WO2020235297A1 - α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE - Google Patents

α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE Download PDF

Info

Publication number
WO2020235297A1
WO2020235297A1 PCT/JP2020/017774 JP2020017774W WO2020235297A1 WO 2020235297 A1 WO2020235297 A1 WO 2020235297A1 JP 2020017774 W JP2020017774 W JP 2020017774W WO 2020235297 A1 WO2020235297 A1 WO 2020235297A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
type
phosphor
light emitting
wavelength
Prior art date
Application number
PCT/JP2020/017774
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 小林
雄介 武田
駿介 三谷
将 浦
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021520671A priority Critical patent/JPWO2020235297A1/ja
Priority to KR1020217041700A priority patent/KR20220013389A/en
Priority to CN202080037362.1A priority patent/CN113874468A/en
Publication of WO2020235297A1 publication Critical patent/WO2020235297A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to an ⁇ -type sialone phosphor, a light emitting member, and a light emitting device.
  • Patent Document 1 describes a technique for adjusting the composition component of an ⁇ -type sialon phosphor (claim 1 of Patent Document 1).
  • the present inventor focused on the particle size and examined it, by appropriately removing the fine powder contained in the ⁇ -type sialon particles having an appropriately small particle size, the ⁇ -type sialon fluorescence containing such ⁇ -type sialon particles We have found that the external quantum efficiency of the body can be improved. Further, the external quantum efficiency can be further improved by using an ⁇ -type sialone phosphor having an internal quantum efficiency of 75% or more for excitation light having a wavelength of 455 nm.
  • the particle size at which the cumulative value is 5% is D5
  • the particle size at which the cumulative value is 50% is D5
  • an ⁇ -type sialon phosphor containing ⁇ -type sialon particles can be used.
  • an ⁇ -type sialon phosphor containing ⁇ -type sialon particles In the volume frequency particle size distribution of the ⁇ -type Sialon phosphor measured by the laser diffraction / scattering method, the particle size having a cumulative value of 5% is D5, the particle size having a cumulative value of 50% is D50, and the particle size having a 98% value is D98.
  • D5 the particle size having a cumulative value of 5%
  • D50 the particle size having a cumulative value of 50%
  • D50 the particle size having a 98% value
  • D98 When ((D98-D5) / D50) is 1.00 or more and 8.00 or less.
  • D50 is 10 ⁇ m or less, and
  • the internal quantum efficiency for excitation light with a wavelength of 455 nm measured according to the procedure below is 75% or more.
  • An ⁇ -type sialone fluorophore is provided.
  • the ⁇ -type sialon phosphor is used as a sample, and the sample is filled in a concave cell so that the surface is smooth. After the concave cell is attached to the opening of the integrating sphere, monochromatic light having a predetermined wavelength is introduced into the integrating sphere as excitation light from a light emitting source. At 25 ° C., the sample in the concave cell is irradiated with excitation light, and the spectrum from the sample is measured with a spectrophotometer. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) are calculated.
  • Qref excited reflected light photons
  • Qem the number of fluorescent photons
  • the standard reflector is attached to the opening of the integrating sphere in the same manner as in (1) above, except that a standard reflector having a reflectance of 99% is used instead of the concave cell, and the excitation light is reflected as standard.
  • the plate is irradiated, the spectrum of the excitation light having a wavelength of 455 nm is measured, and the number of excitation light photons (Qex) is calculated from the obtained spectrum data.
  • Light emitting element and A wavelength converter that converts the light emitted from the light emitting element and emits light Is a light emitting member
  • the wavelength converter has the above-mentioned ⁇ -sialon phosphor.
  • a light emitting member is provided.
  • a light emitting device including the above light emitting member is provided.
  • an ⁇ -type sialone phosphor having excellent external quantum efficiency, a light emitting member using the same, and a light emitting device are provided.
  • the ⁇ -type sialone phosphor of the present embodiment will be described.
  • the ⁇ -type sialon phosphor of the present embodiment contains ⁇ -type sialon particles, and has a particle diameter of D5 in which the cumulative value is 5% in the volume frequency particle size distribution of the ⁇ -type sialon phosphor measured by the laser diffraction scattering method.
  • D5 particle diameter
  • D98 particle size of 50%
  • D98-D5 / D50 particle size of 98%
  • D50 is 10 ⁇ m or less.
  • the internal quantum efficiency with respect to the excitation light having a wavelength of 455 nm measured according to the following procedure satisfies 75% or more.
  • the ⁇ -type sialon phosphor is used as a sample, and the sample is filled in a concave cell so that the surface is smooth. After the concave cell is attached to the opening of the integrating sphere, monochromatic light having a predetermined wavelength is introduced into the integrating sphere as excitation light from a light emitting source. At 25 ° C., the sample in the concave cell is irradiated with excitation light, and the spectrum from the sample is measured with a spectrophotometer. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) are calculated.
  • Qref excited reflected light photons
  • Qem the number of fluorescent photons
  • the standard reflector is attached to the opening of the integrating sphere in the same manner as in (1) above, except that a standard reflector having a reflectance of 99% is used instead of the concave cell, and the excitation light is reflected as standard.
  • the plate is irradiated, the spectrum of the excitation light having a wavelength of 455 nm is measured, and the number of excitation light photons (Qex) is calculated from the obtained spectrum data.
  • the external quantum efficiency of the ⁇ -type sialon phosphor containing such ⁇ -type sialon particles is obtained by appropriately removing the fine powder contained in the ⁇ -type sialon particles having an appropriately small particle size.
  • ((D98-D5) / D50) as an index, the properties of the ⁇ -type sialon particles from which fine powder has been removed can be stably evaluated, and the index ((D98-D5) / D50) can be evaluated stably. It was found that the external quantum efficiency of the ⁇ -type sialon phosphor containing the ⁇ -type sialon particles can be improved by setting) in an appropriate numerical range.
  • fine powder generated by particle miniaturization treatment has a relatively large specific surface area, a large amount of reflection, and a relatively large amount of crystal defects, so such fine powder is removed. It is considered that this can improve the internal quantum efficiency and reflectance of 455 nm, and thus the external quantum efficiency of 455 nm.
  • the upper limit of ((D98-D5) / D50) is 8.00 or less, preferably 7.70 or less, and more preferably 7.30 or less. This makes it possible to improve the external quantum efficiency in the ⁇ -type sialon phosphor containing the ⁇ -type sialon particles from which fine particles have been appropriately removed.
  • the lower limit of ((D98-D5) / D50) is, for example, 1.00 or more, preferably 3.00 or more, and more preferably 4.00 or more. This makes it possible to reduce the absorptivity at 700 nm in the ⁇ -type sialon phosphor containing the ⁇ -type sialon particles that are appropriately reduced in size.
  • D50 is, for example, 1.0 ⁇ m to 10.0 ⁇ m, preferably 2.5 ⁇ m to 9.0 ⁇ m, and more preferably 3.0 ⁇ m to 9.0 ⁇ m.
  • an ⁇ -type sialon phosphor containing ⁇ -type sialon particles having appropriately reduced particles can be realized.
  • D50 By setting D50 to the above lower limit value or more, the fluorescence intensity at 455 nm can be improved.
  • the particle size at which the cumulative value is 90% is defined as D90.
  • the D90 is, for example, 5.5 ⁇ m to 35.0 ⁇ m, preferably 8.5 ⁇ m to 27.0 ⁇ m, and more preferably 10.0 ⁇ m to 25.0 ⁇ m.
  • the measured values of D5, D50, D90, D98, Dmax, etc. by the laser diffraction / scattering method of the ⁇ -type sialon phosphor of the present invention are JIS R1622 and R1629.
  • 0.5 g of the phosphor to be measured was put into 100 ml of an ion exchange aqueous solution mixed with 0.05 wt% of sodium hexametaphosphate, and this was put into 100 ml of an ion exchange aqueous solution having a transmission frequency of 19.5 ⁇ 1 kHz, a chip size of 20 ⁇ , and an amplitude of 31 ⁇ 5 ⁇ m.
  • the chip is placed in the center of the liquid and dispersed for 3 minutes.
  • the notation of 19.5 ⁇ 1 indicates that the range is 18.5 or more and 20.5 or less
  • 31 ⁇ 5 indicates that the range is 26 or more and 36 or less.
  • the internal quantum efficiency for excitation light having a wavelength of 455 nm can be improved by appropriately removing fine particles contained in ⁇ -type sialone particles having an appropriately small particle diameter. ..
  • the lower limit of the internal quantum efficiency with respect to the excitation light having a wavelength of 455 nm is 75% or more, preferably 76% or more, and more preferably 77% or more.
  • the upper limit of the internal quantum efficiency of 455 nm is not particularly limited, but may be, for example, 100% or less or 99% or less.
  • the external quantum efficiency can be improved by using an ⁇ -type sialone phosphor in which ((D98-D5) / D50) is within a predetermined range and the internal quantum efficiency at 455 nm is equal to or higher than a predetermined value.
  • a light emitting device having excellent brightness can be realized.
  • the upper limit of the light absorption rate for excitation light having a wavelength of 700 nm is, for example, 10% or less, preferably 9% or less, more preferably 7% or less, and further preferably 5% or less.
  • the lower limit of the light absorption rate at 700 nm is not particularly limited and may be 0% or more.
  • the lower limit of the diffuse reflectance for excitation light having a wavelength of 800 nm is, for example, 90% or more, preferably 92% or more, and more preferably 93% or more.
  • the upper limit of the diffuse reflectance at 800 nm is not particularly limited and may be 100% or less.
  • the ⁇ -type sialone phosphor of the present embodiment may contain ⁇ -type sialon containing an Eu element represented by the following general formula (1).
  • General formula (1) (M) m (1-x) / p (Eu) mx / 2 (Si) 12- (m + n) (Al) m + n (O) n (N) 16-n ...
  • M represents one or more elements selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), and p is the valence of the M element, 0. ⁇ X ⁇ 0.5, 1.5 ⁇ m ⁇ 4.0, 0 ⁇ n ⁇ 2.0. n may be, for example, 2.0 or less, 1.0 or less, or 0.8 or less.
  • the solid solution composition of ⁇ -type sialon is such that m Si—N bonds of ⁇ -type silicon nitride unit cells (Si 12 N 16 ) are converted into Al—N bonds and n Si—N bonds are converted into Al—O bonds.
  • m / p cations M, Eu
  • M, Eu m / p cations
  • ⁇ -type sialone is stabilized in a wide composition range, and by substituting a part of it with Eu, it is excited by light in a wide wavelength range from ultraviolet to blue, and from yellow. A phosphor exhibiting orange visible light is obtained.
  • the solid solution composition cannot be strictly defined by composition analysis or the like.
  • the crystal phase of alpha-SiAlON, alpha-sialon single-phase is preferred, beta-sialon as other crystal phases, aluminum nitride or its polytypoid may include Ca 2 Si 5 N 8, CaAlSiN 3 and the like.
  • a method for producing an ⁇ -type sialon phosphor there is a method in which a mixed powder composed of a compound of silicon nitride, aluminum nitride and an infiltrated solid solution element is heated and reacted in a high temperature nitrogen atmosphere.
  • a known method may be used for the step of producing the ⁇ -type sialon particles. For example, a firing step of calcining the raw material mixed powder to obtain a calcined product and a calcined product after the firing step are further crushed and pulverized. It may have post-treatment steps such as treatment, classification treatment, annealing treatment and acid treatment. Further, in the post-treatment step, ball mill pulverization and / or decanter treatment can be further performed.
  • the method for preparing the ⁇ -type sialon phosphor by appropriately selecting the type and blending amount of each component contained in the ⁇ -type sialone phosphor, the method for preparing the ⁇ -type sialon phosphor, and the like, the above ((D98-D5) / D50) , D5, D50, D90, D98, 455 nm internal quantum efficiency, 700 nm light absorption, and 800 nm diffuse reflectance can be controlled.
  • the post-treatment step, ball mill pulverization, decanter treatment, or classification utilizing centrifugal force are appropriately performed as described above ((D98-D5) / D50), D5, D50, D90, D98, 455 nm.
  • the internal quantum efficiency of the above, the light absorption rate of 700 nm, and the diffuse reflectance of 800 nm are mentioned as factors for setting the desired numerical range.
  • the wavelength converter of the present embodiment converts the light emitted from the light emitting element and emits light, and has the ⁇ -type sialone phosphor.
  • the wavelength converter may be composed only of the ⁇ -type sialone phosphor, or may contain a base material in which the ⁇ -type sialon phosphor is dispersed.
  • the base material known materials can be used, and examples thereof include glass, resin, and inorganic materials.
  • the shape of the wavelength converter is not particularly limited, and the wavelength converter may be configured in a plate shape, or may be configured to seal a part of the light emitting element or the entire light emitting surface.
  • the light emitting device of this embodiment includes a light emitting member including a light emitting light source (light emitting element) and the wavelength converter. By combining a light emitting light source and a wavelength converter, light having high light emission intensity can be emitted.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the light emitting device of the present embodiment.
  • the light emitting device 100 of FIG. 1 includes, for example, a light emitting element 120, a heat sink 130, a case 140, a first lead frame 150, a second lead frame 160, a bonding wire 170, a bonding wire 172, and a composite 40.
  • the light emitting element 120 is a semiconductor element that emits excitation light.
  • an LED chip that generates light having a wavelength of 300 nm or more and 500 nm or less, which corresponds to blue light from near-ultraviolet light, can be used.
  • a group III nitride semiconductor light emitting device may be used.
  • the group III nitride semiconductor light emitting device includes, for example, an n layer, a light emitting layer, and a p layer composed of a group III nitride semiconductor such as an AlGaN, GaN, or InAlGaN-based material.
  • a blue LED that emits blue light can be used.
  • One electrode (not shown) arranged on the upper surface side of the light emitting element 120 is connected to the surface of the first lead frame 150 via a bonding wire 170 such as a gold wire. Further, the other electrode (not shown) formed on the upper surface of the light emitting element 120 is connected to the surface of the second lead frame 160 via a bonding wire 172 such as a gold wire.
  • the light emitting element 120 is mounted on the upper surface of the heat sink 130.
  • the heat dissipation of the light emitting element 120 can be improved via the heat sink 130.
  • a packaging substrate may be used instead of the heat sink 130.
  • the case 140 is formed with a substantially funnel-shaped recess whose hole diameter gradually expands from the bottom surface upward.
  • the light emitting element 120 is provided on the bottom surface of the recess.
  • the wall surface of the recess surrounding the light emitting element 120 serves as a reflector.
  • the composite 40 is filled in the recess where the wall surface is formed by the case 140.
  • a wavelength converter that lengthens the wavelength of the excitation light emitted from the light emitting element 120 is used.
  • a wavelength converter in which phosphor particles 1 containing an ⁇ -type sialon phosphor are dispersed in a sealing material 30 such as a resin may be used.
  • the light emitting device 100 emits light generated from the phosphor particles 1 that are excited by absorbing the light emitted from the light emitting element 120, or mixed light with the light from the light emitting element 120.
  • the light emitting device 100 may emit white light by mixing the light of the light emitting element 120 and the light generated from the phosphor particles 1.
  • the light emitting device is not limited to the surface mount type, and may be a bullet type or a COB (chip on board) type.
  • This raw material mixed powder was heat-treated at 1800 ° C. for 16 hours in an atmospheric pressure nitrogen atmosphere in an electric furnace of a carbon heater together with the container. Since calcium nitride contained in the raw material mixed powder is easily hydrolyzed in the air, the boron nitride container filled with the raw material mixed powder is immediately installed in the electric furnace after being taken out from the glove box and immediately installed. Vacuum exhaust was performed to prevent the reaction of calcium nitride. The orange mass collected from the container was lightly crushed in a mortar and passed through a sieve having a mesh size of 150 ⁇ m to obtain a powder.
  • the obtained fluorescent powder was used as the ⁇ -sialon type fluorescent substance A.
  • Comparative Example 2 56.56 g of ⁇ -type silicon nitride powder (Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.) in a glove box maintained in a nitrogen atmosphere having a water content of 1 mass ppm or less and an oxygen content of 1 mass ppm or less.
  • ⁇ -type silicon nitride powder Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.
  • a phosphor powder was obtained in the same manner as in Comparative Example 1 except that 1.00 g and 10.00 g of the phosphor powder of Comparative Example 1 were mixed to obtain a raw material mixed powder.
  • the obtained fluorescent powder was used as the ⁇ -sialon type fluorescent substance B.
  • Example 1 The fluorescent powder obtained in Comparative Example 1 was subjected to a ball mill and a decanter in this order according to the following conditions to obtain a fluorescent powder.
  • the obtained fluorescent powder was used as the ⁇ -sialon type fluorescent substance C.
  • 0.8 L of ball mill ion-exchanged water and 50 g of the fluorescent powder (sample) obtained in Comparative Example 1 were placed in an alumina pot having a pot capacity of 2 L.
  • the alumina pot containing this sample was pulverized by a ball mill for 8 hours under the conditions of a silicon nitride ball ⁇ 5 mm, a ball amount of 1000 g, and a rotation speed of about 150 rpm. Then, it was filtered, dried at 120 ° C.
  • the decanter ball milled sample was dispersed in a 0.05 wt% Na hexametaphosphate aqueous solution and allowed to stand for 2 hours to remove fine powder by removing the supernatant at a depth of 4 cm from the water surface. After removal, the mixture was filtered, dried at 120 ° C. for 5 hours, and passed through a 150 ⁇ m sieve to obtain a fluorescent powder.
  • Example 2 56.56 g of ⁇ -type silicon nitride powder (Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.) in a glove box maintained in a nitrogen atmosphere having a water content of 1 mass ppm or less and an oxygen content of 1 mass ppm or less.
  • ⁇ -type silicon nitride powder Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.
  • Example 1 Calcium nitride powder (Ca 3 N 2 , manufactured by Materion) 12.02 g, Aluminum nitride powder (AlN, E grade, manufactured by Tokuyama) 20.41 g, Europium oxide powder (Eu 2 O 3 , RU grade, Shin-Etsu Chemical Industry)
  • a phosphor powder was obtained in the same manner as in Example 1 except that 1.00 g and 10.00 g of the phosphor powder of Comparative Example 1 were mixed to obtain a raw material mixed powder.
  • the obtained fluorescent powder was used as the ⁇ -sialon type fluorescent substance D.
  • Example 3 A phosphor powder was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1900 ° C. The obtained fluorescent powder was used as the ⁇ -sialon type fluorescent E.
  • the particle size distribution of the ⁇ -sialon type phosphor was measured by Microtrac MT3300EXII (Microtrac Bell Co., Ltd.), which is a particle size measuring device of a laser diffraction / scattering method.
  • the particle size ( ⁇ m) at which the cumulative value is 5% is D5
  • the particle size ( ⁇ m) at which the cumulative value is 50% is D50.
  • the particle size ( ⁇ m) of 90% was defined as D90
  • the particle size ( ⁇ m) of 98% was defined as D98.
  • the 455 nm internal quantum efficiency, external quantum efficiency, fluorescence intensity, light absorption rate of the ⁇ -type Sialon phosphor were calculated by the following procedure.
  • An ⁇ -type Sialon phosphor was used as a sample, and the sample was filled in a concave cell so that the surface was smooth.
  • the concave cell was attached to the opening of the integrating sphere.
  • Monochromatic light separated into a wavelength of 455 nm from a light emitting light source (Xe lamp) was introduced into the integrating sphere as excitation light of a phosphor using an optical fiber.
  • the phosphor sample was irradiated with this monochromatic light, and the fluorescence spectrum of the sample was measured using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excited reflected photons was calculated in the same wavelength range as the number of excited light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
  • a standard reflector (Spectralon (registered trademark) manufactured by Labsphere) with a reflectance of 99% was attached to the opening of the integrating sphere instead of the concave cell, and the spectrum of excitation light with a wavelength of 455 nm was obtained. It was measured. At that time, the number of excited photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
  • Qex the number of excited photons
  • the external quantum efficiency is calculated by the formula shown below.
  • External quantum efficiency (%) (Qem / Qex) x 100 Therefore, from the above equation, the external quantum efficiency has the following relationship.
  • External quantum efficiency 455 nm Light absorption rate ⁇ Internal quantum efficiency When a standard sample of ⁇ -type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the external quantum efficiency was 55.
  • the light absorption rate was 6%, the light absorption rate was 74.4%, and the internal quantum efficiency was 74.8%. Quantum efficiency and light absorption rate may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, the ⁇ -type sialon phosphor The measurement data is corrected using the standard sample of.
  • ⁇ 700 nm light absorption rate> Except that the wavelength of the excitation light was changed from 455 nm to 700 nm, and the number of excitation light photons (Qex) and the number of excitation reflected light photons (Qref) were calculated from the spectrum in the wavelength range of 695 to 710 nm, the light absorption rate of ⁇ 455 nm light absorption rate>.
  • the diffuse reflectance of the ⁇ -type Sialon phosphor was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction is performed with a standard reflector (Spectralon (registered trademark)), a solid sample holder filled with ⁇ -type Sialon phosphor (fluorescent material powder) is attached, and diffuse reflectance is measured in the wavelength range of 500 to 850 nm. did.
  • the 800 nm diffuse reflectance (%) referred to in the present invention is a value of the diffuse reflectance particularly at 800 nm.
  • the 800 nm diffuse reflectance was 95.7%.
  • the value of 800 nm diffuse reflectance may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, the standard sample of ⁇ -type sialon phosphor is used. Is used as the reference value to correct the measurement data.
  • ⁇ Saturation x, y> The chromaticity x and y are the values of CIE1931, and were measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). In the same manner as above, monochromatic light having a wavelength of 455 nm was irradiated, the excitation reflected light spectrum was measured in the range of 465 to 800 nm, and the chromaticities x and y were calculated. When a standard sample of ⁇ -type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the chromaticity x was 0.356.
  • the value of chromaticity x may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, use a standard sample of ⁇ -type sialon phosphor. Correct the measurement data as a reference value.
  • ⁇ Peak wavelength, half width> The peak wavelength and full width at half maximum were measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). In the same manner as above, monochromatic light having a wavelength of 455 nm was irradiated, the excitation reflected light spectrum was measured in the range of 465 to 800 nm, and the peak wavelength (nm) and half width of fluorescence were calculated. The full width at half maximum indicates the width (nm) of the intensity spectrum which is half the intensity of the peak wavelength.
  • NSG1301, manufactured by Sialon was measured by the above measurement method, the peak wavelength was 543.3 nm and the half width was 53.3 nm.
  • the peak wavelength and half-price range may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change, so if the manufacturer of the measuring device, manufacturing lot number, etc. change, the standard for ⁇ -type sialon phosphors The measurement data is corrected using the sample as a reference value.
  • Fluorescent particle 30 Encapsulant 40 Composite 100 Light emitting device 120 Light emitting element 130 Heat sink 140 Case 150 First lead frame 160 Second lead frame 170 Bonding wire 172 Bonding wire

Abstract

The α-Sialon fluorescent substance of the present invention comprises α-Sialon particles. When examined by the laser diffraction/scattering method, the α-Sialon fluorescent substance gives a volume-frequency particle size distribution in which (D98-D5)/D50 is 1.00-10.00, where D5, D50, and D98 are the particle diameters at cumulation volumes of 5%, 50%, and 98%, respectively. The α-Sialon fluorescent substance has an internal quantum efficiency of 75% or higher for excitation light having a wavelength of 455 nm.

Description

α型サイアロン蛍光体、発光部材、および発光装置α-type Sialon phosphor, light emitting member, and light emitting device
 本発明は、α型サイアロン蛍光体、発光部材、および発光装置に関する。 The present invention relates to an α-type sialone phosphor, a light emitting member, and a light emitting device.
 これまでα型サイアロン蛍光体において様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、α型サイアロン蛍光体の組成成分を調整する技術が記載されている(特許文献1の請求項1)。 Various developments have been made so far for α-type sialone phosphors. As this kind of technique, for example, the technique described in Patent Document 1 is known. Patent Document 1 describes a technique for adjusting the composition component of an α-type sialon phosphor (claim 1 of Patent Document 1).
特開2003-124527号公報Japanese Unexamined Patent Publication No. 2003-124527
 しかしながら、本発明者が検討した結果、上記特許文献1に記載のα型サイアロン蛍光体において、外部量子効率の点で改善の余地があることが判明した。 However, as a result of the examination by the present inventor, it has been found that there is room for improvement in terms of external quantum efficiency in the α-type sialone phosphor described in Patent Document 1 above.
 近年、α型サイアロン蛍光体を用いた発光装置について小型化の開発が進められている。それに伴い、α型サイアロン粒子の小粒径化が要求されている。
 しかしながら、α型サイアロン粒子の粒子径における検討は、いまだ十分なものとは言えない。
In recent years, the development of miniaturization of a light emitting device using an α-type Sialon phosphor has been promoted. Along with this, it is required to reduce the particle size of α-type sialon particles.
However, the study on the particle size of α-type sialon particles is not yet sufficient.
 本発明者は粒子径に着眼して検討したところ、適度に小粒子径化したα型サイアロン粒子に含まれる微粉を適切に除去することで、そのようなα型サイアロン粒子を含むα型サイアロン蛍光体の外部量子効率を向上できることを見出した。また、波長が455nmの励起光に対する内部量子効率が75%以上のα型サイアロン蛍光体を用いることでさらに外部量子効率を向上できる。 When the present inventor focused on the particle size and examined it, by appropriately removing the fine powder contained in the α-type sialon particles having an appropriately small particle size, the α-type sialon fluorescence containing such α-type sialon particles We have found that the external quantum efficiency of the body can be improved. Further, the external quantum efficiency can be further improved by using an α-type sialone phosphor having an internal quantum efficiency of 75% or more for excitation light having a wavelength of 455 nm.
 このような知見に基づきさらに鋭意研究したところ、レーザー回折散乱法で測定されるα型サイアロン蛍光体の体積頻度粒度分布において、累積値が5%となる粒子径をD5、50%となる粒子径をD50、98%となる粒子径をD98としたときの、((D98-D5)/D50)を指標とすることで、微粉が除去されたα型サイアロン粒子の性状について安定的に評価することができ、かかる指標の((D98-D5)/D50)を適切な数値範囲内とするとともに、内部量子効率が所定値以上のものを用いることにより、α型サイアロン粒子を含むα型サイアロン蛍光体の外部量子効率を向上できることを見出し、本発明を完成するに至った。 As a result of further diligent research based on such findings, in the volume frequency particle size distribution of the α-type sialon phosphor measured by the laser diffraction scattering method, the particle size at which the cumulative value is 5% is D5, and the particle size at which the cumulative value is 50%. Stable evaluation of the properties of α-type sialone particles from which fine powder has been removed by using ((D98-D5) / D50) as an index when the particle size is D50 and 98% is D98. By setting the index ((D98-D5) / D50) within an appropriate numerical range and using an index having an internal quantum efficiency of a predetermined value or more, an α-type sialon phosphor containing α-type sialon particles can be used. We have found that the external quantum efficiency of the above can be improved, and have completed the present invention.
 本発明によれば、
 α型サイアロン粒子を含むα型サイアロン蛍光体であって、
 レーザー回折散乱法で測定される当該α型サイアロン蛍光体の体積頻度粒度分布において、累積値が5%となる粒子径をD5、50%となる粒子径をD50、98%となる粒子径をD98としたとき、
 ((D98-D5)/D50)が、1.00以上8.00以下であり、
 D50が10μm以下であり、及び、
 下記の手順に従って測定される波長が455nmの励起光に対する内部量子効率が75%以上である、
α型サイアロン蛍光体が提供される。
(手順)
(1)当該α型サイアロン蛍光体を試料として用い、その試料を凹型セルに表面が平滑になるように充填する。その凹型セルを積分球の開口部に取り付けた後、積分球内に、発光光源から所定波長の単色光を、励起光として導入する。
 25℃において、凹型セル内の試料に励起光を照射し、試料からのスペクトルを分光光度計で測定する。得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出する。
(2)凹型セルの代わりに、反射率が99%の標準反射板を使用した以外は、上記(1)と同様にして、標準反射板を積分球の開口部に取り付け、励起光を標準反射板に照射し、波長455nmの励起光のスペクトルを測定し、得られたスペクトルデータから、励起光フォトン数(Qex)を算出する。
 下記式に基づいて、上記の内部量子効率を求める。
内部量子効率=(Qem/(Qex-Qref))×100
According to the present invention
An α-type sialon phosphor containing α-type sialon particles.
In the volume frequency particle size distribution of the α-type Sialon phosphor measured by the laser diffraction / scattering method, the particle size having a cumulative value of 5% is D5, the particle size having a cumulative value of 50% is D50, and the particle size having a 98% value is D98. When
((D98-D5) / D50) is 1.00 or more and 8.00 or less.
D50 is 10 μm or less, and
The internal quantum efficiency for excitation light with a wavelength of 455 nm measured according to the procedure below is 75% or more.
An α-type sialone fluorophore is provided.
(procedure)
(1) The α-type sialon phosphor is used as a sample, and the sample is filled in a concave cell so that the surface is smooth. After the concave cell is attached to the opening of the integrating sphere, monochromatic light having a predetermined wavelength is introduced into the integrating sphere as excitation light from a light emitting source.
At 25 ° C., the sample in the concave cell is irradiated with excitation light, and the spectrum from the sample is measured with a spectrophotometer. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) are calculated.
(2) The standard reflector is attached to the opening of the integrating sphere in the same manner as in (1) above, except that a standard reflector having a reflectance of 99% is used instead of the concave cell, and the excitation light is reflected as standard. The plate is irradiated, the spectrum of the excitation light having a wavelength of 455 nm is measured, and the number of excitation light photons (Qex) is calculated from the obtained spectrum data.
The above internal quantum efficiency is obtained based on the following equation.
Internal quantum efficiency = (Qem / (Qex-Qref)) x 100
 また本発明によれば、
 発光素子と、
 前記発光素子から照射された光を変換して発光する波長変換体と、
を備える、発光部材であって、
 前記波長変換体は、上記のαサイアロン蛍光体を有する、
発光部材が提供される。
Further, according to the present invention.
Light emitting element and
A wavelength converter that converts the light emitted from the light emitting element and emits light,
Is a light emitting member
The wavelength converter has the above-mentioned α-sialon phosphor.
A light emitting member is provided.
 また本発明によれば、上記の発光部材を備える、発光装置が提供される。 Further, according to the present invention, a light emitting device including the above light emitting member is provided.
 本発明によれば、外部量子効率に優れたα型サイアロン蛍光体、それを用いた発光部材および発光装置が提供される。 According to the present invention, an α-type sialone phosphor having excellent external quantum efficiency, a light emitting member using the same, and a light emitting device are provided.
本実施形態の発光装置の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the light emitting device of this embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate. Further, the figure is a schematic view and does not match the actual dimensional ratio.
 本実施形態のα型サイアロン蛍光体について説明する。 The α-type sialone phosphor of the present embodiment will be described.
 本実施形態のα型サイアロン蛍光体は、α型サイアロン粒子を含み、レーザー回折散乱法で測定される当該α型サイアロン蛍光体の体積頻度粒度分布において、累積値が5%となる粒子径をD5、50%となる粒子径をD50、98%となる粒子径をD98としたとき、((D98-D5)/D50)が、1.00以上8.00以下であり、D50が10μm以下であり、下記の手順に従って測定される波長が455nmの励起光に対する内部量子効率が75%以上を満たすものである。 The α-type sialon phosphor of the present embodiment contains α-type sialon particles, and has a particle diameter of D5 in which the cumulative value is 5% in the volume frequency particle size distribution of the α-type sialon phosphor measured by the laser diffraction scattering method. When the particle size of 50% is D50 and the particle size of 98% is D98, ((D98-D5) / D50) is 1.00 or more and 8.00 or less, and D50 is 10 μm or less. The internal quantum efficiency with respect to the excitation light having a wavelength of 455 nm measured according to the following procedure satisfies 75% or more.
(手順)
(1)当該α型サイアロン蛍光体を試料として用い、その試料を凹型セルに表面が平滑になるように充填する。その凹型セルを積分球の開口部に取り付けた後、積分球内に、発光光源から所定波長の単色光を、励起光として導入する。
 25℃において、凹型セル内の試料に励起光を照射し、試料からのスペクトルを分光光度計で測定する。得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出する。
(2)凹型セルの代わりに、反射率が99%の標準反射板を使用した以外は、上記(1)と同様にして、標準反射板を積分球の開口部に取り付け、励起光を標準反射板に照射し、波長455nmの励起光のスペクトルを測定し、得られたスペクトルデータから、励起光フォトン数(Qex)を算出する。
 下記式に基づいて、上記の内部量子効率を求める。
 内部量子効率=(Qem/(Qex-Qref))×100
(procedure)
(1) The α-type sialon phosphor is used as a sample, and the sample is filled in a concave cell so that the surface is smooth. After the concave cell is attached to the opening of the integrating sphere, monochromatic light having a predetermined wavelength is introduced into the integrating sphere as excitation light from a light emitting source.
At 25 ° C., the sample in the concave cell is irradiated with excitation light, and the spectrum from the sample is measured with a spectrophotometer. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) are calculated.
(2) The standard reflector is attached to the opening of the integrating sphere in the same manner as in (1) above, except that a standard reflector having a reflectance of 99% is used instead of the concave cell, and the excitation light is reflected as standard. The plate is irradiated, the spectrum of the excitation light having a wavelength of 455 nm is measured, and the number of excitation light photons (Qex) is calculated from the obtained spectrum data.
The above internal quantum efficiency is obtained based on the following equation.
Internal quantum efficiency = (Qem / (Qex-Qref)) x 100
 本発明者の知見によれば、適度に小粒子径化したα型サイアロン粒子に含まれる微粉を適切に除去することで、そのようなα型サイアロン粒子を含むα型サイアロン蛍光体の外部量子効率を向上できることが見出された。そして、((D98-D5)/D50)を指標とすることで、微粉が除去されたα型サイアロン粒子の性状について安定的に評価することができ、かかる指標の((D98-D5)/D50)を適切な数値範囲内とすることにより、α型サイアロン粒子を含むα型サイアロン蛍光体の外部量子効率を向上できることが判明した。 According to the findings of the present inventor, the external quantum efficiency of the α-type sialon phosphor containing such α-type sialon particles is obtained by appropriately removing the fine powder contained in the α-type sialon particles having an appropriately small particle size. Was found to be able to improve. Then, by using ((D98-D5) / D50) as an index, the properties of the α-type sialon particles from which fine powder has been removed can be stably evaluated, and the index ((D98-D5) / D50) can be evaluated stably. It was found that the external quantum efficiency of the α-type sialon phosphor containing the α-type sialon particles can be improved by setting) in an appropriate numerical range.
 詳細なメカニズムは定かではないが、粒子の微細化処理などで生じた微粉は、比表面積が比較的大きく、反射が多くなる、また結晶欠損を比較的多く含むため、このような微粉を除去することによって、455nmの内部量子効率および反射率を向上できるため、455nmの外部量子効率を高められる、と考えられる。 Although the detailed mechanism is not clear, fine powder generated by particle miniaturization treatment has a relatively large specific surface area, a large amount of reflection, and a relatively large amount of crystal defects, so such fine powder is removed. It is considered that this can improve the internal quantum efficiency and reflectance of 455 nm, and thus the external quantum efficiency of 455 nm.
 ((D98-D5)/D50)の上限は、8.00以下、好ましくは7.70以下、より好ましくは7.30以下である。これにより、適切に微粉が除去されたα型サイアロン粒子を含むα型サイアロン蛍光体において、外部量子効率を向上させることが可能である。 The upper limit of ((D98-D5) / D50) is 8.00 or less, preferably 7.70 or less, and more preferably 7.30 or less. This makes it possible to improve the external quantum efficiency in the α-type sialon phosphor containing the α-type sialon particles from which fine particles have been appropriately removed.
 一方、((D98-D5)/D50)の下限は、例えば、1.00以上、好ましくは3.00以上、より好ましくは4.00以上である。これにより、適度に小粒子化したα型サイアロン粒子を含むα型サイアロン蛍光体において、700nmにおける吸収率を低減することが可能となる。 On the other hand, the lower limit of ((D98-D5) / D50) is, for example, 1.00 or more, preferably 3.00 or more, and more preferably 4.00 or more. This makes it possible to reduce the absorptivity at 700 nm in the α-type sialon phosphor containing the α-type sialon particles that are appropriately reduced in size.
 また、((D98-D5)/D50)を上記数値範囲内とすることで、455nmの蛍光強度や光吸収率を向上させることができる。 Further, by setting ((D98-D5) / D50) within the above numerical range, the fluorescence intensity and light absorption rate at 455 nm can be improved.
 D50は、例えば、1.0μm~10.0μm、好ましくは2.5μm~9.0μm、より好ましくは3.0μm~9.0μmである。D50を上記上限値以下とすることにより、適度に小粒子化したα型サイアロン粒子を含むα型サイアロン蛍光体を実現できる。D50を上記下限値以上とすることにより、455nmの蛍光強度を向上させることができる。 D50 is, for example, 1.0 μm to 10.0 μm, preferably 2.5 μm to 9.0 μm, and more preferably 3.0 μm to 9.0 μm. By setting D50 to the above upper limit value or less, an α-type sialon phosphor containing α-type sialon particles having appropriately reduced particles can be realized. By setting D50 to the above lower limit value or more, the fluorescence intensity at 455 nm can be improved.
 本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。 In this specification, "-" indicates that the upper limit value and the lower limit value are included unless otherwise specified.
 レーザー回折散乱法で測定される当該α型サイアロン蛍光体の体積頻度粒度分布において、累積値が90%となる粒子径をD90とする。
 D90は、例えば、5.5μm~35.0μm、好ましくは8.5μm~27.0μm、より好ましくは10.0μm~25.0μmである。D90を上記上限値以下とすることにより、適度に小粒子化したα型サイアロン粒子を含むα型サイアロン蛍光体を実現できる。D90を上記下限値以上とすることにより、455nmの蛍光強度を向上させることができる。
In the volume frequency particle size distribution of the α-type Sialon phosphor measured by the laser diffraction / scattering method, the particle size at which the cumulative value is 90% is defined as D90.
The D90 is, for example, 5.5 μm to 35.0 μm, preferably 8.5 μm to 27.0 μm, and more preferably 10.0 μm to 25.0 μm. By setting D90 to the above upper limit value or less, an α-type sialone phosphor containing α-type sialon particles having appropriately reduced particles can be realized. By setting D90 to the above lower limit value or more, the fluorescence intensity at 455 nm can be improved.
 なおレーザー回折・散乱法で粉体の粒子径を測定する場合には、測定前に粉体同士の凝集を解き、分散媒中に十分に分散させておくことが肝要であるが、分散条件に相違があると測定値に差が生じることもあることから、本発明のα型サイアロン蛍光体のレーザー回折・散乱法によるD5、D50、D90、D98、Dmaxなどの測定値は、JIS R1622及びR1629に従って、測定する蛍光体0.5gを、ヘキサメタリン酸ナトリウムを0.05wt%混合したイオン交換水溶液100ml中に投入し、これを発信周波数19.5±1kHz、チップサイズ20φ、振幅が31±5μmの超音波ホモジナイザーを用いて、チップを液の中央部に配置して3分間分散処理した液を用いた測定値であると定める。ここで19.5±1の表記は、18.5以上20.5以下の範囲であることを示し、31±5は、26以上36以下の範囲であることを示す。 When measuring the particle size of powder by the laser diffraction / scattering method, it is important to disaggregate the powders and sufficiently disperse them in the dispersion medium before the measurement. If there is a difference, the measured values may differ. Therefore, the measured values of D5, D50, D90, D98, Dmax, etc. by the laser diffraction / scattering method of the α-type sialon phosphor of the present invention are JIS R1622 and R1629. According to this, 0.5 g of the phosphor to be measured was put into 100 ml of an ion exchange aqueous solution mixed with 0.05 wt% of sodium hexametaphosphate, and this was put into 100 ml of an ion exchange aqueous solution having a transmission frequency of 19.5 ± 1 kHz, a chip size of 20φ, and an amplitude of 31 ± 5 μm. Using an ultrasonic homogenizer, the chip is placed in the center of the liquid and dispersed for 3 minutes. Here, the notation of 19.5 ± 1 indicates that the range is 18.5 or more and 20.5 or less, and 31 ± 5 indicates that the range is 26 or more and 36 or less.
 また、本発明者の知見によれば、適度に小粒子径化したα型サイアロン粒子に含まれる微粉を適切に除去することで、波長が455nmの励起光に対する内部量子効率を向上できることが判明した。 Further, according to the findings of the present inventor, it has been found that the internal quantum efficiency for excitation light having a wavelength of 455 nm can be improved by appropriately removing fine particles contained in α-type sialone particles having an appropriately small particle diameter. ..
 α型サイアロン蛍光体において、波長が455nmの励起光に対する内部量子効率の下限は、75%以上、好ましくは76%以上、より好ましくは77%以上である。455nmの内部量子効率の下限を上記下限値以上とすることにより、小粒子径のα型サイアロン粒子を含むα型サイアロン蛍光体において、外部量子効率を向上させることが可能である。なお、455nmの内部量子効率の上限は、特に限定されないが、例えば、100%以下、99%以下でもよい。 In the α-type sialone phosphor, the lower limit of the internal quantum efficiency with respect to the excitation light having a wavelength of 455 nm is 75% or more, preferably 76% or more, and more preferably 77% or more. By setting the lower limit of the internal quantum efficiency of 455 nm to the above lower limit value or more, it is possible to improve the external quantum efficiency in the α-type sialon phosphor containing the α-type sialon particles having a small particle size. The upper limit of the internal quantum efficiency of 455 nm is not particularly limited, but may be, for example, 100% or less or 99% or less.
 本実施形態によれば、((D98-D5)/D50)が所定範囲内となり、455nmの内部量子効率が所定値以上となるα型サイアロン蛍光体を用いることで、外部量子効率を向上できるため、輝度に優れた発光装置を実現できる。また、小型化した発光装置に適当に用いられるα型サイアロン蛍光体を提供できる。 According to the present embodiment, the external quantum efficiency can be improved by using an α-type sialone phosphor in which ((D98-D5) / D50) is within a predetermined range and the internal quantum efficiency at 455 nm is equal to or higher than a predetermined value. , A light emitting device having excellent brightness can be realized. Further, it is possible to provide an α-type sialone phosphor that is appropriately used for a miniaturized light emitting device.
 α型サイアロン蛍光体において、波長700nmの励起光に対する光吸収率の上限は、例えば、10%以下、好ましくは9%以下、より好ましくは7%以下、さらに好ましくは5%以下である。700nmの光吸収率の上限を上記上限値以下とすることにより、輝度に優れた発光装置を実現できる。なお、700nmの光吸収率の下限は、特に限定されず、0%以上としてもよい。 In the α-type sialone phosphor, the upper limit of the light absorption rate for excitation light having a wavelength of 700 nm is, for example, 10% or less, preferably 9% or less, more preferably 7% or less, and further preferably 5% or less. By setting the upper limit of the light absorption rate at 700 nm to be equal to or lower than the above upper limit value, a light emitting device having excellent brightness can be realized. The lower limit of the light absorption rate at 700 nm is not particularly limited and may be 0% or more.
 700nmの光吸収率は、励起光の波長を455nmから700nmに変更し、励起光フォトン数(Qex)、励起反射光フォトン数(Qref)は695~710nmの波長範囲のスペクトルから算出した以外は、上記の手順と同様にして、下記の式に従って求められる、
 光吸収率=((Qex-Qref)/Qex)×100
The light absorption rate at 700 nm is such that the wavelength of the excitation light is changed from 455 nm to 700 nm, and the number of excitation light photons (Qex) and the number of excitation reflected light photons (Qref) are calculated from the spectrum in the wavelength range of 695 to 710 nm. It is calculated according to the following formula in the same manner as the above procedure.
Light absorption rate = ((Qex-Qref) / Qex) x 100
 α型サイアロン蛍光体において、波長800nmの励起光に対する拡散反射率の下限は、例えば、90%以上、好ましくは92%以上、より好ましくは93%以上である。800nmの拡散反射率の下限を上記下限値以上とすることにより、輝度に優れた発光装置を実現できる。なお、800nmの拡散反射率の上限は、特に限定されず、100%以下としてもよい。 In the α-type sialone phosphor, the lower limit of the diffuse reflectance for excitation light having a wavelength of 800 nm is, for example, 90% or more, preferably 92% or more, and more preferably 93% or more. By setting the lower limit of the diffuse reflectance at 800 nm to be equal to or higher than the above lower limit value, a light emitting device having excellent brightness can be realized. The upper limit of the diffuse reflectance at 800 nm is not particularly limited and may be 100% or less.
 本実施形態のα型サイアロン蛍光体は、下記一般式(1)で表されるEu元素を含有するα型サイアロンを含んでもよい。
(M)m(1-x)/p(Eu)mx/2(Si)12-(m+n)(Al)m+n(O)(N)16-n ・・一般式(1)
The α-type sialone phosphor of the present embodiment may contain α-type sialon containing an Eu element represented by the following general formula (1).
(M) m (1-x) / p (Eu) mx / 2 (Si) 12- (m + n) (Al) m + n (O) n (N) 16-n ... General formula (1)
 上記一般式(1)中、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素を表し、pはM元素の価数、0<x<0.5、1.5≦m≦4.0、0≦n≦2.0を表す。nは、例えば、2.0以下でもよく、1.0以下でもよく、0.8以下でもよい。 In the above general formula (1), M represents one or more elements selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), and p is the valence of the M element, 0. <X <0.5, 1.5 ≦ m ≦ 4.0, 0 ≦ n ≦ 2.0. n may be, for example, 2.0 or less, 1.0 or less, or 0.8 or less.
 α型サイアロンの固溶組成は、α型窒化ケイ素の単位胞(Si1216)のm個のSi-N結合をAl-N結合に、n個のSi-N結合をAl-O結合に置換し、電気的中性を保つために、m/p個のカチオン(M、Eu)が結晶格子内に侵入固溶し、上記一般式のように表される。特にMとして、Caを使用すると、幅広い組成範囲でα型サイアロンが安定化し、その一部を発光中心となるEuで置換することにより、紫外から青色の幅広い波長域の光で励起され、黄から橙色の可視発光を示す蛍光体が得られる。 The solid solution composition of α-type sialon is such that m Si—N bonds of α-type silicon nitride unit cells (Si 12 N 16 ) are converted into Al—N bonds and n Si—N bonds are converted into Al—O bonds. In order to replace and maintain electrical neutrality, m / p cations (M, Eu) penetrate into the crystal lattice and dissolve into the crystal lattice, and are represented by the above general formula. In particular, when Ca is used as M, α-type sialone is stabilized in a wide composition range, and by substituting a part of it with Eu, which is the emission center, it is excited by light in a wide wavelength range from ultraviolet to blue, and from yellow. A phosphor exhibiting orange visible light is obtained.
 一般に、α型サイアロン蛍光体は、上記のα型サイアロンとは異なる第二結晶相や不可避的に存在する非晶質相のため、組成分析等により固溶組成を厳密に規定することができない。α型サイアロンの結晶相としては、α型サイアロン単相が好ましく、他の結晶相としてβ型サイアロン、窒化アルミニウム又はそのポリタイポイド、CaSi、CaAlSiN等を含んでいてもよい。 In general, since the α-type sialone phosphor has a second crystal phase different from the above-mentioned α-type sialon or an amorphous phase that is inevitably present, the solid solution composition cannot be strictly defined by composition analysis or the like. The crystal phase of alpha-SiAlON, alpha-sialon single-phase is preferred, beta-sialon as other crystal phases, aluminum nitride or its polytypoid may include Ca 2 Si 5 N 8, CaAlSiN 3 and the like.
 α型サイアロン蛍光体の製造方法として、窒化ケイ素、窒化アルミニウム及び侵入固溶元素の化合物からなる混合粉末を高温の窒素雰囲気中で加熱して反応させる方法がある。
 α型サイアロン粒子を製造する工程は、公知の方法を使用してもよいが、例えば、原料混合粉末を焼成して焼成物を得る焼成工程と、焼成工程後の焼成物に、さらに解砕粉砕処理、分級処理、アニール処理及び酸処理等の後処理工程とを有してもよい。また、後処理工程において、ボールミル粉砕及び/又はデカンター処理をさらに行うことができる。
As a method for producing an α-type sialon phosphor, there is a method in which a mixed powder composed of a compound of silicon nitride, aluminum nitride and an infiltrated solid solution element is heated and reacted in a high temperature nitrogen atmosphere.
A known method may be used for the step of producing the α-type sialon particles. For example, a firing step of calcining the raw material mixed powder to obtain a calcined product and a calcined product after the firing step are further crushed and pulverized. It may have post-treatment steps such as treatment, classification treatment, annealing treatment and acid treatment. Further, in the post-treatment step, ball mill pulverization and / or decanter treatment can be further performed.
 本発明者の知見によれば、焼成時に低温で焼成を行い、粒子成長を抑制し、ボールミル粉砕やデカンター処理による微粉除去処理条件の適正化によって、小粒子径化したα型サイアロン粒子に含まれる微粉を適切に除去できることが判明した。 According to the findings of the present inventor, it is contained in α-type sialon particles whose particle size has been reduced by firing at a low temperature during firing, suppressing particle growth, and optimizing the fine powder removal treatment conditions by ball mill pulverization or decanter treatment. It was found that the fine particles could be removed properly.
 本実施形態では、たとえばα型サイアロン蛍光体中に含まれる各成分の種類や配合量、α型サイアロン蛍光体の調製方法等を適切に選択することにより、上記((D98-D5)/D50)、D5、D50、D90、D98、455nmの内部量子効率、700nmの光吸収率、及び800nmの拡散反射率を制御することが可能である。これらの中でも、たとえば、後処理工程、ボールミル粉砕やデカンター処理または遠心力を活用した分級を適切に行うこと等が、上記((D98-D5)/D50)、D5、D50、D90、D98、455nmの内部量子効率、700nmの光吸収率、及び800nmの拡散反射率を所望の数値範囲とするための要素として挙げられる。 In the present embodiment, for example, by appropriately selecting the type and blending amount of each component contained in the α-type sialone phosphor, the method for preparing the α-type sialon phosphor, and the like, the above ((D98-D5) / D50) , D5, D50, D90, D98, 455 nm internal quantum efficiency, 700 nm light absorption, and 800 nm diffuse reflectance can be controlled. Among these, for example, the post-treatment step, ball mill pulverization, decanter treatment, or classification utilizing centrifugal force are appropriately performed as described above ((D98-D5) / D50), D5, D50, D90, D98, 455 nm. The internal quantum efficiency of the above, the light absorption rate of 700 nm, and the diffuse reflectance of 800 nm are mentioned as factors for setting the desired numerical range.
(波長変換体)
 本実施形態の波長変換体は、発光素子から照射された光を変換して発光するものであって、上記α型サイアロン蛍光体を有するものである。波長変換体は、α型サイアロン蛍光体からのみで構成されてもよく、α型サイアロン蛍光体が分散した母材を含んでもよい。母材としては、公知のものを使用できるが、例えば、ガラス、樹脂、無機材料などが挙げられる。
(Wavelength converter)
The wavelength converter of the present embodiment converts the light emitted from the light emitting element and emits light, and has the α-type sialone phosphor. The wavelength converter may be composed only of the α-type sialone phosphor, or may contain a base material in which the α-type sialon phosphor is dispersed. As the base material, known materials can be used, and examples thereof include glass, resin, and inorganic materials.
 上記波長変換体は、その形状が特に限定されず、プレート状に構成されてもよく、発光素子の一部または発光面全体を封止するように構成されてもよい。 The shape of the wavelength converter is not particularly limited, and the wavelength converter may be configured in a plate shape, or may be configured to seal a part of the light emitting element or the entire light emitting surface.
(発光装置)
 本実施形態の発光装置について説明する。
 本実施形態に係る発光装置は、発光光源(発光素子)と上記波長変換体とを含む発光部材を備える。
 発光光源と波長変換体とを組み合わせることによって高い発光強度を有する光を発光させることができる。
(Light emitting device)
The light emitting device of this embodiment will be described.
The light emitting device according to the present embodiment includes a light emitting member including a light emitting light source (light emitting element) and the wavelength converter.
By combining a light emitting light source and a wavelength converter, light having high light emission intensity can be emitted.
 図1は、本実施形態の発光装置の構造の一例を模式的に示す断面図である。
 図1の発光装置100は、例えば、発光素子120、ヒートシンク130、ケース140、第1リードフレーム150、第2リードフレーム160、ボンディングワイヤ170、ボンディングワイヤ172および複合体40を備える。
FIG. 1 is a cross-sectional view schematically showing an example of the structure of the light emitting device of the present embodiment.
The light emitting device 100 of FIG. 1 includes, for example, a light emitting element 120, a heat sink 130, a case 140, a first lead frame 150, a second lead frame 160, a bonding wire 170, a bonding wire 172, and a composite 40.
 発光素子120は、励起光を発する半導体素子である。
 発光素子120としては、たとえば、近紫外から青色光に相当する300nm以上500nm以下の波長の光を発生するLEDチップを使用することができる。
The light emitting element 120 is a semiconductor element that emits excitation light.
As the light emitting element 120, for example, an LED chip that generates light having a wavelength of 300 nm or more and 500 nm or less, which corresponds to blue light from near-ultraviolet light, can be used.
 発光素子120の具体例として、III族窒化物半導体発光素子を用いてもよい。III族窒化物半導体発光素子は、例えば、AlGaN、GaN、InAlGaN系材料などのIII族窒化物半導体で構成される、n層、発光層、およびp層を備えるものである。III族窒化物半導体発光素子として、青色光を発光する青色LEDを用いることができる。 As a specific example of the light emitting device 120, a group III nitride semiconductor light emitting device may be used. The group III nitride semiconductor light emitting device includes, for example, an n layer, a light emitting layer, and a p layer composed of a group III nitride semiconductor such as an AlGaN, GaN, or InAlGaN-based material. As a group III nitride semiconductor light emitting device, a blue LED that emits blue light can be used.
 発光素子120の上面側に配設された一方の電極(図示せず)が金線などのボンディングワイヤ170を介して第1リードフレーム150の表面と接続されている。また、発光素子120の上面に形成されている他方の電極(図示せず)は、金線などのボンディングワイヤ172を介して第2リードフレーム160の表面と接続されている。 One electrode (not shown) arranged on the upper surface side of the light emitting element 120 is connected to the surface of the first lead frame 150 via a bonding wire 170 such as a gold wire. Further, the other electrode (not shown) formed on the upper surface of the light emitting element 120 is connected to the surface of the second lead frame 160 via a bonding wire 172 such as a gold wire.
 発光素子120はヒートシンク130上面に実装される。ヒートシンク130を介して発光素子120の放熱性を高めることができる。ヒートシンク130に代えて、パッケージ用基板を用いてもよい。 The light emitting element 120 is mounted on the upper surface of the heat sink 130. The heat dissipation of the light emitting element 120 can be improved via the heat sink 130. A packaging substrate may be used instead of the heat sink 130.
 ケース140には、底面から上方に向かって孔径が徐々に拡大する略漏斗形状の凹部が形成されている。発光素子120は、上記凹部の底面に設けられている。発光素子120を取り囲む凹部の壁面は反射板の役目を担う。 The case 140 is formed with a substantially funnel-shaped recess whose hole diameter gradually expands from the bottom surface upward. The light emitting element 120 is provided on the bottom surface of the recess. The wall surface of the recess surrounding the light emitting element 120 serves as a reflector.
 複合体40は、ケース140によって壁面が形成される上記凹部に充填されている。
 複合体40として、発光素子120から発せられる励起光の波長を長波長化する波長変換体が用いられる。複合体40の具体例は、樹脂などの封止材30中に、α型サイアロン蛍光体を含む蛍光体粒子1が分散された波長変換体を使用してもよい。
The composite 40 is filled in the recess where the wall surface is formed by the case 140.
As the composite body 40, a wavelength converter that lengthens the wavelength of the excitation light emitted from the light emitting element 120 is used. As a specific example of the composite 40, a wavelength converter in which phosphor particles 1 containing an α-type sialon phosphor are dispersed in a sealing material 30 such as a resin may be used.
 発光装置100は、発光素子120の発光を吸収し励起される蛍光体粒子1から発生する光、あるいは発光素子120からの光との混合光を発する。発光装置100は、発光素子120の光と蛍光体粒子1から発生する光との混色により白色を発光してもよい。 The light emitting device 100 emits light generated from the phosphor particles 1 that are excited by absorbing the light emitted from the light emitting element 120, or mixed light with the light from the light emitting element 120. The light emitting device 100 may emit white light by mixing the light of the light emitting element 120 and the light generated from the phosphor particles 1.
 なお、図1では、表面実装型の発光装置が例示されているが、発光装置は、表面実装型に限定されず、砲弾型やCOB(チップオンボード)型であってもよい。 Although a surface mount type light emitting device is illustrated in FIG. 1, the light emitting device is not limited to the surface mount type, and may be a bullet type or a COB (chip on board) type.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the description of these Examples.
<αサイアロン型蛍光体の作製>
(比較例1)
・混合工程
 水分が1質量ppm以下、酸素分が1質量ppm以下である窒素雰囲気に保持したグローブボックス中で、α型窒化ケイ素粉末(Si、SN-E10グレード、宇部興産社製)62.8g、窒化カルシウム粉末(Ca、Materion社製)13.4g、窒化アルミニウム粉末(AlN、Eグレード、トクヤマ社製)22.7g、酸化ユーロピウム粉末(Eu、RUグレード、信越化学工業社製)1.1gを混合し、原料混合粉末を得た。この原料混合粉末100gを、内部の容積が0.4リットルの蓋付きの円筒型窒化ホウ素製容器(デンカ社製、N-1グレード)に充填した。
<Preparation of α-sialon type phosphor>
(Comparative Example 1)
And mixing step water is less than 1 mass ppm, oxygen content in the glove box and kept under a nitrogen atmosphere at most 1 mass ppm, alpha-silicon nitride powder (Si 3 N 4, SN- E10 grade, manufactured by Ube Industries, Ltd.) 62.8 g, calcium nitride powder (Ca 3 N 2 , manufactured by Materion) 13.4 g, aluminum nitride powder (AlN, E grade, manufactured by Tokuyama) 22.7 g, europium oxide powder (Eu 2 O 3 , RU grade, 1.1 g (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) was mixed to obtain a raw material mixed powder. 100 g of this raw material mixed powder was filled in a cylindrical boron nitride container (N-1 grade, manufactured by Denka Co., Ltd.) with a lid having an internal volume of 0.4 liter.
・焼成工程
 この原料混合粉末を容器ごとカーボンヒーターの電気炉で大気圧窒素雰囲気中、1800℃で16時間の加熱処理を行った。なお、原料混合粉末に含まれる窒化カルシウムは、空気中で容易に加水分解しやすいので、原料混合粉末を充填した窒化ホウ素製容器はグローブボックスから取り出した後、速やかに電気炉に設置し、直ちに真空排気し、窒化カルシウムの反応を防いだ。容器から回収された橙色の塊状物は乳鉢で軽く解砕し、目開き150μmの篩を全通させ、粉末を得た。
 その後、水中でボール経φ5サイズの窒化珪素ボールを用いて4時間解砕して、ろ過し、120℃5時間乾燥させ、150μmの篩を通過させ、蛍光体粉末を得た。
 得られた蛍光体粉末をαサイアロン型蛍光体Aとして使用した。
-Baking step This raw material mixed powder was heat-treated at 1800 ° C. for 16 hours in an atmospheric pressure nitrogen atmosphere in an electric furnace of a carbon heater together with the container. Since calcium nitride contained in the raw material mixed powder is easily hydrolyzed in the air, the boron nitride container filled with the raw material mixed powder is immediately installed in the electric furnace after being taken out from the glove box and immediately installed. Vacuum exhaust was performed to prevent the reaction of calcium nitride. The orange mass collected from the container was lightly crushed in a mortar and passed through a sieve having a mesh size of 150 μm to obtain a powder.
Then, it was crushed in water using a silicon nitride ball having a diameter of 5 balls for 4 hours, filtered, dried at 120 ° C. for 5 hours, and passed through a 150 μm sieve to obtain a phosphor powder.
The obtained fluorescent powder was used as the α-sialon type fluorescent substance A.
(比較例2)
 水分が1質量ppm以下、酸素分が1質量ppm以下である窒素雰囲気に保持したグローブボックス中で、α型窒化ケイ素粉末(Si、SN-E10グレード、宇部興産社製)56.56g、窒化カルシウム粉末(Ca、Materion社製)12.02g、窒化アルミニウム粉末(AlN、Eグレード、トクヤマ社製)20.41g、酸化ユーロピウム粉末(Eu、RUグレード、信越化学工業社製)1.00g、比較例1の蛍光体粉末10.00gを混合し、原料混合粉末を得た以外は、比較例1と同様にして蛍光体粉末を得た。
 得られた蛍光体粉末をαサイアロン型蛍光体Bとして使用した。
(Comparative Example 2)
56.56 g of α-type silicon nitride powder (Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.) in a glove box maintained in a nitrogen atmosphere having a water content of 1 mass ppm or less and an oxygen content of 1 mass ppm or less. , Calcium nitride powder (Ca 3 N 2 , manufactured by Materion) 12.02 g, Aluminum nitride powder (AlN, E grade, manufactured by Tokuyama) 20.41 g, Europium oxide powder (Eu 2 O 3 , RU grade, Shin-Etsu Chemical Industry) A phosphor powder was obtained in the same manner as in Comparative Example 1 except that 1.00 g and 10.00 g of the phosphor powder of Comparative Example 1 were mixed to obtain a raw material mixed powder.
The obtained fluorescent powder was used as the α-sialon type fluorescent substance B.
(実施例1)
 比較例1で得られた蛍光体粉末に対して、下記の条件に従って、ボールミル及びデカンターをこの順番で行い、蛍光体粉末を得た。
 得られた蛍光体粉末をαサイアロン型蛍光体Cとして使用した。
・ボールミル
 イオン交換水0.8L、および比較例1で得られた蛍光体粉末(サンプル)50gを、ポット容量2Lのアルミナポットに入れた。
 このサンプルを含むアルミナポットに対して、窒化ケイ素ボールφ5mm、ボール量1000g、回転数約150rpmの条件で、ボールミル粉砕を8時間行った。
 その後、ろ過し、120℃5時間で乾燥し、保管した。
・デカンター
 ボールミル処理したサンプルを、0.05wt%のヘキサメタリン酸Na水溶液に分散させ、2時間静置し、水面から4cmの深さの上澄みを除去することで微粉の除去を行った。除去の後はろ過し、120℃5時間で乾燥し、150μmの篩を通過させ、蛍光体粉末を得た。
(Example 1)
The fluorescent powder obtained in Comparative Example 1 was subjected to a ball mill and a decanter in this order according to the following conditions to obtain a fluorescent powder.
The obtained fluorescent powder was used as the α-sialon type fluorescent substance C.
0.8 L of ball mill ion-exchanged water and 50 g of the fluorescent powder (sample) obtained in Comparative Example 1 were placed in an alumina pot having a pot capacity of 2 L.
The alumina pot containing this sample was pulverized by a ball mill for 8 hours under the conditions of a silicon nitride ball φ5 mm, a ball amount of 1000 g, and a rotation speed of about 150 rpm.
Then, it was filtered, dried at 120 ° C. for 5 hours, and stored.
-The decanter ball milled sample was dispersed in a 0.05 wt% Na hexametaphosphate aqueous solution and allowed to stand for 2 hours to remove fine powder by removing the supernatant at a depth of 4 cm from the water surface. After removal, the mixture was filtered, dried at 120 ° C. for 5 hours, and passed through a 150 μm sieve to obtain a fluorescent powder.
(実施例2)
 水分が1質量ppm以下、酸素分が1質量ppm以下である窒素雰囲気に保持したグローブボックス中で、α型窒化ケイ素粉末(Si、SN-E10グレード、宇部興産社製)56.56g、窒化カルシウム粉末(Ca、Materion社製)12.02g、窒化アルミニウム粉末(AlN、Eグレード、トクヤマ社製)20.41g、酸化ユーロピウム粉末(Eu、RUグレード、信越化学工業社製)1.00g、比較例1の蛍光体粉末10.00gを混合し、原料混合粉末を得た以外は、実施例1と同様にして蛍光体粉末を得た。
 得られた蛍光体粉末をαサイアロン型蛍光体Dとして使用した。
(Example 2)
56.56 g of α-type silicon nitride powder (Si 3 N 4 , SN-E10 grade, manufactured by Ube Kosan Co., Ltd.) in a glove box maintained in a nitrogen atmosphere having a water content of 1 mass ppm or less and an oxygen content of 1 mass ppm or less. , Calcium nitride powder (Ca 3 N 2 , manufactured by Materion) 12.02 g, Aluminum nitride powder (AlN, E grade, manufactured by Tokuyama) 20.41 g, Europium oxide powder (Eu 2 O 3 , RU grade, Shin-Etsu Chemical Industry) A phosphor powder was obtained in the same manner as in Example 1 except that 1.00 g and 10.00 g of the phosphor powder of Comparative Example 1 were mixed to obtain a raw material mixed powder.
The obtained fluorescent powder was used as the α-sialon type fluorescent substance D.
(実施例3)
 焼成温度を1900℃に変更した以外は、実施例1と同様にして蛍光体粉末を得た。
 得られた蛍光体粉末をαサイアロン型蛍光体Eとして使用した。
(Example 3)
A phosphor powder was obtained in the same manner as in Example 1 except that the firing temperature was changed to 1900 ° C.
The obtained fluorescent powder was used as the α-sialon type fluorescent E.
 実施例1~3、比較例1,2で得られた蛍光体粉末について、CuKα線を用いた粉末X線回折測定(XRD測定)により結晶相を調べたところ、結晶相は、いずれも、EuおよびCaを含むα型サイアロンであることを確認した。また、αサイアロン型蛍光体A~Eのいずれも、上記の一般式(1)を満たすものであった。 When the crystal phases of the fluorescent powders obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were examined by powder X-ray diffraction measurement (XRD measurement) using CuKα rays, the crystal phases were all Eu. It was confirmed that it was an α-type sialone containing Ca. In addition, all of the α-sialon type phosphors A to E satisfy the above general formula (1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたαサイアロン型蛍光体A~Eについて、以下の評価項目について評価を行った。評価結果を表1に示す。 The obtained α-sialon type phosphors A to E were evaluated for the following evaluation items. The evaluation results are shown in Table 1.
(粒度分布)
 αサイアロン型蛍光体の粒子径分布を、レーザー回折・散乱法の粒子径測定装置であるMicrotrac MT3300EXII(マイクロトラック・ベル株式会社)により測定した。測定手順としては、ヘキサメタリン酸ナトリウムを0.05wt%混合したイオン交換水の水溶液100mlに、測定する蛍光体0.5gを投入し、超音波ホモジナイザー、Ultrasonic Homogenizer US-150E(株式会社日本精機製作所、Amplitude100%、発振周波数19.5±1kHz、チップサイズ20φ、振幅約31μmで、チップを液の中央部に配置して3分間分散処理した後、前記MT3300EXIIで粒度測定した。測定結果を表1に示す。
 表1中、レーザー回折散乱法で測定されるα型サイアロン蛍光体の体積頻度粒度分布において、累積値が5%となる粒子径(μm)をD5、50%となる粒子径(μm)をD50、90%となる粒子径(μm)をD90、98%となる粒子径(μm)をD98とした。
(Particle size distribution)
The particle size distribution of the α-sialon type phosphor was measured by Microtrac MT3300EXII (Microtrac Bell Co., Ltd.), which is a particle size measuring device of a laser diffraction / scattering method. As a measurement procedure, 0.5 g of the phosphor to be measured was added to 100 ml of an aqueous solution of ion-exchanged water mixed with 0.05 wt% of sodium hexametaphosphate, and an ultrasonic homogenizer, Amplitude Homogenizer US-150E (Nippon Seiki Seisakusho Co., Ltd., With 100% aqueous solution, oscillation frequency 19.5 ± 1 kHz, chip size 20φ, amplitude about 31 μm, the chip was placed in the center of the liquid and dispersed for 3 minutes, and then the particle size was measured with the MT3300EXII. The measurement results are shown in Table 1. Shown.
In Table 1, in the volume frequency particle size distribution of the α-type sialon phosphor measured by the laser diffraction scattering method, the particle size (μm) at which the cumulative value is 5% is D5, and the particle size (μm) at which the cumulative value is 50% is D50. The particle size (μm) of 90% was defined as D90, and the particle size (μm) of 98% was defined as D98.
 <455nm内部量子効率、外部量子効率、蛍光強度、光吸収率>
 α型サイアロン蛍光体の455nm内部量子効率、外部量子効率、蛍光強度、光吸収率は、以下の手順で算出した。
 α型サイアロン蛍光体を試料として用い、その試料を凹型セルに表面が平滑になるように充填した。その凹型セルを積分球の開口部に取り付けた。この積分球内に、発光光源(Xeランプ)から455nmの波長に分光した単色光を、光ファイバーを用いて蛍光体の励起光として導入した。この単色光を蛍光体試料に照射し、試料の蛍光スペクトルについて分光光度計(大塚電子株式会社製MCPD-7000)を用いて測定した。
 得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。
 また同じ装置を用い、凹型セルの代わりに、積分球の開口部に反射率が99%の標準反射板(Labsphere社製スペクトラロン(登録商標))を取り付けて、波長455nmの励起光のスペクトルを測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
 α型サイアロンの455nm光吸収率、内部量子効率は、次に示す計算式によって、求めた。
    455nm光吸収率(%)=((Qex-Qref)/Qex)×100
       内部量子効率(%)=(Qem/(Qex-Qref))×100
 なお、外部量子効率は、以下に示す計算式により求められ、
       外部量子効率(%)=(Qem/Qex)×100
 従って、上記式より外部量子効率は以下に示す関係となる。
       外部量子効率=455nm光吸収率×内部量子効率
 なお、上記の測定方法によってβ型サイアロン蛍光体の標準試料(NIMS Standard Green lot No.NSG1301、サイアロン社製)を測定した場合、外部量子効率55.6%、光吸収率74.4%、内部量子効率74.8%であった。量子効率及び光吸収率は、測定装置のメーカー、製造ロットナンバーなどが変わると値が変動する場合があるため、測定装置のメーカー、製造ロットナンバーなどが変更となる場合は、β型サイアロン蛍光体の標準試料を基準値として測定データの補正を行う。
<455 nm internal quantum efficiency, external quantum efficiency, fluorescence intensity, light absorption rate>
The 455 nm internal quantum efficiency, external quantum efficiency, fluorescence intensity, and light absorption rate of the α-type Sialon phosphor were calculated by the following procedure.
An α-type Sialon phosphor was used as a sample, and the sample was filled in a concave cell so that the surface was smooth. The concave cell was attached to the opening of the integrating sphere. Monochromatic light separated into a wavelength of 455 nm from a light emitting light source (Xe lamp) was introduced into the integrating sphere as excitation light of a phosphor using an optical fiber. The phosphor sample was irradiated with this monochromatic light, and the fluorescence spectrum of the sample was measured using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.).
From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) were calculated. The number of excited reflected photons was calculated in the same wavelength range as the number of excited light photons, and the number of fluorescent photons was calculated in the range of 465 to 800 nm.
Also, using the same device, a standard reflector (Spectralon (registered trademark) manufactured by Labsphere) with a reflectance of 99% was attached to the opening of the integrating sphere instead of the concave cell, and the spectrum of excitation light with a wavelength of 455 nm was obtained. It was measured. At that time, the number of excited photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
The 455 nm light absorption rate and internal quantum efficiency of α-type Sialon were calculated by the following formulas.
455 nm light absorption rate (%) = ((Qex-Qref) / Qex) × 100
Internal quantum efficiency (%) = (Qem / (Qex-Qref)) x 100
The external quantum efficiency is calculated by the formula shown below.
External quantum efficiency (%) = (Qem / Qex) x 100
Therefore, from the above equation, the external quantum efficiency has the following relationship.
External quantum efficiency = 455 nm Light absorption rate × Internal quantum efficiency When a standard sample of β-type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the external quantum efficiency was 55. The light absorption rate was 6%, the light absorption rate was 74.4%, and the internal quantum efficiency was 74.8%. Quantum efficiency and light absorption rate may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, the β-type sialon phosphor The measurement data is corrected using the standard sample of.
 <700nm光吸収率>
 励起光の波長を455nmから700nmに変更し、励起光フォトン数(Qex)、励起反射光フォトン数(Qref)は695~710nmの波長範囲のスペクトルから算出した以外は、<455nm光吸収率>の測定手順と同様にして、下記の式に基づいて700nm光吸収率を算出した。
 700nm光吸収率(%)=((Qex(700nm)-Qref(700nm))/Qex(700nm))×100
<700 nm light absorption rate>
Except that the wavelength of the excitation light was changed from 455 nm to 700 nm, and the number of excitation light photons (Qex) and the number of excitation reflected light photons (Qref) were calculated from the spectrum in the wavelength range of 695 to 710 nm, the light absorption rate of <455 nm light absorption rate>. The 700 nm light absorption rate was calculated based on the following formula in the same manner as the measurement procedure.
700nm light absorption rate (%) = ((Qex (700nm) -Qref (700nm)) / Qex (700nm)) × 100
<800nm拡散反射率>
 α型サイアロン蛍光体の拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン(登録商標))でベースライン補正を行い、α型サイアロン蛍光体(蛍光体粉末)を充填した固体試料ホルダーを取り付けて、500~850nmの波長範囲で拡散反射率を測定した。本発明でいう800nm拡散反射率(%)とは、特に800nmにおける拡散反射率の値である。
 なお、上記の測定方法によってβ型サイアロン蛍光体の標準試料(NIMS Standard Green lot No.NSG1301、サイアロン社製)を測定した場合、800nm拡散反射率は95.7%であった。800nm拡散反射率は測定装置のメーカー、製造ロットナンバーなどが変わると値が変動する場合があるため、測定装置のメーカー、製造ロットナンバーなどが変更となる場合は、β型サイアロン蛍光体の標準試料を基準値として測定データの補正を行う。
<800 nm diffuse reflectance>
The diffuse reflectance of the α-type Sialon phosphor was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction is performed with a standard reflector (Spectralon (registered trademark)), a solid sample holder filled with α-type Sialon phosphor (fluorescent material powder) is attached, and diffuse reflectance is measured in the wavelength range of 500 to 850 nm. did. The 800 nm diffuse reflectance (%) referred to in the present invention is a value of the diffuse reflectance particularly at 800 nm.
When a standard sample of β-type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the 800 nm diffuse reflectance was 95.7%. The value of 800 nm diffuse reflectance may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, the standard sample of β-type sialon phosphor is used. Is used as the reference value to correct the measurement data.
<色度x、y>
 色度x、yは、CIE1931の値であり、分光光度計(大塚電子株式会社製MCPD-7000)により測定した。上記と同様にして波長455nmの単色光を照射し、465~800nmの範囲で励起反射光スペクトルを測定し、色度x、yを算出した。
 なお、上記の測定方法によってβ型サイアロン蛍光体の標準試料(NIMS Standard Green lot No.NSG1301、サイアロン社製)を測定した場合、色度xは0.356であった。色度xは測定装置のメーカー、製造ロットナンバーなどが変わると値が変動する場合があるため、測定装置のメーカー、製造ロットナンバーなどが変更となる場合は、β型サイアロン蛍光体の標準試料を基準値として測定データの補正を行う。
<Saturation x, y>
The chromaticity x and y are the values of CIE1931, and were measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). In the same manner as above, monochromatic light having a wavelength of 455 nm was irradiated, the excitation reflected light spectrum was measured in the range of 465 to 800 nm, and the chromaticities x and y were calculated.
When a standard sample of β-type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the chromaticity x was 0.356. The value of chromaticity x may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change. Therefore, if the manufacturer of the measuring device, manufacturing lot number, etc. change, use a standard sample of β-type sialon phosphor. Correct the measurement data as a reference value.
<ピーク波長、半値幅>
 ピーク波長、半値幅は、分光光度計(大塚電子株式会社製MCPD-7000)により測定した。上記と同様にして波長455nmの単色光を照射し、465~800nmの範囲で励起反射光スペクトルを測定し、蛍光のピーク波長(nm)、半値幅を算出した。半値幅はピーク波長の強度の半分となる強度のスペクトルの幅(nm)を示す。
 なお、上記の測定方法によってβ型サイアロン蛍光体の標準試料(NIMS Standard Green lot No.NSG1301、サイアロン社製)を測定した場合、ピーク波長543.3nm、半値幅53.3nmであった。ピーク波長、半値幅は測定装置のメーカー、製造ロットナンバーなどが変わると値が変動する場合があるため、測定装置のメーカー、製造ロットナンバーなどが変更となる場合は、β型サイアロン蛍光体の標準試料を基準値として測定データの補正を行う。
<Peak wavelength, half width>
The peak wavelength and full width at half maximum were measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.). In the same manner as above, monochromatic light having a wavelength of 455 nm was irradiated, the excitation reflected light spectrum was measured in the range of 465 to 800 nm, and the peak wavelength (nm) and half width of fluorescence were calculated. The full width at half maximum indicates the width (nm) of the intensity spectrum which is half the intensity of the peak wavelength.
When a standard sample of β-type Sialon phosphor (NIMS Standard Green lot No. NSG1301, manufactured by Sialon) was measured by the above measurement method, the peak wavelength was 543.3 nm and the half width was 53.3 nm. The peak wavelength and half-price range may fluctuate when the manufacturer of the measuring device, manufacturing lot number, etc. change, so if the manufacturer of the measuring device, manufacturing lot number, etc. change, the standard for β-type sialon phosphors The measurement data is corrected using the sample as a reference value.
 実施例1~3のα型サイアロン蛍光体は、比較例1,2と比べて外部量子効率に優れており、さらには蛍光強度、455nmの光吸収率に優れることが分かった。したがって、実施例1~3のα型サイアロン蛍光体を用いることで、輝度に優れた発光装置を実現できる。 It was found that the α-type sialone phosphors of Examples 1 to 3 were superior in external quantum efficiency as compared with Comparative Examples 1 and 2, and further excellent in fluorescence intensity and light absorption rate at 455 nm. Therefore, by using the α-type sialone phosphors of Examples 1 to 3, a light emitting device having excellent brightness can be realized.
 この出願は、2019年5月23日に出願された日本出願特願2019-097116号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2019-097116 filed on May 23, 2019, and incorporates all of its disclosures herein.
1 蛍光体粒子
30 封止材
40 複合体
100 発光装置
120 発光素子
130 ヒートシンク
140 ケース
150 第1リードフレーム
160 第2リードフレーム
170 ボンディングワイヤ
172 ボンディングワイヤ
1 Fluorescent particle 30 Encapsulant 40 Composite 100 Light emitting device 120 Light emitting element 130 Heat sink 140 Case 150 First lead frame 160 Second lead frame 170 Bonding wire 172 Bonding wire

Claims (8)

  1.  α型サイアロン粒子を含むα型サイアロン蛍光体であって、
     レーザー回折散乱法で測定される当該α型サイアロン蛍光体の体積頻度粒度分布において、累積値が5%となる粒子径をD5、50%となる粒子径をD50、98%となる粒子径をD98としたとき、
     ((D98-D5)/D50)が、1.00以上8.00以下であり、
     D50が10μm以下であり、及び、
     下記の手順に従って測定される波長が455nmの励起光に対する内部量子効率が75%以上である、
    α型サイアロン蛍光体。
    (手順)
    (1)当該α型サイアロン蛍光体を試料として用い、その試料を凹型セルに表面が平滑になるように充填する。その凹型セルを積分球の開口部に取り付けた後、積分球内に、発光光源から所定波長の単色光を、励起光として導入する。
     25℃において、凹型セル内の試料に励起光を照射し、試料からのスペクトルを分光光度計で測定する。得られたスペクトルデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出する。
    (2)凹型セルの代わりに、反射率が99%の標準反射板を使用した以外は、上記(1)と同様にして、標準反射板を積分球の開口部に取り付け、励起光を標準反射板に照射し、波長455nmの励起光のスペクトルを測定し、得られたスペクトルデータから、励起光フォトン数(Qex)を算出する。
     下記式に基づいて、上記の内部量子効率を求める。
    内部量子効率(%)=(Qem/(Qex-Qref))×100
    An α-type sialon phosphor containing α-type sialon particles.
    In the volume frequency particle size distribution of the α-type Sialon phosphor measured by the laser diffraction / scattering method, the particle size having a cumulative value of 5% is D5, the particle size having a cumulative value of 50% is D50, and the particle size having a 98% value is D98. When
    ((D98-D5) / D50) is 1.00 or more and 8.00 or less.
    D50 is 10 μm or less, and
    The internal quantum efficiency for excitation light with a wavelength of 455 nm measured according to the procedure below is 75% or more.
    α-type sialone phosphor.
    (procedure)
    (1) The α-type sialon phosphor is used as a sample, and the sample is filled in a concave cell so that the surface is smooth. After the concave cell is attached to the opening of the integrating sphere, monochromatic light having a predetermined wavelength is introduced into the integrating sphere as excitation light from a light emitting source.
    At 25 ° C., the sample in the concave cell is irradiated with excitation light, and the spectrum from the sample is measured with a spectrophotometer. From the obtained spectral data, the number of excited reflected light photons (Qref) and the number of fluorescent photons (Qem) are calculated.
    (2) The standard reflector is attached to the opening of the integrating sphere in the same manner as in (1) above, except that a standard reflector having a reflectance of 99% is used instead of the concave cell, and the excitation light is reflected as standard. The plate is irradiated, the spectrum of the excitation light having a wavelength of 455 nm is measured, and the number of excitation light photons (Qex) is calculated from the obtained spectrum data.
    The above internal quantum efficiency is obtained based on the following equation.
    Internal quantum efficiency (%) = (Qem / (Qex-Qref)) x 100
  2.  請求項1に記載のα型サイアロン蛍光体であって、
     励起光の波長を455nmから700nmに変更し、励起光フォトン数(Qex)、励起反射光フォトン数(Qref)は695~710nmの波長範囲のスペクトルから算出した以外は上記の手順と同様にして、下記の式に従って求められる、波長700nmの励起光に対する光吸収率が10%以下である、α型サイアロン蛍光体。
    光吸収率=(%)((Qex-Qref)/Qex)×100
    The α-type sialone phosphor according to claim 1.
    The wavelength of the excitation light was changed from 455 nm to 700 nm, and the number of excitation light photons (Qex) and the number of excitation reflected light photons (Qref) were calculated in the same manner as in the above procedure except that they were calculated from the wavelength range of 695 to 710 nm. An α-type sialone phosphor having a light absorption rate of 10% or less with respect to excitation light having a wavelength of 700 nm, which is determined according to the following formula.
    Light absorption rate = (%) ((Qex-Qref) / Qex) × 100
  3.  請求項1又は2に記載のα型サイアロン蛍光体であって、
     波長800nmの励起光に対する拡散反射率が90%以上である、α型サイアロン蛍光体。
    The α-type sialone phosphor according to claim 1 or 2.
    An α-type sialone phosphor having a diffuse reflectance of 90% or more with respect to excitation light having a wavelength of 800 nm.
  4.  請求項1~3のいずれか一項に記載のα型サイアロン蛍光体であって、
     前記α型サイアロン粒子が、下記の一般式(1)で表されるEu元素を含有するα型サイアロンで構成される、α型サイアロン蛍光体。
    (M)m(1-x)/p(Eu)mx/2(Si)12-(m+n)(Al)m+n(O)(N)16-n ・・一般式(1)
    (上記一般式(1)中、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素を表し、pはM元素の価数、0<x<0.5、1.5≦m≦4.0、0≦n≦2.0を表す。)
    The α-type sialone phosphor according to any one of claims 1 to 3.
    An α-type sialone phosphor in which the α-type sialon particles are composed of an α-type sialon containing an Eu element represented by the following general formula (1).
    (M) m (1-x) / p (Eu) mx / 2 (Si) 12- (m + n) (Al) m + n (O) n (N) 16-n ... General formula (1)
    (In the above general formula (1), M represents one or more elements selected from the group consisting of Li, Mg, Ca, Y and lanthanide elements (excluding La and Ce), and p is the valence of the M element. Represents 0 <x <0.5, 1.5 ≦ m ≦ 4.0, 0 ≦ n ≦ 2.0)
  5.  請求項1~4のいずれか一項に記載のα型サイアロン蛍光体であって、
     レーザー回折散乱法で測定される当該α型サイアロン蛍光体の体積頻度粒度分布において、累積値が90%となる粒子径をD90としたとき、
     D90が、5.5μm以上35.0μm以下である、α型サイアロン蛍光体。
    The α-type sialone phosphor according to any one of claims 1 to 4.
    In the volume frequency particle size distribution of the α-type Sialon phosphor measured by the laser diffraction / scattering method, when the particle size at which the cumulative value is 90% is D90,
    An α-type sialone phosphor having a D90 of 5.5 μm or more and 35.0 μm or less.
  6.  請求項1~5のいずれか一項に記載のα型サイアロン蛍光体であって、
     D50が、1.0μm以上10.0μm以下である、α型サイアロン蛍光体。
    The α-type sialone phosphor according to any one of claims 1 to 5.
    An α-type sialone phosphor having a D50 of 1.0 μm or more and 10.0 μm or less.
  7.  発光素子と、
     前記発光素子から照射された光を変換して発光する波長変換体と、
    を備える、発光部材であって、
     前記波長変換体は、請求項1~6のいずれか一項に記載のαサイアロン蛍光体を有する、
    発光部材。
    Light emitting element and
    A wavelength converter that converts the light emitted from the light emitting element and emits light,
    Is a light emitting member
    The wavelength converter has the α-sialon phosphor according to any one of claims 1 to 6.
    Light emitting member.
  8.  請求項7に記載の発光部材を備える、発光装置。 A light emitting device including the light emitting member according to claim 7.
PCT/JP2020/017774 2019-05-23 2020-04-24 α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE WO2020235297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021520671A JPWO2020235297A1 (en) 2019-05-23 2020-04-24
KR1020217041700A KR20220013389A (en) 2019-05-23 2020-04-24 α-sialon phosphor, light emitting member and light emitting device
CN202080037362.1A CN113874468A (en) 2019-05-23 2020-04-24 Alpha-sialon phosphor, light-emitting member, and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019097116 2019-05-23
JP2019-097116 2019-05-23

Publications (1)

Publication Number Publication Date
WO2020235297A1 true WO2020235297A1 (en) 2020-11-26

Family

ID=73458424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017774 WO2020235297A1 (en) 2019-05-23 2020-04-24 α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE

Country Status (4)

Country Link
JP (1) JPWO2020235297A1 (en)
KR (1) KR20220013389A (en)
CN (1) CN113874468A (en)
WO (1) WO2020235297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745835A (en) * 2021-01-26 2021-05-04 厦门大学 Small-particle-size high-quantum-efficiency nitride fluorescent powder, preparation method and application thereof, light-emitting device and display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2006257353A (en) * 2005-03-18 2006-09-28 Fujikura Ltd Powdered phosphor, method for producing the same, luminescent device, and lighting system
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
WO2010087348A1 (en) * 2009-01-27 2010-08-05 電気化学工業株式会社 α-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND LIGHT-EMITTING DEVICE
WO2013147066A1 (en) * 2012-03-29 2013-10-03 宇部興産株式会社 Oxynitride phosphor powder
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
WO2015115640A1 (en) * 2014-02-03 2015-08-06 宇部興産株式会社 Acid nitride phosphor powder and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133352A1 (en) 2001-07-16 2003-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Lighting unit with at least one LED as a light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2006257353A (en) * 2005-03-18 2006-09-28 Fujikura Ltd Powdered phosphor, method for producing the same, luminescent device, and lighting system
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
WO2010087348A1 (en) * 2009-01-27 2010-08-05 電気化学工業株式会社 α-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND LIGHT-EMITTING DEVICE
WO2013147066A1 (en) * 2012-03-29 2013-10-03 宇部興産株式会社 Oxynitride phosphor powder
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
WO2015115640A1 (en) * 2014-02-03 2015-08-06 宇部興産株式会社 Acid nitride phosphor powder and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745835A (en) * 2021-01-26 2021-05-04 厦门大学 Small-particle-size high-quantum-efficiency nitride fluorescent powder, preparation method and application thereof, light-emitting device and display device

Also Published As

Publication number Publication date
CN113874468A (en) 2021-12-31
JPWO2020235297A1 (en) 2020-11-26
TW202113034A (en) 2021-04-01
KR20220013389A (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP7312187B2 (en) Phosphor and light emitting device
KR101115855B1 (en) Fluorescent substance and process for producing the same, and luminescent element using the same
WO2014077240A1 (en) Phosphor, light-emitting element and lighting device
KR20110105777A (en) &amp;alpha;-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND LIGHT-EMITTING DEVICE
JP7303822B2 (en) Phosphor and light emitting device
WO2012033157A1 (en) Β-sialon and light-emitting device
KR102336244B1 (en) Phosphor powders, composites and light emitting devices
WO2020235297A1 (en) α-SIALON FLUORESCENT SUBSTANCE, LIGHT-EMITTING MEMBER, AND LIGHT-EMITTING DEVICE
US11434422B2 (en) Phosphor powder, composite, and light-emitting device
CN112789343B (en) Phosphor plate and light emitting device using the same
WO2017155111A1 (en) Phosphor, light-emitting element, and light-emitting device
JPWO2019073864A1 (en) Red phosphor and light emitting device
JP7416995B1 (en) α-type sialon phosphor and light emitting device
JP7252186B2 (en) Phosphor powders, composites and light-emitting devices
WO2022102512A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
WO2022102503A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
WO2022123997A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
WO2022102511A1 (en) Phosphor powder, light-emitting device, image display device, and illumination device
TW202342698A (en) Eu-activated β-sialon phosphor particle, β-sialon phosphor powder and light-emitting device
CN116997634A (en) Phosphor powder, composite, and light-emitting device
CN114026201A (en) Phosphor plate and light emitting device using the same
TW202140750A (en) Phosphor powder, composite, light-emitting device and method for producing phosphor powder
JP2020164798A (en) Fluorescent powder, complex and light emitting device
CN113993974A (en) Phosphor plate and light emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041700

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20809272

Country of ref document: EP

Kind code of ref document: A1