JP2011106361A - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP2011106361A
JP2011106361A JP2009262973A JP2009262973A JP2011106361A JP 2011106361 A JP2011106361 A JP 2011106361A JP 2009262973 A JP2009262973 A JP 2009262973A JP 2009262973 A JP2009262973 A JP 2009262973A JP 2011106361 A JP2011106361 A JP 2011106361A
Authority
JP
Japan
Prior art keywords
exhaust
passage
sectional area
passage portion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009262973A
Other languages
Japanese (ja)
Other versions
JP5168268B2 (en
Inventor
Masayuki Tanada
雅之 棚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009262973A priority Critical patent/JP5168268B2/en
Publication of JP2011106361A publication Critical patent/JP2011106361A/en
Application granted granted Critical
Publication of JP5168268B2 publication Critical patent/JP5168268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas recirculation device for an internal combustion engine having a catalyst unit easily mounted in front of an exhaust cooler and effectively reducing the exhaust pulsation so as to suppress the exhaust interference, in the internal combustion engine including two confluent exhaust pipes and a twin entry type exhaust turbocharger. <P>SOLUTION: This device includes: an EGR passage 51 with a first passage portion 51a connected to the confluent exhaust pipe 31a, a second passage portion 51b connected to the confluent exhaust pipe 31b, and a third passage portion 51c connected to an internal space in a surge tank 27, recirculating a part of exhaust gas through the passage portions 51a-51c to the intake side; and an EGR valve 52 with a three-way valve configuration interposed between the first and second passage portions 51a, 51b and the third passage portion 51c. Each of the first and the second passage portions 51a, 51b has a bellows-shaped plurality stages of annular recessed portions located on the minimum cross-sectional area side and annular projected portions located on the maximum cross-sectional area side, in a manner to vary the cross-sectional area of each passage between the maximum cross-sectional area and the minimum cross-sectional area a plurality of times. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気還流装置、特に排気干渉を回避するよう複数の気筒からの排気を2系統に分けてツインエントリー型の排気ターボ過給機に導入するようにした内燃機関に好適な内燃機関の排気還流装置に関する。   INDUSTRIAL APPLICABILITY The present invention is suitable for an exhaust gas recirculation device for an internal combustion engine, particularly for an internal combustion engine in which exhaust from a plurality of cylinders is divided into two systems and introduced into a twin entry type exhaust turbocharger so as to avoid exhaust interference. The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

4サイクルの多気筒内燃機関では、全気筒の排気管(排気通路)をそれらの排気ポート近くで集合させると排気干渉が生じるため、排気期間がつながる気筒同士の排気を分けたまま、排気期間が相互に離れる気筒同士からの排気ガスを合流させるように、2系統の合流排気管に排気させるものがある。また、このようなエンジンで過給を行う場合、両合流排気管の排気を排気干渉させることなく取り込むことのできるツインエントリー型の排気ターボ過給機が有効である。そこで、2つの合流排気管およびツインエントリー型の排気ターボ過給機を用いる内燃機関が提案されている(例えば、特許文献1参照)。   In a four-cycle multi-cylinder internal combustion engine, if the exhaust pipes (exhaust passages) of all cylinders are gathered near their exhaust ports, exhaust interference occurs. Some exhaust gas is exhausted to two combined exhaust pipes so that exhaust gases from cylinders that are separated from each other are merged. In addition, when supercharging is performed with such an engine, a twin-entry type exhaust turbocharger that can take in the exhaust of both combined exhaust pipes without causing exhaust interference is effective. Therefore, an internal combustion engine using two combined exhaust pipes and a twin entry type exhaust turbocharger has been proposed (see, for example, Patent Document 1).

一方、排気ガスの一部を吸気側に還流させる排気還流装置が排気エミッションの低減や燃費向上に有効であることが知られている(例えば、特許文献2参照)。   On the other hand, it is known that an exhaust gas recirculation device that recirculates a part of exhaust gas to the intake side is effective in reducing exhaust emissions and improving fuel efficiency (see, for example, Patent Document 2).

特開2005−330836号公報JP-A-2005-330836 特開2006−214275号公報JP 2006-214275 A

しかしながら、上述のような2つの合流排気管およびツインエントリー型の排気ターボ過給機を備えたエンジンに排気還流装置を装備する場合に、次のような問題があった。   However, when an exhaust gas recirculation device is equipped in an engine equipped with the above-described two combined exhaust pipes and a twin entry type exhaust turbocharger, there are the following problems.

例えば、排気還流装置を装備するエンジンでその排気冷却器の上流側に排気浄化用の触媒ユニットを配置したいとき、排気干渉を抑える必要から2つの合流排気管にある程度の管路長が要求されるため、その触媒ユニットの搭載が容易でない。   For example, in an engine equipped with an exhaust gas recirculation device, when it is desired to dispose a catalyst unit for exhaust purification upstream of the exhaust cooler, a certain length of pipe length is required for two merged exhaust pipes because it is necessary to suppress exhaust interference. Therefore, it is not easy to mount the catalyst unit.

一方、2つの合流排気管の長さを短くすると、排気干渉により排気ガスの脈動成分が消えてターボのタービン翼に到達せず、タービン作動効率が低下することにより、エンジントルクが低下してしまうことが懸念される。   On the other hand, if the lengths of the two combined exhaust pipes are shortened, the pulsation component of the exhaust gas disappears due to the exhaust interference and does not reach the turbine blades of the turbo, and the turbine operating efficiency is lowered, so that the engine torque is lowered. There is concern.

そこで、本発明は、2つの合流排気管およびツインエントリー型の排気ターボ過給機を備える内燃機関において、排気冷却器前触媒等の搭載上の制約をなくすとともに、排気脈動を有効に低減させ排気干渉を抑えることのできる内燃機関の排気還流装置を提供することを目的とする。   Therefore, the present invention eliminates restrictions on mounting of a catalyst before the exhaust cooler and the like in an internal combustion engine having two merged exhaust pipes and a twin entry type exhaust turbocharger, and effectively reduces exhaust pulsation and exhaust. It is an object of the present invention to provide an exhaust gas recirculation device for an internal combustion engine that can suppress interference.

本発明に係る内燃機関の排気還流装置は、上記目的達成のため、(1)排気行程順が隣り合う複数の気筒からの排気ガスを分けて排気させるとともに前記排気行程順が相互に離れた複数の気筒からの排気ガスを合流させる第1合流排気管および第2合流排気管と、前記第1合流排気管および第2合流排気管に接続されるツインエントリー型の排気ターボ過給機と、を備えた内燃機関に装備される排気還流装置であって、前記第1合流排気管に接続される第1通路部、前記第2合流排気管に接続される第2通路部および前記内燃機関の吸気管に接続される第3通路部を有し、前記内燃機関の排気ガスの一部を前記第1通路部および前記第2通路部と前記第3通路部とを通して前記吸気管に還流させることができる排気還流通路と、前記排気還流通路の前記第1通路部および前記第2通路部と前記第3通路部との間に介在する三方排気還流弁と、を備え、前記排気還流通路の前記第1通路部および前記第2通路部が、それぞれの通路断面積を最大断面積と最小断面積の間で複数回変化させるよう、前記最小断面積側に位置する環状凹部および前記最大断面積側に位置する環状凸部を蛇腹状に複数段有することを特徴とする。   In order to achieve the above object, an exhaust gas recirculation apparatus for an internal combustion engine according to the present invention (1) exhausts exhaust gases from a plurality of cylinders whose exhaust stroke order is adjacent to each other and exhausts them separately. A first merging exhaust pipe and a second merging exhaust pipe for merging exhaust gases from the cylinders, and a twin-entry type exhaust turbocharger connected to the first merging exhaust pipe and the second merging exhaust pipe. An exhaust gas recirculation device equipped in an internal combustion engine provided with a first passage portion connected to the first combined exhaust pipe, a second passage portion connected to the second combined exhaust pipe, and an intake air of the internal combustion engine A third passage portion connected to a pipe, and a part of the exhaust gas of the internal combustion engine is recirculated to the intake pipe through the first passage portion, the second passage portion, and the third passage portion. Exhaust recirculation passage and the exhaust recirculation A three-way exhaust recirculation valve interposed between the first passage portion and the second passage portion and the third passage portion of the passage, and the first passage portion and the second passage portion of the exhaust recirculation passage However, the annular recess located on the minimum cross-sectional area side and the annular convex part located on the maximum cross-sectional area side have a bellows shape so that each passage cross-sectional area is changed between the maximum cross-sectional area and the minimum cross-sectional area a plurality of times. It has a plurality of stages.

この構成により、第1合流排気管および第2合流排気管から排気還流弁までの排気還流通路の第1通路部および第2通路部内において、それぞれ排気ガスが通路断面積の複数回の変化に応じて膨張および収縮を繰り返すことになる。したがって、両通路部内で流速の大きい脈動成分が有効に減衰することにより、両通路部の合流部分では排気干渉が有効に抑制される。また、複数段の蛇腹部を用いるので、通路断面積の最大断面積を過度に大きく設定したり最小断面積を過度に小さく設定したりする必要がなく、排気冷却器前に触媒ユニットを容易に搭載することができるし、過度の圧損が生じることもない。さらに、蛇腹部での表面積の増加により排気を冷却する機能も生じ、排気冷却器の負荷を軽減できるとともに、排気系部品の熱による膨張や収縮を蛇腹部で吸収することもできる。なお、前記三方排気還流弁は、前記第1通路部および前記第2通路部と前記第3通路部とを連通させる開弁状態と、前記第1通路部、前記第2通路部および前記第3通路部のうちいずれの間の連通も遮断する閉弁状態とに切り換えられるのが望ましい。   With this configuration, in the first and second passage portions of the exhaust gas recirculation passage from the first confluence exhaust pipe and the second confluence exhaust pipe to the exhaust gas recirculation valve, the exhaust gas responds to multiple changes in the passage cross-sectional area. Thus, expansion and contraction are repeated. Accordingly, the pulsating component having a large flow velocity in both the passage portions is effectively attenuated, so that exhaust interference is effectively suppressed in the joining portion of both passage portions. In addition, since a plurality of bellows portions are used, there is no need to set the maximum cross-sectional area of the passage cross-sectional area excessively large or the minimum cross-sectional area excessively small, and the catalyst unit can be easily installed before the exhaust cooler. It can be mounted and excessive pressure loss does not occur. Furthermore, the function of cooling the exhaust gas is also generated by increasing the surface area of the bellows portion, so that the load on the exhaust cooler can be reduced and the expansion and contraction due to heat of the exhaust system components can be absorbed by the bellows portion. The three-way exhaust recirculation valve includes a valve-open state in which the first passage portion, the second passage portion, and the third passage portion are in communication, the first passage portion, the second passage portion, and the third passage. It is desirable to switch to a valve closing state that blocks communication between any of the passage portions.

本発明の内燃機関の排気還流装置においては、(2)前記複数段の段数をγとし、各段における前記排気ガスのエネルギの減衰割合をβとするとき、次式(1−β)γ<0.1を満足するよう、前記段数γと、前記最大断面積および前記最小断面積とがそれぞれ設定されていることが好ましい。 In the exhaust gas recirculation apparatus for an internal combustion engine of the present invention, (2) where the number of stages of the plurality of stages is γ and the energy decay rate of the exhaust gas at each stage is β, the following equation (1-β) γ < It is preferable that the step number γ, the maximum cross-sectional area, and the minimum cross-sectional area are set so as to satisfy 0.1.

この構成により、搭載上の制約を受け難い蛇腹の段数や径寸法等を選択しつつ、排気圧脈動の減衰による排気干渉を確実に抑制することができる。   With this configuration, it is possible to reliably suppress exhaust interference due to attenuation of exhaust pressure pulsation while selecting the number of bellows, the size of the bellows, and the like that are not easily restricted by mounting.

本発明によれば、2つの合流排気管およびツインエントリー型の排気ターボ過給機を備える内燃機関において、排気冷却器前触媒等の搭載上の制約をなくすとともに、排気脈動を有効に低減させ排気干渉を抑えることのできる内燃機関の排気還流装置を提供することができる。   According to the present invention, in an internal combustion engine equipped with two combined exhaust pipes and a twin entry type exhaust turbocharger, there is no restriction on mounting a catalyst before the exhaust cooler and the like, and exhaust pulsation is effectively reduced and exhaust is reduced. An exhaust gas recirculation device for an internal combustion engine that can suppress interference can be provided.

本発明の一実施形態に係る内燃機関の排気還流装置の概略ブロック構成図である。1 is a schematic block diagram of an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention. 一実施形態に係る内燃機関の排気還流装置の要部構成図である。It is a principal part block diagram of the exhaust gas recirculation apparatus of the internal combustion engine which concerns on one Embodiment. 一実施形態に係る内燃機関の排気還流装置における排気還流通路の第1、第2通路部の管路形状の模式断面図である。It is a schematic cross section of the pipe shape of the 1st and 2nd passage part of the exhaust gas recirculation passage in the exhaust gas recirculation device of the internal-combustion engine concerning one embodiment. 一実施形態に係る内燃機関の排気還流装置における排気還流通路の第1、第2通路部の拡張部分のエネルギ損失特性を示す図である。It is a figure which shows the energy loss characteristic of the expansion part of the 1st, 2nd channel | path part of the exhaust gas recirculation passage in the exhaust gas recirculation apparatus of the internal combustion engine which concerns on one Embodiment.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1〜図3に、本発明の一実施形態に係る内燃機関の排気還流装置を示している。   1 to 3 show an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention.

図1に示すエンジン10は、車両用の多気筒内燃機関、例えば4気筒ガソリンエンジン(以下、単にエンジンという)で、複数の気筒11を有している。   An engine 10 shown in FIG. 1 is a multi-cylinder internal combustion engine for vehicles, for example, a four-cylinder gasoline engine (hereinafter simply referred to as an engine), and has a plurality of cylinders 11.

このエンジン10には、各気筒11内の燃焼室(詳細を図示していない)に燃料を噴射する図示しない公知の燃料噴射装置と、燃焼室に空気を吸入させる吸気装置12と、燃焼室からの排気ガスを排気させる排気装置13と、排気装置13内の排気エネルギにより回転する排気タービン14Tおよびこれと一体回転する吸入空気コンプレッサ14Cを有するツインエントリー型の排気ターボ過給機14と、排気ガスの一部を吸気側に還流させ再循環させる排気還流装置15とが装備されている。なお、燃料噴射装置は、図外の燃料タンクから燃料を汲み上げる燃料ポンプと、後述する電子制御ユニット(以下、ECUという)30からの噴射指令信号に対応するタイミングおよびデューティ比で燃焼室内に燃料を噴射する燃料噴射弁とを含んで構成されている。   The engine 10 includes a well-known fuel injection device (not shown) that injects fuel into a combustion chamber (not shown in detail) in each cylinder 11, an intake device 12 that sucks air into the combustion chamber, and a combustion chamber. An exhaust device 13 for exhausting the exhaust gas, a twin-entry exhaust turbocharger 14 having an exhaust turbine 14T rotated by exhaust energy in the exhaust device 13 and an intake air compressor 14C rotating integrally therewith, and an exhaust gas And an exhaust gas recirculation device 15 that recirculates a part of the gas to the intake side and recirculates it. The fuel injection device supplies fuel into the combustion chamber at a timing and duty ratio corresponding to an injection command signal from a fuel pump that pumps fuel from a fuel tank (not shown) and an electronic control unit (hereinafter referred to as ECU) 30 described later. And a fuel injection valve that injects fuel.

吸気装置12には、吸気マニホルド21と、それより上流側の吸気通路を形成する吸気管22と、吸気管22の上流側でフィルタにより吸入空気を清浄化するエアクリーナ23と、排気ターボ過給機14の吸入空気コンプレッサ14Cより下流側で過給により昇温した吸入空気を冷却するインタークーラ24と、吸入空気流量(新気の吸気量)を検出するエアフローメータ25と、エンジン10内への吸気量を調整するスロットルバルブ26と、吸気マニホルド21の上流側で吸気の脈動等を抑えるサージタンク27とが、それぞれ設けられている。   The intake device 12 includes an intake manifold 21, an intake pipe 22 that forms an intake passage upstream of the intake manifold 21, an air cleaner 23 that cleans intake air by a filter on the upstream side of the intake pipe 22, and an exhaust turbocharger 14, an intercooler 24 that cools the intake air heated by supercharging downstream of the intake air compressor 14 </ b> C, an air flow meter 25 that detects an intake air flow rate (fresh air intake amount), and intake air into the engine 10. A throttle valve 26 for adjusting the amount, and a surge tank 27 for suppressing pulsation of intake air on the upstream side of the intake manifold 21 are provided.

排気装置13は、排気マニホルド31と、それより下流側の排気通路を形成する排気管32と、排気ターボ過給機14の排気タービン14Tより下流側の排気管32に装着された空燃比センサ33と、排気浄化触媒を内蔵する排気後処理装置34と、を含んで構成されている。   The exhaust device 13 includes an exhaust manifold 31, an exhaust pipe 32 that forms an exhaust passage downstream of the exhaust manifold 31, and an air-fuel ratio sensor 33 that is mounted on the exhaust pipe 32 downstream of the exhaust turbine 14T of the exhaust turbocharger 14. And an exhaust aftertreatment device 34 incorporating an exhaust purification catalyst.

ここで、排気マニホルド31には、エンジン10の複数の気筒のうち排気期間(排気行程順)が相互に離れる一組の気筒の排気ポート、例えば第1気筒および第4気筒(図1中の#1、#4)の排気ポート(図示せず)に接続する第1合流排気管31aと、エンジン10の複数の気筒のうち排気期間が相互に離れる残りの気筒の排気ポート、例えば第2気筒および第3気筒(図1中の#2、#3)の排気ポート(図示せず)に接続する第2合流排気管31bとが形成されており、これら第1、第2合流排気管31a、31bは、それぞれ独立してツインエントリー型の排気ターボ過給機14の後述する2つのノズル通路部に接続されている。すなわち、排気行程順が隣り合い排気弁の開弁期間が部分的に重なる気筒同士(例えば、第1気筒と第3気筒)の間では排気干渉が生じるので排気通路を2系統に分けて排気させ、排気弁の開弁期間が重ならず離れている気筒同士(例えば、第1気筒と第4気筒)の間では排気ガスを同一系統で合流させるように、2系統の合流排気管31a、31bを設けている。   Here, the exhaust manifold 31 includes a plurality of cylinders of the engine 10 whose exhaust periods (exhaust stroke order) are separated from each other, such as an exhaust port, for example, a first cylinder and a fourth cylinder (# in FIG. 1). 1 and # 4), the first combined exhaust pipe 31a connected to the exhaust port (not shown), and the exhaust ports of the remaining cylinders whose exhaust periods are separated from each other among the plurality of cylinders of the engine 10, such as the second cylinder and A second combined exhaust pipe 31b connected to an exhaust port (not shown) of the third cylinder (# 2, # 3 in FIG. 1) is formed, and these first and second combined exhaust pipes 31a, 31b are formed. Are independently connected to two nozzle passage portions (described later) of the twin entry type exhaust turbocharger 14. In other words, exhaust interference occurs between the cylinders (for example, the first cylinder and the third cylinder) in which the exhaust stroke order is adjacent and the exhaust valve opening periods partially overlap, so that the exhaust passage is divided into two systems and exhausted. The two systems of combined exhaust pipes 31a and 31b are arranged so that the exhaust gas is merged in the same system between the cylinders (for example, the first cylinder and the fourth cylinder) that are separated from each other without overlapping the opening periods of the exhaust valves. Is provided.

空燃比センサ33は、例えば下流側の排気管32を通る排気ガス中の酸素濃度が理論空燃比(ガソリンと空気が完全に燃焼し余剰の酸素が残らない空燃比)に対応する値であるか否かによって出力が変化する排気酸素濃度センサで構成されている。   In the air-fuel ratio sensor 33, for example, whether the oxygen concentration in the exhaust gas passing through the downstream exhaust pipe 32 is a value corresponding to the stoichiometric air-fuel ratio (the air-fuel ratio in which gasoline and air are completely burned and no surplus oxygen remains). It consists of an exhaust oxygen concentration sensor whose output changes depending on whether or not.

排気後処理装置34は、例えば三元触媒で構成され、排気ガス中のNOxをNOやNOに還元し排気ガス中のHCやCOと反応させてNとしたり、HCやCOを酸化させてHOやCOとしたりすることができるようになっている。なお、エンジン10は、空燃比センサ33の検出情報を基にECU30によりフィードバック制御され、排気後処理装置34の良好な排気浄化特性が得られる理論空燃比で運転されるようになっている。 The exhaust aftertreatment device 34 is composed of, for example, a three-way catalyst, and reduces NOx in the exhaust gas to NO 2 or NO and reacts with HC or CO in the exhaust gas to form N 2 or oxidizes HC or CO. H 2 O or CO 2 . The engine 10 is feedback-controlled by the ECU 30 based on the detection information of the air-fuel ratio sensor 33, and is operated at a stoichiometric air-fuel ratio that provides good exhaust purification characteristics of the exhaust aftertreatment device 34.

排気ターボ過給機14の吸入空気コンプレッサ14Cおよび排気タービン14Tは、互いに回転方向一体に連結されており、排気装置13内で排気タービン14Tを排気エネルギにより回転させるとともに吸気装置12内で吸入空気コンプレッサ14Cを回転させ、エンジン10内に自然吸気より多くの空気を吸入させる過給を行うことができる。   The intake air compressor 14 </ b> C and the exhaust turbine 14 </ b> T of the exhaust turbocharger 14 are integrally connected to each other in the rotation direction, and the exhaust turbine 14 </ b> T is rotated by exhaust energy in the exhaust device 13 and the intake air compressor in the intake device 12. 14C can be rotated, and supercharging can be performed in which more air is sucked into the engine 10 than natural intake air.

また、排気ターボ過給機14は、排気タービン14T内にエンジン10の第1気筒および第4気筒からの排気を導入するとともにその流路を絞って加速する第1ノズル通路部14aと、排気タービン14T内にエンジン10の第2気筒および第3気筒からの排気を導入するとともにその流路を絞って加速する第2ノズル通路部14bとを有している。そして、これら第1ノズル通路部14aおよび第2ノズル通路部14bから、排気タービン14Tのタービンロータ14cに排気干渉による圧力低下なく排気ガスを供給することで、排気ターボ過給機14は、高いタービン作動効率にて作動することができる。   Further, the exhaust turbocharger 14 introduces exhaust from the first cylinder and the fourth cylinder of the engine 10 into the exhaust turbine 14T, and squeezes and accelerates the first nozzle passage portion 14a, and the exhaust turbine. 14T has a second nozzle passage portion 14b for introducing exhaust from the second cylinder and the third cylinder of the engine 10 and accelerating by narrowing the flow path. The exhaust turbo supercharger 14 is configured to be a high turbine by supplying exhaust gas from the first nozzle passage portion 14a and the second nozzle passage portion 14b to the turbine rotor 14c of the exhaust turbine 14T without pressure drop due to exhaust interference. It can operate at operating efficiency.

排気還流装置15には、エンジン10内の燃焼室をバイパスして排気マニホルド31内の排気通路と吸気マニホルド21内の吸気通路とを連通させる排気還流用のEGR通路51(排気還流通路)と、このEGR通路51による排気還流量を調整するEGRバルブ52(三方排気還流弁)と、EGR通路51を通って還流する排気ガスを冷却するEGRクーラ53(排気冷却器)と、EGRクーラ53に入る排気ガスを浄化するEGRクーラ前触媒ユニット54とが、それぞれ設けられている。   The exhaust gas recirculation device 15 includes an exhaust gas recirculation EGR passage 51 (exhaust gas recirculation passage) that bypasses the combustion chamber in the engine 10 and connects the exhaust passage in the exhaust manifold 31 and the intake passage in the intake manifold 21. The EGR valve 52 (three-way exhaust gas recirculation valve) that adjusts the exhaust gas recirculation amount through the EGR passage 51, the EGR cooler 53 (exhaust cooler) that cools the exhaust gas recirculating through the EGR passage 51, and the EGR cooler 53 EGR cooler pre-catalyst units 54 that purify the exhaust gas are respectively provided.

ここで、EGR通路51は、エンジン10の排気通路側から吸気通路側に排気の一部を還流させる排気還流通路であり、EGRクーラ53はこのEGR通路51の一部を冷却通路としている。   Here, the EGR passage 51 is an exhaust gas recirculation passage that recirculates a part of the exhaust gas from the exhaust passage side of the engine 10 to the intake passage side, and the EGR cooler 53 uses a part of the EGR passage 51 as a cooling passage.

また、EGRバルブ52は、例えば排気ガスを吸気通路側に還流させる開弁状態と、その接続を遮断する閉弁状態とに切り換え可能で、ECU30からの所定時間当りの開弁指示信号の長さの比率(デューティ比)によりその開度を制御できるものである。勿論、EGRバルブ52は、回動式の弁体の回動角度を全開位置から全閉位置までの間で変化させるようなタイプのものでもよい。   Further, the EGR valve 52 can be switched between, for example, a valve opening state in which exhaust gas is recirculated to the intake passage side and a valve closing state in which the connection is cut off, and the length of the valve opening instruction signal from the ECU 30 per predetermined time. The opening degree can be controlled by the ratio (duty ratio). Of course, the EGR valve 52 may be of a type that changes the rotation angle of the rotary valve body from the fully open position to the fully closed position.

EGRクーラ53は、EGR通路51を通って還流する排気ガスを、エンジン10の冷却システムを通る冷却水との熱交換により冷却するものである。   The EGR cooler 53 cools the exhaust gas recirculated through the EGR passage 51 by heat exchange with cooling water passing through the cooling system of the engine 10.

EGRクーラ前触媒ユニット54は、例えば酸化触媒または同様な三元触媒で構成されている。   The EGR cooler pre-catalyst unit 54 is composed of, for example, an oxidation catalyst or a similar three-way catalyst.

一方、EGR通路51は、排気マニホルド31の第1合流排気管31aおよび第2合流排気管31bから三方弁であるEGRバルブ52まで延在する第1通路部51aおよび第2通路部51bと、EGRバルブ52からサージタンク27まで延在する第3通路部51cとによって構成されており、エンジン10の排気ガスの一部を第1通路部51aおよび第2通路部51bと第3通路部51cとを通して吸気通路側に還流させることができるようになっている。ここで、第1通路部51aは排気マニホルド31の第1合流排気管31aに接続され、第2通路部51bは排気マニホルド31の第2合流排気管31bに接続されており、第3通路部51cはエンジン10の吸気通路の一部であるサージタンク27の内部空間に接続されている。   On the other hand, the EGR passage 51 includes a first passage portion 51a and a second passage portion 51b that extend from the first combined exhaust pipe 31a and the second combined exhaust pipe 31b of the exhaust manifold 31 to the EGR valve 52 that is a three-way valve, and EGR. The third passage 51c extends from the valve 52 to the surge tank 27, and a part of the exhaust gas of the engine 10 passes through the first passage 51a, the second passage 51b, and the third passage 51c. It can be recirculated to the intake passage side. Here, the first passage portion 51a is connected to the first combined exhaust pipe 31a of the exhaust manifold 31, the second passage portion 51b is connected to the second combined exhaust pipe 31b of the exhaust manifold 31, and the third passage portion 51c. Is connected to the internal space of the surge tank 27 which is a part of the intake passage of the engine 10.

また、図2および図3に示すように、第1通路部51aおよび第2通路部51bは、それぞれ略同一長さの同様な管路を形成しており、それぞれ通路断面積を最大断面積A2と最小断面積A1の間で複数回変化させるよう、最小断面積A1側に位置する小径部51vおよび最大断面積A2側に位置する大径部51pを蛇腹状に複数段有している。すなわち、第1通路部51aおよび第2通路部51bは、EGR通路51の上流側部分を形成する2本の排気還流管55、56の蛇腹部55bw、56bwによってそれらの内部に形成されている。   Further, as shown in FIGS. 2 and 3, the first passage portion 51a and the second passage portion 51b form similar pipes having substantially the same length, and the passage sectional area is set to the maximum sectional area A2. The small-diameter portion 51v located on the minimum cross-sectional area A1 side and the large-diameter portion 51p located on the maximum cross-sectional area A2 side are provided in a plurality of steps in a bellows shape so as to change a plurality of times between the minimum cross-sectional area A1 and the minimum cross-sectional area A1. That is, the first passage portion 51 a and the second passage portion 51 b are formed inside by the bellows portions 55 bw and 56 bw of the two exhaust recirculation pipes 55 and 56 that form the upstream portion of the EGR passage 51.

より具体的には、第1通路部51aおよび第2通路部51bの小径部51vにおける通路断面積は、小径部51vの形成区間p1のほぼ全域において最小断面積A1かそれに近い値となっており、第1通路部51aおよび第2通路部51bの大径部51pにおける通路断面積は、大径部51pの形成区間p2のほぼ全域において最大断面積A2かそれに近い値となっている。なお、EGR通路51の第3通路部51cの断面積は、最小断面積A1の2倍以上に設定される。   More specifically, the passage cross-sectional area in the small diameter part 51v of the first passage part 51a and the second passage part 51b is the minimum cross-sectional area A1 or a value close to it in almost the entire region of the formation section p1 of the small diameter part 51v. The passage sectional area in the large diameter portion 51p of the first passage portion 51a and the second passage portion 51b is the maximum sectional area A2 or a value close thereto in almost the entire region of the formation section p2 of the large diameter portion 51p. The cross-sectional area of the third passage portion 51c of the EGR passage 51 is set to be twice or more the minimum cross-sectional area A1.

図3においては、蛇腹部55bw、56bwの断面をコーナーRを有する略矩形波状に図示したが、コーナーRが無くてもよいし、逆にトロコイド曲線状の波形の断面でもよい。また、小径部51vおよび大径部51pがそれぞれ略V字形となってもよい。   In FIG. 3, the cross sections of the bellows portions 55 bw and 56 bw are illustrated in a substantially rectangular wave shape having a corner R. However, the corner R may not be provided, and conversely, a trochoidal curved cross section may be used. Moreover, the small diameter part 51v and the large diameter part 51p may each be substantially V-shaped.

ただし、第1通路部51aおよび第2通路部51bにおいては、隣り合う小径部51vおよび大径部51pを1段の蛇腹形状としてその設置段数をγとし、その各段の小径部51vおよび大径部51pを通過する際における排気ガスのエネルギの減衰割合をβとするとき、次式(1)を満足するように、その段数γと、最大断面積A2に対する最小断面積A1の比とが、それぞれ設定されている。この式は、複数段の蛇腹状の小径部51vおよび大径部51pによるトータルの比エネルギ損失をサージタンクのそれに近い程度(1−(1−β)γ>0.9)にするための設定条件を示すものである。 However, in the 1st channel | path part 51a and the 2nd channel | path part 51b, the adjacent small diameter part 51v and the large diameter part 51p are made into one step bellows shape, the installation stage number is set to (gamma), The small diameter part 51v and large diameter of each stage are When the energy decay rate of the exhaust gas when passing through the portion 51p is β, the stage number γ and the ratio of the minimum cross-sectional area A1 to the maximum cross-sectional area A2 are set so as to satisfy the following equation (1): Each is set. This equation is set so that the total specific energy loss caused by the plurality of accordion-shaped small-diameter portions 51v and large-diameter portions 51p is close to that of the surge tank (1- (1-β) γ > 0.9). The conditions are shown.

(1−β)γ<0.1 ・・・(1)
ただし、減衰割合βは、小径部51vから大径部51pへの各拡大管部分におけるエネルギ損失割合とその大径部51pから次段の小径部51vへの各縮小管部分におけるエネルギ損失割合とを合せたものである。
(1-β) γ <0.1 (1)
However, the attenuation ratio β is defined as an energy loss ratio in each enlarged tube portion from the small diameter portion 51v to the large diameter portion 51p and an energy loss ratio in each contraction tube portion from the large diameter portion 51p to the next small diameter portion 51v. It is a combination.

ここで、EGR通路51における排気ガスの流れはそれほど急ではないことから、非圧縮性流体についての拡大管や縮小管におけるエネルギ損失と同様に考え、概略の比エネルギ損失を見積もることができる。   Here, since the flow of the exhaust gas in the EGR passage 51 is not so steep, the approximate specific energy loss can be estimated in the same manner as the energy loss in the expansion pipe and the reduction pipe for the incompressible fluid.

すなわち、ここでの拡大管部分におけるエネルギ損失については、最小断面積A1の小径部51v内を速度vaで進む排気ガスが小径部51vから直後の最大断面積A2の大径部51pに入って拡張され、速度va´になるとすると、その拡張の際の比エネルギ損失ΔE1およびそれを決める損失係数β1は、それぞれ次式(2)、(3)で表すことができる。この場合、速度vaの大きい脈動成分に対してエネルギ損失が大きいということができる。   That is, regarding the energy loss in the expanded pipe portion here, the exhaust gas traveling at the speed va in the small diameter portion 51v of the minimum cross section A1 enters the large diameter portion 51p of the maximum cross section A2 immediately after the small diameter portion 51v and expands. Assuming that the velocity va ′ is reached, the specific energy loss ΔE1 and the loss coefficient β1 that determines the specific energy loss ΔE1 can be expressed by the following equations (2) and (3), respectively. In this case, it can be said that the energy loss is large with respect to the pulsating component having a large velocity va.

ΔE1=β1・(va/2)・・・(2)
β1=ξ・(1−(A1/A2))・・・(3)
ただし、(3)式中の係数ξは1に近い値であるので、以下、ξ=1として考える。
ΔE1 = β1 · (va 2/ 2) ··· (2)
β1 = ξ · (1− (A1 / A2)) 2 (3)
However, since the coefficient ξ in the equation (3) is a value close to 1, hereinafter, it is assumed that ξ = 1.

また、ここでの縮小管部分によるエネルギ損失については、最大断面積A2の大径部51p内を速度vb´で進む排気ガスがその直後の最小断面積A1の小径部51vに入って縮小され、速度vbになるとすると、その際の比エネルギ損失ΔE2および損失係数β2は、それぞれ次式(4)、(5)で表すことができる。   As for the energy loss due to the reduced tube portion here, the exhaust gas traveling at a speed vb ′ in the large diameter portion 51p of the maximum cross sectional area A2 enters the small diameter portion 51v of the minimum cross sectional area A1 immediately thereafter, and is reduced. Assuming the speed vb, the specific energy loss ΔE2 and the loss coefficient β2 at that time can be expressed by the following equations (4) and (5), respectively.

ΔE2=β2・(vb/2)・・・(4)
β2=(1/c−1)・・・(5)
なお、ここで、cは、縮流係数であり、直後の小径部51vに入る際の縮流の最小断面積をA3とするとき、A3/A1に相当する値である。
ΔE2 = β2 · (vb 2/ 2) ··· (4)
β2 = (1 / c−1) 2 (5)
Here, c is a contraction coefficient, and is a value corresponding to A3 / A1, where A3 is the minimum cross-sectional area of contraction flow when entering the small diameter portion 51v immediately after.

これら損失係数β1、β2は、管路形状によって大きく異なり、例えば縮小管部分に緩やかな傾斜やコーナーRがある場合、その縮小管によるエネルギ損失は小さくなる。
したがって、例えば熱歪みの影響等を抑えやすいように蛇腹部に緩やかな傾斜やコーナーRを付ける場合、縮小管部分における損失係数β2は十分小さいと考えて、拡大管部分における損失係数β1を各段の損失割合βと考えることができる。
より具体的には、例えば拡大管部分の小径部51vおよび大径部51pの断面積比A1/A2を0.5(小径部51vの直径(通路内径)d1と大径部51pの直径d2の比d1/d2を約0.7)とし、蛇腹の段数γを9段とした場合、同断面積比A1/A2を0.4(d1/d2を約0.63)とし、蛇腹の段数γを6段とした場合、あるいは、同断面積比A1/A2を0.3(d1/d2を約0.55)とし、蛇腹の段数γを4段とした場合のいずれにおいても、図4に示す損失割合β1のデータを基に(1−β1)γを求めると、0.1より十分に小さくなり、サージタンクに近い脈動減衰効果が期待できる。
These loss coefficients β1 and β2 vary greatly depending on the pipe shape. For example, when there is a gentle inclination or a corner R in the contraction tube portion, energy loss due to the contraction tube becomes small.
Therefore, for example, when a gentle slope or corner R is added to the bellows part so as to easily suppress the influence of thermal distortion, the loss coefficient β2 in the reduction pipe part is considered to be sufficiently small, and the loss coefficient β1 in the expansion pipe part is set to each stage. The loss ratio β can be considered.
More specifically, for example, the cross-sectional area ratio A1 / A2 of the small diameter portion 51v and the large diameter portion 51p of the enlarged pipe portion is 0.5 (the diameter (passage inner diameter) d1 of the small diameter portion 51v and the diameter d2 of the large diameter portion 51p). When the ratio d1 / d2 is about 0.7) and the bellows step number γ is nine, the cross-sectional area ratio A1 / A2 is 0.4 (d1 / d2 is about 0.63), and the bellows step number γ is FIG. 4 shows the loss shown in FIG. 4 in the case of 6 stages or when the cross-sectional area ratio A1 / A2 is 0.3 (d1 / d2 is about 0.55) and the number of bellows stages γ is 4. When (1-β1) γ is obtained based on the data of the ratio β1, it becomes sufficiently smaller than 0.1, and a pulsation damping effect close to that of a surge tank can be expected.

このように複数段の拡大管部分による脈動の減衰を考えた場合、最小断面積A1と最大断面積A2の比である断面積比A1/A2は、A1/A2<0.4(d1/d2<0.63)となるように設定することで、排気還流装置15の搭載上の制約を十分に抑えることができる。
また、第1通路部51aおよび第2通路部51bのそれぞれの小径部51vの形成区間p1は、特に限定されないが、小径部51vの直径(通路内径)d1に近い長さであり、一方、大径部51pの形成区間p2は、大径部51pの直径(通路内径)d2に近い長さである。
In this way, when considering the attenuation of pulsation due to the plurality of stages of enlarged tube portions, the cross-sectional area ratio A1 / A2, which is the ratio of the minimum cross-sectional area A1 and the maximum cross-sectional area A2, is A1 / A2 <0.4 (d1 / d2 By setting so as to satisfy <0.63), it is possible to sufficiently suppress restrictions on mounting the exhaust gas recirculation device 15.
Further, the formation section p1 of the small diameter part 51v of each of the first passage part 51a and the second passage part 51b is not particularly limited, but has a length close to the diameter (passage inner diameter) d1 of the small diameter part 51v. The formation section p2 of the diameter portion 51p has a length close to the diameter (passage inner diameter) d2 of the large diameter portion 51p.

図2に示すように、EGRバルブ52は、EGR通路51の第1通路部51aおよび第2通路部51bが接続される2つの入口ポート52a、52bと、EGR通路51の第3通路部51cが接続される1つの出口ポート52cとを有しており、EGR通路51の第1通路部51aおよび第2通路部51bと第3通路部51cとの間に介在する三方電磁弁として構成されている。また、EGRバルブ52は、第1通路部51aおよび第2通路部51bと第3通路部51cとを連通させる開弁状態と、第1通路部51a、第2通路部51bおよび第3通路部51cのうちいずれの間の連通も遮断する閉弁状態とに切り換えられるようになっている。   As shown in FIG. 2, the EGR valve 52 includes two inlet ports 52 a and 52 b to which the first passage portion 51 a and the second passage portion 51 b of the EGR passage 51 are connected, and a third passage portion 51 c of the EGR passage 51. The outlet port 52c is connected to the first passage portion 51a of the EGR passage 51, and is configured as a three-way solenoid valve interposed between the second passage portion 51b and the third passage portion 51c. . Further, the EGR valve 52 includes a valve-open state in which the first passage portion 51a, the second passage portion 51b, and the third passage portion 51c are in communication with each other, and the first passage portion 51a, the second passage portion 51b, and the third passage portion 51c. The valve can be switched to a closed state in which communication between the two is cut off.

具体的には、EGRバルブ52は、入口ポート52a、52bを出口ポート52cに連通させる開弁位置[I]と入口ポート52a、52bおよび出口ポート52cを個別にブロックする閉弁位置[II]とに切り換えることができる弁体52vと、この弁体52vを常時閉弁方向に付勢するスプリング52pと、弁体52vを開弁方向に駆動することができる電磁操作部52sとを有している。なお、このような三方弁の構成自体は公知のものと同様であるが、電磁操作部52sはECU30からの所定時間当りの開弁指示信号により励磁駆動され、EGRバルブ52を開弁指示信号のデューティ比に応じた開度にすることができる。   Specifically, the EGR valve 52 includes a valve opening position [I] that allows the inlet ports 52a and 52b to communicate with the outlet port 52c, and a valve closing position [II] that blocks the inlet ports 52a and 52b and the outlet port 52c individually. A valve body 52v that can be switched to the valve body 52, a spring 52p that normally biases the valve body 52v in the valve closing direction, and an electromagnetic operation section 52s that can drive the valve body 52v in the valve opening direction. . The configuration of such a three-way valve itself is the same as a known one, but the electromagnetic operation unit 52s is excited and driven by a valve opening instruction signal per predetermined time from the ECU 30, and the EGR valve 52 is turned on by a valve opening instruction signal. The opening can be set according to the duty ratio.

EGRクーラ53は、例えば特開2006−348873号公報に記載されるEGRクーラと同様な冷却通路構造をなし、EGRクーラ前触媒ユニット54は、例えば特開2005−240641号公報に記載される浄化用触媒と同様な通路構造をなすように構成されている。   The EGR cooler 53 has a cooling passage structure similar to that of the EGR cooler described in, for example, JP-A-2006-348873, and the EGR cooler pre-catalyst unit 54 is for purification described in, for example, JP-A-2005-240641 The passage structure is the same as that of the catalyst.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の内燃機関の排気還流装置では、エンジン10の運転時に、排気マニホルド31の第1合流排気管31aおよび第2合流排気管31bからEGR通路51の第1通路部51aおよび第2通路部51bに排気脈動を伴う排気ガスが流入する。   In the exhaust gas recirculation apparatus for an internal combustion engine of the present embodiment configured as described above, the first passage of the EGR passage 51 from the first combined exhaust pipe 31a and the second combined exhaust pipe 31b of the exhaust manifold 31 when the engine 10 is operated. Exhaust gas with exhaust pulsation flows into the portion 51a and the second passage portion 51b.

このとき、EGR通路51の第1通路部51aおよび第2通路部51bの内部を通る排気ガスは、小径部51vから大径部51pへの各拡大管部分と、その大径部51pから次段の小径部51vへの各縮小管部分とを通過し、それぞれの通路断面積の変化に応じて膨張および収縮を複数回繰り返すことになり、両通路部51a、51bの内部で流速の大きい脈動成分がサージタンクに流入する程度にまで有効に減衰されることになる。したがって、EGRバルブ52の開弁時に、第1通路部51aおよび第2通路部51bを通る2系統の合流排気ガスがEGRバルブ52の内部でさらに合流されて全気筒分集合するとき、両通路部51a、51bからの排気ガスはすでに脈動成分が十分に減衰しており、排気干渉が有効に抑制されることになる。   At this time, the exhaust gas passing through the inside of the first passage portion 51a and the second passage portion 51b of the EGR passage 51 is expanded from the small diameter portion 51v to the large diameter portion 51p, and from the large diameter portion 51p to the next stage. Pulsating component having a large flow velocity inside both the passage portions 51a and 51b, which passes through each of the contraction pipe portions to the small-diameter portion 51v and repeats expansion and contraction a plurality of times in accordance with changes in the respective passage sectional areas. Is effectively attenuated to such an extent that it flows into the surge tank. Therefore, when the EGR valve 52 is opened, when the two systems of combined exhaust gas passing through the first passage portion 51a and the second passage portion 51b are further merged inside the EGR valve 52 and gather for all the cylinders, both passage portions The exhaust gas from 51a and 51b has already sufficiently attenuated the pulsation component, and the exhaust interference is effectively suppressed.

本実施形態では、第1通路部51aおよび第2通路部51bのそれぞれが、隣り合う小径部51vおよび大径部51pを1段とする複数段の蛇腹状部分を有する構成となっているので、通路断面積の最大断面積A2を過度に大きく設定したり最小断面積A1を過度に小さく設定したりする必要がなく、EGRクーラ前触媒ユニット54までの通路長さが短くできる。したがって、EGRクーラ53の前にEGRクーラ前触媒ユニット54を容易に搭載することができる。   In the present embodiment, each of the first passage portion 51a and the second passage portion 51b has a configuration having a plurality of bellows-like portions including the adjacent small diameter portion 51v and large diameter portion 51p as one step. There is no need to set the maximum cross-sectional area A2 of the passage cross-sectional area excessively large or the minimum cross-sectional area A1 excessively small, and the passage length to the EGR cooler pre-catalyst unit 54 can be shortened. Therefore, the EGR cooler pre-catalyst unit 54 can be easily mounted in front of the EGR cooler 53.

また、2本の排気還流管55、56の蛇腹部55bw、56bwでそれぞれ放熱面となる表面積が増加することによって、第1通路部51aおよび第2通路部51bを通る排気温度が高い排気ガスを冷却する機能も生じることになり、EGRクーラ53の冷却負荷をも軽減できる。加えて、排気系部品の熱による膨張や収縮(歪)を2本の排気還流管55、56の蛇腹部55bw、56bwで有効に吸収することができ、周辺部品の亀裂等を防止することができる。   In addition, since the surface areas serving as heat dissipation surfaces of the bellows portions 55bw and 56bw of the two exhaust gas recirculation pipes 55 and 56 are increased, exhaust gas having a high exhaust temperature passing through the first passage portion 51a and the second passage portion 51b is generated. The function to cool will also arise and the cooling load of the EGR cooler 53 can also be reduced. In addition, expansion and contraction (distortion) due to heat of the exhaust system parts can be effectively absorbed by the bellows portions 55bw and 56bw of the two exhaust recirculation pipes 55 and 56, and cracks of peripheral parts can be prevented. it can.

さらに、本実施形態では、隣り合う小径部51vおよび大径部51pを1段とする複数段の蛇腹状部分の段数をγとし、その各段における排気ガスのエネルギの減衰割合をβとするとき、(1−β)γ<0.1を満足するように、段数γと、最大断面積A2および最小断面積A1がそれぞれ設定されているので、搭載上の制約を受け難い蛇腹の段数γや通路内径寸法d1、d2等を選択しつつ、排気圧脈動の減衰による排気干渉を確実に抑制することができる。 Furthermore, in this embodiment, when the number of stages of the plurality of bellows-like parts including the adjacent small-diameter part 51v and large-diameter part 51p as one stage is γ, and the energy decay rate of the exhaust gas at each stage is β. , (1-β) γ <0.1, the step number γ, the maximum cross-sectional area A2 and the minimum cross-sectional area A1 are set, respectively. Exhaust interference due to the attenuation of exhaust pressure pulsation can be reliably suppressed while selecting the passage inner diameter dimensions d1, d2, and the like.

このように、本実施形態においては、2つの合流排気管31a、31bおよびツインエントリー型の排気ターボ過給機14を備えるエンジン10において、EGRクーラ前触媒ユニット54等の搭載上の制約をなくすとともに、排気脈動を有効に低減させ排気干渉を抑えることのできる排気還流装置15を提供することができる。   As described above, in the present embodiment, in the engine 10 including the two combined exhaust pipes 31a and 31b and the twin entry type exhaust turbocharger 14, the restriction on mounting the EGR cooler pre-catalyst unit 54 and the like is eliminated. Thus, it is possible to provide the exhaust gas recirculation device 15 that can effectively reduce the exhaust pulsation and suppress the exhaust interference.

また、本実施形態では、EGRバルブ52の閉弁時には、第1通路部51aと第2通路部51bの間が遮断されることで、排気干渉が確実に防止され、エンジントルクの低下が防止される。   Further, in the present embodiment, when the EGR valve 52 is closed, the first passage portion 51a and the second passage portion 51b are blocked so that exhaust interference is reliably prevented and engine torque is prevented from being lowered. The

なお、本実施形態においては、EGRバルブ52がEGRクーラ53より上流側(第1および第2合流排気管側)に配置されていたが、EGRバルブ52は、EGRクーラ前触媒ユニット54より下流側(第1および第2合流排気管から離れる側)あるいはさらにEGRクーラ53より下流側に配置されてもよい。この場合、EGRバルブ52より上流側に2つの合流排気管31a、31bに対応する第1通路部51aおよび第2通路部51bが長く形成されることになる。したがって、例えばEGRクーラ前触媒ユニット54とEGRクーラ53の間に2本の排気還流管55、56と類似の排気還流管を併設し、第1通路部51aおよび第2通路部51bが、EGRクーラ前触媒ユニット54とEGRクーラ53の間でも、それぞれの通路断面積を最大断面積A2と最小断面積A1の間で複数回変化させるようにすることができる。その場合、断面積比A1/A2を比較的大きく設定することができる。   In the present embodiment, the EGR valve 52 is disposed upstream of the EGR cooler 53 (on the first and second combined exhaust pipe sides), but the EGR valve 52 is downstream of the pre-EGR cooler catalyst unit 54. (The side away from the first and second combined exhaust pipes) or further downstream of the EGR cooler 53. In this case, the first passage portion 51a and the second passage portion 51b corresponding to the two merged exhaust pipes 31a and 31b are formed longer on the upstream side than the EGR valve 52. Therefore, for example, an exhaust gas recirculation pipe similar to the two exhaust gas recirculation pipes 55 and 56 is provided between the EGR cooler pre-catalyst unit 54 and the EGR cooler 53, and the first passage portion 51a and the second passage portion 51b are provided as the EGR cooler. Also between the front catalyst unit 54 and the EGR cooler 53, the respective passage cross-sectional areas can be changed a plurality of times between the maximum cross-sectional area A2 and the minimum cross-sectional area A1. In that case, the cross-sectional area ratio A1 / A2 can be set relatively large.

上述の実施形態では、エンジン10をガソリンエンジンとしたが、ディーゼルエンジンであってもよいし、これとは異なる燃料を用いる任意の4サイクルエンジンであってもよい。また、排気冷却気前の触媒ユニットは、酸化触媒または三元触媒に限らず、NOx吸蔵触媒やディーゼルパティキュレートフィルタであってもよい。   In the above-described embodiment, the engine 10 is a gasoline engine. However, a diesel engine may be used, and an arbitrary four-cycle engine using a different fuel may be used. Further, the catalyst unit before the exhaust cooling air is not limited to the oxidation catalyst or the three-way catalyst, but may be a NOx storage catalyst or a diesel particulate filter.

以上のように、本実施形態に係る内燃機関の排気還流装置は、2つの合流排気管およびツインエントリー型の排気ターボ過給機を備える内燃機関において、排気冷却器前触媒等の搭載上の制約をなくすとともに排気脈動を有効に低減させ排気干渉を抑えることのできる内燃機関の排気還流装置を提供することができるという効果を奏するものであり、排気干渉を回避するよう複数の気筒からの排気を2系統に分けてツインエントリー型の排気ターボ過給機に導入するようにした内燃機関に装備される排気還流装置全般に有用である。   As described above, the exhaust gas recirculation device for an internal combustion engine according to the present embodiment is a restriction on mounting an exhaust cooler pre-catalyst or the like in an internal combustion engine including two combined exhaust pipes and a twin entry type exhaust turbocharger. In addition, an exhaust gas recirculation device for an internal combustion engine that can effectively reduce exhaust pulsation and suppress exhaust interference can be provided, and exhaust from a plurality of cylinders can be provided to avoid exhaust interference. This is useful for exhaust gas recirculation devices that are installed in internal combustion engines that are divided into two systems and introduced into twin-entry exhaust turbochargers.

10 エンジン(内燃機関)
11 気筒
12 吸気装置
13 排気装置
14 排気ターボ過給機
14C 吸入空気コンプレッサ
14T 排気タービン
15 排気還流装置
21 吸気マニホルド
22 吸気管(吸気通路)
27 サージタンク(吸気通路)
30 ECU(電子制御ユニット)
31 排気マニホルド
31a 第1合流排気管
31b 第2合流排気管
32 排気管(排気通路)
51 EGR通路(排気還流通路)
51a 第1通路部
51b 第2通路部
51c 第3通路部
51p 大径部(環状凸部)
51v 小径部(環状凹部部)
52 EGRバルブ(三方排気還流弁)
52a、52b 入口ポート
52c 出口ポート
53 EGRクーラ(排気冷却器)
54 EGRクーラ前触媒ユニット(触媒)
55、56 排気還流管
55bw、56bw 蛇腹部
A1 最小断面積
A2 最大断面積
p1、p2 形成区間
10 Engine (Internal combustion engine)
11 cylinder 12 intake device 13 exhaust device 14 exhaust turbocharger 14C intake air compressor 14T exhaust turbine 15 exhaust recirculation device 21 intake manifold 22 intake pipe (intake passage)
27 Surge tank (intake passage)
30 ECU (Electronic Control Unit)
31 Exhaust manifold 31a First combined exhaust pipe 31b Second combined exhaust pipe 32 Exhaust pipe (exhaust passage)
51 EGR passage (exhaust gas recirculation passage)
51a 1st channel | path part 51b 2nd channel | path part 51c 3rd channel | path part 51p Large diameter part (annular convex part)
51v Small diameter part (annular recess)
52 EGR valve (3-way exhaust recirculation valve)
52a, 52b Inlet port 52c Outlet port 53 EGR cooler (exhaust cooler)
54 EGR cooler front catalyst unit (catalyst)
55, 56 Exhaust gas recirculation pipe 55bw, 56bw Bellows A1 Minimum cross-sectional area A2 Maximum cross-sectional area p1, p2 Formation section

Claims (2)

排気行程順が隣り合う複数の気筒からの排気ガスを分けて排気させるとともに前記排気行程順が相互に離れた複数の気筒からの排気ガスを合流させる第1合流排気管および第2合流排気管と、前記第1合流排気管および第2合流排気管に接続されるツインエントリー型の排気ターボ過給機と、を備えた内燃機関に装備される排気還流装置であって、
前記第1合流排気管に接続される第1通路部、前記第2合流排気管に接続される第2通路部および前記内燃機関の吸気管に接続される第3通路部を有し、前記内燃機関の排気ガスの一部を前記第1通路部および前記第2通路部と前記第3通路部とを通して前記吸気管に還流させることができる排気還流通路と、
前記排気還流通路の前記第1通路部および前記第2通路部と前記第3通路部との間に介在する三方排気還流弁と、を備え、
前記排気還流通路の前記第1通路部および前記第2通路部が、それぞれの通路断面積を最大断面積と最小断面積の間で複数回変化させるよう、前記最小断面積側に位置する環状凹部および前記最大断面積側に位置する環状凸部を蛇腹状に複数段有することを特徴とする内燃機関の排気還流装置。
A first merging exhaust pipe and a second merging exhaust pipe for separately evacuating exhaust gases from a plurality of cylinders whose exhaust stroke order is adjacent and merging exhaust gases from a plurality of cylinders whose exhaust stroke orders are separated from each other; An exhaust gas recirculation device equipped in an internal combustion engine comprising a twin-entry exhaust turbocharger connected to the first combined exhaust pipe and the second combined exhaust pipe,
A first passage portion connected to the first combined exhaust pipe, a second passage portion connected to the second combined exhaust pipe, and a third passage portion connected to an intake pipe of the internal combustion engine; An exhaust gas recirculation passage capable of recirculating a part of engine exhaust gas to the intake pipe through the first passage portion, the second passage portion, and the third passage portion;
A three-way exhaust recirculation valve interposed between the first passage portion and the second passage portion and the third passage portion of the exhaust recirculation passage;
An annular recess located on the minimum cross-sectional area side so that the first passage portion and the second passage portion of the exhaust gas recirculation passage change each passage cross-sectional area a plurality of times between the maximum cross-sectional area and the minimum cross-sectional area. And an exhaust gas recirculation device for an internal combustion engine having a plurality of annular convex portions located on the maximum cross-sectional area side in a bellows shape.
前記複数段の段数をγとし、各段における前記排気ガスのエネルギの減衰割合をβとするとき、次式
(1−β)γ<0.1
を満足するよう、前記段数γと、前記最大断面積および前記最小断面積とがそれぞれ設定されていることを特徴とする請求項1に記載の内燃機関の排気還流装置。
When the number of stages in the plurality of stages is γ and the energy decay rate of the exhaust gas in each stage is β, the following equation (1-β) γ <0.1
2. The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein the stage number γ, the maximum cross-sectional area, and the minimum cross-sectional area are set so as to satisfy the following equation.
JP2009262973A 2009-11-18 2009-11-18 Exhaust gas recirculation device for internal combustion engine Expired - Fee Related JP5168268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262973A JP5168268B2 (en) 2009-11-18 2009-11-18 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262973A JP5168268B2 (en) 2009-11-18 2009-11-18 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011106361A true JP2011106361A (en) 2011-06-02
JP5168268B2 JP5168268B2 (en) 2013-03-21

Family

ID=44230106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262973A Expired - Fee Related JP5168268B2 (en) 2009-11-18 2009-11-18 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5168268B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177887A1 (en) * 2014-12-17 2016-06-23 Tenneco Gmbh Egr system with particle filter for a gasoline engine
JP2021105369A (en) * 2019-12-26 2021-07-26 マツダ株式会社 Engine with turbocharger
JP7435381B2 (en) 2020-09-23 2024-02-21 マツダ株式会社 engine system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146214A (en) * 1979-04-30 1980-11-14 Hiroshi Ochiai Silencer tube device
JPS58158153U (en) * 1982-04-19 1983-10-21 マツダ株式会社 Engine exhaust recirculation device
JPS58181923U (en) * 1982-05-29 1983-12-05 片山工業株式会社 Bellows type exhaust pipe
JPH0634159U (en) * 1992-10-09 1994-05-06 日産ディーゼル工業株式会社 EGR device for multi-cylinder internal combustion engine
JPH08232771A (en) * 1995-02-28 1996-09-10 Suzuki Motor Corp Exhaust gas recirculation device
JPH08240158A (en) * 1995-03-01 1996-09-17 Hino Motors Ltd Egr device
JP2000002376A (en) * 1998-06-17 2000-01-07 Toyoda Gosei Co Ltd Fuel hose
JP2004124749A (en) * 2002-09-30 2004-04-22 Mazda Motor Corp Exhaust device for turbocharged engine
JP2004519576A (en) * 2001-03-02 2004-07-02 ボルボ ラストバグナー アーベー Recirculation exhaust gas supply device
JP2005009406A (en) * 2003-06-19 2005-01-13 Hino Motors Ltd Internal combustion engine with supercharger
JP2006083777A (en) * 2004-09-16 2006-03-30 Joto Jidosha Kojo:Kk Exhaust gas nox reducing method and device for automobile engine
JP2007327382A (en) * 2006-06-07 2007-12-20 Nissan Diesel Motor Co Ltd Multicylinder engine and its egr cooler
JP2008163930A (en) * 2007-01-05 2008-07-17 Toyota Motor Corp Exhaust recirculating device of internal combustion engine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146214A (en) * 1979-04-30 1980-11-14 Hiroshi Ochiai Silencer tube device
JPS58158153U (en) * 1982-04-19 1983-10-21 マツダ株式会社 Engine exhaust recirculation device
JPS58181923U (en) * 1982-05-29 1983-12-05 片山工業株式会社 Bellows type exhaust pipe
JPH0634159U (en) * 1992-10-09 1994-05-06 日産ディーゼル工業株式会社 EGR device for multi-cylinder internal combustion engine
JPH08232771A (en) * 1995-02-28 1996-09-10 Suzuki Motor Corp Exhaust gas recirculation device
JPH08240158A (en) * 1995-03-01 1996-09-17 Hino Motors Ltd Egr device
JP2000002376A (en) * 1998-06-17 2000-01-07 Toyoda Gosei Co Ltd Fuel hose
JP2004519576A (en) * 2001-03-02 2004-07-02 ボルボ ラストバグナー アーベー Recirculation exhaust gas supply device
JP2004124749A (en) * 2002-09-30 2004-04-22 Mazda Motor Corp Exhaust device for turbocharged engine
JP2005009406A (en) * 2003-06-19 2005-01-13 Hino Motors Ltd Internal combustion engine with supercharger
JP2006083777A (en) * 2004-09-16 2006-03-30 Joto Jidosha Kojo:Kk Exhaust gas nox reducing method and device for automobile engine
JP2007327382A (en) * 2006-06-07 2007-12-20 Nissan Diesel Motor Co Ltd Multicylinder engine and its egr cooler
JP2008163930A (en) * 2007-01-05 2008-07-17 Toyota Motor Corp Exhaust recirculating device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177887A1 (en) * 2014-12-17 2016-06-23 Tenneco Gmbh Egr system with particle filter for a gasoline engine
US10458368B2 (en) * 2014-12-17 2019-10-29 Tenneco Gmbh EGR system with particle filter for a gasoline engine
JP2021105369A (en) * 2019-12-26 2021-07-26 マツダ株式会社 Engine with turbocharger
JP7347210B2 (en) 2019-12-26 2023-09-20 マツダ株式会社 turbocharged engine
JP7435381B2 (en) 2020-09-23 2024-02-21 マツダ株式会社 engine system

Also Published As

Publication number Publication date
JP5168268B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP2011099375A (en) Exhaust reflux device of internal combustion engine
JP4442659B2 (en) Exhaust gas purification device for internal combustion engine
US7308788B1 (en) Engine and method for counteracting face plugging of a diesel oxidation catalyst
JP4363395B2 (en) Exhaust gas purification device for internal combustion engine
JP5146303B2 (en) Exhaust gas recirculation device
JP5444996B2 (en) Internal combustion engine and control method thereof
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
JP2005054771A (en) Cylinder group individual control engine
JP6256275B2 (en) Engine intake / exhaust system
JP2008121635A (en) Engine
JP5168268B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4737151B2 (en) Exhaust system for internal combustion engine
JP4779926B2 (en) Exhaust system for internal combustion engine
JP2008014250A (en) Exhaust gas recirculation system of internal combustion engine
JP2009156055A (en) Exhaust emission control device of internal combustion engine
JP2010223077A (en) Internal combustion engine
JP2009085094A (en) Exhaust gas recirculation device for engine
WO2009151080A1 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engine
JP2010116894A (en) Control device of internal combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP2010133327A (en) Exhaust emission control device for internal combustion engine
JP2005282380A (en) Engine exhaust gas recirculation device
JP4741379B2 (en) Multi-cylinder engine
JP2010116895A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees