JP6970658B2 - Fluorescent material, light emitting element and light emitting device - Google Patents

Fluorescent material, light emitting element and light emitting device Download PDF

Info

Publication number
JP6970658B2
JP6970658B2 JP2018504620A JP2018504620A JP6970658B2 JP 6970658 B2 JP6970658 B2 JP 6970658B2 JP 2018504620 A JP2018504620 A JP 2018504620A JP 2018504620 A JP2018504620 A JP 2018504620A JP 6970658 B2 JP6970658 B2 JP 6970658B2
Authority
JP
Japan
Prior art keywords
light emitting
mass
phosphor
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018504620A
Other languages
Japanese (ja)
Other versions
JPWO2017155111A1 (en
Inventor
紗緒梨 井之上
智宏 野見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2017155111A1 publication Critical patent/JPWO2017155111A1/en
Application granted granted Critical
Publication of JP6970658B2 publication Critical patent/JP6970658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

本発明は、蛍光体に関する。また、本発明は蛍光体を備える発光素子に関する。更に本発明は発光素子を備える発光装置に関する。 The present invention relates to a fluorescent substance. The present invention also relates to a light emitting device including a phosphor. Further, the present invention relates to a light emitting device including a light emitting element.

従来、橙色光を発光する蛍光体として、一般式:CaxEuySi12-(m+n)Al(m+n)n16-nで表される、結晶構造を安定化させるための金属イオンとしてCa2+を用いたCa―αサイアロン蛍光体が知られており、高い発光効率が得られている(特許文献1参照)。このCa2+を用いたαサイアロン蛍光体を備える発光装置では、長時間使用した際に、発光装置の発光効率の低下が生じるといった問題はなかった。Conventionally, as a phosphor emitting orange light, the general formula: Ca x Eu y Si 12- ( m + n) Al (m + n) is represented by O n N 16-n, to stabilize the crystal structure A Ca-α-sialon fluorescent substance using Ca 2+ as a metal ion is known, and high luminous efficiency is obtained (see Patent Document 1). In the light emitting device provided with the α-sialon phosphor using Ca 2+ , there was no problem that the luminous efficiency of the light emitting device was lowered when used for a long time.

これに対して近年、輝度向上や蛍光スペクトルの短波長化が検討され、結晶構造を安定化させるための金属イオンとしてLi+を用いたLi−αサイアロン蛍光体が提案された(特許文献2乃至4参照)。これによりCa−αサイアロン蛍光体を使用した発光装置と比較して、Li−αサイアロン蛍光体を備えることで発光装置の輝度の改善や短波長化はなされたが、長時間使用した際に、蛍光体に含まれる不純物元素のイオン化が原因と考えられるLEDパッケージの封止材である樹脂の劣化により、発光装置の発光効率が低下するという問題を新たに有していた(特許文献5参照)。On the other hand, in recent years, improvement of brightness and shortening of wavelength of fluorescence spectrum have been studied, and Li-α sialone phosphors using Li + as metal ions for stabilizing the crystal structure have been proposed (Patent Documents 2 to 2). 4). As a result, the brightness of the light-emitting device was improved and the wavelength was shortened by providing the Li-α-sialon phosphor as compared with the light-emitting device using the Ca-α-sialon phosphor. There was a new problem that the light emission efficiency of the light emitting device was lowered due to the deterioration of the resin which is the encapsulant of the LED package, which is considered to be caused by the ionization of the impurity element contained in the phosphor (see Patent Document 5). ..

一方で、赤色発光蛍光体の一種であるαサイアロンと同様の酸窒化物系蛍光体であるCASN系蛍光体については特許文献6乃至7において、結晶相を構成する元素ではないハロゲン元素を有することで高い発光効率が得られることが報告されているように、結晶相を構成する元素以外の元素が必ずしも悪影響を与えるわけではないことも知られている。 On the other hand, in Patent Documents 6 to 7, the CASN-based fluorophore, which is an oxynitride-based phosphor similar to α-sialon, which is a kind of red-emitting phosphor, has a halogen element that is not an element constituting the crystal phase. It is also known that elements other than the elements constituting the crystal phase do not necessarily have an adverse effect, as it has been reported that high emission efficiency can be obtained.

特開2002−363554号公報Japanese Unexamined Patent Publication No. 2002-363554 国際公開第2007/004493号International Publication No. 2007/004493 国際公開第2010/018873号International Publication No. 2010/018873 特開2010−202738号公報Japanese Unexamined Patent Publication No. 2010-202738 特開2009−224754号公報Japanese Unexamined Patent Publication No. 2009-224754 特開2010−18771号公報Japanese Unexamined Patent Publication No. 2010-18771 特表2012−512307号公報Special Table 2012-512307 Gazette

このように、Li−αサイアロン系蛍光体の特性改善は種々の検討がなされているものの、長時間の使用による発光効率の低下に対しては未だ改善の余地が残されている。本発明の目的は、蛍光強度が高く、長時間の使用があっても発光効率の低下が少ない発光装置、並びにそのための蛍光体を提供することにある。 As described above, although various studies have been made to improve the characteristics of the Li-α sialone-based phosphor, there is still room for improvement in the decrease in luminous efficiency due to long-term use. An object of the present invention is to provide a light emitting device having high fluorescence intensity and little decrease in luminous efficiency even after long-term use, and a phosphor for that purpose.

本発明は一側面において、Eu付活Li−αサイアロン系蛍光体であって、Fの含有量が20質量ppm以下、且つ、PとNaの総含有量が10質量ppm以下であり、全結晶相に対するαサイアロン結晶の割合が95質量%以上である蛍光体である。 In one aspect, the present invention is an Eu-activated Li-α sialone-based phosphor, which has an F content of 20% by mass or less and a total content of P and Na of 10% by mass or less, and is a total crystal. It is a phosphor in which the ratio of α-sialon crystals to the phase is 95% by mass or more.

本発明に係る蛍光体の一実施形態においては、PとNaの総含有量が5質量ppm以下である。 In one embodiment of the phosphor according to the present invention, the total content of P and Na is 5 mass ppm or less.

本発明に係る蛍光体の別の一実施形態においては、Li含有量が1.8質量%以上3質量%以下である。 In another embodiment of the phosphor according to the present invention, the Li content is 1.8% by mass or more and 3% by mass or less.

本発明に係る蛍光体の更に別の一実施形態においては、Eu含有量が0.1質量%以上1.5質量%以下である。 In still another embodiment of the phosphor according to the present invention, the Eu content is 0.1% by mass or more and 1.5% by mass or less.

本発明に係る蛍光体の更に別の一実施形態においては、O含有量が0.4質量%以上1.3質量%以下である。 In still another embodiment of the phosphor according to the present invention, the O content is 0.4% by mass or more and 1.3% by mass or less.

本発明に係る蛍光体の更に別の一実施形態においては、平均一次粒子径が7μm以上35μm以下である。 In still another embodiment of the phosphor according to the present invention, the average primary particle size is 7 μm or more and 35 μm or less.

本発明は別の一側面において、本発明に係る蛍光体と、当該蛍光体に励起光を照射する発光光源とを有する発光素子である。 In another aspect, the present invention is a light emitting element having a phosphor according to the present invention and a light emitting light source for irradiating the phosphor with excitation light.

本発明に係る発光素子の一実施形態においては、前記発光光源は発光ダイオード又はレーザーダイオードである。 In one embodiment of the light emitting device according to the present invention, the light emitting light source is a light emitting diode or a laser diode.

本発明に係る発光素子の別の一実施形態においては、85℃の温度且つ85%の相対湿度の条件下とし、通電150mAで1000時間放置したときの光束保持率が95%以上である。 In another embodiment of the light emitting device according to the present invention, the luminous flux retention rate is 95% or more when left at a temperature of 85 ° C. and a relative humidity of 85% and left at 150 mA for 1000 hours.

本発明は更に別の一側面において、本発明に係る発光素子を備える発光装置である。 In yet another aspect, the present invention is a light emitting device including a light emitting element according to the present invention.

本発明では、Eu付活Li−αサイアロン系蛍光体について、全結晶相に対するαサイアロン結晶の割合を高めつつ、F、Na及びPの含有量を低減した。本発明に係る蛍光体を使用することで、高い蛍光強度が得られると共に、長時間の使用があっても、発光効率の低下が少ない発光装置が得られる。 In the present invention, the content of F, Na and P in the Eu-activated Li-α-sialone-based phosphor is reduced while increasing the ratio of α-sialon crystals to the total crystal phase. By using the phosphor according to the present invention, it is possible to obtain a light emitting device having high fluorescence intensity and little decrease in luminous efficiency even after long-term use.

本発明は一側面において、Eu付活Li−αサイアロン系蛍光体に関する。Eu付活Li−αサイアロン系蛍光体は一般に、次式:LixEuySi12-(m+n)Alm+nn16-n(x+y≦2、m=x+2y)で表される化合物を有する蛍光体である。当該蛍光体は、α窒化ケイ素結晶のSi−N結合の一部がAl−N結合及びAl−O結合に置換され、電気的中性を保つ様に、LiとEuが結晶内の空隙に侵入固溶したものであり、m値、n値は、それぞれAl−N結合、Al−O結合への置換率に対応する。In one aspect, the present invention relates to an EU-activated Li-α sialone-based fluorophore. The Eu-activated Li-α sialone-based phosphor is generally expressed by the following equation: Li x Eu y Si 12- (m + n) Al m + n On N 16-n (x + y ≦ 2, m = x + 2y). It is a fluorescent substance having a compound. In the phosphor, a part of the Si—N bond of the α-silicon nitride crystal is replaced with the Al—N bond and the Al—O bond, and Li and Eu invade the voids in the crystal so as to maintain the electrical neutrality. It is a solid solution, and the m value and n value correspond to the substitution rates for Al—N bond and Al—O bond, respectively.

本発明でLi+を用いたのは、従来の短波長化が目的ではなく、Ca2+の場合よりも高い蛍光強度を得るためである。α型サイアロンの固溶組成範囲は、前記した安定化カチオンの固溶サイト数だけでなく、安定化カチオンに応じた熱力学的安定により制限される。Li+の場合、α型サイアロン構造を維持できるm値の範囲は、0.5以上2以下、n値の範囲は、0以上0.5以下である。本発明の蛍光体におけるLi含有量は、あまりに少ないと蛍光体焼成工程における粒成長の進行が非常に遅くなって蛍光強度の高い大きな粒子が得難くなる傾向にあり、あまりに多いとLiSi23等の別の相を生成する傾向にあるため、1.8質量%以上3質量%以下であることが好ましい。Li含有量は、蛍光体の原料配合によって調整することができる。具体的にはLi含有原料としての窒化リチウムや酸化リチウムの配合比の増減で調整する。 The reason why Li + is used in the present invention is not for the conventional purpose of shortening the wavelength, but for obtaining a higher fluorescence intensity than that of Ca 2+. The solid solution composition range of α-type sialon is limited not only by the number of solid solution sites of the stabilized cation described above, but also by the thermodynamic stability according to the stabilized cation. In the case of Li + , the range of m value that can maintain the α-type sialon structure is 0.5 or more and 2 or less, and the range of n value is 0 or more and 0.5 or less. If the Li content in the phosphor of the present invention is too small, the progress of grain growth in the phosphor firing step tends to be very slow, and it tends to be difficult to obtain large particles having high fluorescence intensity. If the Li content is too large, LiSi 2 N 3 It is preferable that it is 1.8% by mass or more and 3% by mass or less because it tends to generate another phase such as. The Li content can be adjusted by blending the raw materials of the phosphor. Specifically, it is adjusted by increasing or decreasing the blending ratio of lithium nitride or lithium oxide as a Li-containing raw material.

本発明の蛍光体におけるEu含有量は、あまりに少ないと発光への寄与が小さくなって蛍光強度が低くなる傾向にあり、あまりに多いとEu2+間のエネルギー伝達による蛍光の濃度消光による蛍光強度が低くなる傾向にあるため、0.1質量%以上1.5質量%以下であることが好ましい。Eu含有量は、蛍光体の原料配合によって調整することができる。具体的にはEu含有原料の酸化ユーロピウム、窒化ユーロピウムの配合比の増減で調整する。Eu content in the phosphor of the present invention is too small tends to fluorescence intensity is low contribution is decreased to emission, fluorescence intensity due to concentration quenching of fluorescence by energy transfer between too much and Eu 2+ Since it tends to be low, it is preferably 0.1% by mass or more and 1.5% by mass or less. The Eu content can be adjusted by blending the raw materials of the phosphor. Specifically, it is adjusted by increasing or decreasing the blending ratio of europium oxide and europium nitride, which are raw materials containing Eu.

本発明の蛍光体における酸素(O)含有量は0.4質量%以上1.3質量%以下であるのが好ましい。これは、酸素含有量があまりに少ない蛍光体は製造工程において結晶粒の成長が少なく高い蛍光強度が得られないためであり、酸素含有量があまりに多いと、蛍光スペクトルがブロード化になり、十分な蛍光強度が得られないためである。 The oxygen (O) content in the phosphor of the present invention is preferably 0.4% by mass or more and 1.3% by mass or less. This is because a fluorescent substance having an excessively low oxygen content has little growth of crystal grains in the manufacturing process and a high fluorescence intensity cannot be obtained. If the oxygen content is too high, the fluorescence spectrum becomes broadened, which is sufficient. This is because the fluorescence intensity cannot be obtained.

長時間の使用があっても発光効率の低下が少ない蛍光体を得るためには、蛍光体の不純物元素のうち、Fの含有量が20質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることが更により好ましく、例えば1〜20質量ppmとすることができる。後述するように、蛍光体のαサイアロン結晶の割合を高めて発光特性を向上させるために蛍光体を酸処理することが有効であるが、Fは酸処理時に混入しやすい元素である。酸処理のみでは十分な発光特性の向上は困難であり、酸処理を行った後に、Fを除去することが発光効率の優れた持続を得る上で重要である。 In order to obtain a phosphor having a small decrease in luminous efficiency even after long-term use, the content of F among the impurity elements of the phosphor is preferably 20% by mass or less, preferably 10% by mass or less. It is more preferably 5 mass ppm or less, and it can be, for example, 1 to 20 mass ppm. As will be described later, it is effective to acid-treat the fluorophore in order to increase the proportion of α-sialon crystals in the fluorophore to improve the light emission characteristics, but F is an element that is easily mixed during the acid treatment. It is difficult to sufficiently improve the light emitting characteristics only by the acid treatment, and it is important to remove F after the acid treatment in order to obtain excellent maintenance of the luminous efficiency.

また、蛍光体を備える発光装置の発光効率の低下を抑え、長時間の使用があっても電気的不良の発生を少なくするためには、P及びNaの総含有量を更に制御することが望ましい。具体的には、P及びNaの総含有量は10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、2質量ppm以下であることが更により好ましく、例えば1〜5質量ppmとすることができる。後述するように、蛍光体のαサイアロン結晶の割合を高めて発光特性を向上させるためには、分級により蛍光体の微粉を除去することが有効である。分級は、分散剤としてヘキサメタリン酸ナトリウムを利用した湿式分級を採用可能であるが、この方法ではP及びNaが混入しやすい。そのため、この場合は分級のみでは十分な発光特性の向上は困難であり、分級を行った後に、Na及びPを除去することが発光効率の優れた持続を得る上で重要である。分級工程は、P含有量及びNa含有量を更に制御して分級工程後の洗浄工程の負担を軽減するため、アルカリ性の溶媒を用いた湿式分級を採用してもよく、また、乾式分級でもよい。 Further, in order to suppress the decrease in luminous efficiency of the light emitting device provided with the phosphor and to reduce the occurrence of electrical defects even after long-term use, it is desirable to further control the total contents of P and Na. .. Specifically, the total content of P and Na is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, still more preferably 2 mass ppm or less, for example, 1 to 5 It can be mass ppm. As will be described later, in order to increase the proportion of α-sialon crystals in the phosphor and improve the emission characteristics, it is effective to remove the fine powder of the phosphor by classification. For the classification, a wet classification using sodium hexametaphosphate as a dispersant can be adopted, but in this method, P and Na are easily mixed. Therefore, in this case, it is difficult to sufficiently improve the light emission characteristics only by classification, and it is important to remove Na and P after the classification in order to obtain excellent maintenance of luminous efficiency. In the classification step, in order to further control the P content and Na content and reduce the burden on the cleaning step after the classification step, wet classification using an alkaline solvent may be adopted, or dry classification may be used. ..

本発明の蛍光体は、蛍光特性の微調整を目的に、前記一般式のLiの一部を、Mg、Ca、Y及びランタニド元素(La、Ce、Euを除く。)からなる群から選ばれる1種以上の置換元素で電気的中性を保ちながら置換してもよい。従って、Eu付活Li−αサイアロン系蛍光体の一実施形態においては、このような置換元素の1種以上によってLiが一部置換されている。 In the phosphor of the present invention, for the purpose of finely adjusting the fluorescence characteristics, a part of Li of the general formula is selected from the group consisting of Mg, Ca, Y and lanthanide elements (excluding La, Ce and Eu). It may be substituted with one or more substitution elements while maintaining electrical neutrality. Therefore, in one embodiment of the Eu-activated Li-α sialone-based phosphor, Li is partially substituted with one or more of such substitution elements.

本発明の蛍光体は、蛍光特性に影響がない限り、蛍光体中に存在する結晶相としてαサイアロン単相のみならず、窒化ケイ素、窒化アルミニウム、窒化ケイ素リチウム及びそれらの固溶体等の結晶相を含めることも可能である。しかしながら一般的には、蛍光体中のαサイアロンの割合は、95質量%以上が好ましく、97質量%以上がより好ましく、98質量%以上が更により好ましく、例えば95〜99質量%とすることができる。 As long as the fluorescence characteristics are not affected, the phosphor of the present invention uses not only α-sialon single phase but also crystal phases such as silicon nitride, aluminum nitride, silicon nitride lithium and their solid solutions as the crystal phase existing in the phosphor. It is also possible to include it. However, in general, the proportion of α-sialon in the phosphor is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 98% by mass or more, for example, 95 to 99% by mass. can.

本発明の蛍光体における平均一次粒子径は、あまりに小さいと蛍光強度が低くなる傾向にあり、あまりに大きいとLEDの発光面へ蛍光体を搭載した際の発光色の色度にバラツキが生じたり発光色の色むらが生じたりする傾向にあるため、7μm以上35μm以下であることが好ましい。ここでの平均一次粒子径はレーザー回折・散乱法による体積基準のメジアン径(D50)を指す。 If the average primary particle size of the phosphor of the present invention is too small, the fluorescence intensity tends to be low, and if it is too large, the chromaticity of the emission color when the phosphor is mounted on the light emitting surface of the LED may vary or emit light. Since color unevenness tends to occur, it is preferably 7 μm or more and 35 μm or less. The average primary particle diameter here refers to the volume-based median diameter (D50) by the laser diffraction / scattering method.

本発明に係る蛍光体は、原料の混合工程、焼成工程、酸処理工程及び洗浄工程を経ることによって製造可能である。酸処理工程後、分級工程を洗浄工程の前又は後又は前後両方に実施することが好ましく、分級工程を洗浄工程の前又は前後両方に実施することがより好ましい。 The phosphor according to the present invention can be produced by going through a raw material mixing step, a firing step, an acid treatment step and a washing step. After the acid treatment step, the classification step is preferably carried out before, after, or both before and after the washing step, and more preferably, the classification step is carried out before or both before and after the washing step.

まず、窒化ケイ素粉末、窒化アルミニウム粉末、酸化ユーロピウム等の窒化リチウム粉末以外の蛍光体の原料を所望の割合で混合する。混合は工業的生産性を考慮すると、湿式混合により行うことが好ましい。湿式混合の後は溶媒除去、乾燥及び解砕を経て、予混合粉末を得る。この予混合粉末を窒化リチウム粉末と所望の割合で混合することで原料混合粉末を得る。混合は加水分解を抑制するため窒素雰囲気等で行うことが好ましい。 First, raw materials for phosphors other than lithium nitride powder such as silicon nitride powder, aluminum nitride powder, and europium oxide are mixed in a desired ratio. The mixing is preferably carried out by wet mixing in consideration of industrial productivity. After wet mixing, the solvent is removed, dried and crushed to obtain a premixed powder. This premixed powder is mixed with lithium nitride powder in a desired ratio to obtain a raw material mixed powder. Mixing is preferably performed in a nitrogen atmosphere or the like in order to suppress hydrolysis.

前記原料混合粉末を焼成することでEu付活Li−αサイアロンを得ることが可能である。焼成に使用する坩堝としては、高温の雰囲気下において安定な材質で構成されることが好ましく、窒化ホウ素製、カーボン製、モリブデンやタンタルなどの高融点金属製等が好ましい。焼成雰囲気としては、特に制限されないが、通常、不活性ガス雰囲気又は還元雰囲気下で行われる。不活性ガス又は還元性ガスは、1種類のみを用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。不活性ガス又は還元性ガスとしては、水素、窒素、アルゴン、アンモニア等が挙げられるが、このうち、窒素雰囲気下であることが好ましい。焼成雰囲気の圧力は、焼成温度に応じて選択される。雰囲気圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮するとゲージ圧0.02〜1.0MPa程度の加圧下で行うことが好ましい。焼成温度は、1650℃よりも低いと、母体結晶の結晶欠陥や未反応残存量が多くなり、1900℃を超えると母体が分解するので好ましくない。このため、焼成温度は1650〜1900℃とすることが好ましい。焼成時間は短いと母体結晶の結晶欠陥や未反応残存量が多く、焼成時間が長くなると工業的生産性を考慮すると好ましくない。そのため、2〜24時間とすることが好ましい。得られたEu付活Li−αサイアロンは必要に応じて所望の粒度に分級してもよい。 By firing the raw material mixed powder, it is possible to obtain Eu-activated Li-α sialon. The crucible used for firing is preferably made of a material that is stable in a high temperature atmosphere, and is preferably made of boron nitride, carbon, or a refractory metal such as molybdenum or tantalum. The firing atmosphere is not particularly limited, but is usually carried out in an inert gas atmosphere or a reducing atmosphere. Only one type of inert gas or reducing gas may be used, or two or more types may be used in any combination and ratio. Examples of the inert gas or reducing gas include hydrogen, nitrogen, argon, ammonia and the like, and among these, it is preferable to use a nitrogen atmosphere. The pressure of the firing atmosphere is selected according to the firing temperature. The higher the atmospheric pressure, the higher the decomposition temperature of the phosphor, but in consideration of industrial productivity, it is preferable to carry out the process under a pressure of about 0.02 to 1.0 MPa with a gauge pressure. If the calcination temperature is lower than 1650 ° C., crystal defects and unreacted residual amount of the mother crystal increase, and if it exceeds 1900 ° C., the mother body is decomposed, which is not preferable. Therefore, the firing temperature is preferably 1650 to 1900 ° C. If the calcination time is short, there are many crystal defects and unreacted residual amount of the mother crystal, and if the calcination time is long, it is not preferable in consideration of industrial productivity. Therefore, it is preferably 2 to 24 hours. The obtained Eu-activated Li-α sialon may be classified into a desired particle size, if necessary.

焼成により得られたEu付活Li−αサイアロンは一般にαサイアロンの結晶割合が低いため、優れた蛍光強度を発現することが困難である。このため、フッ化水素酸及び硝酸の混合液などで酸処理してαサイアロンの結晶割合を高めることが好ましい。 Since the Eu-activated Li-α sialon obtained by calcination generally has a low crystal ratio of α sialon, it is difficult to exhibit excellent fluorescence intensity. Therefore, it is preferable to increase the crystal ratio of α-sialon by acid treatment with a mixed solution of hydrofluoric acid and nitric acid.

前記したように、蛍光体の粒子径はあまりに小さいと蛍光強度が低くなる傾向にあるため、高輝度の蛍光体を得るためには酸処理工程後に微粉を取り除くための分級工程を実施することが好ましい。分級工程は湿式及び乾式の何れを採用してもよいが、蛍光体をイオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中又はイオン交換水とアンモニア水との混合塩基性溶媒中に静置する水簸分級、又は乾式分級が好ましい。 As described above, if the particle size of the phosphor is too small, the fluorescence intensity tends to be low. Therefore, in order to obtain a high-luminance phosphor, it is necessary to carry out a classification step for removing fine powder after the acid treatment step. preferable. The classification step may be either wet or dry, but the phosphor is placed in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant, or in a mixed basic solvent of ion-exchanged water and aqueous ammonia. The elutriation classification that stands still or the dry classification is preferable.

酸処理及び分級工程を経ることで、αサイアロンの結晶割合を高めることができるが、フッ化水素酸及び硝酸の混合液などでの酸処理やヘキサメタリン酸ナトリウムによる水簸分級処理を行うとF、Na及びP等の不純物が蛍光体に付着して、逆にこれらが不純物となって長時間使用後の発光効率を低下させる原因となる。そこで、酸処理や水簸分級処理を行った後は、イオン交換水等の溶媒中で超音波ホモジナイザーにて蛍光体を分散及び洗浄することにより不純物を取り除くことが有効である。 The crystal ratio of α-sialon can be increased by undergoing acid treatment and classification steps, but if acid treatment with a mixed solution of hydrofluoric acid and nitric acid or elutriation classification treatment with sodium hexametaphosphate is performed, F, Impurities such as Na and P adhere to the phosphor, and on the contrary, they become impurities and cause a decrease in light emission efficiency after long-term use. Therefore, after performing acid treatment or elutriation classification treatment, it is effective to remove impurities by dispersing and washing the phosphor with an ultrasonic homogenizer in a solvent such as ion-exchanged water.

本発明は別の一側面において、発光光源と蛍光体とを有し、当該蛍光体が上述の蛍光体とした発光素子である。この発光光源としては、発光波長のピーク強度を240nm以上480nm以下とした単色光のLED又はLDが好ましい。光源のピーク波長が240nm以上480nm以下の単色光というのは、実使用で最も多く使用される青色LEDの波長域であり、またLi−αサイアロンは当該範囲の波長で励起すると高い蛍光強度を有する発光がされるためである。 In another aspect, the present invention is a light emitting device having a light emitting light source and a fluorescent substance, and the fluorescent substance is the above-mentioned fluorescent substance. As the light emitting light source, a monochromatic LED or LD having a peak intensity of emission wavelength of 240 nm or more and 480 nm or less is preferable. Monochromatic light with a peak wavelength of 240 nm or more and 480 nm or less is the wavelength range of blue LEDs most often used in actual use, and Li-α sialon has high fluorescence intensity when excited at a wavelength in this range. This is because it emits light.

本発明に係る発光素子は一実施形態において、85℃の温度且つ85%の相対湿度の条件下として、通電150mAで1000時間放置したときの光束保持率を95%以上とすることができ、好ましくは97%以上とすることができ、より好ましくは98%以上とすることができ、例えば95〜99%とすることができる。 In one embodiment, the light emitting device according to the present invention can have a luminous flux retention rate of 95% or more when left at 150 mA for 1000 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 85%, which is preferable. Can be 97% or more, more preferably 98% or more, for example 95 to 99%.

本発明は更に別の一側面において、この発光素子を備える発光装置である。発光装置としては、例えば信号、野外ディスプレイ装置など屋外で使用する情報表示装置、また自動車用ヘッドライト、白熱灯、蛍光ランプに代わる照明装置が挙げられる。 In yet another aspect, the present invention is a light emitting device including this light emitting element. Examples of the light emitting device include an information display device used outdoors such as a signal and an outdoor display device, and a lighting device that replaces an automobile headlight, an incandescent lamp, and a fluorescent lamp.

本発明に係る蛍光体とLEDとを備える発光素子は、例えば次のようにして製造することができる。まず、本発明に係る蛍光体を封止材と混合し、スラリーを調整する。例えば、封止材100質量部に対して30〜50質量部の割合で混合してスラリーを調整することができる。封止材としては、例えば熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることもできる。また、LEDチップに直接触れず外付け可能な封止部(例えば、外部キャップ、ドーム状の封止部など)であれば、溶融法ガラスも用いることができる。なお、封止材は、1種を用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。 The light emitting device including the phosphor and the LED according to the present invention can be manufactured, for example, as follows. First, the fluorophore according to the present invention is mixed with a sealing material to prepare a slurry. For example, the slurry can be prepared by mixing at a ratio of 30 to 50 parts by mass with respect to 100 parts by mass of the encapsulant. Examples of the sealing material include thermoplastic resins, thermosetting resins, photocurable resins and the like. Specifically, for example, a methacrylic resin such as methyl polymethacrylic acid; a styrene resin such as polystyrene and a styrene-acrylonitrile copolymer; a polycarbonate resin; a polyester resin; a phenoxy resin; a butyral resin; a polyvinyl alcohol; an ethyl cellulose and a cellulose acetate. , Cellulose-based resin such as cellulose acetate butyrate; epoxy resin; phenol resin; silicone resin and the like. Further, an inorganic material such as a solution obtained by hydrolyzing and polymerizing a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or an inorganic material obtained by solidifying a combination thereof, for example, a siloxane bond can be obtained. It is also possible to use an inorganic material having. Further, if the sealing portion can be externally attached without directly touching the LED chip (for example, an external cap, a dome-shaped sealing portion, etc.), molten glass can also be used. As the encapsulant, one type may be used, or two or more types may be used in any combination and ratio.

封止材の中でも、熱硬化性を有し且つ常温で流動性を有する樹脂を使用することが分散性や成形性の理由により好ましい。熱硬化性を有し且つ常温で流動性を有する樹脂としては、例えばシリコーン樹脂が使用される。例えば、東レ・ダウコーニング株式会社製、商品名:JCR6175、OE6631、OE6635、OE6636、OE6650など挙げることができる。 Among the encapsulants, it is preferable to use a resin having thermosetting property and fluidity at room temperature for the reason of dispersibility and moldability. As the resin having thermosetting property and fluidity at room temperature, for example, a silicone resin is used. For example, manufactured by Toray Dow Corning Co., Ltd., trade names: JCR6175, OE6631, OE6635, OE6636, OE6650 and the like can be mentioned.

次に、例えば460nmにピーク波長を有する青色LEDチップが実装されたトップビュータイプパッケージに、上記スラリー3〜4μLを注入する。このスラリーが注入されたトップビュータイプパッケージを140〜160℃の範囲の温度にて2〜2.5時間の範囲で加熱し、スラリーを硬化させる。このようにして、波長420〜480nmの範囲の光を吸収し、且つ480nmを超え800nm以下の波長の光を放出する発光素子を製造することができる。 Next, 3 to 4 μL of the above slurry is injected into a top view type package on which a blue LED chip having a peak wavelength of 460 nm is mounted. The top view type package infused with this slurry is heated at a temperature in the range of 140 to 160 ° C. for 2 to 2.5 hours to cure the slurry. In this way, it is possible to manufacture a light emitting device that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a wavelength exceeding 480 nm and 800 nm or less.

本発明に係る実施例を比較例と比較しつつ、表を用いて説明する。 Examples of the present invention will be described with reference to the table while comparing with the comparative examples.

<実施例1(参考例)
実施例1の蛍光体の製造方法について説明する。蛍光体は、原料の混合工程、焼成工程を経ることによって製造した。
<Example 1 (reference example) >
The method for producing the fluorescent substance of Example 1 will be described. The phosphor was produced by going through a raw material mixing step and a firing step.

(混合工程)
実施例1の蛍光体の原料は、Si34(宇部興産社製E10グレード)、AlN(トクヤマ社製Fグレード)、Eu23(信越化学工業社製RUグレード)、Li3N粉末(Materion社製純度99.5質量%、−60mesh)である。これらの原料をSi34:AlN:Eu23=84.5:14.8:0.64のmol比となる様に秤量し、混合して予混合粉末を得た。
(Mixing process)
The raw materials for the phosphor of Example 1 are Si 3 N 4 (E10 grade manufactured by Ube Industries, Ltd.), AlN (F grade manufactured by Tokuyama Corporation), Eu 2 O 3 (RU grade manufactured by Shin-Etsu Chemical Co., Ltd.), and Li 3 N powder. (Purity 99.5% by mass manufactured by Matterion, -60 mesh). These raw materials were weighed so as to have a mol ratio of Si 3 N 4 : AlN: Eu 2 O 3 = 84.5: 14.8: 0.64 and mixed to obtain a premixed powder.

予混合粉末を窒素雰囲気下にて予混合粉末のモル数(Si34、AlN、及びEu23の合計モル数):Li3Nのモル数=94.1:5.9の比となる様に混合し、原料混合粉末を得た。The ratio of the number of moles of the premixed powder to the premixed powder under a nitrogen atmosphere ( total number of moles of Si 3 N 4 , Al N, and Eu 2 O 3 ): the number of moles of Li 3 N = 94.1: 5.9. The mixture was mixed so as to obtain a mixed raw material powder.

(焼成工程)
前記原料混合粉末をグローブボックス内で窒化ホウ素質の坩堝に充填し、カーボンヒーターの電気炉で、ゲージ圧0.8MPaの加圧窒素雰囲気中、1800℃で8時間の焼成を行い、Eu付活Li−αサイアロンを得た。
(Baking process)
The raw material mixed powder is filled in a boron nitride crucible in a glove box, and fired in a pressurized nitrogen atmosphere with a gauge pressure of 0.8 MPa at 1800 ° C. for 8 hours in an electric furnace of a carbon heater to activate Eu. Li-α sialon was obtained.

このEu付活Li−αサイアロンを、ロールミル及びジェットミルによる乾式粉砕機により粉砕し、目開き45μm篩に押し当て通過させたものに分級した。 This EU-activated Li-α sialon was pulverized by a dry crusher using a roll mill and a jet mill, and classified into those which were pressed against a sieve having a mesh size of 45 μm and passed through.

(酸処理工程)
分級後のEu付活Li−αサイアロンをフッ化水素酸及び硝酸の混合液(80℃)で酸処理した。
(Acid treatment process)
The EU-activated Li-α sialon after classification was acid-treated with a mixed solution of hydrofluoric acid and nitric acid (80 ° C.).

(洗浄工程)
酸処理工程後の蛍光体をイオン交換水等の溶媒中に混合し超音波ホモジナイザーにて5分間分散させることにより不純物を取り除いた。その後、吸引濾過を行った。
(Washing process)
Impurities were removed by mixing the phosphor after the acid treatment step in a solvent such as ion-exchanged water and dispersing it with an ultrasonic homogenizer for 5 minutes. Then, suction filtration was performed.

<実施例2>
実施例2は、実施例1の製造方法において洗浄工程前に以下の工程を追加した。
<Example 2>
In Example 2, the following steps were added before the washing step in the manufacturing method of Example 1.

(湿式分級工程)
酸処理工程後の蛍光体をイオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中で10分間静置し、微粉を取り除いた。以上の工程により、実施例2の蛍光体を製造した。
(Wet classification process)
The fluorescent substance after the acid treatment step was allowed to stand in a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant for 10 minutes to remove fine powder. By the above steps, the fluorescent substance of Example 2 was produced.

<実施例3>
実施例3は、実施例2の製造方法で超音波ホモジナイザーによる洗浄工程時に1時間分散させた他は、実施例2と同様の条件で作製した蛍光体である。
<実施例4>
実施例4は、実施例2の製造方法で超音波ホモジナイザーによる洗浄工程時に2時間分散させた他は、実施例2と同様の条件で作製した蛍光体である。
<実施例5>
実施例5は、実施例2の製造方法で酸処理工程後の蛍光体を、イオン交換水と分散剤であるヘキサメタリン酸ナトリウムとの混合溶媒中による洗浄処理からイオン交換水とアンモニア水との混合塩基性溶媒中による洗浄処理に変更した他は、実施例2と同様の条件で作製した蛍光体である。
<実施例6>
実施例6は、実施例5の製造方法で洗浄工程を湿式分級工程の前に行った以外は、実施例5と同様の条件で作製した蛍光体である。
<Example 3>
Example 3 is a phosphor produced under the same conditions as in Example 2 except that it was dispersed for 1 hour during the washing step with an ultrasonic homogenizer by the production method of Example 2.
<Example 4>
Example 4 is a phosphor produced under the same conditions as in Example 2 except that it was dispersed for 2 hours during the washing step with an ultrasonic homogenizer by the production method of Example 2.
<Example 5>
In Example 5, the phosphor after the acid treatment step in the production method of Example 2 is washed with a mixed solvent of ion-exchanged water and sodium hexametaphosphate as a dispersant, and then the ion-exchanged water and ammonia water are mixed. The phosphor was prepared under the same conditions as in Example 2 except that the washing treatment was changed to a basic solvent.
<Example 6>
Example 6 is a fluorescent substance produced under the same conditions as in Example 5 except that the washing step was performed before the wet classification step in the production method of Example 5.

<比較例1>
比較例1は実施例1の製造工程で酸処理工程と洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative example 1>
Comparative Example 1 was manufactured by the same manufacturing method except that the acid treatment step and the cleaning step were omitted in the manufacturing step of Example 1.

<比較例2>
比較例2は実施例1の製造工程で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 2>
Comparative Example 2 was manufactured by the same manufacturing method except that the cleaning step was omitted in the manufacturing step of Example 1.

<比較例3>
比較例3は実施例2の製造工程で酸処理工程及び洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 3>
Comparative Example 3 was manufactured by the same manufacturing method except that the acid treatment step and the cleaning step were omitted in the manufacturing step of Example 2.

<比較例4>
比較例4は実施例2の製造工程で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 4>
Comparative Example 4 was manufactured by the same manufacturing method except that the cleaning step was omitted in the manufacturing process of Example 2.

<比較例5>
比較例5は、実施例2の製造方法で酸処理工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 5>
Comparative Example 5 was manufactured by the same manufacturing method except that the acid treatment step was omitted in the manufacturing method of Example 2.

<比較例6>
比較例6は、実施例5の製造方法で洗浄工程を省略した以外は、同じ製造方法によって製造したものである。
<Comparative Example 6>
Comparative Example 6 was manufactured by the same manufacturing method except that the cleaning step was omitted in the manufacturing method of Example 5.

<比較例7>
比較例7が比較例4と異なる点は、窒化リチウム(Li3N)原料を窒化カルシウム粉末(Ca32)とし、Ca−αサイアロン系蛍光体を製造した点である。尚、予混合粉比はモル比で窒化ケイ素粉末:窒化アルミニウム粉末:酸化ユーロピウム粉末=71.6:25.8:2.6(モル比)とした。この予混合粉末を窒素雰囲気下のグローブボックス内に入れ、窒化カルシウム粉末と混合し、原料混合粉末を得た。混合比は予混合粉末のモル数(Si34、AlN、及びEu23の合計モル数):窒化カルシウム粉末のモル数=87.1:12.9とした。
<Comparative Example 7>
The difference between Comparative Example 7 and Comparative Example 4 is that a Ca-α-sialon-based phosphor was produced by using calcium nitride powder (Ca 3 N 2 ) as a raw material for lithium nitride (Li 3 N). The premixed powder ratio was a molar ratio of silicon nitride powder: aluminum nitride powder: europium oxide powder = 71.6: 25.8: 2.6 (molar ratio). This premixed powder was placed in a glove box under a nitrogen atmosphere and mixed with calcium nitride powder to obtain a raw material mixed powder. The mixing ratio was the number of moles of the premixed powder ( total number of moles of Si 3 N 4 , Al N, and Eu 2 O 3 ): the number of moles of the calcium nitride powder = 87.1: 12.9.

(発光素子製造工程)
洗浄工程後の実施例及び比較例に係る各蛍光体を、シリコーン樹脂(東レ・ダウコーニング株式会社製、商品名:JCR6175など)100質量部に対して30質量部の割合で混合して、スラリーを調整した。その後、460nmにピーク波長を有する青色LEDチップが実装されたトップビュータイプパッケージに、上記スラリー3〜4μLを注入した。このスラリーが注入されたトップビュータイプパッケージを150℃にて2時間の範囲で加熱し、スラリーを硬化させ、発光素子を製造した。
(Light emitting element manufacturing process)
Each of the phosphors according to the examples and comparative examples after the cleaning step is mixed at a ratio of 30 parts by mass with 100 parts by mass of a silicone resin (manufactured by Toray Dow Corning Co., Ltd., trade name: JCR6175, etc.) to form a slurry. Was adjusted. Then, 3 to 4 μL of the above slurry was injected into a top view type package on which a blue LED chip having a peak wavelength of 460 nm was mounted. The top view type package in which the slurry was injected was heated at 150 ° C. for 2 hours to cure the slurry, and a light emitting device was manufactured.

実施例及び比較例に係る各蛍光体の評価を、表1に示す。表1は、実施例及び比較例について、不純物含有量(単位:質量ppm)、メジアン径(単位:μm)、全結晶相に対するαサイアロン結晶の割合(単位:質量%)、ピーク波長(単位:nm)、蛍光強度(単位:%)、LEDの光束保持率(単位:%)を示したものである。 Table 1 shows the evaluation of each fluorescent substance according to Examples and Comparative Examples. Table 1 shows the impurity content (unit: mass ppm), median diameter (unit: μm), ratio of α-sialon crystals to the total crystal phase (unit: mass%), and peak wavelength (unit: mass%) for Examples and Comparative Examples. nm), fluorescence intensity (unit:%), and luminous flux retention rate (unit:%) of the LED are shown.

(結晶相の同定及び全結晶相に対するαサイアロン結晶の割合)
実施例及び比較例に係る各蛍光体について、X線回折装置(株式会社リガク社製UltimaIV)を用い、CuKα線を用いた粉末X線回折(XRD)により、結晶相の同定を行った。実施例1〜6、比較例1〜6にて得られた蛍光体のX線回折パターンは、αサイアロン結晶と同一の回折パターンが認められ、主結晶相がαサイアロンであることが確認された。またαサイアロンの回折パターンと不純物結晶相の回折パターンに基づき、全結晶相に対するαサイアロン結晶の質量割合を算出した。一方、比較例7でもαサイアロンの回折パターンが認められ、主結晶相がαサイアロンであることが確認された。
(Identification of crystal phase and ratio of α-sialon crystals to total crystal phase)
For each of the phosphors according to the examples and comparative examples, the crystal phase was identified by powder X-ray diffraction (XRD) using CuKα ray using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.). The X-ray diffraction patterns of the phosphors obtained in Examples 1 to 6 and Comparative Examples 1 to 6 showed the same diffraction pattern as the α-sialon crystal, and it was confirmed that the main crystal phase was α-sialon. .. Further, the mass ratio of the α-sialon crystal to the total crystal phase was calculated based on the diffraction pattern of the α-sialon and the diffraction pattern of the impurity crystal phase. On the other hand, the diffraction pattern of α-sialon was also observed in Comparative Example 7, and it was confirmed that the main crystal phase was α-sialon.

(不純物含有量)
リン、ナトリウム及びフッ素の含有量は、蛍光体0.5g/水25mlを100℃×12H溶出させ濾過した後、ICP発光分光分析装置(株式会社リガク製、CIROS−120)により、分析を行った。
(Impurity content)
The contents of phosphorus, sodium and fluorine were analyzed by an ICP emission spectrophotometer (CIROS-120, manufactured by Rigaku Co., Ltd.) after eluting 0.5 g of a phosphor / 25 ml of water at 100 ° C. for 12 hours and filtering. ..

(メジアン径(D50))
実施例及び比較例に係る各蛍光体のメジアン径(D50)(平均一次粒子径)を、以下の要領で測定した。先ず、フッ化水素酸(濃度46〜48g/100mlの範囲)と硝酸(濃度60g/100ml)を1:1で混合したものを、蒸留水で4倍に希釈して、処理液を作製した。この処理液を、80℃に加熱し、撹拌しながら、実施例又は比較例の蛍光体を、処理液100mlに対して20g以下の量添加し、分散させた。蛍光体を分散後1時間放置し、デカンテーションにより不溶粉末を回収した。回収した不溶粉末を、水洗し、乾燥させた。乾燥後の不溶粉末について、レーザー回折散乱式粒度分布測定装置(ベックマン・コールター株式会社製 LS 13 320)により粒子径分布を測定し、体積基準の累積50%の粒子径を、メジアン径(D50)とした。
(Mesian diameter (D50))
The median diameter (D50) (average primary particle diameter) of each of the phosphors according to the examples and comparative examples was measured as follows. First, a mixture of hydrofluoric acid (concentration of 46 to 48 g / 100 ml) and nitric acid (concentration of 60 g / 100 ml) at a ratio of 1: 1 was diluted 4-fold with distilled water to prepare a treatment liquid. This treatment liquid was heated to 80 ° C., and while stirring, the fluorescent substance of Example or Comparative Example was added in an amount of 20 g or less to 100 ml of the treatment liquid and dispersed. The fluorophore was allowed to stand for 1 hour after dispersion, and the insoluble powder was recovered by decantation. The recovered insoluble powder was washed with water and dried. For the insoluble powder after drying, the particle size distribution was measured with a laser diffraction / scattering type particle size distribution measuring device (LS 13 320 manufactured by Beckman Coulter Co., Ltd.), and the cumulative 50% of the volume-based particle size was set to the median size (D50). And said.

(化学組成)
また、ICP発光分光分析装置(株式会社リガク製、CIROS−120)により、蛍光体の分析を行った結果、実施例1及び比較例6の蛍光体のLi含有量は1.8質量%以上3質量%以下の範囲であり、Eu含有量は0.1質量%以上1.5質量%以下の範囲であり、O含有量は0.4質量%以上1.3質量%以下の範囲であった。
(Chemical composition)
Further, as a result of analyzing the fluorescent substance by the ICP emission spectroscopic analyzer (CIROS-120, manufactured by Rigaku Co., Ltd.), the Li content of the fluorescent substance of Example 1 and Comparative Example 6 was 1.8% by mass or more 3 The Eu content was in the range of 0.1% by mass or more and 1.5% by mass or less, and the O content was in the range of 0.4% by mass or more and 1.3% by mass or less. ..

(ピーク波長)
実施例及び比較例に係る各蛍光体について、ローダミンBと副標準光源により補正を行った分光蛍光光度計(日立ハイテクノロジーズ社製、F−7000)を用いて蛍光測定を行った。測定には、光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトル及びピーク波長を測定した。
(Peak wavelength)
Fluorescence measurements were performed on each of the phosphors according to the examples and comparative examples using a spectrofluorescence meter (F-7000, manufactured by Hitachi High-Technologies Corporation) corrected by Rhodamine B and a substandard light source. The solid sample holder attached to the photometer was used for the measurement, and the fluorescence spectrum and the peak wavelength at the excitation wavelength of 455 nm were measured.

(蛍光強度)
蛍光強度は、蛍光スペクトル強度とCIE標準比視感度の積から算出した。なお、測定装置や条件によって変化するため単位は任意であり、同一条件で測定した実施例及び比較例での相対で比較した。基準として、実施例4の蛍光強度を100%とした。85%以上が合格値である。
(Fluorescence intensity)
The fluorescence intensity was calculated from the product of the fluorescence spectrum intensity and the CIE standard luminosity. The unit is arbitrary because it changes depending on the measuring device and conditions, and the comparison was made relative to each other in the examples and comparative examples measured under the same conditions. As a reference, the fluorescence intensity of Example 4 was set to 100%. 85% or more is a passing value.

(発光素子の光束保持率(発光素子の耐久性評価))
次に、実施例及び比較例に係る蛍光体粒子を備える発光素子について、光束変化を測定した。光束変化の測定は、発光素子を85℃の温度及び85%の相対湿度の高温高湿下に通電150mAで所定時間放置した後、全光束測定システム(Half Moon :大塚電子株式会社製HH41−0773−1)を用いて、発光素子から放出された蛍光の光束変化を測定した。尚、これは通電時間毎の光束値から、通電開始直後を100%としたときの割合を光束保持率として示したものであり、1000時間経過後に95%以上であることが好ましい。
(Luminous flux retention rate of light emitting element (durability evaluation of light emitting element))
Next, the change in luminous flux was measured for the light emitting device provided with the phosphor particles according to the examples and the comparative examples. To measure the change in luminous flux, the light emitting element is left at a temperature of 85 ° C. and a high temperature and high humidity of 85% relative humidity at 150 mA for a predetermined time, and then a total luminous flux measurement system (Half Moon: HH41-0773 manufactured by Otsuka Electronics Co., Ltd.). Using -1), the change in luminous flux of the fluorescence emitted from the light emitting element was measured. It should be noted that this shows the ratio of the luminous flux value for each energization time when the ratio immediately after the start of energization is 100% as the luminous flux retention rate, and is preferably 95% or more after 1000 hours have elapsed.

表1より、実施例1〜実施例6のLi−αサイアロン系蛍光体は、比較例に比べて不純物量含有量が少なく、αサイアロン結晶の割合も高かった。これにより、高い蛍光強度が得られるとともに、長時間の使用があっても発光効率の低下が少なく、電気的不良の少ない発光装置であった。実施例1〜実施例6に係る蛍光体を用いた発光素子は、蛍光体に含まれる不純物元素の含有量が極微量であるので、蛍光体の不純物元素に起因する樹脂の硬化阻害発生を抑えるため短絡等の電気的異常を起こす可能性が極めて小さく、長寿命となる。 From Table 1, the Li-α sialone-based phosphors of Examples 1 to 6 had a lower impurity content and a higher proportion of α-sialon crystals as compared with Comparative Examples. As a result, a high fluorescence intensity can be obtained, the luminous efficiency does not decrease even after long-term use, and the light emitting device has few electrical defects. Since the light emitting element using the phosphor according to Examples 1 to 6 has a very small amount of the impurity element contained in the phosphor, it suppresses the occurrence of curing inhibition of the resin due to the impurity element of the phosphor. Therefore, the possibility of causing an electrical abnormality such as a short circuit is extremely small, and the life is long.

これに対して、比較例1はフッ素、ナトリウム及びリン含有量は少ないがαサイアロン結晶の割合が低かったため、蛍光強度が低かった。比較例2はナトリウム及びリン含有量は少ないがフッ素含有量が多く光束保持率も低かった。比較例3はフッ素含有量は少ないがナトリウム及びリン含有量が多く光束保持率も低く、αサイアロン結晶の割合も低かった。比較例4は、リン、ナトリウム、フッ素含有量が多いため、光束保持率が低かった。比較例5は、リン、ナトリウム、フッ素含有量が少ないが、αサイアロン結晶の割合が低かった。このため、光束保持率が発明例に比べて低下した。比較例6は、ナトリウム及びリン含有量は少ないがフッ素含有量が多く、光束保持率が低かった。このため、光束保持率が発明例に比べて低下した。比較例7は、フッ素及びナトリウム及びリン含有量は多いにも関わらず、光束保持率は高かった。つまり不純物元素の存在が必ずしも悪影響を及ぼすわけではなく、不純物元素の存在により特性の低下が見られたのはLi−αサイアロン系蛍光体に特有のものであった。 On the other hand, in Comparative Example 1, although the contents of fluorine, sodium and phosphorus were small, the proportion of α-sialon crystals was low, so that the fluorescence intensity was low. In Comparative Example 2, the sodium and phosphorus contents were low, but the fluorine content was high and the luminous flux retention rate was low. In Comparative Example 3, the fluorine content was low, but the sodium and phosphorus contents were high, the luminous flux retention rate was low, and the proportion of α-sialon crystals was also low. In Comparative Example 4, the luminous flux retention rate was low because the contents of phosphorus, sodium, and fluorine were high. In Comparative Example 5, the contents of phosphorus, sodium, and fluorine were low, but the proportion of α-sialon crystals was low. Therefore, the luminous flux retention rate is lower than that of the invention example. In Comparative Example 6, the sodium and phosphorus contents were low, but the fluorine content was high, and the luminous flux retention rate was low. Therefore, the luminous flux retention rate is lower than that of the invention example. In Comparative Example 7, the luminous flux retention rate was high despite the high contents of fluorine, sodium and phosphorus. That is, the presence of the impurity element does not necessarily have an adverse effect, and the deterioration of the characteristics due to the presence of the impurity element is peculiar to the Li-α sialone-based phosphor.

Figure 0006970658
Figure 0006970658

Claims (10)

Eu付活Li−αサイアロン系蛍光体であって、Fの含有量が1質量ppm以上20質量ppm以下、且つ、PとNaの総含有量が1質量ppm以上10質量ppm以下であり、全結晶相に対するαサイアロン結晶の割合が97質量%以上99質量%以下である蛍光体。 An Eu-activated Li-α sialon-based phosphor having an F content of 1 mass ppm or more and 20 mass ppm or less, and a total content of P and Na of 1 mass ppm or more and 10 mass ppm or less. A phosphor in which the ratio of α-sialon crystals to the crystal phase is 97% by mass or more and 99% by mass or less. PとNaの総含有量が5質量ppm以下である請求項1に記載の蛍光体。 The fluorescent substance according to claim 1, wherein the total content of P and Na is 5 mass ppm or less. Li含有量が1.8質量%以上3質量%以下である請求項1又は2に記載の蛍光体。 The fluorescent substance according to claim 1 or 2, wherein the Li content is 1.8% by mass or more and 3% by mass or less. Eu含有量が0.1質量%以上1.5質量%以下である請求項1〜3の何れか一項に記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 3, wherein the Eu content is 0.1% by mass or more and 1.5% by mass or less. O含有量が0.4質量%以上1.3質量%以下である請求項1〜4の何れか一項に記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 4, wherein the O content is 0.4% by mass or more and 1.3% by mass or less. 平均一次粒子径が7μm以上35μm以下である請求項1〜5の何れか一項に記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 5, wherein the average primary particle size is 7 μm or more and 35 μm or less. 請求項1〜6の何れか一項に記載の蛍光体と、当該蛍光体に励起光を照射する発光光源とを有する発光素子。 A light emitting device having the phosphor according to any one of claims 1 to 6 and a light emitting light source for irradiating the phosphor with excitation light. 前記発光光源は発光ダイオード又はレーザーダイオードである請求項7に記載の発光素子。 The light emitting element according to claim 7, wherein the light emitting light source is a light emitting diode or a laser diode. 85℃の温度且つ85%の相対湿度の条件下とし、通電150mAで1000時間放置したときの光束保持率が95%以上である請求項7又は8に記載の発光素子。 The light emitting device according to claim 7 or 8, wherein the luminous flux retention rate is 95% or more when the light flux is left at 150 mA for 1000 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 85%. 請求項7〜9の何れか一項に記載の発光素子を備える発光装置。 A light emitting device including the light emitting element according to any one of claims 7 to 9.
JP2018504620A 2016-03-11 2017-03-10 Fluorescent material, light emitting element and light emitting device Active JP6970658B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016048867 2016-03-11
JP2016048867 2016-03-11
PCT/JP2017/009792 WO2017155111A1 (en) 2016-03-11 2017-03-10 Phosphor, light-emitting element, and light-emitting device

Publications (2)

Publication Number Publication Date
JPWO2017155111A1 JPWO2017155111A1 (en) 2019-01-17
JP6970658B2 true JP6970658B2 (en) 2021-11-24

Family

ID=59790551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018504620A Active JP6970658B2 (en) 2016-03-11 2017-03-10 Fluorescent material, light emitting element and light emitting device

Country Status (5)

Country Link
JP (1) JP6970658B2 (en)
KR (1) KR102399783B1 (en)
CN (1) CN108779394A (en)
TW (1) TWI751140B (en)
WO (1) WO2017155111A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436214B2 (en) 2019-03-29 2024-02-21 デンカ株式会社 Phosphor powders, composites and light emitting devices
US20240002719A1 (en) * 2020-12-04 2024-01-04 Denka Company Limited Phosphor particles and light-emitting device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668770B2 (en) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 Oxynitride phosphor activated with rare earth elements
JP4210761B2 (en) * 2004-03-12 2009-01-21 独立行政法人物質・材料研究機構 Phosphor and production method thereof
JP4627222B2 (en) 2005-06-23 2011-02-09 シャープ株式会社 Information processing apparatus having server function and client function, and program and recording medium used therefor
US20090284948A1 (en) 2006-07-05 2009-11-19 Ube Industries, Ltd., A Corporation Of Japan Sialon-based oxynitride phosphor and production method thereof
JP2009224754A (en) 2007-08-22 2009-10-01 Mitsubishi Chemicals Corp Semiconductor light emitting device, lighting apparatus, and image display device
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
US20090283721A1 (en) 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
JP5173638B2 (en) 2008-07-14 2013-04-03 株式会社神戸製鋼所 Method for producing galvannealed steel sheet
JP5470911B2 (en) 2009-03-02 2014-04-16 宇部興産株式会社 Li-containing α-sialon-based oxynitride phosphor powder and method for producing the same
KR101732746B1 (en) * 2009-01-27 2017-05-04 덴카 주식회사 -sialon phosphor method for producing same and light-emitting device
JP5240399B2 (en) * 2010-03-01 2013-07-17 宇部興産株式会社 Li-containing α-sialon-based phosphor particles, method for producing the same, lighting apparatus, and image display device
KR101717668B1 (en) 2010-03-26 2017-03-17 삼성전자주식회사 Complex crystal phosphor, light emitting device, display apparatus and illumination apparatus
JP5565046B2 (en) * 2010-03-31 2014-08-06 宇部興産株式会社 Method for producing Li-containing α-sialon phosphor
KR102142672B1 (en) * 2012-11-13 2020-08-07 덴카 주식회사 Phosphor, light-emitting element and lighting device
US10266766B2 (en) * 2012-11-13 2019-04-23 Denka Company Limited Phosphor, light-emitting element and lighting device
CN105331361B (en) * 2015-12-03 2017-09-19 河北利福光电技术有限公司 A kind of β SiAlON: Eu2+Green emitting phosphor and its synthetic method

Also Published As

Publication number Publication date
TWI751140B (en) 2022-01-01
TW201802230A (en) 2018-01-16
KR102399783B1 (en) 2022-05-19
JPWO2017155111A1 (en) 2019-01-17
WO2017155111A1 (en) 2017-09-14
KR20180118223A (en) 2018-10-30
CN108779394A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
KR101109988B1 (en) Fluorescent substance, method for producing the same, and light-emitting device using the same
JP7312187B2 (en) Phosphor and light emitting device
TWI399422B (en) Fluorescence material and manufacture thereof and luminaire
TWI641677B (en) Phosphor, light-emitting element and lighting device
JP5092667B2 (en) Light emitting device
JP4813577B2 (en) Method for producing β-sialon phosphor
CN114026200B (en) Phosphor, method for producing same, and light-emitting device
JP7280866B2 (en) α-type sialon phosphor and light-emitting device
KR20130106394A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
WO2020054350A1 (en) Fluorescent material and light-emitting device
KR102380907B1 (en) Phosphors and Light-Emitting Devices
JP6970658B2 (en) Fluorescent material, light emitting element and light emitting device
CN104745190B (en) fluorescent powder and light-emitting device
JP7282744B2 (en) β-type sialon phosphor and light-emitting device
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
JP2018150433A (en) Orange phosphor and light-emitting device
KR102620016B1 (en) Red phosphor and light emitting device
CN103881710A (en) Phosphor and light emitting device
KR20140121432A (en) Phosphor, phosphor production method, and light-emitting device
CN104745189B (en) Phosphor and light emitting device
JP2013122048A (en) Oxynitride-based phosphor and light-emitting device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211029

R150 Certificate of patent or registration of utility model

Ref document number: 6970658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150