JP2018109079A - Green phosphor, light emitting element and light emitting device - Google Patents

Green phosphor, light emitting element and light emitting device Download PDF

Info

Publication number
JP2018109079A
JP2018109079A JP2016256183A JP2016256183A JP2018109079A JP 2018109079 A JP2018109079 A JP 2018109079A JP 2016256183 A JP2016256183 A JP 2016256183A JP 2016256183 A JP2016256183 A JP 2016256183A JP 2018109079 A JP2018109079 A JP 2018109079A
Authority
JP
Japan
Prior art keywords
phosphor
light
wavelength
green phosphor
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016256183A
Other languages
Japanese (ja)
Inventor
秀幸 江本
Hideyuki Emoto
秀幸 江本
太陽 山浦
Taiyo Yamaura
太陽 山浦
真太郎 渡邉
Shintaro Watanabe
真太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2016256183A priority Critical patent/JP2018109079A/en
Publication of JP2018109079A publication Critical patent/JP2018109079A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a γ-AlON green phosphor having improved brightness, a light emitting element including the phosphor, and a light emitting device including the light emitting element.SOLUTION: A green phosphor has a host crystal having the same crystal structure as a cubic spinel AlON crystal, and in the host crystal, element M (where element M is at least one element selected from Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb) and element A (where element A is at least one metal element other than element M and Al) are dissolved in a solid state. When excited with light of 455 nm in wavelength, the green phosphor has a fluorescence spectral peak in a wavelength range of 515 nm or more and 530 nm or less, has an average diffuse reflectance of 92% or more in a wavelength range of 600-800 nm, and has a diffuse reflectance of 90% or more in a fluorescence peak wavelength.SELECTED DRAWING: None

Description

本発明は、緑色蛍光体、及び前記蛍光体を用いた発光素子及び発光装置に関する。より詳しくは、輝度に優れ、LED(発光ダイオードともいう)又はLD(レーザーダイオードともいう)向けに好ましく用いることができる緑色蛍光体、及び前記蛍光体を用いた発光素子及び発光装置に関する。 The present invention relates to a green phosphor, and a light emitting element and a light emitting device using the phosphor. More specifically, the present invention relates to a green phosphor that is excellent in luminance and can be preferably used for an LED (also referred to as a light emitting diode) or an LD (also referred to as a laser diode), and a light emitting element and a light emitting device using the phosphor.

白色LEDは、半導体発光素子と蛍光体との組み合わせにより疑似白色光を発光するデバイスであり、その代表的な例として、青色LEDとYAG黄色蛍光体の組み合わせが知られている。しかし、この方式の白色LEDは、その色度座標値としては白色領域に入るものの、緑色発光成分、赤色発光成分が不足しているために、照明用途では演色性が低く、液晶バックライトのような画像表示装置では色再現性が悪いという問題がある。そこで、不足している発光成分を補うために、青色LEDと緑色蛍光体及び赤色蛍光体を組み合わせた発光装置が提案されている。緑色を発光する蛍光体の代表例として、窒化ケイ素のケイ素、窒素の一部をアルミニウム、酸素が置換固溶したβサイアロンに、さらに発光中心となる元素を固溶させたβサイアロン蛍光体が知られている。 A white LED is a device that emits pseudo white light by a combination of a semiconductor light-emitting element and a phosphor. As a typical example, a combination of a blue LED and a YAG yellow phosphor is known. However, although this type of white LED is in the white region as its chromaticity coordinate value, it lacks the green light emission component and the red light emission component, so it has a low color rendering property for lighting applications, and is similar to a liquid crystal backlight. Such an image display device has a problem that color reproducibility is poor. Therefore, in order to compensate for the lack of light emitting components, a light emitting device combining a blue LED, a green phosphor and a red phosphor has been proposed. As a typical example of a phosphor emitting green light, a β sialon phosphor in which silicon nitride silicon, a part of nitrogen is aluminum, and β sialon in which oxygen is substituted to form a solid solution and an element serving as a luminescent center is further dissolved is known. It has been.

その他の緑色を発光する蛍光体として、特許文献1、2には、立方晶スピネル型AlON結晶(γ−AlONとも呼称される)と同一の結晶構造を有する無機結晶を母体結晶とし、例えばMnとMg、またはMnとEuとMg、またはMnとSiといった元素の組み合わせを前記母体結晶にさらに固溶させた蛍光体(以降、γ−AlON系蛍光体とも記載する)が開示されている。γ−AlON系蛍光体は、一般に発光スペクトルの半値幅が狭く、また緑色蛍光体としての発光ピーク波長が、βサイアロン蛍光体の発光ピーク波長よりもさらに短波長側にあるため、原理的には高効率及び色再現性がより広い発光装置を得ることができる。特許文献3、4には、γ−AlON系蛍光体と赤色蛍光体及び光源を組み合わせた発光装置についても提案されている。 As other phosphors emitting green light, Patent Documents 1 and 2 disclose that an inorganic crystal having the same crystal structure as a cubic spinel AlON crystal (also referred to as γ-AlON) is a base crystal, for example, Mn A phosphor in which a combination of elements such as Mg or a combination of elements such as Mn, Eu and Mg, or Mn and Si is further dissolved in the base crystal (hereinafter also referred to as a γ-AlON phosphor) is disclosed. In principle, γ-AlON phosphors have a narrow emission spectrum half-width, and the emission peak wavelength of green phosphors is on the shorter wavelength side than the emission peak wavelength of β sialon phosphors. A light emitting device with higher efficiency and wider color reproducibility can be obtained. Patent Documents 3 and 4 also propose a light emitting device that combines a γ-AlON phosphor, a red phosphor, and a light source.

しかしγ−AlON系蛍光体は、発光波長の面ではβサイアロン蛍光体より有利であるものの、発光装置として使用するには発光輝度が幾分不足しており、この点において改良の余地が残されていた。そのため、業界では高い発光輝度の発光素子、発光装置を提供できるように、γ−AlON系蛍光体の高輝度化が期待されていた。 However, although γ-AlON phosphors are more advantageous than β sialon phosphors in terms of emission wavelength, the luminance is somewhat insufficient for use as a light emitting device, and there is room for improvement in this respect. It was. For this reason, in the industry, it has been expected to increase the luminance of the γ-AlON phosphor so that a light emitting element and a light emitting device having high luminance can be provided.

国際公報第2007/099862号パンフレットInternational Publication No. 2007/099862 Pamphlet 特開2009−096854号公報JP 2009-096854 A 特開2009−218422号公報JP 2009-218422 A 特開2010−093132号公報JP 2010-093132 A

本発明は、より輝度の高いγ−AlON系緑色蛍光体、及び前記蛍光体を含む発光素子、前記発光素子を用いた発光装置を提供することを目的とする。 An object of the present invention is to provide a γ-AlON green phosphor having higher luminance, a light emitting element including the phosphor, and a light emitting device using the light emitting element.

本発明者らは、上記課題を解決すべく鋭意検討した結果、立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、さらに複数の元素を固溶させたγ−AlON系緑色蛍光体において、前記蛍光体が、可視光の特定波長域の平均拡散反射率と特定波長における拡散反射率の規定を満たしていると、あるいは特定波長における光吸収率の規定を満たしていると、蛍光体の外部量子効率が高く、即ち輝度がさらに高いγ−AlON系緑色蛍光体が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a γ-AlON green phosphor in which a plurality of elements are further dissolved in a base crystal having the same crystal structure as a cubic spinel AlON crystal. When the phosphor satisfies the definition of the average diffuse reflectance in a specific wavelength range of visible light and the diffuse reflectance at the specific wavelength, or the light absorption rate at the specific wavelength, The present inventors have found that a γ-AlON green phosphor having a high external quantum efficiency, i.e., a higher luminance, can be obtained, and the present invention has been completed.

すなわち本発明は、
(1)立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、元素M(但し元素Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素)と、元素A(但し元素Aは、元素MおよびAl以外の1種以上の金属元素)とが固溶している蛍光体で、波長455nmの光で励起した場合、波長515nm以上530nm以下の範囲に蛍光スペクトルのピークを有し、波長600〜800nmの範囲における平均拡散反射率が92%以上であり、蛍光ピーク波長における拡散反射率が90%以上である緑色蛍光体である。
また本発明は、
(2)立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、元素M(但し元素Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素)と、元素A(但し元素Aは、元素MおよびAl以外の1種以上の金属元素)とが固溶している蛍光体で、波長455nmの光で励起した場合、波長515nm以上530nm以下の範囲に蛍光スペクトルのピークを有し、波長445nmにおける光吸収率が20%以上、波長520nmにおける光吸収率が8%以下、かつ波長600nmにおける光吸収率が7%以下である緑色蛍光体である。
(3)前記(1)または(2)記載の緑色蛍光体は、組成式がMaAbAlcOdNe(但し、Mは元素M、Aは元素A、Alはアルミニウム、Oは酸素、Nは窒素であり、a+b+c+d+e=1を満たす)で示され、0.00001≦a≦0.1の緑色蛍光体であることが好ましい。
(4)前記(1)〜(3)いずれか一項記載の緑色蛍光体は、組成式がMaAbAlcOdNe(但し、Mは元素M、Aは元素A、Alはアルミニウム、Oは酸素、Nは窒素であり、a+b+c+d+e=1を満たす)で示され、0.001≦b≦0.40の緑色蛍光体であることが好ましい。
(5)前記(1)〜(4)いずれか一項記載の緑色蛍光体は、元素MがMnであることが好ましい。
(6)前記(1)〜(5)いずれか一項記載の緑色蛍光体は、元素A元素が少なくともMgを含むことが好ましい。
(7)また本発明は、前記(1)〜(6)いずれか一項記載の緑色蛍光体を含む発光素子である。
(8)また本発明は、前記(7)記載の発光素子を用いた発光装置である。
That is, the present invention
(1) To a base crystal having the same crystal structure as that of a cubic spinel AlON crystal, an element M (wherein the element M is Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb) A phosphor in which one or more selected elements) and element A (where element A is one or more metal elements other than element M and Al) are solid-solved and excited with light having a wavelength of 455 nm A green fluorescent light having a fluorescence spectrum peak in the wavelength range of 515 nm or more and 530 nm or less, an average diffuse reflectance in the wavelength range of 600 to 800 nm of 92% or more, and a diffuse reflectance in the fluorescence peak wavelength of 90% or more. Is the body.
The present invention also provides
(2) To a base crystal having the same crystal structure as the cubic spinel type AlON crystal, an element M (wherein the element M is Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, Yb) A phosphor in which one or more selected elements) and element A (where element A is one or more metal elements other than element M and Al) are solid-solved and excited with light having a wavelength of 455 nm And having a fluorescence spectrum peak in the wavelength range of 515 nm or more and 530 nm or less, light absorption at a wavelength of 445 nm of 20% or more, light absorption at a wavelength of 520 nm of 8% or less, and light absorption at a wavelength of 600 nm of 7% or less. It is a green phosphor.
(3) The green phosphor described in (1) or (2) has a composition formula of MaAbAlcOdNe (where M is the element M, A is the element A, Al is aluminum, O is oxygen, and N is nitrogen, a + b + c + d + e) = 1), and a green phosphor of 0.00001 ≦ a ≦ 0.1 is preferable.
(4) The green phosphor according to any one of (1) to (3) has a composition formula of MaAbAlcOdNe (where M is element M, A is element A, Al is aluminum, O is oxygen, and N is nitrogen) And satisfies a + b + c + d + e = 1), and is preferably a green phosphor with 0.001 ≦ b ≦ 0.40.
(5) In the green phosphor according to any one of (1) to (4), the element M is preferably Mn.
(6) In the green phosphor according to any one of (1) to (5), the element A element preferably contains at least Mg.
(7) Moreover, this invention is a light emitting element containing the green fluorescent substance as described in any one of said (1)-(6).
(8) Moreover, this invention is a light-emitting device using the light emitting element of said (7) description.

本発明の実施により、従来より輝度の高い緑色蛍光体を得ることができ、本発明の蛍光体を励起できる例えば青色LED等に、本発明の緑色蛍光体と、必要に応じてさらに別の色を発光する蛍光体(例えば赤色蛍光体)とを組み合わせて含む、例えば白色LED等の発光素子や、さらにこれら発光素子を用いた発光装置と提供することができる。発光装置としては、例えば照明装置、バックライト装置、画像表示装置及び信号装置が挙げられる。 By implementing the present invention, it is possible to obtain a green phosphor with higher brightness than conventional ones, such as a blue LED that can excite the phosphor of the present invention, and the green phosphor of the present invention and, if necessary, another color. For example, it is possible to provide a light emitting element such as a white LED including a phosphor that emits light in combination (for example, a red phosphor), and a light emitting device using these light emitting elements. Examples of the light emitting device include a lighting device, a backlight device, an image display device, and a signal device.

以下、本発明を実施するための形態について、詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明の実施により立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、元素M(但し元素Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素)と、元素A(但し元素Aは、元素MおよびAl以外の1種以上の金属元素)とが固溶している緑色蛍光体が得られる。本発明でいう立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶とは、さらに具体的には、立方晶スピネル型のAlON結晶、AlON固溶体結晶、及び前記AlON結晶、前記AlON固溶体結晶を除く、立方晶スピネル型AlON結晶と同一の結晶構造を有する結晶の総称である。立方晶スピネル型のAlON結晶はより一般的にγ−AlONとも呼ばれている。また前記AlON固溶体結晶とは、前記AlONと同じ結晶構造を有するが、酸素/窒素の比率がAlONとは異なっている、またはケイ素やMnなど他の元素が添加されている結晶である。さらに立方晶スピネル型AlON結晶と同一の結晶構造を有する結晶とは、前記AlONと同じ結晶構造を有するが、Al、O、Nの一部または全てが他の元素に置き換わった結晶である。これらの中ではγ−AlONが最も代表的な結晶である。 By implementing the present invention, a base crystal having the same crystal structure as that of the cubic spinel AlON crystal is converted into an element M (where the element M is Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, A green phosphor in which one or more elements selected from Yb) and element A (wherein element A is one or more metal elements other than element M and Al) is obtained as a solid solution is obtained. More specifically, the base crystal having the same crystal structure as the cubic spinel type AlON crystal in the present invention includes a cubic spinel type AlON crystal, an AlON solid solution crystal, the AlON crystal, and the AlON solid solution crystal. It is a general term for crystals having the same crystal structure as the cubic spinel AlON crystal. The cubic spinel AlON crystal is more generally called γ-AlON. The AlON solid solution crystal is a crystal having the same crystal structure as that of the AlON but having an oxygen / nitrogen ratio different from that of the AlON or having other elements such as silicon and Mn added thereto. Furthermore, the crystal having the same crystal structure as the cubic spinel type AlON crystal is a crystal having the same crystal structure as that of the AlON, except that some or all of Al, O, and N are replaced with other elements. Among these, γ-AlON is the most typical crystal.

本明細書では便宜上、蛍光体の主結晶構造が例えばγ−AlONで示されると記載するが、そのような組成の蛍光体が得られるように原料を配合しても、原料中の不純物や焼成時の雰囲気等の影響により、蛍光体の組成が変動する可能性がある。本発明の緑色蛍光体の組成は、そのような変動分をも包摂した表現である。 In this specification, for convenience, it is described that the main crystal structure of the phosphor is represented by, for example, γ-AlON. However, even if the raw materials are blended so as to obtain a phosphor having such a composition, impurities in the raw materials and firing The composition of the phosphor may fluctuate due to the influence of the atmosphere at the time. The composition of the green phosphor of the present invention is an expression including such a variation.

本発明の緑色蛍光体の母体結晶が、γ−AlONと同一の結晶構造を有しているか否かは、粉末X線回折測定により確認することができる。本発明の蛍光体の母体結晶が、γ−AlONと同一の結晶構造を有してない場合には、発光色が緑色ではなくなったり、蛍光強度が大きく低下したりするので、好ましくない。本発明の緑色蛍光体において、γ−AlONと同一の結晶構造である母体結晶は、単相の結晶であることが好ましいが、蛍光体特性に大きな影響がない限り、異相の結晶を含んでいても構わない。異相の結晶の有無もまた、粉末X線回折測定により目的の結晶相によるもの以外のピークの有無により判別することができる。また、γ−AlONの構成元素が一部他の元素と置き換わることにより、格子定数が変化したものも本発明として含まれる。 Whether or not the base crystal of the green phosphor of the present invention has the same crystal structure as γ-AlON can be confirmed by powder X-ray diffraction measurement. When the host crystal of the phosphor of the present invention does not have the same crystal structure as that of γ-AlON, the emission color is not green, and the fluorescence intensity is greatly reduced, which is not preferable. In the green phosphor of the present invention, the base crystal having the same crystal structure as that of γ-AlON is preferably a single-phase crystal, but contains a heterophasic crystal as long as the phosphor characteristics are not greatly affected. It doesn't matter. Presence / absence of heterogeneous crystals can also be determined by the presence / absence of peaks other than those due to the target crystal phase by powder X-ray diffraction measurement. In addition, elements in which the lattice constant is changed by partially replacing the constituent elements of γ-AlON with other elements are also included in the present invention.

本発明の緑色蛍光体は、立方晶スピネル型AlON(即ちγ−AlON)結晶と同一の結晶構造を有する母体結晶に、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素Mが固溶している蛍光体である。元素Mは、蛍光体の発光中心となる元素であり、本発明の緑色蛍光体では特にMnが好ましい。 The green phosphor of the present invention is obtained by adding Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm to a base crystal having the same crystal structure as a cubic spinel AlON (ie, γ-AlON) crystal. , Yb is a phosphor in which one or more elements M selected from Yb are dissolved. The element M is an element that becomes the emission center of the phosphor, and Mn is particularly preferable in the green phosphor of the present invention.

本発明の緑色蛍光体は、前記元素Mに加え、さらに元素Aが固溶している蛍光体である。元素Aは、元素M及びAl以外の1種以上の金属元素であり、Mgを含むことが好ましい。 The green phosphor of the present invention is a phosphor in which the element A is further dissolved in addition to the element M. The element A is one or more metal elements other than the elements M and Al, and preferably contains Mg.

また本発明の緑色蛍光体は、波長455nmの光で励起した場合、波長515nm以上530nm以下の範囲に蛍光スペクトルのピークを有し、波長600〜800nmの範囲における平均拡散反射率が92%以上であり、蛍光ピーク波長における拡散反射率が90%以上である。 The green phosphor of the present invention has a fluorescence spectrum peak in the wavelength range of 515 nm or more and 530 nm or less when excited with light having a wavelength of 455 nm, and the average diffuse reflectance in the wavelength range of 600 to 800 nm is 92% or more. Yes, the diffuse reflectance at the fluorescence peak wavelength is 90% or more.

本発明の緑色蛍光体において波長600〜800nmの平均拡散反射率を92%以上としたのは、母体材料の透明性を高めることによって内部量子効率を向上させるためである。Mn2+で付活したγ−AlON系蛍光体において、Mn2+の蛍光発光は、500〜600nmの範囲で起こる。つまり、波長600nmより大きい拡散反射率はγ−AlON中のMn2+以外の吸収、つまり母体材料の発光を伴わない吸収を示す値である。波長600〜800nmの範囲で平均化することによりこの拡散反射率は再現性良く評価することができる。γ−AlON系蛍光体をこの範囲に制御するにはγ−AlON蛍光体母結晶の結晶性を高めたり、可視光を吸収する不純物や異相を低減すればよい。 The reason why the average diffuse reflectance at a wavelength of 600 to 800 nm is 92% or more in the green phosphor of the present invention is to improve the internal quantum efficiency by increasing the transparency of the base material. In gamma-AlON based phosphors activated with Mn 2+, fluorescent emission of Mn 2+ occurs at a range of 500 to 600 nm. That is, the diffuse reflectance greater than the wavelength of 600 nm is a value indicating absorption other than Mn 2+ in γ-AlON, that is, absorption not accompanied by light emission of the base material. By averaging in the wavelength range of 600 to 800 nm, this diffuse reflectance can be evaluated with good reproducibility. In order to control the γ-AlON phosphor within this range, the crystallinity of the γ-AlON phosphor mother crystal may be increased, or impurities and foreign phases that absorb visible light may be reduced.

本発明の緑色蛍光体において、蛍光ピーク波長における拡散反射率を90%以上としたのは、γ−AlON系蛍光体の母結晶内におけるMn2+近傍の結晶欠陥を除去するためである。この結晶欠陥は、Mn2+の励起した電子をトラップし発光を抑制してしまう。この抑制挙動は発光波長域の反射率に反映する。特に、蛍光ピーク波長における拡散反射率が蛍光特性と密接な関係を示す。γ−AlON蛍光体をこの範囲に制御するにはMn2+の励起した電子をトラップする結晶欠陥を低減すればよい。 The reason why the diffuse reflectance at the fluorescence peak wavelength is set to 90% or more in the green phosphor of the present invention is to remove crystal defects in the vicinity of Mn 2+ in the mother crystal of the γ-AlON phosphor. This crystal defect traps the excited electrons of Mn 2+ and suppresses light emission. This suppression behavior is reflected in the reflectance in the emission wavelength region. In particular, the diffuse reflectance at the fluorescence peak wavelength shows a close relationship with the fluorescence characteristics. In order to control the γ-AlON phosphor within this range, crystal defects that trap electrons excited by Mn 2+ may be reduced.

またさらに本発明の緑色蛍光体は、波長445nmにおける光吸収率が20%以上、波長520nmにおける光吸収率が8%以下、かつ波長600nmにおける光吸収率が7%以下である。 Furthermore, the green phosphor of the present invention has a light absorption rate of 20% or more at a wavelength of 445 nm, a light absorption rate of 8% or less at a wavelength of 520 nm, and a light absorption rate of 600% or less at a wavelength of 600 nm.

γ−AlON系蛍光体の母結晶内に固溶したMn2+の励起帯が440〜450nmにあり、励起源として波長445nmの青色光との組合せで最も輝度の高い発光装置が得られる。そこで、本発明の蛍光体は、波長445nmの光吸収率を20%以上とすることで、励起光を効率良く吸収し、高い輝度を得ることができる。また、Mn2+の励起とは無関係でAlONの結晶欠陥と相関がある、波長520nm及び600nmの光吸収率を、それぞれ8%より及び7%より低くすることで、輝度の高い緑色蛍光体となる。 The excitation band of Mn 2+ dissolved in the mother crystal of the γ-AlON phosphor is in the range of 440 to 450 nm, and the light emitting device with the highest luminance can be obtained in combination with blue light having a wavelength of 445 nm as an excitation source. Therefore, the phosphor of the present invention can absorb excitation light efficiently and obtain high luminance by setting the light absorptance at a wavelength of 445 nm to 20% or more. Further, by making the light absorptivity at wavelengths of 520 nm and 600 nm, which are independent of Mn 2+ excitation and correlated with crystal defects of AlON, lower than 8% and 7%, respectively, a high-luminance green phosphor is obtained. .

また本発明の緑色蛍光体は、その組成式がMaAbAlcOdNe(但し、Mは元素M、Aは元素A、Alはアルミニウム、Oは酸素、Nは窒素であり、a+b+c+d+e=1を満たす)で示すことができ、0.00001≦a≦0.1であることが好ましい。aが0.00001より小さいと発光中心となる元素Mが少ないため輝度が低下する。またaが0.1より大きいと、濃度消光と呼ばれる元素M同士間の干渉現象により輝度が低下する。 The composition of the green phosphor of the present invention is expressed by MaAbAlcOdNe (where M is element M, A is element A, Al is aluminum, O is oxygen, N is nitrogen, and a + b + c + d + e = 1 is satisfied). It is preferable that 0.00001 ≦ a ≦ 0.1. If a is smaller than 0.00001, the luminance decreases because the number of elements M that are the emission centers is small. On the other hand, when a is larger than 0.1, the luminance is lowered by an interference phenomenon between elements M called concentration quenching.

また本発明の緑色蛍光体は、前記本発明の組成式において、0.001≦b≦0.40であることが好ましい。bがこの範囲を外れると蛍光体の母体結晶が化学的に不安定になり、γ−AlONで示される結晶相以外の結晶相(即ち異相)の割合が増えるため、輝度が低下する。 The green phosphor of the present invention preferably satisfies 0.001 ≦ b ≦ 0.40 in the composition formula of the present invention. If b is out of this range, the host crystal of the phosphor becomes chemically unstable, and the ratio of the crystal phase other than the crystal phase represented by γ-AlON (that is, a different phase) increases, so that the luminance decreases.

本発明の緑色蛍光体の製造方法は、従来のγ−AlON系蛍光体の製造方法と同様の製造方法を用いることができる。ここでは、本発明の一つの実施形態であるγ−AlON結晶中に元素Mと元素Aとが固溶した結晶を得る方法として、結晶を構成しうる原料を混合した粉末を、窒素雰囲気中において所定の温度範囲で焼成する方法を例示するが、特にこの方法に限定されるものではない。 The production method of the green phosphor of the present invention can be the same production method as the conventional production method of γ-AlON phosphor. Here, as a method for obtaining a crystal in which the element M and the element A are dissolved in the γ-AlON crystal according to one embodiment of the present invention, a powder in which raw materials that can constitute the crystal are mixed in a nitrogen atmosphere. Although the method of baking in a predetermined temperature range is illustrated, it does not specifically limit to this method.

前記の製造方法は、本発明の緑色蛍光体の原料として、元素M、元素A、アルミニウム、酸素、及び窒素を含む単体及び/または化合物を用意して、目的の蛍光体が得られるような配合で前記原料を混合する準備工程と、これを焼成して本発明の緑色蛍光体を得る焼成工程を含む製造方法である。なお、前記元素Mを含む単体または化合物とは、元素Mを含む金属、元素Mの酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、またはこれらを組み合わせたものである。また前記元素Aを含む単体または化合物とは、元素Aを含む金属、元素Aの酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、またはこれらを組み合わせたものである。さらに前記アルミニウムを含む単体または化合物とは、アルミニウム、アルミニウム合金、酸化アルミニウムや窒化アルミニウム、またはこれらを組み合わせたものである。本発明の緑色蛍光体の原料となる酸素や窒素は、前記酸化物及び窒化物、また焼結する炉内中の雰囲気ガス(窒素ガス)から供給することができる。これら各原料は、固体であれば粉末状であることが好ましく、焼成する前に予め均一に混合することが好ましい。 The above-mentioned manufacturing method prepares a simple substance and / or a compound containing element M, element A, aluminum, oxygen, and nitrogen as a raw material of the green phosphor of the present invention, and a compound that can obtain a target phosphor In the manufacturing method including the preparation step of mixing the raw materials and the baking step of baking the raw material to obtain the green phosphor of the present invention. The simple substance or compound containing the element M is a metal containing the element M, an oxide, carbonate, nitride, fluoride, chloride, oxynitride of the element M, or a combination thereof. The simple substance or compound containing the element A is a metal containing the element A, an oxide of the element A, carbonate, nitride, fluoride, chloride, oxynitride, or a combination thereof. Further, the simple substance or compound containing aluminum is aluminum, an aluminum alloy, aluminum oxide, aluminum nitride, or a combination thereof. Oxygen and nitrogen, which are raw materials for the green phosphor of the present invention, can be supplied from the oxides and nitrides, and the atmospheric gas (nitrogen gas) in the furnace for sintering. Each of these raw materials is preferably in the form of a powder if it is solid, and is preferably mixed in advance before firing.

前記予め均一に混合した原料(以降、原料混合粉末という)は、焼成容器内に充填して焼成する。焼成容器は、少なくとも焼成温度の窒素雰囲気下において十分化学的、物理的(機械的)に安定で、原料混合粉末及びその反応生成物と反応しにくい材質で構成されることが好ましく、例えば窒化ホウ素製、カーボン製などが挙げられる。 The raw material uniformly mixed in advance (hereinafter referred to as raw material mixed powder) is filled in a firing container and fired. The firing container is preferably made of a material that is sufficiently chemically and physically (mechanically) stable at least in a nitrogen atmosphere at the firing temperature and is difficult to react with the raw material mixed powder and its reaction product. Made of carbon and carbon.

原料混合粉末を充填した焼成容器は焼成炉にセットし、好ましくは1500℃以上2200℃以下の窒素雰囲気中で焼成する。焼成温度が1500℃より低いと未反応残存量が多くなり、焼成温度が2200℃より高くなると目的とする蛍光体の母体結晶が分解するので好ましくない。 The firing container filled with the raw material mixed powder is set in a firing furnace, and preferably fired in a nitrogen atmosphere of 1500 ° C. or higher and 2200 ° C. or lower. When the firing temperature is lower than 1500 ° C., the amount of unreacted residue increases, and when the firing temperature is higher than 2200 ° C., the host crystal of the target phosphor is decomposed, which is not preferable.

焼成時間は、未反応の原料が多く残存したり、蛍光体の粒子の成長が不足したり、或いは実用的な面での生産性の低下という不都合が生じない時間範囲が選択される。本発明の好ましい実施形態では、焼成時間は1時間以上24時間以下としてよい。 The firing time is selected within a time range in which a large amount of unreacted raw material remains, the phosphor particles do not grow sufficiently, or the practical productivity is not lowered. In a preferred embodiment of the present invention, the firing time may be 1 hour or more and 24 hours or less.

焼成雰囲気の圧力は、焼成温度に応じて選択される。雰囲気圧力が高いほど、本発明の緑色蛍光体の母体結晶の分解開始温度は高くすることが可能であるが、工業的生産性を考慮すると1MPa未満とすることが好ましい。 The pressure of the firing atmosphere is selected according to the firing temperature. The higher the atmospheric pressure, the higher the decomposition start temperature of the base crystal of the green phosphor of the present invention, but it is preferably less than 1 MPa in view of industrial productivity.

原料混合粉末を焼成して得られる焼成物の状態は、原料混合粉末の配合割合や焼成条件により、粉体状、塊状、焼結体と様々である。蛍光体として使用する場合には、解砕や粉砕及び/又は分級操作を組み合わせて焼成物を所定の粒子サイズとすることができる。 The state of the fired product obtained by firing the raw material mixed powder varies depending on the blending ratio of the raw material mixed powder and the firing conditions, such as powder, lump, and sintered body. When used as a phosphor, the fired product can have a predetermined particle size by combining crushing, pulverization and / or classification operations.

本発明の緑色蛍光体の製造にあっては、蛍光体中の不純物を除去するための酸処理工程を、また蛍光体の結晶性を向上させることを目的とするアニール処理工程を更に設け、実施しても良い。 In the production of the green phosphor of the present invention, an acid treatment step for removing impurities in the phosphor and an annealing treatment step for improving the crystallinity of the phosphor are further provided. You may do it.

本発明の緑色蛍光体は、発光光源と本発明の蛍光体を含む発光素子に使用することができる。特に発光光源として、350nm以上500nm以下の波長を含有する紫外光や可視光を放射するLEDを用い、本発明の蛍光体に照射すると、波長510nmから550nmに蛍光ピークのある緑色光を発する。このため、例えば紫外LEDや青色LEDを発光光源として用い、本発明の緑色蛍光体と、さらに赤色の蛍光体とを組み合わせて含む発光素子となすことにより、容易に白色光の発光素子を得ることができる。 The green phosphor of the present invention can be used for a light emitting device including a light emitting source and the phosphor of the present invention. In particular, when an LED that emits ultraviolet light or visible light having a wavelength of 350 nm or more and 500 nm or less is used as a light source, and the phosphor of the present invention is irradiated, green light having a fluorescence peak at a wavelength of 510 nm to 550 nm is emitted. For this reason, for example, by using an ultraviolet LED or a blue LED as a light-emitting light source and forming a light-emitting element including a combination of the green phosphor of the present invention and a red phosphor, a white light-emitting element can be easily obtained. Can do.

以下に本発明を実施例及び比較例によりさらに詳しく説明する。但し本発明は、これら実施例の記載のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the description of these examples.

(実施例1)
実施例1の蛍光体の原料として、酸化アルミニウム粉末(Al、TM−DARグレード、大明化学株式会社製)、窒化アルミニウム粉末(AlN、Eグレード、株式会社トクヤマ社製)、酸化マグネシウム粉末(MgO、和光純薬工業社製)、酸化マンガン粉末(MnO、高純度化学研究所製)を用い、Mn:Mg:Al:O:N=0.0179:0.0625:0.3482:0.5089:0.0625のモル比率(表1に記載)となるように10分間乾式混合した。混合後の原料を目開き250μmのナイロン製篩で分級して大きさを揃え、原料混合粉末とした。分級した原料混合粉末の13gを、蓋付きの円筒型窒化ホウ素製容器(N−1グレード、デンカ社製)に充填した。
Example 1
As raw materials for the phosphor of Example 1, aluminum oxide powder (Al 2 O 3 , TM-DAR grade, manufactured by Daimei Chemical Co., Ltd.), aluminum nitride powder (AlN, E grade, manufactured by Tokuyama Co., Ltd.), magnesium oxide powder (MgO, manufactured by Wako Pure Chemical Industries, Ltd.), manganese oxide powder (MnO, manufactured by High Purity Chemical Laboratory), Mn: Mg: Al: O: N = 0.0179: 0.0625: 0.3482: 0 Dry mixing was performed for 10 minutes so that the molar ratio (described in Table 1) was 5089: 0.0625. The mixed raw materials were classified with a nylon sieve having a mesh size of 250 μm to obtain a uniform mixed powder. 13 g of the classified raw material mixed powder was filled in a cylindrical boron nitride container (N-1 grade, manufactured by Denka) with a lid.

原料混合粉末を充填した前記窒化ホウ素製容器をカーボンヒーターの電気炉内に速やかにセットし、炉内は0.1Pa以下まで十分に真空排気した。真空排気したまま、毎時300℃の昇温速度で加熱を開始し、1000℃到達後からは炉内に窒素ガスを導入し、炉内雰囲気圧力を0.8MPaとした。炉の内容積を1とした場合に1分間に炉内に流す窒素ガスの体積は0.02の比でガス導入を行い、圧力が一定となる様に窒素ガスの排気も並行して行った。窒素ガス導入開始後も、そのまま毎時300℃の昇温速度で加熱し続けて1900℃まで昇温し、1900℃の温度を保ちながら4時間の原料混合物を焼成した。 The boron nitride container filled with the raw material mixed powder was quickly set in an electric furnace of a carbon heater, and the inside of the furnace was sufficiently evacuated to 0.1 Pa or less. While evacuating, heating was started at a heating rate of 300 ° C. per hour, and after reaching 1000 ° C., nitrogen gas was introduced into the furnace, and the atmospheric pressure in the furnace was set to 0.8 MPa. When the internal volume of the furnace was 1, the volume of nitrogen gas flowing into the furnace per minute was introduced at a ratio of 0.02, and the nitrogen gas was exhausted in parallel so that the pressure was constant. . Even after the start of the introduction of nitrogen gas, heating was continued at a heating rate of 300 ° C. per hour, the temperature was raised to 1900 ° C., and the raw material mixture was baked for 4 hours while maintaining the temperature of 1900 ° C.

所定時間経過して冷却後、炉から回収した窒化ホウ素製容器内からは緑色の塊状物が回収されたが、前記塊状物をさらに乳鉢で解砕して、フッ化水素酸及び硝酸の混合液(80℃)で洗浄する酸処理工程を実施し、実施例1の蛍光体サンプルを得た。 After cooling for a predetermined time, a green lump was recovered from the inside of the boron nitride container recovered from the furnace, but the lump was further crushed in a mortar and mixed with hydrofluoric acid and nitric acid. An acid treatment step of washing at (80 ° C.) was performed to obtain a phosphor sample of Example 1.

(実施例2、比較例1、2)
実施例1の蛍光体で使用した原料と同じ原料を用い、但し、Mn:Mg:Al:O:Nのモル比率は表1に記載した比率に変更して原料混合粉末を調製した以外は、実施例1と同じ操作を実施して、実施例2、比較例1、2の蛍光体サンプルを得た。
(Example 2, Comparative Examples 1 and 2)
The same raw materials as those used in the phosphor of Example 1 were used except that the raw material mixed powder was prepared by changing the molar ratio of Mn: Mg: Al: O: N to the ratio described in Table 1. The same operation as in Example 1 was performed to obtain phosphor samples of Example 2 and Comparative Examples 1 and 2.

(結晶構造の確認)
実施例1、2、比較例1、2の蛍光体サンプルに対して、X線回折装置(UltimaIV、リガク社製)を用い、CuKα線を用いた粉末X線回折を行った。得られたX線回折パターンは、全てのサンプルでAlON結晶と同一の回折パターンが認められ、主結晶相がAlON結晶と同一の結晶構造を有することが確認された。
(Confirmation of crystal structure)
Powder X-ray diffraction using CuKα rays was performed on the phosphor samples of Examples 1 and 2 and Comparative Examples 1 and 2 using an X-ray diffractometer (Ultima IV, manufactured by Rigaku Corporation). As for the obtained X-ray diffraction pattern, the same diffraction pattern as the AlON crystal was recognized in all samples, and it was confirmed that the main crystal phase had the same crystal structure as the AlON crystal.

(蛍光ピーク波長の測定)
実施例1の蛍光体の蛍光ピーク波長を、以下に記載した方法で測定した。即ち、積分球装置と積分球装置付属の試料ホルダー、波長445nmの励起光、及び分光光度計(MCPD−7000、大塚電子社製)を準備した。粉末状の実施例1の蛍光体を表面が平滑になるように充填した前記試料ホルダーを、前記積分球の内面に向けて取り付け、積分球内部には光ファイバーを用いて波長445nmの励起光を導入し、実施例1の蛍光体サンプルに照射した。前記蛍光体が発した蛍光の一部を、積分球から外部の分光光度計に導いて、その蛍光スペクトルを測定した。なお、前記波長445nmの励起光は、発光光源(Xeランプ)の光を波長445nmの光のみに分光したものである。実施例1の蛍光体サンプルの蛍光スペクトルで最も強度が高くなる蛍光ピーク波長は520nmであった。同様にして、実施例2及び比較例1、2の蛍光体サンプルの蛍光体スペクトルも測定し、それぞれの蛍光ピーク波長を求めた。これらの結果は、表2に示した。
(Measurement of fluorescence peak wavelength)
The fluorescence peak wavelength of the phosphor of Example 1 was measured by the method described below. That is, an integrating sphere device, a sample holder attached to the integrating sphere device, excitation light having a wavelength of 445 nm, and a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) were prepared. The sample holder filled with the powdered phosphor of Example 1 so as to have a smooth surface is attached toward the inner surface of the integrating sphere, and excitation light having a wavelength of 445 nm is introduced into the integrating sphere using an optical fiber. Then, the phosphor sample of Example 1 was irradiated. A part of the fluorescence emitted from the phosphor was guided from an integrating sphere to an external spectrophotometer, and the fluorescence spectrum was measured. The excitation light having a wavelength of 445 nm is obtained by splitting light from a light emitting light source (Xe lamp) into only light having a wavelength of 445 nm. The fluorescence peak wavelength with the highest intensity in the fluorescence spectrum of the phosphor sample of Example 1 was 520 nm. Similarly, the phosphor spectra of the phosphor samples of Example 2 and Comparative Examples 1 and 2 were also measured, and the respective fluorescence peak wavelengths were obtained. These results are shown in Table 2.

(拡散反射率の測定)
実施例1の蛍光体の拡散反射率を、積分球装置(ISV−469、日本分光社製)を取り付け、標準白板(スペクトラロン、Labsphere社製)でベースライン補正した紫外可視分光光度計(V−550、日本分光社製)を用いて測定した。粉末状の実施例1の蛍光体を充填した試料ホルダーを積分球装置にセットし、480〜850nmの波長範囲の光を照射しながら、蛍光体の拡散反射率を測定した。なお実施例1の蛍光体の、蛍光ピーク波長(即ち520nm)における拡散反射率は、92.8%であり、また波長600〜800nmの範囲における光に対する平均拡散反射率は、94.6%であった。実施例2及び比較例1、2の蛍光体サンプルの拡散反射率及び平均拡散反射率も同様に測定し、これらの結果を表2に併せて示した。
(Measurement of diffuse reflectance)
An ultraviolet-visible spectrophotometer (V) in which the diffuse reflectance of the phosphor of Example 1 was baseline-corrected with a standard white plate (Spectralon, manufactured by Labsphere) with an integrating sphere device (ISV-469, manufactured by JASCO). -550, manufactured by JASCO Corporation). The sample holder filled with the powdered phosphor of Example 1 was set in an integrating sphere device, and the diffuse reflectance of the phosphor was measured while irradiating light in the wavelength range of 480 to 850 nm. In addition, the diffuse reflectance in the fluorescence peak wavelength (namely, 520 nm) of the fluorescent substance of Example 1 is 92.8%, and the average diffuse reflectance with respect to the light in the wavelength range of 600 to 800 nm is 94.6%. there were. The diffuse reflectance and average diffuse reflectance of the phosphor samples of Example 2 and Comparative Examples 1 and 2 were measured in the same manner, and the results are also shown in Table 2.

(光吸収率の測定)
実施例1の蛍光体サンプルの、波長445nm、520nm、600nmの光に対する光吸収率を、蛍光ピーク波長の測定で使用した同じ測定機を用い、以下に記載の方法で測定した。
即ち、Xeランプから所定の波長範囲に分光した光を照射し、反射スペクトルを測定した。その際、波長445nmの光に対する光吸収率を求める場合は440〜455nm、520nmの場合は515〜530nm、600nmの場合は595〜610nmの波長範囲で、はじめに試料部に標準白板(スペクトラロン)をセットし、標準白板の反射光フォトン数(Qw)を算出した。次いで、試料部に実施例1の蛍光体サンプルをセットし、標準白板の場合と同じ測定を行い蛍光体の反射光フォトン数(Qp)を算出し、各波長での光吸収率(Qp/Qw×100)を求めた。実施例1の蛍光体の、波長445nm、520nm、600nmの光に対する光吸収率はそれぞれ29.0%、6.0%、5.0%であった。実施例2及び比較例1、2の蛍光体サンプルの、波長445nm、520nm、600nmの光に対する光吸収率も同様に測定し、これらの結果を、表2に併せて示した。
(Measurement of light absorption rate)
The light absorptivity of the phosphor sample of Example 1 with respect to light having wavelengths of 445 nm, 520 nm, and 600 nm was measured by the method described below using the same measuring instrument used in the measurement of the fluorescence peak wavelength.
In other words, the reflection spectrum was measured by irradiating the Xe lamp with light dispersed in a predetermined wavelength range. At that time, when obtaining the optical absorptance with respect to light having a wavelength of 445 nm, a standard white plate (Spectralon) is first applied to the sample portion in a wavelength range of 515 to 530 nm for 440 nm, 595 to 530 nm for 600 nm and 595 to 610 nm for 600 nm. The number of reflected photons (Qw) of the standard white plate was calculated. Next, the phosphor sample of Example 1 is set in the sample portion, the same measurement as in the case of the standard white plate is performed, the number of reflected light photons (Qp) of the phosphor is calculated, and the light absorption rate (Qp / Qw) at each wavelength. × 100) was determined. The light absorptance of the phosphor of Example 1 with respect to light having wavelengths of 445 nm, 520 nm, and 600 nm was 29.0%, 6.0%, and 5.0%, respectively. The light absorptance of the phosphor samples of Example 2 and Comparative Examples 1 and 2 with respect to light having wavelengths of 445 nm, 520 nm, and 600 nm was measured in the same manner. The results are also shown in Table 2.

(外部量子効率の測定、輝度の評価)
実施例1の蛍光体サンプルの、波長445nmで蛍光体試料のスペクトル測定を行う際は、波長455〜800nmの範囲で蛍光フォトン数(Qem)を算出し、励起波長445nmでの外部量子効率(Qem/(Qw−Qp))を求めた。実施例1の蛍光体サンプルの外部量子効率は22.8%であった。実施例2及び比較例1、2の蛍光体サンプルの、外部量子効率も同様に測定し、これらの結果を、表2に併せて示した。外部量子効率が20%以上であれば、優れた輝度を有する緑色蛍光体であると判断した。
(Measurement of external quantum efficiency, evaluation of brightness)
When the spectrum of the phosphor sample of Example 1 is measured at a wavelength of 445 nm, the number of fluorescent photons (Qem) is calculated in the wavelength range of 455 to 800 nm, and the external quantum efficiency (Qem) at the excitation wavelength of 445 nm is calculated. / (Qw−Qp)). The external quantum efficiency of the phosphor sample of Example 1 was 22.8%. The external quantum efficiencies of the phosphor samples of Example 2 and Comparative Examples 1 and 2 were also measured in the same manner. The results are also shown in Table 2. If the external quantum efficiency was 20% or more, it was judged to be a green phosphor having excellent luminance.

表2に示した結果から、本発明の実施により、より輝度の高いγ−AlON系緑色蛍光体、前記蛍光体を含む発光素子、及び前記発光素子を用いた発光装置を提供することが可能であることが示された。 From the results shown in Table 2, by implementing the present invention, it is possible to provide a γ-AlON green phosphor with higher luminance, a light emitting element including the phosphor, and a light emitting device using the light emitting element. It was shown that there is.

Figure 2018109079
Figure 2018109079

Figure 2018109079
Figure 2018109079

Claims (8)

立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、元素M(但し元素Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素)と、元素A(但し元素Aは、元素MおよびAl以外の1種以上の金属元素)とが固溶している緑色蛍光体で、波長455nmの光で励起した場合、波長515nm以上530nm以下の範囲に蛍光スペクトルのピークを有し、波長600〜800nmの範囲における平均拡散反射率が92%以上であり、蛍光ピーク波長における拡散反射率が90%以上である緑色蛍光体。 A base crystal having the same crystal structure as that of a cubic spinel AlON crystal is converted into an element M (wherein the element M is selected from Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, and Yb). A green phosphor in which element A or more element) and element A (where element A is one or more metal elements other than element M and Al) are solid-dissolved, and when excited with light having a wavelength of 455 nm, A green phosphor having a fluorescence spectrum peak in a range of 515 nm or more and 530 nm or less, an average diffuse reflectance in a wavelength range of 600 to 800 nm of 92% or more, and a diffuse reflectance in a fluorescence peak wavelength of 90% or more. 立方晶スピネル型AlON結晶と同一の結晶構造を有する母体結晶に、元素M(但し元素Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Tm、Ybから選ばれる1種以上の元素)と、元素A(但し元素Aは、元素MおよびAl以外の1種以上の金属元素)とが固溶している緑色蛍光体で、波長455nmの光で励起した場合、波長515nm以上530nm以下の範囲に蛍光スペクトルのピークを有し、波長445nmにおける光吸収率が20%以上、波長520nmにおける光吸収率が8%以下、かつ波長600nmにおける光吸収率が7%以下である緑色蛍光体。 A base crystal having the same crystal structure as that of a cubic spinel AlON crystal is converted into an element M (wherein the element M is selected from Mn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm, and Yb). A green phosphor in which element A or more element) and element A (where element A is one or more metal elements other than element M and Al) are solid-dissolved, and when excited with light having a wavelength of 455 nm, It has a fluorescence spectrum peak in the range of 515 nm or more and 530 nm or less, the light absorption at a wavelength of 445 nm is 20% or more, the light absorption at a wavelength of 520 nm is 8% or less, and the light absorption at a wavelength of 600 nm is 7% or less. Green phosphor. 組成式がMaAbAlcOdNe(但し、Mは元素M、Aは元素A、Alはアルミニウム、Oは酸素、Nは窒素であり、a+b+c+d+e=1を満たす)で示され、0.00001≦a≦0.1である、請求項1または2記載の緑色蛍光体。 The composition formula is represented by MaAbAlcOdNe (where M is element M, A is element A, Al is aluminum, O is oxygen, N is nitrogen, and satisfies a + b + c + d + e = 1), and 0.00001 ≦ a ≦ 0.1 The green phosphor according to claim 1 or 2, wherein 組成式がMaAbAlcOdNe(但し、Mは元素M、Aは元素A、Alはアルミニウム、Oは酸素、Nは窒素であり、a+b+c+d+e=1を満たす)で示され、0.001≦b≦0.40である、請求項1〜3いずれか一項記載の緑色蛍光体。 The composition formula is represented by MaAbAlcOdNe (where M is element M, A is element A, Al is aluminum, O is oxygen, N is nitrogen, and a + b + c + d + e = 1 is satisfied), 0.001 ≦ b ≦ 0.40 The green phosphor according to any one of claims 1 to 3, wherein 元素MがMnである、請求項1〜4いずれか一項記載の緑色蛍光体。 The green phosphor according to any one of claims 1 to 4, wherein the element M is Mn. 元素Aが少なくともMgを含む、請求項1〜5いずれか一項記載の緑色蛍光体。 The green phosphor according to any one of claims 1 to 5, wherein the element A contains at least Mg. 請求項1〜6いずれか一項記載の緑色蛍光体を含む発光素子。 The light emitting element containing the green fluorescent substance as described in any one of Claims 1-6. 請求項7記載の発光素子を用いた発光装置。

A light-emitting device using the light-emitting element according to claim 7.

JP2016256183A 2016-12-28 2016-12-28 Green phosphor, light emitting element and light emitting device Pending JP2018109079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256183A JP2018109079A (en) 2016-12-28 2016-12-28 Green phosphor, light emitting element and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256183A JP2018109079A (en) 2016-12-28 2016-12-28 Green phosphor, light emitting element and light emitting device

Publications (1)

Publication Number Publication Date
JP2018109079A true JP2018109079A (en) 2018-07-12

Family

ID=62844267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256183A Pending JP2018109079A (en) 2016-12-28 2016-12-28 Green phosphor, light emitting element and light emitting device

Country Status (1)

Country Link
JP (1) JP2018109079A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186057A1 (en) * 2015-05-15 2016-11-24 国立研究開発法人物質・材料研究機構 Phosphor, production method for same, illumination instrument, and image display device
WO2016186058A1 (en) * 2015-05-15 2016-11-24 国立研究開発法人物質・材料研究機構 Light-emitting instrument and image display device
JP2016216711A (en) * 2015-05-15 2016-12-22 国立研究開発法人物質・材料研究機構 Phosphor, production method of the same, lighting apparatus and image display device
JP2017050524A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Light-emitting device and image display apparatus
JP2017183362A (en) * 2016-03-28 2017-10-05 シャープ株式会社 Light-emitting device and image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186057A1 (en) * 2015-05-15 2016-11-24 国立研究開発法人物質・材料研究機構 Phosphor, production method for same, illumination instrument, and image display device
WO2016186058A1 (en) * 2015-05-15 2016-11-24 国立研究開発法人物質・材料研究機構 Light-emitting instrument and image display device
JP2016216711A (en) * 2015-05-15 2016-12-22 国立研究開発法人物質・材料研究機構 Phosphor, production method of the same, lighting apparatus and image display device
JP2017050524A (en) * 2015-08-31 2017-03-09 シャープ株式会社 Light-emitting device and image display apparatus
JP2017183362A (en) * 2016-03-28 2017-10-05 シャープ株式会社 Light-emitting device and image display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEDA ET AL.: "Manganese valence and coordination structute in Mn,Mg-codoped γ-AlON green phosphor", JOURNAL OF SOLID STATE CHEMISTRY, vol. 194, JPN6020028954, 2012, pages 71 - 75, ISSN: 0004320660 *

Similar Documents

Publication Publication Date Title
KR101168178B1 (en) Phospher and method for production thereof, and luminous utensil
JP5206941B2 (en) Phosphor, method for producing the same, and light emitting device
JP4740379B1 (en) β-type sialon phosphor, its use and method for producing β-type sialon phosphor
US20210130689A1 (en) Phosphor, production method for same, and light-emitting device
WO2005087896A1 (en) Phosphor, process for producing the same, lighting fixture and image display unit
JP2006335832A (en) Phosphor and light emitting device
US10266768B2 (en) β-sialon phosphor containing europium element and method for producing the same, and light-emitting member and light emitting device
JP6985704B2 (en) Fluorescent material, light emitting device, lighting device and image display device
CN107851694B (en) Light emitting device and image display apparatus
CN106795429B (en) Phosphor, light emitting device, illumination device, and image display device
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
JP2018109080A (en) Green phosphor, light emitting element and light emitting device
KR20210150474A (en) Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device
KR20210150475A (en) Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device
CN106978166B (en) Red phosphor and light-emitting device
JP7217709B2 (en) Red phosphor and light-emitting device
WO2017155111A1 (en) Phosphor, light-emitting element, and light-emitting device
JP2018109078A (en) Green phosphor, light emitting element and light emitting device
JP2018109075A (en) Green phosphor, method for producing the same, light emitting element and light emitting device
JP2018109079A (en) Green phosphor, light emitting element and light emitting device
JP2018109081A (en) Green phosphor, light emitting element and light emitting device
JP2018109083A (en) Green phosphor, light emitting element and light emitting device
JP6576246B2 (en) Phosphor, light emitting device and method for manufacturing the same
JP2018109077A (en) Green phosphor, light emitting element and light emitting device
JP2018109082A (en) Green phosphor, light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130