WO2017155111A1 - Phosphor, light-emitting element, and light-emitting device - Google Patents

Phosphor, light-emitting element, and light-emitting device Download PDF

Info

Publication number
WO2017155111A1
WO2017155111A1 PCT/JP2017/009792 JP2017009792W WO2017155111A1 WO 2017155111 A1 WO2017155111 A1 WO 2017155111A1 JP 2017009792 W JP2017009792 W JP 2017009792W WO 2017155111 A1 WO2017155111 A1 WO 2017155111A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
mass
sialon
less
Prior art date
Application number
PCT/JP2017/009792
Other languages
French (fr)
Japanese (ja)
Inventor
紗緒梨 井之上
智宏 野見山
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2018504620A priority Critical patent/JP6970658B2/en
Priority to KR1020187029379A priority patent/KR102399783B1/en
Priority to CN201780016758.6A priority patent/CN108779394A/en
Publication of WO2017155111A1 publication Critical patent/WO2017155111A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a phosphor.
  • the present invention also relates to a light emitting element including a phosphor.
  • the present invention relates to a light emitting device including a light emitting element.
  • Patent Documents 2 to 4 Improvement in luminance and shortening of the fluorescence spectrum have been studied, and Li- ⁇ sialon phosphors using Li + as metal ions for stabilizing the crystal structure have been proposed (Patent Documents 2 to 4). 4).
  • the luminance of the light emitting device was improved and the wavelength was shortened by providing the Li- ⁇ sialon phosphor compared with the light emitting device using the Ca- ⁇ sialon phosphor.
  • Patent Document 5 There has been a new problem that the luminous efficiency of the light emitting device is lowered due to deterioration of the resin that is the sealing material of the LED package, which is considered to be caused by ionization of the impurity element contained in the phosphor.
  • a CASN phosphor which is an oxynitride phosphor similar to ⁇ -sialon, which is a kind of red-emitting phosphor, has a halogen element that is not an element constituting a crystal phase. It is also known that elements other than the elements constituting the crystal phase do not necessarily have an adverse effect, as reported in that high luminous efficiency can be obtained.
  • JP 2002-363554 A International Publication No. 2007/004493 International Publication No. 2010/018873 JP 2010-202738 A JP 2009-224754 A JP 2010-188771 A Special table 2012-512307 gazette
  • An object of the present invention is to provide a light emitting device having high fluorescence intensity and little reduction in luminous efficiency even when used for a long time, and a phosphor therefor.
  • One aspect of the present invention is an Eu-activated Li- ⁇ sialon-based phosphor having an F content of 20 ppm by mass or less and a total content of P and Na of 10 ppm by mass or less.
  • the phosphor is such that the ratio of ⁇ -sialon crystals to the phase is 95% by mass or more.
  • the total content of P and Na is 5 mass ppm or less.
  • the Li content is 1.8% by mass or more and 3% by mass or less.
  • the Eu content is 0.1% by mass or more and 1.5% by mass or less.
  • the O content is 0.4 mass% or more and 1.3 mass% or less.
  • the average primary particle size is 7 ⁇ m or more and 35 ⁇ m or less.
  • the present invention is a light emitting element including the phosphor according to the present invention and a light emitting light source that irradiates the phosphor with excitation light.
  • the light emitting light source is a light emitting diode or a laser diode.
  • the luminous flux retention is 95% or more when left at a current of 150 mA for 1000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85%.
  • the present invention is a light emitting device including the light emitting element according to the present invention.
  • the content of F, Na, and P was reduced while increasing the proportion of ⁇ sialon crystals relative to the total crystal phase.
  • the present invention relates to an Eu-activated Li- ⁇ sialon-based phosphor.
  • Li and Eu penetrate into the voids in the crystal so that part of the Si-N bond of the ⁇ -silicon nitride crystal is replaced by Al-N bond and Al-O bond, and electrical neutrality is maintained.
  • the m value and the n value correspond to the substitution rate to the Al—N bond and Al—O bond, respectively.
  • the reason why Li + is used in the present invention is not for the purpose of shortening the conventional wavelength, but to obtain a higher fluorescence intensity than that of Ca 2+ .
  • the solid solution composition range of ⁇ -sialon is limited not only by the number of solid solution sites of the stabilizing cation, but also by thermodynamic stability according to the stabilizing cation.
  • the range of m value that can maintain the ⁇ -sialon structure is 0.5 or more and 2 or less
  • the range of n value is 0 or more and 0.5 or less.
  • Li content in the phosphor of the present invention is too small, the progress of grain growth in the phosphor firing step tends to be very slow, and it is difficult to obtain large particles with high fluorescence intensity. If it is too large, LiSi 2 N 3 It is preferable that it is 1.8 mass% or more and 3 mass% or less since it exists in the tendency to produce
  • Li content can be adjusted with the raw material mixing
  • Eu content in the phosphor of the present invention is too small, the contribution to light emission tends to be small and the fluorescence intensity tends to be low. If too large, the fluorescence intensity due to fluorescence concentration quenching due to energy transfer between Eu 2+ is low. Since it tends to be low, it is preferably 0.1% by mass or more and 1.5% by mass or less.
  • Eu content can be adjusted with the raw material mixing
  • the oxygen (O) content in the phosphor of the present invention is preferably 0.4% by mass or more and 1.3% by mass or less. This is because a phosphor with too little oxygen content has little crystal grain growth in the manufacturing process and high fluorescence intensity cannot be obtained. If the oxygen content is too much, the fluorescence spectrum becomes broad and sufficient. This is because the fluorescence intensity cannot be obtained.
  • the content of F is preferably 20 mass ppm or less, and 10 mass ppm or less. More preferably, it is more preferably 5 ppm by mass or less, for example, 1 to 20 ppm by mass.
  • F is an element that is easily mixed during acid treatment. It is difficult to sufficiently improve the light emission characteristics by only the acid treatment, and it is important to remove F after the acid treatment in order to obtain excellent luminescence efficiency.
  • the total content of P and Na is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, still more preferably 2 mass ppm or less, for example, 1 to 5 ppm.
  • the mass can be ppm.
  • the classification process For the classification, wet classification using sodium hexametaphosphate as a dispersant can be adopted, but in this method, P and Na are likely to be mixed. Therefore, in this case, it is difficult to improve the light emission characteristics sufficiently only by classification, and it is important to remove Na and P after classification to obtain excellent emission efficiency.
  • the classification process may employ wet classification using an alkaline solvent, or may be dry classification. .
  • the phosphor of the present invention is selected from the group consisting of Mg, Ca, Y and lanthanide elements (excluding La, Ce, Eu) for the purpose of fine-tuning the fluorescence characteristics. Substitution may be performed while maintaining electrical neutrality with one or more substitution elements. Therefore, in one embodiment of the Eu-activated Li- ⁇ sialon-based phosphor, Li is partially substituted by one or more of such substitution elements.
  • the crystal phase present in the phosphor is not limited to ⁇ sialon single phase, but also a crystal phase such as silicon nitride, aluminum nitride, lithium silicon nitride and solid solutions thereof. It can also be included.
  • the proportion of ⁇ sialon in the phosphor is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 98% by mass or more, for example, 95 to 99% by mass. it can.
  • the average primary particle size in the phosphor of the present invention is too small, the fluorescence intensity tends to be low, and if it is too large, the chromaticity of the emitted color when the phosphor is mounted on the light emitting surface of the LED may vary or emit light. Since uneven color tends to occur, it is preferably 7 ⁇ m or more and 35 ⁇ m or less.
  • the average primary particle diameter here refers to a volume-based median diameter (D50) determined by a laser diffraction / scattering method.
  • the phosphor according to the present invention can be manufactured through a raw material mixing step, a firing step, an acid treatment step, and a washing step.
  • the classification step is preferably performed before, after, or both before and after the washing step, and more preferably, the classification step is performed both before and after the washing step.
  • phosphor raw materials other than lithium nitride powder such as silicon nitride powder, aluminum nitride powder, and europium oxide are mixed at a desired ratio.
  • mixing is preferably performed by wet mixing. After the wet mixing, a premixed powder is obtained through solvent removal, drying and crushing. The premixed powder is mixed with the lithium nitride powder at a desired ratio to obtain a raw material mixed powder. Mixing is preferably performed in a nitrogen atmosphere or the like in order to suppress hydrolysis.
  • the crucible used for firing is preferably made of a material that is stable in a high-temperature atmosphere, and is preferably made of boron nitride, carbon, or a refractory metal such as molybdenum or tantalum.
  • the firing atmosphere is not particularly limited, but is usually performed in an inert gas atmosphere or a reducing atmosphere. Only one type of inert gas or reducing gas may be used, or two or more types may be used in any combination and ratio. Examples of the inert gas or reducing gas include hydrogen, nitrogen, argon, ammonia, and the like. Among these, a nitrogen atmosphere is preferable.
  • the pressure of the firing atmosphere is selected according to the firing temperature.
  • the firing temperature is preferably 1650 to 1900 ° C. If the firing time is short, there are many crystal defects and unreacted residual amount of the base crystal, and if the firing time is long, it is not preferable in view of industrial productivity. Therefore, it is preferably 2 to 24 hours.
  • the obtained Eu-activated Li- ⁇ sialon may be classified to a desired particle size as necessary.
  • Eu-activated Li- ⁇ sialon obtained by calcination generally has a low ⁇ sialon crystal ratio, it is difficult to exhibit excellent fluorescence intensity. For this reason, it is preferable to increase the crystal ratio of ⁇ -sialon by acid treatment with a mixed solution of hydrofluoric acid and nitric acid.
  • the crystal ratio of ⁇ sialon can be increased.
  • F Impurities such as Na and P adhere to the phosphor, and on the contrary, they become impurities and cause a decrease in luminous efficiency after long-time use. Therefore, after the acid treatment or the elutriation classification treatment, it is effective to remove impurities by dispersing and washing the phosphor with an ultrasonic homogenizer in a solvent such as ion-exchanged water.
  • a light emitting element that includes a light emitting light source and a phosphor, and the phosphor is the above-described phosphor.
  • a monochromatic LED or LD having a peak intensity of emission wavelength of 240 nm or more and 480 nm or less is preferable.
  • Monochromatic light having a peak wavelength of the light source of 240 nm or more and 480 nm or less is the wavelength range of blue LEDs most frequently used in actual use, and Li- ⁇ sialon has high fluorescence intensity when excited at a wavelength in the range. This is because light is emitted.
  • the light-emitting element according to the present invention can have a luminous flux retention ratio of 95% or more when left at a current of 150 mA for 1000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85%.
  • the present invention is a light emitting device including the light emitting element.
  • the light emitting device include an information display device used outdoors such as a signal and an outdoor display device, and a lighting device replacing a headlight, an incandescent lamp, and a fluorescent lamp for an automobile.
  • a light emitting device including a phosphor and an LED according to the present invention can be manufactured as follows, for example.
  • the phosphor according to the present invention is mixed with a sealing material to prepare a slurry.
  • the slurry can be adjusted by mixing at a ratio of 30 to 50 parts by mass with respect to 100 parts by mass of the sealing material.
  • the sealing material include thermoplastic resins, thermosetting resins, and photocurable resins.
  • methacrylic resin such as polymethylmethacrylate
  • styrene resin such as polystyrene and styrene-acrylonitrile copolymer
  • polycarbonate resin polyester resin
  • phenoxy resin butyral resin
  • polyvinyl alcohol Cellulose resins such as cellulose acetate butyrate
  • epoxy resins epoxy resins
  • phenol resins silicone resins.
  • inorganic materials such as metal alkoxides, ceramic precursor polymers or solutions containing metal alkoxides are hydrolyzed by a sol-gel method or a combination thereof, and solidified inorganic materials such as siloxane bonds. It is also possible to use an inorganic material.
  • a melt-processed glass can be used as long as it is a sealing part that can be attached externally without directly touching the LED chip (for example, an external cap, a dome-shaped sealing part, etc.).
  • a sealing material may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • a resin having thermosetting properties and fluidity at room temperature for reasons of dispersibility and moldability.
  • a silicone resin is used as the resin having thermosetting properties and fluidity at room temperature.
  • trade names: JCR6175, OE6631, OE6635, OE6636, OE6650, etc., manufactured by Toray Dow Corning Co., Ltd. can be mentioned.
  • 3 to 4 ⁇ L of the slurry is injected into a top view type package in which a blue LED chip having a peak wavelength at 460 nm is mounted.
  • the top view type package into which this slurry has been injected is heated at a temperature in the range of 140 to 160 ° C. for a period of 2 to 2.5 hours to cure the slurry.
  • a light-emitting element that absorbs light in the wavelength range of 420 to 480 nm and emits light having a wavelength of more than 480 nm and not more than 800 nm can be manufactured.
  • Example 1 A method for manufacturing the phosphor of Example 1 will be described. The phosphor was manufactured through a raw material mixing step and a firing step.
  • the raw material mixed powder was obtained.
  • the raw material mixed powder is filled in a boron nitride crucible in a glove box, and baked at 1800 ° C. for 8 hours in a nitrogen atmosphere with a gauge pressure of 0.8 MPa in an electric furnace of a carbon heater. Li- ⁇ sialon was obtained.
  • Example 2 In Example 2, the following steps were added before the cleaning step in the manufacturing method of Example 1.
  • Example 3 is a phosphor manufactured under the same conditions as in Example 2 except that the manufacturing method of Example 2 was dispersed for 1 hour during the cleaning process using an ultrasonic homogenizer.
  • Example 4 is a phosphor produced under the same conditions as in Example 2 except that the manufacturing method of Example 2 was dispersed for 2 hours during the cleaning step using an ultrasonic homogenizer.
  • Example 5 In Example 5, the phosphor after the acid treatment step in the production method of Example 2 was mixed with ion-exchanged water and ammonia water from a washing treatment in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant.
  • Example 6 is a phosphor manufactured under the same conditions as in Example 5 except that the cleaning process was performed before the wet classification process in the manufacturing method of Example 5.
  • Comparative Example 1 was produced by the same production method except that the acid treatment step and the washing step were omitted in the production step of Example 1.
  • Comparative Example 2 was manufactured by the same manufacturing method except that the cleaning process was omitted in the manufacturing process of Example 1.
  • Comparative Example 3 was produced by the same production method except that the acid treatment step and the washing step were omitted in the production step of Example 2.
  • Comparative Example 4 was manufactured by the same manufacturing method except that the cleaning process was omitted in the manufacturing process of Example 2.
  • Comparative Example 5 was produced by the same production method except that the acid treatment step was omitted in the production method of Example 2.
  • Comparative Example 6 was manufactured by the same manufacturing method except that the cleaning step was omitted in the manufacturing method of Example 5.
  • the comparative example 7 differs from the comparative example 4 in that a Ca- ⁇ sialon-based phosphor is manufactured by using calcium nitride powder (Ca 3 N 2 ) as a lithium nitride (Li 3 N) raw material.
  • This premixed powder was put in a glove box under a nitrogen atmosphere and mixed with calcium nitride powder to obtain a raw material mixed powder.
  • Each phosphor according to the example and the comparative example after the washing step is mixed at a ratio of 30 parts by mass with respect to 100 parts by mass of silicone resin (manufactured by Toray Dow Corning Co., Ltd., trade name: JCR6175, etc.) Adjusted. Thereafter, 3 to 4 ⁇ L of the slurry was injected into a top view type package on which a blue LED chip having a peak wavelength at 460 nm was mounted. The top view type package into which this slurry was injected was heated at 150 ° C. for 2 hours to cure the slurry, thereby manufacturing a light emitting device.
  • silicone resin manufactured by Toray Dow Corning Co., Ltd., trade name: JCR6175, etc.
  • Table 1 shows the evaluation of each phosphor according to Examples and Comparative Examples.
  • Table 1 shows an impurity content (unit: mass ppm), a median diameter (unit: ⁇ m), a ratio of ⁇ sialon crystals to all crystal phases (unit: mass%), and a peak wavelength (unit: unit) for Examples and Comparative Examples. nm), fluorescence intensity (unit:%), and luminous flux retention (unit:%) of the LED.
  • the crystal phase was identified by the powder X-ray diffraction (XRD) using a CuK alpha ray using the X-ray-diffraction apparatus (UrigaIV by Rigaku Corporation).
  • XRD powder X-ray diffraction
  • the X-ray diffraction patterns of the phosphors obtained in Examples 1 to 6 and Comparative Examples 1 to 6 showed the same diffraction pattern as that of ⁇ sialon crystals, and it was confirmed that the main crystal phase was ⁇ sialon. .
  • the mass ratio of the ⁇ sialon crystal to the total crystal phase was calculated.
  • the diffraction pattern of ⁇ sialon was also observed in Comparative Example 7, confirming that the main crystal phase was ⁇ sialon.
  • the median diameter (D50) (average primary particle diameter) of each phosphor according to Examples and Comparative Examples was measured as follows. First, a mixture of hydrofluoric acid (concentration in the range of 46 to 48 g / 100 ml) and nitric acid (concentration 60 g / 100 ml) at a ratio of 1: 1 was diluted 4 times with distilled water to prepare a treatment solution. While heating this processing liquid to 80 degreeC and stirring, the fluorescent substance of an Example or a comparative example was added and disperse
  • the recovered insoluble powder was washed with water and dried.
  • the particle size distribution was measured with a laser diffraction scattering type particle size distribution analyzer (LS 13 320, manufactured by Beckman Coulter, Inc.), and the 50% cumulative particle size based on volume was determined as the median diameter (D50). It was.
  • fluorescence measurement was performed using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation) corrected with rhodamine B and a sub-standard light source.
  • F-7000 spectrofluorometer
  • rhodamine B corrected with rhodamine B and a sub-standard light source.
  • a solid sample holder attached to the photometer was used, and a fluorescence spectrum and a peak wavelength at an excitation wavelength of 455 nm were measured.
  • the fluorescence intensity was calculated from the product of fluorescence spectrum intensity and CIE standard relative luminous efficiency. In addition, since it changes with measuring apparatuses and conditions, a unit is arbitrary and it compared by the relative in the Example and comparative example which were measured on the same conditions. As a reference, the fluorescence intensity of Example 4 was set to 100%. 85% or more is an acceptable value.
  • the light beam change was measured about the light emitting element provided with the fluorescent substance particle which concerns on an Example and a comparative example.
  • the change in luminous flux was measured by leaving the light emitting element at a high temperature and high humidity of 85 ° C. and 85% relative humidity at a current of 150 mA for a predetermined time, and then measuring the total luminous flux (Half Moon: HH41-0773 manufactured by Otsuka Electronics Co., Ltd.).
  • -1) was used to measure the change in the luminous flux of the fluorescence emitted from the light emitting device.
  • this shows the ratio when the current immediately after the start of energization as 100% from the value of the light flux for each energization time as the luminous flux retention rate, and it is preferably 95% or more after 1000 hours.
  • the Li- ⁇ sialon phosphors of Examples 1 to 6 had a lower impurity content and a higher proportion of ⁇ sialon crystals than the comparative examples. As a result, a high intensity of fluorescence was obtained, and even when used for a long time, the light emission efficiency was small and the light emitting device had few electrical defects.
  • the light-emitting elements using the phosphors according to Examples 1 to 6 since the content of the impurity element contained in the phosphor is extremely small, the occurrence of inhibition of resin curing caused by the impurity element of the phosphor is suppressed. Therefore, the possibility of causing an electrical abnormality such as a short circuit is extremely small and the life is long.
  • Comparative Example 1 had low fluorine, sodium, and phosphorus contents, but the proportion of ⁇ sialon crystals was low, so the fluorescence intensity was low.
  • Comparative Example 2 the sodium and phosphorus contents were low, but the fluorine content was high and the light flux retention was low.
  • Comparative Example 3 although the fluorine content was small, the sodium and phosphorus contents were large, the light flux retention was low, and the proportion of ⁇ sialon crystals was also low.
  • the luminous flux retention was low because of the high phosphorus, sodium, and fluorine contents.
  • Comparative Example 5 the content of phosphorus, sodium, and fluorine was small, but the proportion of ⁇ -sialon crystals was low.
  • the luminous flux retention was reduced as compared with the inventive examples.
  • the sodium and phosphorus contents were small, but the fluorine content was large, and the luminous flux retention was low. For this reason, the luminous flux retention was reduced as compared with the inventive examples.
  • the comparative example 7 had many fluorine, sodium, and phosphorus content, the light beam retention rate was high. In other words, the presence of the impurity element does not necessarily have an adverse effect, and the deterioration of the characteristics due to the presence of the impurity element is peculiar to the Li- ⁇ sialon phosphor.

Abstract

Provided is a light-emitting device having high fluorescence intensity and minimal decrease in light-emitting efficiency even when used for a long time, and a phosphor for the same. The present invention is: an Eu-activated Li-α-sialon-based phosphor, the F content of the phosphor being 20 mass ppm or less, the total content of P and Na being 10 mass ppm or less, and the ratio of α-sialon crystals with respect to the entire crystal phase being 95 mass% or greater; and a light-emitting device provided with the phosphor.

Description

蛍光体、発光素子及び発光装置Phosphor, light emitting element and light emitting device
 本発明は、蛍光体に関する。また、本発明は蛍光体を備える発光素子に関する。更に本発明は発光素子を備える発光装置に関する。 The present invention relates to a phosphor. The present invention also relates to a light emitting element including a phosphor. Furthermore, the present invention relates to a light emitting device including a light emitting element.
 従来、橙色光を発光する蛍光体として、一般式:CaxEuySi12-(m+n)Al(m+n)n16-nで表される、結晶構造を安定化させるための金属イオンとしてCa2+を用いたCa―αサイアロン蛍光体が知られており、高い発光効率が得られている(特許文献1参照)。このCa2+を用いたαサイアロン蛍光体を備える発光装置では、長時間使用した際に、発光装置の発光効率の低下が生じるといった問題はなかった。 Conventionally, as a phosphor emitting orange light, the general formula: Ca x Eu y Si 12- ( m + n) Al (m + n) is represented by O n N 16-n, to stabilize the crystal structure Ca-α sialon phosphors using Ca 2+ as the metal ion are known, and high luminous efficiency is obtained (see Patent Document 1). In the light emitting device including the α sialon phosphor using Ca 2+ , there is no problem that the light emission efficiency of the light emitting device is lowered when used for a long time.
 これに対して近年、輝度向上や蛍光スペクトルの短波長化が検討され、結晶構造を安定化させるための金属イオンとしてLi+を用いたLi-αサイアロン蛍光体が提案された(特許文献2乃至4参照)。これによりCa-αサイアロン蛍光体を使用した発光装置と比較して、Li-αサイアロン蛍光体を備えることで発光装置の輝度の改善や短波長化はなされたが、長時間使用した際に、蛍光体に含まれる不純物元素のイオン化が原因と考えられるLEDパッケージの封止材である樹脂の劣化により、発光装置の発光効率が低下するという問題を新たに有していた(特許文献5参照)。 On the other hand, in recent years, improvement in luminance and shortening of the fluorescence spectrum have been studied, and Li-α sialon phosphors using Li + as metal ions for stabilizing the crystal structure have been proposed (Patent Documents 2 to 4). 4). As a result, the luminance of the light emitting device was improved and the wavelength was shortened by providing the Li-α sialon phosphor compared with the light emitting device using the Ca-α sialon phosphor. There has been a new problem that the luminous efficiency of the light emitting device is lowered due to deterioration of the resin that is the sealing material of the LED package, which is considered to be caused by ionization of the impurity element contained in the phosphor (see Patent Document 5). .
 一方で、赤色発光蛍光体の一種であるαサイアロンと同様の酸窒化物系蛍光体であるCASN系蛍光体については特許文献6乃至7において、結晶相を構成する元素ではないハロゲン元素を有することで高い発光効率が得られることが報告されているように、結晶相を構成する元素以外の元素が必ずしも悪影響を与えるわけではないことも知られている。 On the other hand, in Patent Documents 6 to 7, a CASN phosphor, which is an oxynitride phosphor similar to α-sialon, which is a kind of red-emitting phosphor, has a halogen element that is not an element constituting a crystal phase. It is also known that elements other than the elements constituting the crystal phase do not necessarily have an adverse effect, as reported in that high luminous efficiency can be obtained.
特開2002-363554号公報JP 2002-363554 A 国際公開第2007/004493号International Publication No. 2007/004493 国際公開第2010/018873号International Publication No. 2010/018873 特開2010-202738号公報JP 2010-202738 A 特開2009-224754号公報JP 2009-224754 A 特開2010-18771号公報JP 2010-188771 A 特表2012-512307号公報Special table 2012-512307 gazette
 このように、Li-αサイアロン系蛍光体の特性改善は種々の検討がなされているものの、長時間の使用による発光効率の低下に対しては未だ改善の余地が残されている。本発明の目的は、蛍光強度が高く、長時間の使用があっても発光効率の低下が少ない発光装置、並びにそのための蛍光体を提供することにある。 Thus, although various studies have been made to improve the characteristics of the Li-α sialon-based phosphor, there is still room for improvement with respect to a decrease in luminous efficiency due to long-term use. An object of the present invention is to provide a light emitting device having high fluorescence intensity and little reduction in luminous efficiency even when used for a long time, and a phosphor therefor.
 本発明は一側面において、Eu付活Li-αサイアロン系蛍光体であって、Fの含有量が20質量ppm以下、且つ、PとNaの総含有量が10質量ppm以下であり、全結晶相に対するαサイアロン結晶の割合が95質量%以上である蛍光体である。 One aspect of the present invention is an Eu-activated Li-α sialon-based phosphor having an F content of 20 ppm by mass or less and a total content of P and Na of 10 ppm by mass or less. The phosphor is such that the ratio of α-sialon crystals to the phase is 95% by mass or more.
 本発明に係る蛍光体の一実施形態においては、PとNaの総含有量が5質量ppm以下である。 In one embodiment of the phosphor according to the present invention, the total content of P and Na is 5 mass ppm or less.
 本発明に係る蛍光体の別の一実施形態においては、Li含有量が1.8質量%以上3質量%以下である。 In another embodiment of the phosphor according to the present invention, the Li content is 1.8% by mass or more and 3% by mass or less.
 本発明に係る蛍光体の更に別の一実施形態においては、Eu含有量が0.1質量%以上1.5質量%以下である。 In yet another embodiment of the phosphor according to the present invention, the Eu content is 0.1% by mass or more and 1.5% by mass or less.
 本発明に係る蛍光体の更に別の一実施形態においては、O含有量が0.4質量%以上1.3質量%以下である。 In yet another embodiment of the phosphor according to the present invention, the O content is 0.4 mass% or more and 1.3 mass% or less.
 本発明に係る蛍光体の更に別の一実施形態においては、平均一次粒子径が7μm以上35μm以下である。 In yet another embodiment of the phosphor according to the present invention, the average primary particle size is 7 μm or more and 35 μm or less.
 本発明は別の一側面において、本発明に係る蛍光体と、当該蛍光体に励起光を照射する発光光源とを有する発光素子である。 In another aspect, the present invention is a light emitting element including the phosphor according to the present invention and a light emitting light source that irradiates the phosphor with excitation light.
 本発明に係る発光素子の一実施形態においては、前記発光光源は発光ダイオード又はレーザーダイオードである。 In one embodiment of the light emitting device according to the present invention, the light emitting light source is a light emitting diode or a laser diode.
 本発明に係る発光素子の別の一実施形態においては、85℃の温度且つ85%の相対湿度の条件下とし、通電150mAで1000時間放置したときの光束保持率が95%以上である。 In another embodiment of the light emitting device according to the present invention, the luminous flux retention is 95% or more when left at a current of 150 mA for 1000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85%.
 本発明は更に別の一側面において、本発明に係る発光素子を備える発光装置である。 In yet another aspect, the present invention is a light emitting device including the light emitting element according to the present invention.
 本発明では、Eu付活Li-αサイアロン系蛍光体について、全結晶相に対するαサイアロン結晶の割合を高めつつ、F、Na及びPの含有量を低減した。本発明に係る蛍光体を使用することで、高い蛍光強度が得られると共に、長時間の使用があっても、発光効率の低下が少ない発光装置が得られる。 In the present invention, in the Eu-activated Li-α sialon phosphor, the content of F, Na, and P was reduced while increasing the proportion of α sialon crystals relative to the total crystal phase. By using the phosphor according to the present invention, a high fluorescence intensity can be obtained, and a light emitting device with little decrease in luminous efficiency can be obtained even when used for a long time.
 本発明は一側面において、Eu付活Li-αサイアロン系蛍光体に関する。Eu付活Li-αサイアロン系蛍光体は一般に、次式:LixEuySi12-(m+n)Alm+nn16-n(x+y≦2、m=x+2y)で表される化合物を有する蛍光体である。当該蛍光体は、α窒化ケイ素結晶のSi-N結合の一部がAl-N結合及びAl-O結合に置換され、電気的中性を保つ様に、LiとEuが結晶内の空隙に侵入固溶したものであり、m値、n値は、それぞれAl-N結合、Al-O結合への置換率に対応する。 In one aspect, the present invention relates to an Eu-activated Li-α sialon-based phosphor. Eu-activated Li-α sialon-based phosphors are generally represented by the following formula: Li x Eu y Si 12- (m + n) Al m + n On N 16-n (x + y ≦ 2, m = x + 2y) A phosphor having a compound. In this phosphor, Li and Eu penetrate into the voids in the crystal so that part of the Si-N bond of the α-silicon nitride crystal is replaced by Al-N bond and Al-O bond, and electrical neutrality is maintained. The m value and the n value correspond to the substitution rate to the Al—N bond and Al—O bond, respectively.
 本発明でLi+を用いたのは、従来の短波長化が目的ではなく、Ca2+の場合よりも高い蛍光強度を得るためである。α型サイアロンの固溶組成範囲は、前記した安定化カチオンの固溶サイト数だけでなく、安定化カチオンに応じた熱力学的安定により制限される。Li+の場合、α型サイアロン構造を維持できるm値の範囲は、0.5以上2以下、n値の範囲は、0以上0.5以下である。本発明の蛍光体におけるLi含有量は、あまりに少ないと蛍光体焼成工程における粒成長の進行が非常に遅くなって蛍光強度の高い大きな粒子が得難くなる傾向にあり、あまりに多いとLiSi23等の別の相を生成する傾向にあるため、1.8質量%以上3質量%以下であることが好ましい。Li含有量は、蛍光体の原料配合によって調整することができる。具体的にはLi含有原料としての窒化リチウムや酸化リチウムの配合比の増減で調整する。 The reason why Li + is used in the present invention is not for the purpose of shortening the conventional wavelength, but to obtain a higher fluorescence intensity than that of Ca 2+ . The solid solution composition range of α-sialon is limited not only by the number of solid solution sites of the stabilizing cation, but also by thermodynamic stability according to the stabilizing cation. In the case of Li + , the range of m value that can maintain the α-sialon structure is 0.5 or more and 2 or less, and the range of n value is 0 or more and 0.5 or less. If the Li content in the phosphor of the present invention is too small, the progress of grain growth in the phosphor firing step tends to be very slow, and it is difficult to obtain large particles with high fluorescence intensity. If it is too large, LiSi 2 N 3 It is preferable that it is 1.8 mass% or more and 3 mass% or less since it exists in the tendency to produce | generate another phase, such as. Li content can be adjusted with the raw material mixing | blending of fluorescent substance. Specifically, it adjusts by the increase / decrease of the compounding ratio of lithium nitride or lithium oxide as a Li containing raw material.
 本発明の蛍光体におけるEu含有量は、あまりに少ないと発光への寄与が小さくなって蛍光強度が低くなる傾向にあり、あまりに多いとEu2+間のエネルギー伝達による蛍光の濃度消光による蛍光強度が低くなる傾向にあるため、0.1質量%以上1.5質量%以下であることが好ましい。Eu含有量は、蛍光体の原料配合によって調整することができる。具体的にはEu含有原料の酸化ユーロピウム、窒化ユーロピウムの配合比の増減で調整する。 If the Eu content in the phosphor of the present invention is too small, the contribution to light emission tends to be small and the fluorescence intensity tends to be low. If too large, the fluorescence intensity due to fluorescence concentration quenching due to energy transfer between Eu 2+ is low. Since it tends to be low, it is preferably 0.1% by mass or more and 1.5% by mass or less. Eu content can be adjusted with the raw material mixing | blending of fluorescent substance. Specifically, it is adjusted by increasing or decreasing the compounding ratio of the europium oxide and europium nitride of the Eu-containing raw material.
 本発明の蛍光体における酸素(O)含有量は0.4質量%以上1.3質量%以下であるのが好ましい。これは、酸素含有量があまりに少ない蛍光体は製造工程において結晶粒の成長が少なく高い蛍光強度が得られないためであり、酸素含有量があまりに多いと、蛍光スペクトルがブロード化になり、十分な蛍光強度が得られないためである。 The oxygen (O) content in the phosphor of the present invention is preferably 0.4% by mass or more and 1.3% by mass or less. This is because a phosphor with too little oxygen content has little crystal grain growth in the manufacturing process and high fluorescence intensity cannot be obtained. If the oxygen content is too much, the fluorescence spectrum becomes broad and sufficient. This is because the fluorescence intensity cannot be obtained.
 長時間の使用があっても発光効率の低下が少ない蛍光体を得るためには、蛍光体の不純物元素のうち、Fの含有量が20質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることが更により好ましく、例えば1~20質量ppmとすることができる。後述するように、蛍光体のαサイアロン結晶の割合を高めて発光特性を向上させるために蛍光体を酸処理することが有効であるが、Fは酸処理時に混入しやすい元素である。酸処理のみでは十分な発光特性の向上は困難であり、酸処理を行った後に、Fを除去することが発光効率の優れた持続を得る上で重要である。 In order to obtain a phosphor with little decrease in luminous efficiency even when used for a long time, among the impurity elements of the phosphor, the content of F is preferably 20 mass ppm or less, and 10 mass ppm or less. More preferably, it is more preferably 5 ppm by mass or less, for example, 1 to 20 ppm by mass. As will be described later, it is effective to acid-treat the phosphor in order to increase the ratio of α-sialon crystals in the phosphor and improve the light emission characteristics, but F is an element that is easily mixed during acid treatment. It is difficult to sufficiently improve the light emission characteristics by only the acid treatment, and it is important to remove F after the acid treatment in order to obtain excellent luminescence efficiency.
 また、蛍光体を備える発光装置の発光効率の低下を抑え、長時間の使用があっても電気的不良の発生を少なくするためには、P及びNaの総含有量を更に制御することが望ましい。具体的には、P及びNaの総含有量は10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、2質量ppm以下であることが更により好ましく、例えば1~5質量ppmとすることができる。後述するように、蛍光体のαサイアロン結晶の割合を高めて発光特性を向上させるためには、分級により蛍光体の微粉を除去することが有効である。分級は、分散剤としてヘキサメタリン酸ナトリウムを利用した湿式分級を採用可能であるが、この方法ではP及びNaが混入しやすい。そのため、この場合は分級のみでは十分な発光特性の向上は困難であり、分級を行った後に、Na及びPを除去することが発光効率の優れた持続を得る上で重要である。分級工程は、P含有量及びNa含有量を更に制御して分級工程後の洗浄工程の負担を軽減するため、アルカリ性の溶媒を用いた湿式分級を採用してもよく、また、乾式分級でもよい。 Further, it is desirable to further control the total content of P and Na in order to suppress a decrease in light emission efficiency of a light emitting device including a phosphor and reduce the occurrence of electrical failure even when used for a long time. . Specifically, the total content of P and Na is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, still more preferably 2 mass ppm or less, for example, 1 to 5 ppm. The mass can be ppm. As will be described later, in order to improve the light emission characteristics by increasing the proportion of the α sialon crystal of the phosphor, it is effective to remove the phosphor fine powder by classification. For the classification, wet classification using sodium hexametaphosphate as a dispersant can be adopted, but in this method, P and Na are likely to be mixed. Therefore, in this case, it is difficult to improve the light emission characteristics sufficiently only by classification, and it is important to remove Na and P after classification to obtain excellent emission efficiency. In order to reduce the burden of the washing process after the classification process by further controlling the P content and the Na content, the classification process may employ wet classification using an alkaline solvent, or may be dry classification. .
 本発明の蛍光体は、蛍光特性の微調整を目的に、前記一般式のLiの一部を、Mg、Ca、Y及びランタニド元素(La、Ce、Euを除く。)からなる群から選ばれる1種以上の置換元素で電気的中性を保ちながら置換してもよい。従って、Eu付活Li-αサイアロン系蛍光体の一実施形態においては、このような置換元素の1種以上によってLiが一部置換されている。 The phosphor of the present invention is selected from the group consisting of Mg, Ca, Y and lanthanide elements (excluding La, Ce, Eu) for the purpose of fine-tuning the fluorescence characteristics. Substitution may be performed while maintaining electrical neutrality with one or more substitution elements. Therefore, in one embodiment of the Eu-activated Li-α sialon-based phosphor, Li is partially substituted by one or more of such substitution elements.
 本発明の蛍光体は、蛍光特性に影響がない限り、蛍光体中に存在する結晶相としてαサイアロン単相のみならず、窒化ケイ素、窒化アルミニウム、窒化ケイ素リチウム及びそれらの固溶体等の結晶相を含めることも可能である。しかしながら一般的には、蛍光体中のαサイアロンの割合は、95質量%以上が好ましく、97質量%以上がより好ましく、98質量%以上が更により好ましく、例えば95~99質量%とすることができる。 As long as the phosphor of the present invention does not affect the fluorescence properties, the crystal phase present in the phosphor is not limited to α sialon single phase, but also a crystal phase such as silicon nitride, aluminum nitride, lithium silicon nitride and solid solutions thereof. It can also be included. However, in general, the proportion of α sialon in the phosphor is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 98% by mass or more, for example, 95 to 99% by mass. it can.
 本発明の蛍光体における平均一次粒子径は、あまりに小さいと蛍光強度が低くなる傾向にあり、あまりに大きいとLEDの発光面へ蛍光体を搭載した際の発光色の色度にバラツキが生じたり発光色の色むらが生じたりする傾向にあるため、7μm以上35μm以下であることが好ましい。ここでの平均一次粒子径はレーザー回折・散乱法による体積基準のメジアン径(D50)を指す。 If the average primary particle size in the phosphor of the present invention is too small, the fluorescence intensity tends to be low, and if it is too large, the chromaticity of the emitted color when the phosphor is mounted on the light emitting surface of the LED may vary or emit light. Since uneven color tends to occur, it is preferably 7 μm or more and 35 μm or less. The average primary particle diameter here refers to a volume-based median diameter (D50) determined by a laser diffraction / scattering method.
 本発明に係る蛍光体は、原料の混合工程、焼成工程、酸処理工程及び洗浄工程を経ることによって製造可能である。酸処理工程後、分級工程を洗浄工程の前又は後又は前後両方に実施することが好ましく、分級工程を洗浄工程の前又は前後両方に実施することがより好ましい。 The phosphor according to the present invention can be manufactured through a raw material mixing step, a firing step, an acid treatment step, and a washing step. After the acid treatment step, the classification step is preferably performed before, after, or both before and after the washing step, and more preferably, the classification step is performed both before and after the washing step.
 まず、窒化ケイ素粉末、窒化アルミニウム粉末、酸化ユーロピウム等の窒化リチウム粉末以外の蛍光体の原料を所望の割合で混合する。混合は工業的生産性を考慮すると、湿式混合により行うことが好ましい。湿式混合の後は溶媒除去、乾燥及び解砕を経て、予混合粉末を得る。この予混合粉末を窒化リチウム粉末と所望の割合で混合することで原料混合粉末を得る。混合は加水分解を抑制するため窒素雰囲気等で行うことが好ましい。 First, phosphor raw materials other than lithium nitride powder such as silicon nitride powder, aluminum nitride powder, and europium oxide are mixed at a desired ratio. In consideration of industrial productivity, mixing is preferably performed by wet mixing. After the wet mixing, a premixed powder is obtained through solvent removal, drying and crushing. The premixed powder is mixed with the lithium nitride powder at a desired ratio to obtain a raw material mixed powder. Mixing is preferably performed in a nitrogen atmosphere or the like in order to suppress hydrolysis.
 前記原料混合粉末を焼成することでEu付活Li-αサイアロンを得ることが可能である。焼成に使用する坩堝としては、高温の雰囲気下において安定な材質で構成されることが好ましく、窒化ホウ素製、カーボン製、モリブデンやタンタルなどの高融点金属製等が好ましい。焼成雰囲気としては、特に制限されないが、通常、不活性ガス雰囲気又は還元雰囲気下で行われる。不活性ガス又は還元性ガスは、1種類のみを用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。不活性ガス又は還元性ガスとしては、水素、窒素、アルゴン、アンモニア等が挙げられるが、このうち、窒素雰囲気下であることが好ましい。焼成雰囲気の圧力は、焼成温度に応じて選択される。雰囲気圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮するとゲージ圧0.02~1.0MPa程度の加圧下で行うことが好ましい。焼成温度は、1650℃よりも低いと、母体結晶の結晶欠陥や未反応残存量が多くなり、1900℃を超えると母体が分解するので好ましくない。このため、焼成温度は1650~1900℃とすることが好ましい。焼成時間は短いと母体結晶の結晶欠陥や未反応残存量が多く、焼成時間が長くなると工業的生産性を考慮すると好ましくない。そのため、2~24時間とすることが好ましい。得られたEu付活Li-αサイアロンは必要に応じて所望の粒度に分級してもよい。 It is possible to obtain Eu-activated Li-α sialon by firing the raw material mixed powder. The crucible used for firing is preferably made of a material that is stable in a high-temperature atmosphere, and is preferably made of boron nitride, carbon, or a refractory metal such as molybdenum or tantalum. The firing atmosphere is not particularly limited, but is usually performed in an inert gas atmosphere or a reducing atmosphere. Only one type of inert gas or reducing gas may be used, or two or more types may be used in any combination and ratio. Examples of the inert gas or reducing gas include hydrogen, nitrogen, argon, ammonia, and the like. Among these, a nitrogen atmosphere is preferable. The pressure of the firing atmosphere is selected according to the firing temperature. The higher the atmospheric pressure is, the higher the decomposition temperature of the phosphor is. However, in consideration of industrial productivity, it is preferable to carry out under a pressure of about 0.02 to 1.0 MPa. When the firing temperature is lower than 1650 ° C., the number of crystal defects and unreacted residual amount of the base crystal increases, and when the temperature exceeds 1900 ° C., the base is decomposed. Therefore, the firing temperature is preferably 1650 to 1900 ° C. If the firing time is short, there are many crystal defects and unreacted residual amount of the base crystal, and if the firing time is long, it is not preferable in view of industrial productivity. Therefore, it is preferably 2 to 24 hours. The obtained Eu-activated Li-α sialon may be classified to a desired particle size as necessary.
 焼成により得られたEu付活Li-αサイアロンは一般にαサイアロンの結晶割合が低いため、優れた蛍光強度を発現することが困難である。このため、フッ化水素酸及び硝酸の混合液などで酸処理してαサイアロンの結晶割合を高めることが好ましい。 Since Eu-activated Li-α sialon obtained by calcination generally has a low α sialon crystal ratio, it is difficult to exhibit excellent fluorescence intensity. For this reason, it is preferable to increase the crystal ratio of α-sialon by acid treatment with a mixed solution of hydrofluoric acid and nitric acid.
 前記したように、蛍光体の粒子径はあまりに小さいと蛍光強度が低くなる傾向にあるため、高輝度の蛍光体を得るためには酸処理工程後に微粉を取り除くための分級工程を実施することが好ましい。分級工程は湿式及び乾式の何れを採用してもよいが、蛍光体をイオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中又はイオン交換水とアンモニア水との混合塩基性溶媒中に静置する水簸分級、又は乾式分級が好ましい。 As described above, since the fluorescent intensity tends to decrease when the particle size of the phosphor is too small, a classification step for removing fine powder after the acid treatment step may be performed in order to obtain a high-luminance phosphor. preferable. The classification step may be either wet or dry, but the phosphor is mixed in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant or in a mixed basic solvent of ion-exchanged water and ammonia water. The elutriation classification or the dry classification is preferable.
 酸処理及び分級工程を経ることで、αサイアロンの結晶割合を高めることができるが、フッ化水素酸及び硝酸の混合液などでの酸処理やヘキサメタリン酸ナトリウムによる水簸分級処理を行うとF、Na及びP等の不純物が蛍光体に付着して、逆にこれらが不純物となって長時間使用後の発光効率を低下させる原因となる。そこで、酸処理や水簸分級処理を行った後は、イオン交換水等の溶媒中で超音波ホモジナイザーにて蛍光体を分散及び洗浄することにより不純物を取り除くことが有効である。 By passing through the acid treatment and classification step, the crystal ratio of α sialon can be increased. However, when acid treatment with a mixed solution of hydrofluoric acid and nitric acid or water tank classification treatment with sodium hexametaphosphate is performed, F, Impurities such as Na and P adhere to the phosphor, and on the contrary, they become impurities and cause a decrease in luminous efficiency after long-time use. Therefore, after the acid treatment or the elutriation classification treatment, it is effective to remove impurities by dispersing and washing the phosphor with an ultrasonic homogenizer in a solvent such as ion-exchanged water.
 本発明は別の一側面において、発光光源と蛍光体とを有し、当該蛍光体が上述の蛍光体とした発光素子である。この発光光源としては、発光波長のピーク強度を240nm以上480nm以下とした単色光のLED又はLDが好ましい。光源のピーク波長が240nm以上480nm以下の単色光というのは、実使用で最も多く使用される青色LEDの波長域であり、またLi-αサイアロンは当該範囲の波長で励起すると高い蛍光強度を有する発光がされるためである。 According to another aspect of the present invention, there is provided a light emitting element that includes a light emitting light source and a phosphor, and the phosphor is the above-described phosphor. As this light emitting light source, a monochromatic LED or LD having a peak intensity of emission wavelength of 240 nm or more and 480 nm or less is preferable. Monochromatic light having a peak wavelength of the light source of 240 nm or more and 480 nm or less is the wavelength range of blue LEDs most frequently used in actual use, and Li-α sialon has high fluorescence intensity when excited at a wavelength in the range. This is because light is emitted.
 本発明に係る発光素子は一実施形態において、85℃の温度且つ85%の相対湿度の条件下として、通電150mAで1000時間放置したときの光束保持率を95%以上とすることができ、好ましくは97%以上とすることができ、より好ましくは98%以上とすることができ、例えば95~99%とすることができる。 In one embodiment, the light-emitting element according to the present invention can have a luminous flux retention ratio of 95% or more when left at a current of 150 mA for 1000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85%. Can be 97% or more, more preferably 98% or more, for example, 95 to 99%.
 本発明は更に別の一側面において、この発光素子を備える発光装置である。発光装置としては、例えば信号、野外ディスプレイ装置など屋外で使用する情報表示装置、また自動車用ヘッドライト、白熱灯、蛍光ランプに代わる照明装置が挙げられる。 In still another aspect, the present invention is a light emitting device including the light emitting element. Examples of the light emitting device include an information display device used outdoors such as a signal and an outdoor display device, and a lighting device replacing a headlight, an incandescent lamp, and a fluorescent lamp for an automobile.
 本発明に係る蛍光体とLEDとを備える発光素子は、例えば次のようにして製造することができる。まず、本発明に係る蛍光体を封止材と混合し、スラリーを調整する。例えば、封止材100質量部に対して30~50質量部の割合で混合してスラリーを調整することができる。封止材としては、例えば熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることもできる。また、LEDチップに直接触れず外付け可能な封止部(例えば、外部キャップ、ドーム状の封止部など)であれば、溶融法ガラスも用いることができる。なお、封止材は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。 A light emitting device including a phosphor and an LED according to the present invention can be manufactured as follows, for example. First, the phosphor according to the present invention is mixed with a sealing material to prepare a slurry. For example, the slurry can be adjusted by mixing at a ratio of 30 to 50 parts by mass with respect to 100 parts by mass of the sealing material. Examples of the sealing material include thermoplastic resins, thermosetting resins, and photocurable resins. Specifically, for example, methacrylic resin such as polymethylmethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; Cellulose resins such as cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins. In addition, inorganic materials such as metal alkoxides, ceramic precursor polymers or solutions containing metal alkoxides are hydrolyzed by a sol-gel method or a combination thereof, and solidified inorganic materials such as siloxane bonds. It is also possible to use an inorganic material. In addition, a melt-processed glass can be used as long as it is a sealing part that can be attached externally without directly touching the LED chip (for example, an external cap, a dome-shaped sealing part, etc.). In addition, a sealing material may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 封止材の中でも、熱硬化性を有し且つ常温で流動性を有する樹脂を使用することが分散性や成形性の理由により好ましい。熱硬化性を有し且つ常温で流動性を有する樹脂としては、例えばシリコーン樹脂が使用される。例えば、東レ・ダウコーニング株式会社製、商品名:JCR6175、OE6631、OE6635、OE6636、OE6650など挙げることができる。 Among sealing materials, it is preferable to use a resin having thermosetting properties and fluidity at room temperature for reasons of dispersibility and moldability. As the resin having thermosetting properties and fluidity at room temperature, for example, a silicone resin is used. For example, trade names: JCR6175, OE6631, OE6635, OE6636, OE6650, etc., manufactured by Toray Dow Corning Co., Ltd. can be mentioned.
 次に、例えば460nmにピーク波長を有する青色LEDチップが実装されたトップビュータイプパッケージに、上記スラリー3~4μLを注入する。このスラリーが注入されたトップビュータイプパッケージを140~160℃の範囲の温度にて2~2.5時間の範囲で加熱し、スラリーを硬化させる。このようにして、波長420~480nmの範囲の光を吸収し、且つ480nmを超え800nm以下の波長の光を放出する発光素子を製造することができる。 Next, for example, 3 to 4 μL of the slurry is injected into a top view type package in which a blue LED chip having a peak wavelength at 460 nm is mounted. The top view type package into which this slurry has been injected is heated at a temperature in the range of 140 to 160 ° C. for a period of 2 to 2.5 hours to cure the slurry. In this manner, a light-emitting element that absorbs light in the wavelength range of 420 to 480 nm and emits light having a wavelength of more than 480 nm and not more than 800 nm can be manufactured.
 本発明に係る実施例を比較例と比較しつつ、表を用いて説明する。 [Examples] Examples according to the present invention will be described using a table while comparing with comparative examples.
<実施例1>
 実施例1の蛍光体の製造方法について説明する。蛍光体は、原料の混合工程、焼成工程を経ることによって製造した。
<Example 1>
A method for manufacturing the phosphor of Example 1 will be described. The phosphor was manufactured through a raw material mixing step and a firing step.
(混合工程)
 実施例1の蛍光体の原料は、Si34(宇部興産社製E10グレード)、AlN(トクヤマ社製Fグレード)、Eu23(信越化学工業社製RUグレード)、Li3N粉末(Materion社製純度99.5質量%、-60mesh)である。これらの原料をSi34:AlN:Eu23=84.5:14.8:0.64のmol比となる様に秤量し、混合して予混合粉末を得た。
(Mixing process)
The raw materials for the phosphor of Example 1 are Si 3 N 4 (E10 grade made by Ube Industries), AlN (F grade made by Tokuyama Corp.), Eu 2 O 3 (RU grade made by Shin-Etsu Chemical Co., Ltd.), Li 3 N powder. (Purity 99.5% by mass, -60 mesh, manufactured by Material). These raw materials were weighed so as to have a molar ratio of Si 3 N 4 : AlN: Eu 2 O 3 = 84.5: 14.8: 0.64 and mixed to obtain a premixed powder.
 予混合粉末を窒素雰囲気下にて予混合粉末のモル数(Si34、AlN、及びEu23の合計モル数):Li3Nのモル数=94.1:5.9の比となる様に混合し、原料混合粉末を得た。 The number of moles of the premixed powder in the nitrogen atmosphere (total number of moles of Si 3 N 4 , AlN, and Eu 2 O 3 ): the number of moles of Li 3 N = 94.1: 5.9 The raw material mixed powder was obtained.
(焼成工程)
 前記原料混合粉末をグローブボックス内で窒化ホウ素質の坩堝に充填し、カーボンヒーターの電気炉で、ゲージ圧0.8MPaの加圧窒素雰囲気中、1800℃で8時間の焼成を行い、Eu付活Li-αサイアロンを得た。
(Baking process)
The raw material mixed powder is filled in a boron nitride crucible in a glove box, and baked at 1800 ° C. for 8 hours in a nitrogen atmosphere with a gauge pressure of 0.8 MPa in an electric furnace of a carbon heater. Li-α sialon was obtained.
 このEu付活Li-αサイアロンを、ロールミル及びジェットミルによる乾式粉砕機により粉砕し、目開き45μm篩に押し当て通過させたものに分級した。 The Eu-activated Li-α sialon was pulverized by a dry pulverizer using a roll mill and a jet mill, and classified by passing through a sieve having an opening of 45 μm.
(酸処理工程)
 分級後のEu付活Li-αサイアロンをフッ化水素酸及び硝酸の混合液(80℃)で酸処理した。
(Acid treatment process)
After classification, the Eu-activated Li-α sialon was acid-treated with a mixture of hydrofluoric acid and nitric acid (80 ° C.).
(洗浄工程)
 酸処理工程後の蛍光体をイオン交換水等の溶媒中に混合し超音波ホモジナイザーにて5分間分散させることにより不純物を取り除いた。その後、吸引濾過を行った。
(Washing process)
The phosphor after the acid treatment step was mixed in a solvent such as ion-exchanged water and dispersed for 5 minutes with an ultrasonic homogenizer to remove impurities. Thereafter, suction filtration was performed.
<実施例2>
 実施例2は、実施例1の製造方法において洗浄工程前に以下の工程を追加した。
<Example 2>
In Example 2, the following steps were added before the cleaning step in the manufacturing method of Example 1.
(湿式分級工程)
 酸処理工程後の蛍光体をイオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中で10分間静置し、微粉を取り除いた。以上の工程により、実施例2の蛍光体を製造した。
(Wet classification process)
The phosphor after the acid treatment step was allowed to stand in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant for 10 minutes to remove fine powder. The phosphor of Example 2 was manufactured through the above steps.
<実施例3>
 実施例3は、実施例2の製造方法で超音波ホモジナイザーによる洗浄工程時に1時間分散させた他は、実施例2と同様の条件で作製した蛍光体である。
<実施例4>
 実施例4は、実施例2の製造方法で超音波ホモジナイザーによる洗浄工程時に2時間分散させた他は、実施例2と同様の条件で作製した蛍光体である。
<実施例5>
 実施例5は、実施例2の製造方法で酸処理工程後の蛍光体を、イオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中による洗浄処理からイオン交換水とアンモニア水との混合塩基性溶媒中による洗浄処理に変更した他は、実施例2と同様の条件で作製した蛍光体である。
<実施例6>
 実施例6は、実施例5の製造方法で洗浄工程を湿式分級工程の前に行った以外は、実施例5と同様の条件で作製した蛍光体である。
<Example 3>
Example 3 is a phosphor manufactured under the same conditions as in Example 2 except that the manufacturing method of Example 2 was dispersed for 1 hour during the cleaning process using an ultrasonic homogenizer.
<Example 4>
Example 4 is a phosphor produced under the same conditions as in Example 2 except that the manufacturing method of Example 2 was dispersed for 2 hours during the cleaning step using an ultrasonic homogenizer.
<Example 5>
In Example 5, the phosphor after the acid treatment step in the production method of Example 2 was mixed with ion-exchanged water and ammonia water from a washing treatment in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant. The phosphor was produced under the same conditions as in Example 2 except that the cleaning treatment was performed in a basic solvent.
<Example 6>
Example 6 is a phosphor manufactured under the same conditions as in Example 5 except that the cleaning process was performed before the wet classification process in the manufacturing method of Example 5.
<比較例1>
 比較例1は実施例1の製造工程で酸処理工程と洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 1>
Comparative Example 1 was produced by the same production method except that the acid treatment step and the washing step were omitted in the production step of Example 1.
<比較例2>
 比較例2は実施例1の製造工程で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative example 2>
Comparative Example 2 was manufactured by the same manufacturing method except that the cleaning process was omitted in the manufacturing process of Example 1.
<比較例3>
 比較例3は実施例2の製造工程で酸処理工程及び洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 3>
Comparative Example 3 was produced by the same production method except that the acid treatment step and the washing step were omitted in the production step of Example 2.
<比較例4>
 比較例4は実施例2の製造工程で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative example 4>
Comparative Example 4 was manufactured by the same manufacturing method except that the cleaning process was omitted in the manufacturing process of Example 2.
<比較例5>
 比較例5は、実施例2の製造方法で酸処理工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 5>
Comparative Example 5 was produced by the same production method except that the acid treatment step was omitted in the production method of Example 2.
<比較例6>
 比較例6は、実施例5の製造方法で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 6>
Comparative Example 6 was manufactured by the same manufacturing method except that the cleaning step was omitted in the manufacturing method of Example 5.
<比較例7>
 比較例7が比較例4と異なる点は、窒化リチウム(Li3N)原料を窒化カルシウム粉末(Ca32)とし、Ca-αサイアロン系蛍光体を製造した点である。尚、予混合粉比はモル比で窒化ケイ素粉末:窒化アルミニウム粉末:酸化ユーロピウム粉末=71.6:25.8:2.6(モル比)とした。この予混合粉末を窒素雰囲気下のグローブボックス内に入れ、窒化カルシウム粉末と混合し、原料混合粉末を得た。混合比は予混合粉末のモル数(Si34、AlN、及びEu23の合計モル数):窒化カルシウム粉末のモル数=87.1:12.9とした。
<Comparative Example 7>
The comparative example 7 differs from the comparative example 4 in that a Ca-α sialon-based phosphor is manufactured by using calcium nitride powder (Ca 3 N 2 ) as a lithium nitride (Li 3 N) raw material. In addition, the pre-mixed powder ratio was silicon nitride powder: aluminum nitride powder: europium oxide powder = 71.6: 25.8: 2.6 (molar ratio) in molar ratio. This premixed powder was put in a glove box under a nitrogen atmosphere and mixed with calcium nitride powder to obtain a raw material mixed powder. The mixing ratio was the number of moles of the premixed powder (the total number of moles of Si 3 N 4 , AlN, and Eu 2 O 3 ): the number of moles of calcium nitride powder = 87.1: 12.9.
(発光素子製造工程)
 洗浄工程後の実施例及び比較例に係る各蛍光体を、シリコーン樹脂(東レ・ダウコーニング株式会社製、商品名:JCR6175など)100質量部に対して30質量部の割合で混合して、スラリーを調整した。その後、460nmにピーク波長を有する青色LEDチップが実装されたトップビュータイプパッケージに、上記スラリー3~4μLを注入した。このスラリーが注入されたトップビュータイプパッケージを150℃にて2時間の範囲で加熱し、スラリーを硬化させ、発光素子を製造した。
(Light emitting device manufacturing process)
Each phosphor according to the example and the comparative example after the washing step is mixed at a ratio of 30 parts by mass with respect to 100 parts by mass of silicone resin (manufactured by Toray Dow Corning Co., Ltd., trade name: JCR6175, etc.) Adjusted. Thereafter, 3 to 4 μL of the slurry was injected into a top view type package on which a blue LED chip having a peak wavelength at 460 nm was mounted. The top view type package into which this slurry was injected was heated at 150 ° C. for 2 hours to cure the slurry, thereby manufacturing a light emitting device.
 実施例及び比較例に係る各蛍光体の評価を、表1に示す。表1は、実施例及び比較例について、不純物含有量(単位:質量ppm)、メジアン径(単位:μm)、全結晶相に対するαサイアロン結晶の割合(単位:質量%)、ピーク波長(単位:nm)、蛍光強度(単位:%)、LEDの光束保持率(単位:%)を示したものである。 Table 1 shows the evaluation of each phosphor according to Examples and Comparative Examples. Table 1 shows an impurity content (unit: mass ppm), a median diameter (unit: μm), a ratio of α sialon crystals to all crystal phases (unit: mass%), and a peak wavelength (unit: unit) for Examples and Comparative Examples. nm), fluorescence intensity (unit:%), and luminous flux retention (unit:%) of the LED.
(結晶相の同定及び全結晶相に対するαサイアロン結晶の割合)
 実施例及び比較例に係る各蛍光体について、X線回折装置(株式会社リガク社製UltimaIV)を用い、CuKα線を用いた粉末X線回折(XRD)により、結晶相の同定を行った。実施例1~6、比較例1~6にて得られた蛍光体のX線回折パターンは、αサイアロン結晶と同一の回折パターンが認められ、主結晶相がαサイアロンであることが確認された。またαサイアロンの回折パターンと不純物結晶相の回折パターンに基づき、全結晶相に対するαサイアロン結晶の質量割合を算出した。一方、比較例7でもαサイアロンの回折パターンが認められ、主結晶相がαサイアロンであることが確認された。
(Identification of crystal phase and ratio of α-sialon crystal to all crystal phases)
About each fluorescent substance which concerns on an Example and a comparative example, the crystal phase was identified by the powder X-ray diffraction (XRD) using a CuK alpha ray using the X-ray-diffraction apparatus (UrigaIV by Rigaku Corporation). The X-ray diffraction patterns of the phosphors obtained in Examples 1 to 6 and Comparative Examples 1 to 6 showed the same diffraction pattern as that of α sialon crystals, and it was confirmed that the main crystal phase was α sialon. . Further, based on the diffraction pattern of the α sialon and the diffraction pattern of the impurity crystal phase, the mass ratio of the α sialon crystal to the total crystal phase was calculated. On the other hand, the diffraction pattern of α sialon was also observed in Comparative Example 7, confirming that the main crystal phase was α sialon.
(不純物含有量)
 リン、ナトリウム及びフッ素の含有量は、蛍光体0.5g/水25mlを100℃×12H溶出させ濾過した後、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、分析を行った。
(Impurity content)
Phosphorus, sodium and fluorine contents were analyzed by eluting 0.5 g of phosphor / 25 ml of water at 100 ° C. × 12 H and filtering, followed by analysis with an ICP emission spectrometer (CIROS-120, manufactured by Rigaku Corporation). .
(メジアン径(D50))
 実施例及び比較例に係る各蛍光体のメジアン径(D50)(平均一次粒子径)を、以下の要領で測定した。先ず、フッ化水素酸(濃度46~48g/100mlの範囲)と硝酸(濃度60g/100ml)を1:1で混合したものを、蒸留水で4倍に希釈して、処理液を作製した。この処理液を、80℃に加熱し、撹拌しながら、実施例又は比較例の蛍光体を、処理液100mlに対して20g以下の量添加し、分散させた。蛍光体を分散後1時間放置し、デカンテーションにより不溶粉末を回収した。回収した不溶粉末を、水洗し、乾燥させた。乾燥後の不溶粉末について、レーザー回折散乱式粒度分布測定装置(ベックマン・コールター株式会社製 LS 13 320)により粒子径分布を測定し、体積基準の累積50%の粒子径を、メジアン径(D50)とした。
(Median diameter (D50))
The median diameter (D50) (average primary particle diameter) of each phosphor according to Examples and Comparative Examples was measured as follows. First, a mixture of hydrofluoric acid (concentration in the range of 46 to 48 g / 100 ml) and nitric acid (concentration 60 g / 100 ml) at a ratio of 1: 1 was diluted 4 times with distilled water to prepare a treatment solution. While heating this processing liquid to 80 degreeC and stirring, the fluorescent substance of an Example or a comparative example was added and disperse | distributed the quantity of 20 g or less with respect to 100 ml of processing liquids. The phosphor was allowed to stand for 1 hour after dispersion, and the insoluble powder was recovered by decantation. The recovered insoluble powder was washed with water and dried. For the insoluble powder after drying, the particle size distribution was measured with a laser diffraction scattering type particle size distribution analyzer (LS 13 320, manufactured by Beckman Coulter, Inc.), and the 50% cumulative particle size based on volume was determined as the median diameter (D50). It was.
(化学組成)
また、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、蛍光体の分析を行った結果、実施例1及び比較例6の蛍光体のLi含有量は1.8質量%以上3質量%以下の範囲であり、Eu含有量は0.1質量%以上1.5質量%以下の範囲であり、O含有量は0.4質量%以上1.3質量%以下の範囲であった。
(Chemical composition)
In addition, as a result of analyzing the phosphor with an ICP emission spectroscopic analyzer (CIROS-120, manufactured by Rigaku Corporation), the Li content of the phosphors of Example 1 and Comparative Example 6 was 1.8% by mass or more 3 The Eu content was in the range of 0.1 to 1.5% by mass, and the O content was in the range of 0.4 to 1.3% by mass. .
(ピーク波長)
 実施例及び比較例に係る各蛍光体について、ローダミンBと副標準光源により補正を行った分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて蛍光測定を行った。測定には、光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトル及びピーク波長を測定した。
(Peak wavelength)
For each of the phosphors according to Examples and Comparative Examples, fluorescence measurement was performed using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation) corrected with rhodamine B and a sub-standard light source. For the measurement, a solid sample holder attached to the photometer was used, and a fluorescence spectrum and a peak wavelength at an excitation wavelength of 455 nm were measured.
(蛍光強度)
 蛍光強度は、蛍光スペクトル強度とCIE標準比視感度の積から算出した。なお、測定装置や条件によって変化するため単位は任意であり、同一条件で測定した実施例及び比較例での相対で比較した。基準として、実施例4の蛍光強度を100%とした。85%以上が合格値である。
(Fluorescence intensity)
The fluorescence intensity was calculated from the product of fluorescence spectrum intensity and CIE standard relative luminous efficiency. In addition, since it changes with measuring apparatuses and conditions, a unit is arbitrary and it compared by the relative in the Example and comparative example which were measured on the same conditions. As a reference, the fluorescence intensity of Example 4 was set to 100%. 85% or more is an acceptable value.
(発光素子の光束保持率(発光素子の耐久性評価))
 次に、実施例及び比較例に係る蛍光体粒子を備える発光素子について、光束変化を測定した。光束変化の測定は、発光素子を85℃の温度及び85%の相対湿度の高温高湿下に通電150mAで所定時間放置した後、全光束測定システム(Half Moon :大塚電子株式会社製HH41-0773-1)を用いて、発光素子から放出された蛍光の光束変化を測定した。尚、これは通電時間毎の光束値から、通電開始直後を100%としたときの割合を光束保持率として示したものであり、1000時間経過後に95%以上であることが好ましい。
(Light flux retention rate of light emitting element (durability evaluation of light emitting element))
Next, the light beam change was measured about the light emitting element provided with the fluorescent substance particle which concerns on an Example and a comparative example. The change in luminous flux was measured by leaving the light emitting element at a high temperature and high humidity of 85 ° C. and 85% relative humidity at a current of 150 mA for a predetermined time, and then measuring the total luminous flux (Half Moon: HH41-0773 manufactured by Otsuka Electronics Co., Ltd.). -1) was used to measure the change in the luminous flux of the fluorescence emitted from the light emitting device. In addition, this shows the ratio when the current immediately after the start of energization as 100% from the value of the light flux for each energization time as the luminous flux retention rate, and it is preferably 95% or more after 1000 hours.
 表1より、実施例1~実施例6のLi-αサイアロン系蛍光体は、比較例に比べて不純物量含有量が少なく、αサイアロン結晶の割合も高かった。これにより、高い蛍光強度が得られるとともに、長時間の使用があっても発光効率の低下が少なく、電気的不良の少ない発光装置であった。実施例1~実施例6に係る蛍光体を用いた発光素子は、蛍光体に含まれる不純物元素の含有量が極微量であるので、蛍光体の不純物元素に起因する樹脂の硬化阻害発生を抑えるため短絡等の電気的異常を起こす可能性が極めて小さく、長寿命となる。 From Table 1, the Li-α sialon phosphors of Examples 1 to 6 had a lower impurity content and a higher proportion of α sialon crystals than the comparative examples. As a result, a high intensity of fluorescence was obtained, and even when used for a long time, the light emission efficiency was small and the light emitting device had few electrical defects. In the light-emitting elements using the phosphors according to Examples 1 to 6, since the content of the impurity element contained in the phosphor is extremely small, the occurrence of inhibition of resin curing caused by the impurity element of the phosphor is suppressed. Therefore, the possibility of causing an electrical abnormality such as a short circuit is extremely small and the life is long.
 これに対して、比較例1はフッ素、ナトリウム及びリン含有量は少ないがαサイアロン結晶の割合が低かったため、蛍光強度が低かった。比較例2はナトリウム及びリン含有量は少ないがフッ素含有量が多く光束保持率も低かった。比較例3はフッ素含有量は少ないがナトリウム及びリン含有量が多く光束保持率も低く、αサイアロン結晶の割合も低かった。比較例4は、リン、ナトリウム、フッ素含有量が多いため、光束保持率が低かった。比較例5は、リン、ナトリウム、フッ素含有量が少ないが、αサイアロン結晶の割合が低かった。このため、光束保持率が発明例に比べて低下した。比較例6は、ナトリウム及びリン含有量は少ないがフッ素含有量が多く、光束保持率が低かった。このため、光束保持率が発明例に比べて低下した。比較例7は、フッ素及びナトリウム及びリン含有量は多いにも関わらず、光束保持率は高かった。つまり不純物元素の存在が必ずしも悪影響を及ぼすわけではなく、不純物元素の存在により特性の低下が見られたのはLi-αサイアロン系蛍光体に特有のものであった。 On the other hand, Comparative Example 1 had low fluorine, sodium, and phosphorus contents, but the proportion of α sialon crystals was low, so the fluorescence intensity was low. In Comparative Example 2, the sodium and phosphorus contents were low, but the fluorine content was high and the light flux retention was low. In Comparative Example 3, although the fluorine content was small, the sodium and phosphorus contents were large, the light flux retention was low, and the proportion of α sialon crystals was also low. In Comparative Example 4, the luminous flux retention was low because of the high phosphorus, sodium, and fluorine contents. In Comparative Example 5, the content of phosphorus, sodium, and fluorine was small, but the proportion of α-sialon crystals was low. For this reason, the luminous flux retention was reduced as compared with the inventive examples. In Comparative Example 6, the sodium and phosphorus contents were small, but the fluorine content was large, and the luminous flux retention was low. For this reason, the luminous flux retention was reduced as compared with the inventive examples. Although the comparative example 7 had many fluorine, sodium, and phosphorus content, the light beam retention rate was high. In other words, the presence of the impurity element does not necessarily have an adverse effect, and the deterioration of the characteristics due to the presence of the impurity element is peculiar to the Li-α sialon phosphor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1.  Eu付活Li-αサイアロン系蛍光体であって、Fの含有量が20質量ppm以下、且つ、PとNaの総含有量が10質量ppm以下であり、全結晶相に対するαサイアロン結晶の割合が95質量%以上である蛍光体。 Eu-activated Li-α sialon-based phosphor having an F content of 20 mass ppm or less and a total content of P and Na of 10 mass ppm or less, and the ratio of α sialon crystals to the total crystal phase Whose phosphor is 95 mass% or more.
  2.  PとNaの総含有量が5質量ppm以下である請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein the total content of P and Na is 5 mass ppm or less.
  3.  Li含有量が1.8質量%以上3質量%以下である請求項1又は2に記載の蛍光体。 The phosphor according to claim 1 or 2, wherein the Li content is 1.8 mass% or more and 3 mass% or less.
  4.  Eu含有量が0.1質量%以上1.5質量%以下である請求項1~3の何れか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the Eu content is 0.1 mass% or more and 1.5 mass% or less.
  5.  O含有量が0.4質量%以上1.3質量%以下である請求項1~4の何れか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 4, wherein the O content is 0.4 mass% or more and 1.3 mass% or less.
  6.  平均一次粒子径が7μm以上35μm以下である請求項1~5の何れか一項に記載の蛍光体。 6. The phosphor according to claim 1, wherein the average primary particle diameter is 7 μm or more and 35 μm or less.
  7.  請求項1~6の何れか一項に記載の蛍光体と、当該蛍光体に励起光を照射する発光光源とを有する発光素子。 A light-emitting element comprising: the phosphor according to any one of claims 1 to 6; and a light-emitting light source that irradiates the phosphor with excitation light.
  8.  前記発光光源は発光ダイオード又はレーザーダイオードである請求項7に記載の発光素子。 The light emitting device according to claim 7, wherein the light emitting light source is a light emitting diode or a laser diode.
  9.  85℃の温度且つ85%の相対湿度の条件下とし、通電150mAで1000時間放置したときの光束保持率が95%以上である請求項7又は8に記載の発光素子。 The light-emitting element according to claim 7 or 8, wherein a light beam retention rate is 95% or more when left under a condition of a temperature of 85 ° C and a relative humidity of 85% and a current of 150 mA for 1000 hours.
  10. 請求項7~9の何れか一項に記載の発光素子を備える発光装置。 A light-emitting device comprising the light-emitting element according to any one of claims 7 to 9.
PCT/JP2017/009792 2016-03-11 2017-03-10 Phosphor, light-emitting element, and light-emitting device WO2017155111A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018504620A JP6970658B2 (en) 2016-03-11 2017-03-10 Fluorescent material, light emitting element and light emitting device
KR1020187029379A KR102399783B1 (en) 2016-03-11 2017-03-10 Phosphors, Light-Emitting Elements and Light-Emitting Devices
CN201780016758.6A CN108779394A (en) 2016-03-11 2017-03-10 Fluorophor, light-emitting component and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016048867 2016-03-11
JP2016-048867 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017155111A1 true WO2017155111A1 (en) 2017-09-14

Family

ID=59790551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009792 WO2017155111A1 (en) 2016-03-11 2017-03-10 Phosphor, light-emitting element, and light-emitting device

Country Status (5)

Country Link
JP (1) JP6970658B2 (en)
KR (1) KR102399783B1 (en)
CN (1) CN108779394A (en)
TW (1) TWI751140B (en)
WO (1) WO2017155111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118600A1 (en) * 2020-12-04 2022-06-09 デンカ株式会社 Fluorescent body particles and light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436214B2 (en) 2019-03-29 2024-02-21 デンカ株式会社 Phosphor powders, composites and light emitting devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108740A1 (en) * 2010-03-01 2011-09-09 宇部興産株式会社 Li-CONTAINING α-SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
JP2011213839A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd METHOD FOR PRODUCING Li CONTAINING α-SIALON PHOSPHOR
JP2012036408A (en) * 2006-07-05 2012-02-23 Ube Industries Ltd Method of producing sialon oxynitride phosphor
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668770B2 (en) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 Oxynitride phosphor activated with rare earth elements
JP4210761B2 (en) * 2004-03-12 2009-01-21 独立行政法人物質・材料研究機構 Phosphor and production method thereof
JP4627222B2 (en) 2005-06-23 2011-02-09 シャープ株式会社 Information processing apparatus having server function and client function, and program and recording medium used therefor
JP2009224754A (en) 2007-08-22 2009-10-01 Mitsubishi Chemicals Corp Semiconductor light emitting device, lighting apparatus, and image display device
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
US20090283721A1 (en) 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
JP5173638B2 (en) 2008-07-14 2013-04-03 株式会社神戸製鋼所 Method for producing galvannealed steel sheet
JP5470911B2 (en) 2009-03-02 2014-04-16 宇部興産株式会社 Li-containing α-sialon-based oxynitride phosphor powder and method for producing the same
KR101732746B1 (en) * 2009-01-27 2017-05-04 덴카 주식회사 -sialon phosphor method for producing same and light-emitting device
KR101717668B1 (en) 2010-03-26 2017-03-17 삼성전자주식회사 Complex crystal phosphor, light emitting device, display apparatus and illumination apparatus
KR102142672B1 (en) * 2012-11-13 2020-08-07 덴카 주식회사 Phosphor, light-emitting element and lighting device
CN105331361B (en) * 2015-12-03 2017-09-19 河北利福光电技术有限公司 A kind of β SiAlON: Eu2+Green emitting phosphor and its synthetic method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036408A (en) * 2006-07-05 2012-02-23 Ube Industries Ltd Method of producing sialon oxynitride phosphor
WO2011108740A1 (en) * 2010-03-01 2011-09-09 宇部興産株式会社 Li-CONTAINING α-SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
JP2011213839A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd METHOD FOR PRODUCING Li CONTAINING α-SIALON PHOSPHOR
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118600A1 (en) * 2020-12-04 2022-06-09 デンカ株式会社 Fluorescent body particles and light-emitting device

Also Published As

Publication number Publication date
TWI751140B (en) 2022-01-01
TW201802230A (en) 2018-01-16
JP6970658B2 (en) 2021-11-24
KR102399783B1 (en) 2022-05-19
JPWO2017155111A1 (en) 2019-01-17
KR20180118223A (en) 2018-10-30
CN108779394A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
JP7312187B2 (en) Phosphor and light emitting device
TWI641677B (en) Phosphor, light-emitting element and lighting device
JP4813577B2 (en) Method for producing β-sialon phosphor
JPWO2011058919A1 (en) β-type sialon, manufacturing method thereof, and light emitting device using the same
JP7045192B2 (en) Fluorescent material and light emitting device
KR101789856B1 (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
CN114026200B (en) Phosphor, method for producing same, and light-emitting device
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
KR102380907B1 (en) Phosphors and Light-Emitting Devices
JP2018109080A (en) Green phosphor, light emitting element and light emitting device
JP6970658B2 (en) Fluorescent material, light emitting element and light emitting device
JP5756540B2 (en) Phosphor and light emitting device
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
TW202104548A (en) Phosphor and its manufacturing method and light emitting element
JP6903455B2 (en) Fluorescent material manufacturing method, phosphor and light emitting element and light emitting device
JP6576246B2 (en) Phosphor, light emitting device and method for manufacturing the same
CN111201304A (en) Red phosphor and light-emitting device
CN103881710A (en) Phosphor and light emitting device
JP7282757B2 (en) Red phosphor and light-emitting device
JP2018109079A (en) Green phosphor, light emitting element and light emitting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504620

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029379

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763443

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763443

Country of ref document: EP

Kind code of ref document: A1