11fと交わる直線Dがその傾斜面部11fの交点における法線N1となす角θ2が臨界角τよりも小さくなるように(θ2<τ)設定されている。   On the other hand, the inclined surface portion 11f is a continuous inclined surface having the upper end as the outer periphery 11e of the flat surface portion 11d and the lower end as the upper end portion 3d of the side wall portion 3b of the package 3, and passes through the center of the upper surface 5a of the LED element 5 to the inclined surface portion 11f. The angle θ2 formed by the straight line D intersecting with the normal line N1 at the intersection of the inclined surface portion 11f is set to be smaller than the critical angle τ (θ2 <τ).

第1の封止樹脂10のキャビティ2内への充填はポッティングモールドによって行われ、第1の封止樹脂10を充填して常温硬化したパッケージ3上に金型により第2の樹脂部材11を形成してもよいし、予め所定の形状に形成した第2の樹脂部材11を同一の材料を介して第1の封止樹脂10上に貼着することも可能である。   Filling the cavity 2 with the first sealing resin 10 is performed by potting mold, and the second resin member 11 is formed by a mold on the package 3 which is filled with the first sealing resin 10 and cured at room temperature. Alternatively, the second resin member 11 formed in a predetermined shape in advance can be attached to the first sealing resin 10 through the same material.

そこで、このように構成された本実施例の半導体発光装置30において、LED素子5から第2の樹脂部材11の平面部11dに向けて発せられた光線L1は、第1の封止樹脂10を構成する赤色蛍光体層7、緑色蛍光体層8、バインダー樹脂9及び第2の樹脂部材11を順次通過して第2の樹脂部材11の平面部11dに到達する。   Therefore, in the semiconductor light emitting device 30 of the present example configured as described above, the light beam L1 emitted from the LED element 5 toward the flat surface portion 11d of the second resin member 11 causes the first sealing resin 10 to be emitted. The red phosphor layer 7, the green phosphor layer 8, the binder resin 9, and the second resin member 11 are sequentially passed to reach the flat portion 11 d of the second resin member 11.

第2の樹脂部材11の平面部11dに到達した光線L1は該平面部11dに対して臨界角τよりも小さい角度θL1で入射する。そのため、第2の樹脂部材11の平面部11dに到達した光線L1のほとんどが該平面部11dで全反射されることなくそのまま空気層12に出射される。 Light L1 having reached the flat portion 11d of the second resin member 11 is incident at a small angle theta L1 than the critical angle τ with respect to the flat surface portion 11d. Therefore, most of the light beam L1 that has reached the flat surface portion 11d of the second resin member 11 is emitted directly to the air layer 12 without being totally reflected by the flat surface portion 11d.

そのため、LED素子5から発せられて第2の樹脂部材11の平面部11dに向かう光はほとんど全てが赤色蛍光体層7及び緑色蛍光体層8の夫々を1回ずつしか励起せず、青色光の光量低下及び青色光で励起された緑色蛍光体層8が発する緑色光で赤色蛍光体層7が励起される二次励起もない。   Therefore, almost all the light emitted from the LED element 5 and traveling toward the flat surface portion 11d of the second resin member 11 excites each of the red phosphor layer 7 and the green phosphor layer 8 only once, and the blue light There is also no secondary excitation in which the red phosphor layer 7 is excited by the green light emitted from the green phosphor layer 8 that is excited by the blue light and the light amount is reduced.

一方、LED素子5から第2の樹脂部材11の傾斜面部11fに向けて発せられた光線L2は、第1の封止樹脂10を構成する赤色蛍光体層7、緑色蛍光体層8、バインダー樹脂9及び第2の樹脂部材11を順次通過して第2の部材樹脂11の傾斜面部11fに到達する。   On the other hand, the light beam L2 emitted from the LED element 5 toward the inclined surface portion 11f of the second resin member 11 is the red phosphor layer 7, the green phosphor layer 8, and the binder resin that constitute the first sealing resin 10. 9 and the second resin member 11 are sequentially passed to reach the inclined surface portion 11 f of the second member resin 11.

第2の樹脂部材11の傾斜面部11fに到達した光線L2は該傾斜面部11fの法線N2に対して臨界角τよりも小さい角度θL2で入射する。そのため、第2の樹脂部材11の傾斜面部11fに到達した光線L2のほとんどが該傾斜面部11fで全反射されることなくそのまま空気層12に出射される。 Light L2 having reached the inclined surface portion 11f of the second resin member 11 is incident at a small angle theta L2 than the critical angle τ with respect to the normal N2 of the inclined surface portion 11f. Therefore, most of the light beam L2 reaching the inclined surface portion 11f of the second resin member 11 is emitted to the air layer 12 as it is without being totally reflected by the inclined surface portion 11f.

そのため、LED素子5から発せられて第2の樹脂部材11の傾斜面部11fに向かう光はほとんど全てが赤色蛍光体層7及び緑色蛍光体層8の夫々を1回ずつしか励起せず、青色光の光量低下及び青色光で励起された緑色蛍光体層8が発する緑色光で赤色蛍光体層7が励起される二次励起もない。   Therefore, almost all the light emitted from the LED element 5 and directed to the inclined surface portion 11f of the second resin member 11 excites each of the red phosphor layer 7 and the green phosphor layer 8 only once, and the blue light There is also no secondary excitation in which the red phosphor layer 7 is excited by the green light emitted from the green phosphor layer 8 that is excited by the blue light and the light amount is reduced.

その結果、半導体発光装置30の第2の樹脂部材11の、平面部11dと傾斜面部11fで構成された上面11aからの照射光は、部分的に色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)を有することはなく、照射面に色調むらの少ない白色光を広範囲に亘って照射することが可能となる。   As a result, the irradiation light from the upper surface 11a composed of the flat surface portion 11d and the inclined surface portion 11f of the second resin member 11 of the semiconductor light emitting device 30 is partially shifted to the red color side (warm color system side). There is no (shift to the long wavelength side of the spectral distribution), and it is possible to irradiate the irradiated surface with white light with little uneven color tone over a wide range.

なお、キャビティ2内へポッティングモールドによって第1の封止樹脂10を充填して常温硬化したパッケージ3を配線基板13上に実装した後、第1の封止樹脂10上に液体定量吐出機により一定量の第2の樹脂部材11を滴下して常温硬化することも可能である。   After the package 3 cured by filling the cavity 2 with the first sealing resin 10 by potting mold and curing at room temperature is mounted on the wiring substrate 13, it is fixed on the first sealing resin 10 by a liquid dispensing device. An amount of the second resin member 11 can be dropped and cured at room temperature.

この場合、図3のように、第2の樹脂部材11の上面部11gは実施例2の第2の樹脂部材11の平面部11dに対応する面であるが実施例2よりも多少上方に凸状に湾曲した形状に形成される。但し、この湾曲面からなる上面部11gは実施例2の平面からなる平面部11dよりも同一方向から到達した光線が全反射され難く、この第2の樹脂部材11の上面部11gにおける光学性能は実施例2の第2の樹脂部材11の平面部11dに劣らない。   In this case, as shown in FIG. 3, the upper surface portion 11g of the second resin member 11 is a surface corresponding to the flat surface portion 11d of the second resin member 11 of the second embodiment, but slightly protrudes upward from the second embodiment. It is formed into a curved shape. However, the upper surface portion 11g made of this curved surface is less likely to be totally reflected by the light beam reaching from the same direction as the flat surface portion 11d made of the plane of Example 2, and the optical performance of the upper surface portion 11g of the second resin member 11 is as follows. It is not inferior to the flat portion 11d of the second resin member 11 of the second embodiment.

また、第2の樹脂部材11の湾屈部11hは実施例2の第2の樹脂部材11の平面部11dの外周11eに対応する部分であるが、実施例2よりも多少Rのついた形状に形成される。但し、このRのついた部分の領域は平面部11dの外周11e近傍よりも同一方向から到達した光線が全反射され難く、この第2の樹脂部材11の湾屈部11hにおける光学性能は実施例2の第2の樹脂部材11の平面部11dの外周11e近傍に劣らない。   In addition, the bay bending portion 11h of the second resin member 11 is a portion corresponding to the outer periphery 11e of the flat surface portion 11d of the second resin member 11 of the second embodiment. Formed. However, in the region with the R, the light beam reaching from the same direction is less likely to be totally reflected than the vicinity of the outer periphery 11e of the flat surface portion 11d, and the optical performance of the second resin member 11 at the bent portion 11h is the embodiment. It is not inferior to the vicinity of the outer periphery 11e of the flat portion 11d of the second resin member 11 of the second.

更に、第2の樹脂部材11の傾斜部11iは実施例2の第2の樹脂部材11の傾斜面部11fに対応する面であるが、この場合も実施例2よりも多少上方に凸状に湾曲した形状に形成されており、この湾曲面からなる傾斜部11iは実施例2の平面からなる傾斜面部11fよりも同一方向から到達した光線が全反射され難く、この第2の樹脂部材11の傾斜部11iにおける光学性能は実施例2の第2の樹脂部材11の傾斜面部11fに劣らない。   Furthermore, the inclined portion 11i of the second resin member 11 is a surface corresponding to the inclined surface portion 11f of the second resin member 11 of the second embodiment. The inclined portion 11i made of this curved surface is less likely to be totally reflected by the inclined portion 11i made of the curved surface than the inclined surface portion 11f made of the plane of the second embodiment, and the second resin member 11 is inclined. The optical performance in the part 11i is not inferior to the inclined surface part 11f of the second resin member 11 of the second embodiment.

図4、図5は本発明の半導体発光装置に係る実施例3の説明図である。   4 and 5 are explanatory views of Example 3 according to the semiconductor light emitting device of the present invention.

本実施例の半導体発光装置30は、実施例1の半導体発光装置30を基本構成とし、配線基板13上に実装され、キャビティ2内に第1の封止樹脂10及び第2の樹脂部材11が充填されてLED素子5が樹脂封止されてなる半導体発光装置30全体を、樹脂レンズ21で覆った構成となっている。   The semiconductor light emitting device 30 of the present embodiment has the basic configuration of the semiconductor light emitting device 30 of the first embodiment, is mounted on the wiring board 13, and the first sealing resin 10 and the second resin member 11 are contained in the cavity 2. The entire semiconductor light emitting device 30 filled with the LED element 5 and sealed with resin is covered with a resin lens 21.

そこで図4のように、第1の封止樹脂10を構成するバインダー樹脂9と第1の封止樹脂10の上に位置する第2の樹脂部材11の屈折率を共にn1とし、第2の樹脂部材11の上面11aに接する樹脂レンズ21の屈折率をn2としたとき、屈折率n2が屈折率n1以上(n1≦n2)の場合は、LED素子5の主光出射面となる上面5aから第1の封止樹脂10の上面10aまでの距離をaとし、第2の樹脂部材11の厚みをbとし、LED素子5の主光出射面となる上面5aの中心を通る光軸X上から第2の樹脂部材11の上面11aの外周11cまでの距離をcとすると、第2の樹脂部材11側から該第2の樹脂部材11の上面11aに到達した光線Lには全反射はなく全て樹脂レンズ21内に入射する。そのため、a、b及びcの間には制約がなく夫々自由に設定することができる(図ではn1<n2のときの状態を示している)。   Therefore, as shown in FIG. 4, the refractive index of the binder resin 9 constituting the first sealing resin 10 and the second resin member 11 positioned on the first sealing resin 10 are both n1, and the second When the refractive index of the resin lens 21 in contact with the upper surface 11a of the resin member 11 is n2, when the refractive index n2 is greater than or equal to the refractive index n1 (n1 ≦ n2), the upper surface 5a serving as the main light emitting surface of the LED element 5 The distance to the upper surface 10 a of the first sealing resin 10 is a, the thickness of the second resin member 11 is b, and the optical axis X passes through the center of the upper surface 5 a that is the main light emitting surface of the LED element 5. Assuming that the distance from the second resin member 11 to the outer periphery 11c of the upper surface 11a of the second resin member 11 is c, the light beam L reaching the upper surface 11a of the second resin member 11 from the second resin member 11 side is not totally reflected, The light enters the resin lens 21. Therefore, there is no restriction between a, b and c, and each can be set freely (shown when n1 <n2 in the figure).

一方、屈折率n2が屈折率n1よりも小さい場合は、図5のように、第2の樹脂部材11から樹脂レンズ21に入射する光線の臨界角τ=sin−1(n2/n1)となる。そこで、a、b、c及びτの関係がτ>tan−1(c/(a+b))となるように設定されている。 On the other hand, when the refractive index n2 is smaller than the refractive index n1, the critical angle τ = sin −1 (n2 / n1) of the light ray incident on the resin lens 21 from the second resin member 11 is obtained as shown in FIG. . Therefore, the relationship between a, b, c, and τ is set so that τ> tan −1 (c / (a + b)).

換言すると、LED素子5の上面5aの中心を通る光軸XとLED素子5の上面5aの中心を通り第2の樹脂部材11の上面11aの外周11cに交わる直線Cがなす角θが臨界角τよりも小さくなるように(θ<τ)aとbとcとの関係が設定されている。   In other words, an angle θ formed by a straight line C passing through the center of the upper surface 5a of the LED element 5 and the outer periphery 11c of the upper surface 11a of the second resin member 11 passing through the center of the upper surface 5a of the LED element 5 is a critical angle. The relationship between a, b, and c is set so as to be smaller than τ (θ <τ).

そこで、このように構成された本実施例の半導体発光モジュール20において、LED素子5から第2の樹脂部材11の上面11aに向けて発せられた光線Lは、第1の封止樹脂10を構成する赤色蛍光体層7、緑色蛍光体層8、バインダー樹脂9及び第2の樹脂部材11を順次通過して第2の樹脂部材11の上面11aに到達する。   Therefore, in the semiconductor light emitting module 20 of the present example configured as described above, the light beam L emitted from the LED element 5 toward the upper surface 11a of the second resin member 11 constitutes the first sealing resin 10. The red phosphor layer 7, the green phosphor layer 8, the binder resin 9 and the second resin member 11 are sequentially passed to reach the upper surface 11 a of the second resin member 11.

第2の樹脂部材11の上面11aに到達した光線Lは該上面11aに対して臨界角τよりも小さい角度θで入射する。そのため、第2の樹脂部材11の上面11aに到達した光線Lのほとんどが該上面11aで全反射されることなくそのまま樹脂レンズ21に入射する。 Light L that has reached the upper surface 11a of the second resin member 11 is incident at a small angle theta L than the critical angle τ with respect to the upper surface 11a. Therefore, most of the light beam L reaching the upper surface 11a of the second resin member 11 is directly incident on the resin lens 21 without being totally reflected by the upper surface 11a.

樹脂レンズ21内に入射した光線Lは樹脂レンズ21内を導光されて光出射面21aに到達する。光出射面21aは発光源となるLED素子5を覆うように略球面状に形成されており、光出射面21aに到達した光線Lはほとんど反射されることなくそのまま外部の空気層12に出射される。   The light beam L that has entered the resin lens 21 is guided through the resin lens 21 and reaches the light exit surface 21a. The light emitting surface 21a is formed in a substantially spherical shape so as to cover the LED element 5 serving as a light emitting source, and the light beam L reaching the light emitting surface 21a is emitted to the external air layer 12 as it is without being reflected. The

そのため、LED素子5から発せられて第2の樹脂部材11の上面11aに向かう光はほとんど全てが赤色蛍光体層7及び緑色蛍光体層8の夫々を1回ずつしか励起せず、青色光の光量低下及び青色光で励起された緑色蛍光体層8が発する緑色光で赤色蛍光体層7が励起される二次励起もない。   Therefore, almost all the light emitted from the LED element 5 toward the upper surface 11a of the second resin member 11 excites each of the red phosphor layer 7 and the green phosphor layer 8 only once, and the blue light There is no secondary excitation in which the red phosphor layer 7 is excited by the green light emitted by the green phosphor layer 8 that is excited by the blue light and the light amount is reduced.

その結果、半導体発光モジュール20の樹脂レンズ21を介して出射される照射光は、部分的に色調の赤色側(暖色系側)へのシフト(スペクトル分布の長波長側へのシフト)を有することはなく、照射面に色調むらの少ない白色光を照射することが可能となる。   As a result, the irradiation light emitted through the resin lens 21 of the semiconductor light emitting module 20 has a partial shift of the color tone to the red side (warm color side) (shift to the long wavelength side of the spectral distribution). No, it becomes possible to irradiate the irradiated surface with white light with little color tone unevenness.

なお、上記実施形態は、青色LED素子を発光源とし、赤色蛍光体及び緑色蛍光体の2種類の混合蛍光体を用いることにより白色光を得るものであったが、「背景技術」でも述べたように、発光源を紫外LED素子とし、青色蛍光体、緑色蛍光体及び赤色蛍光体の3種類の蛍光体からなる混合蛍光体を用いることにより白色光を得ることもできる。   In the above embodiment, a blue LED element is used as a light source, and white light is obtained by using two types of mixed phosphors of a red phosphor and a green phosphor. As described above, it is possible to obtain white light by using an ultraviolet LED element as a light source and using a mixed phosphor composed of three kinds of phosphors of a blue phosphor, a green phosphor and a red phosphor.

その場合、キャビティ内に堆積させる各蛍光体層は、二次励起及び二次励起された蛍光体による三次励起を防止するために発光源側から順に発光波長(蛍光波長)が長い蛍光体層を堆積させるものであり、具体的には、発光源側から赤色蛍光体層、緑色蛍光体層及び青色蛍光体層の順に積層する。   In that case, each phosphor layer deposited in the cavity is a phosphor layer having a longer emission wavelength (fluorescence wavelength) in order from the emission source side in order to prevent secondary excitation and tertiary excitation by the second-excited phosphor. Specifically, the red phosphor layer, the green phosphor layer, and the blue phosphor layer are laminated in this order from the light emitting source side.

さらに、発光源を青色LED素子とし、黄色蛍光体を用いることにより白色色を得るものにも当然適用でき、この場合も封止樹脂の上面で全反射し、蛍光体を再度励起する二次励起を防止するため、色むらを少ないものとすることができる。   Furthermore, it can of course be applied to a device that obtains a white color by using a blue LED element as a light emitting source and using a yellow phosphor. In this case also, secondary excitation that totally reflects on the upper surface of the sealing resin and excites the phosphor again. In order to prevent this, color unevenness can be reduced.

1 半導体発光モジュール
2 キャビティ
3 パッケージ
3a 底部
3b 側壁部
3c 内周面
3d 上端部
4a、4b 導体パターン
5 青色LED素子
5a 上面
6 ボンディングワイヤ
7 赤色蛍光体層
7a 赤色蛍光体
8 緑色蛍光体層
8a 緑色蛍光体
9 バインダー樹脂
10 第1の封止樹脂
10a 上面
11 第2の樹脂部材
11a 上面
11b 下面
11c 外周
11d 平面部
11e 外周
11f 傾斜面部
11g 上面部
11h 湾屈部
11i 傾斜部
12 空気層
13 配線基板
13a、13b 回路パターン
14 導電性接合部材
20 半導体発光モジュール
21 樹脂レンズ
21a 光出射面
30 半導体発光装置
DESCRIPTION OF SYMBOLS 1 Semiconductor light emitting module 2 Cavity 3 Package 3a Bottom part 3b Side wall part 3c Inner peripheral surface 3d Upper end part 4a, 4b Conductor pattern 5 Blue LED element 5a Upper surface 6 Bonding wire 7 Red fluorescent substance layer 7a Red fluorescent substance 8 Green fluorescent substance layer 8a Green Phosphor 9 Binder resin 10 First sealing resin 10a Upper surface 11 Second resin member 11a Upper surface 11b Lower surface 11c Outer periphery 11d Plane portion 11e Outer periphery 11f Inclined surface portion 11g Upper surface portion 11h Wrapped portion 11i Inclined portion 12 Air layer 13 Wiring substrate 13a, 13b Circuit pattern 14 Conductive bonding member 20 Semiconductor light emitting module 21 Resin lens 21a Light exit surface 30 Semiconductor light emitting device

Claims (5)

凹状のキャビティを有するパッケージと、
前記キャビティの底面上に実装された半導体発光素子と、
前記半導体発光素子を覆うように前記キャビティの底面側に位置する一種または複数種の蛍光体層と、
前記蛍光体層の上に位置し、前記蛍光体層を構成する蛍光体とで第1の封止樹脂を形成するバインダー樹脂と、
前記バインダー樹脂の上に配置された第2の樹脂部材とを備え、
前記第2の樹脂部材の上面は、前記半導体発光素子の上面の中心を通り該第2の樹脂部材の上面と交差する直線と、前記第2の樹脂部材の上面の前記直線との交点における法線とのなす角が、前記半導体発光素子の上面の中心からの入射光線に対する臨界角よりも小さくなるように設定されていることを特徴とする半導体発光装置。
A package having a concave cavity;
A semiconductor light emitting device mounted on the bottom surface of the cavity;
One or more phosphor layers located on the bottom side of the cavity so as to cover the semiconductor light emitting element;
A binder resin which is located on the phosphor layer and forms a first sealing resin with the phosphor constituting the phosphor layer;
A second resin member disposed on the binder resin,
The upper surface of the second resin member is a method at the intersection of a straight line passing through the center of the upper surface of the semiconductor light emitting element and intersecting the upper surface of the second resin member, and the straight line of the upper surface of the second resin member. A semiconductor light emitting device characterized in that an angle formed with a line is set to be smaller than a critical angle with respect to incident light from the center of the upper surface of the semiconductor light emitting element.
前記第2の樹脂部材の上面は、平面形状、錐台形状及び三次元曲面形状の形状のうちいずれか1つであることを特徴とする請求項1に記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein an upper surface of the second resin member is one of a planar shape, a frustum shape, and a three-dimensional curved surface shape. 前記第2樹脂部材の厚みにより、前記第2の樹脂部材の上面は、前記半導体発光素子の上面の中心を通り該第2の樹脂部材の上面と交差する直線と、前記第2の樹脂部材の上面の前記直線との交点における法線とのなす角が、前記半導体発光素子の上面の中心からの入射光線に対する臨界角よりも小さくなるように設定されていることを特徴とする請求項1または2のいずれか1項に記載の半導体発光装置。   Due to the thickness of the second resin member, the upper surface of the second resin member passes through the center of the upper surface of the semiconductor light emitting element and intersects the upper surface of the second resin member, and the second resin member The angle formed by the normal line at the intersection of the upper surface with the straight line is set to be smaller than the critical angle with respect to incident light from the center of the upper surface of the semiconductor light emitting device. 3. The semiconductor light emitting device according to any one of 2 above. 前記半導体発光素子は青色LED素子であり、且つ前記蛍光体層は前記キャビティの底面側から順に赤色蛍光体層、緑色蛍光体層であることを特徴とする請求項1から3のいずれか1項に記載の半導体発光装置。   The semiconductor light emitting element is a blue LED element, and the phosphor layer is a red phosphor layer and a green phosphor layer in order from the bottom surface side of the cavity. The semiconductor light-emitting device described in 1. 前記半導体発光素子は紫外LED素子であり、且つ前記蛍光体層は前記キャビティの底面側から順に赤色蛍光体層、緑色蛍光体層、青色蛍光体層であることを特徴とする請求項1から3のいずれか1項に記載の半導体発光装置。   4. The semiconductor light emitting device is an ultraviolet LED device, and the phosphor layer is a red phosphor layer, a green phosphor layer, and a blue phosphor layer in order from the bottom surface side of the cavity. The semiconductor light-emitting device of any one of these.
JP2009023898A 2009-02-04 2009-02-04 Semiconductor light-emitting apparatus Pending JP2010182809A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009023898A JP2010182809A (en) 2009-02-04 2009-02-04 Semiconductor light-emitting apparatus
CN201010112923.8A CN101800281B (en) 2009-02-04 2010-02-04 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023898A JP2010182809A (en) 2009-02-04 2009-02-04 Semiconductor light-emitting apparatus

Publications (1)

Publication Number Publication Date
JP2010182809A true JP2010182809A (en) 2010-08-19

Family

ID=42595854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023898A Pending JP2010182809A (en) 2009-02-04 2009-02-04 Semiconductor light-emitting apparatus

Country Status (2)

Country Link
JP (1) JP2010182809A (en)
CN (1) CN101800281B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004734A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Light-emitting device
WO2015015719A1 (en) * 2013-07-30 2015-02-05 株式会社デンソー Display apparatus
JP2015050468A (en) * 2013-09-04 2015-03-16 エルジー イノテック カンパニー リミテッド Light emitting element package
WO2018004018A1 (en) * 2016-06-27 2018-01-04 (주)라이타이저코리아 Light-emitting device package
JP2020016900A (en) * 2015-05-12 2020-01-30 三菱電機株式会社 Display device
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449772B2 (en) 2012-10-30 2016-09-20 Apple Inc. Low-travel key mechanisms using butterfly hinges
US9502193B2 (en) 2012-10-30 2016-11-22 Apple Inc. Low-travel key mechanisms using butterfly hinges
US9710069B2 (en) 2012-10-30 2017-07-18 Apple Inc. Flexible printed circuit having flex tails upon which keyboard keycaps are coupled
EP2954384B1 (en) 2013-02-06 2023-08-02 Apple Inc. Input/output device with a dynamically adjustable appearance and function
JP5983667B2 (en) * 2013-04-11 2016-09-06 株式会社デンソー Vehicle display device
CN106252489A (en) * 2013-05-13 2016-12-21 新世纪光电股份有限公司 Package structure for LED
JP6103543B2 (en) 2013-05-27 2017-03-29 アップル インコーポレイテッド Short stroke switch assembly
US9908310B2 (en) 2013-07-10 2018-03-06 Apple Inc. Electronic device with a reduced friction surface
KR101787301B1 (en) 2013-09-30 2017-10-18 애플 인크. Keycaps with reduced thickness
WO2015047606A1 (en) 2013-09-30 2015-04-02 Apple Inc. Keycaps having reduced thickness
US9793066B1 (en) 2014-01-31 2017-10-17 Apple Inc. Keyboard hinge mechanism
US9779889B2 (en) 2014-03-24 2017-10-03 Apple Inc. Scissor mechanism features for a keyboard
US9704665B2 (en) 2014-05-19 2017-07-11 Apple Inc. Backlit keyboard including reflective component
US9715978B2 (en) 2014-05-27 2017-07-25 Apple Inc. Low travel switch assembly
US10796863B2 (en) 2014-08-15 2020-10-06 Apple Inc. Fabric keyboard
US10082880B1 (en) 2014-08-28 2018-09-25 Apple Inc. System level features of a keyboard
US9870880B2 (en) 2014-09-30 2018-01-16 Apple Inc. Dome switch and switch housing for keyboard assembly
EP3295466B1 (en) 2015-05-13 2023-11-29 Apple Inc. Keyboard assemblies having reduced thicknesses and method of forming keyboard assemblies
CN206134573U (en) 2015-05-13 2017-04-26 苹果公司 Key, be used for key of keyboard and be used for electron device's input structure
JP6637070B2 (en) 2015-05-13 2020-01-29 アップル インコーポレイテッドApple Inc. Keyboard for electronic device
WO2016183498A1 (en) 2015-05-13 2016-11-17 Apple Inc. Low-travel key mechanism for an input device
US9934915B2 (en) 2015-06-10 2018-04-03 Apple Inc. Reduced layer keyboard stack-up
US9971084B2 (en) 2015-09-28 2018-05-15 Apple Inc. Illumination structure for uniform illumination of keys
US10353485B1 (en) 2016-07-27 2019-07-16 Apple Inc. Multifunction input device with an embedded capacitive sensing layer
US10115544B2 (en) 2016-08-08 2018-10-30 Apple Inc. Singulated keyboard assemblies and methods for assembling a keyboard
CN107768507A (en) * 2016-08-17 2018-03-06 晶元光电股份有限公司 Light-emitting device and its manufacture method
US10755877B1 (en) 2016-08-29 2020-08-25 Apple Inc. Keyboard for an electronic device
US11500538B2 (en) 2016-09-13 2022-11-15 Apple Inc. Keyless keyboard with force sensing and haptic feedback
JP6493348B2 (en) * 2016-09-30 2019-04-03 日亜化学工業株式会社 Light emitting device
CN117270637A (en) 2017-07-26 2023-12-22 苹果公司 Computer with keyboard

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077425A (en) * 1999-08-31 2001-03-23 Yoshinobu Suehiro Light-emitting element
JP2001119067A (en) * 1999-10-19 2001-04-27 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005197423A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Led light source
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
JP2006196320A (en) * 2005-01-14 2006-07-27 Matsushita Electric Works Ltd Light source device and lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243973A (en) * 2004-02-26 2005-09-08 Kyocera Corp Light-emitting device and luminaire
JP2007116124A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077425A (en) * 1999-08-31 2001-03-23 Yoshinobu Suehiro Light-emitting element
JP2001119067A (en) * 1999-10-19 2001-04-27 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005197423A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Led light source
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
JP2006196320A (en) * 2005-01-14 2006-07-27 Matsushita Electric Works Ltd Light source device and lighting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004734A (en) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd Light-emitting device
WO2015015719A1 (en) * 2013-07-30 2015-02-05 株式会社デンソー Display apparatus
JP2015028435A (en) * 2013-07-30 2015-02-12 株式会社デンソー Display unit
US9776561B2 (en) 2013-07-30 2017-10-03 Denso Corporation Display apparatus
DE112014003496B4 (en) 2013-07-30 2021-08-19 Denso Corporation Display device
JP2015050468A (en) * 2013-09-04 2015-03-16 エルジー イノテック カンパニー リミテッド Light emitting element package
JP2020016900A (en) * 2015-05-12 2020-01-30 三菱電機株式会社 Display device
WO2018004018A1 (en) * 2016-06-27 2018-01-04 (주)라이타이저코리아 Light-emitting device package
JP2020188044A (en) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 Light-emitting device
JP7226789B2 (en) 2019-05-10 2023-02-21 国立研究開発法人物質・材料研究機構 light emitting device

Also Published As

Publication number Publication date
CN101800281B (en) 2014-09-17
CN101800281A (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP2010182809A (en) Semiconductor light-emitting apparatus
US8461610B2 (en) Semiconductor light emitting device having a reflective material with a side slant surface and method of manufacturing
US9484509B2 (en) Lighting device and method of manufacturing the same
EP2620989B1 (en) Semiconductor light-emitting device
US8482016B2 (en) Semiconductor light-emitting device and manufacturing method
JP5418592B2 (en) Light emitting device
KR101195595B1 (en) Lamp cover and LED lamp using the same
JP5431706B2 (en) Light emitting device
US8455907B2 (en) Semiconductor light emitting device having an optical plate including a meniscus control structure and method of manufacturing
US20070096113A1 (en) Led device
TW201707186A (en) Semiconductor light-emitting device and the manufacturing method thereof
US9773954B2 (en) Light emitting device and method of manufacturing light emitting device
JP2010225791A (en) Semiconductor light emitting device
JP2012069577A (en) Semiconductor light-emitting device and method of manufacturing the same
JP3177113U (en) Improved package structure of white diode to improve light mixing effect
CN103137844A (en) Semiconductor light emitting device
JP6732848B2 (en) Asymmetrical light emitting device, backlight module using the light emitting device, and method for manufacturing the light emitting device
JP2008053702A (en) Light-emitting device, and lighting device
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP2009193995A (en) Led light source and chromaticity adjustment method thereof
JP5853441B2 (en) Light emitting device
JP5681532B2 (en) Light emitting device and manufacturing method thereof
JP5613475B2 (en) Light emitting device package and light emitting device package group including the same
JP5970215B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730