JP4741379B2 - Multi-cylinder engine - Google Patents

Multi-cylinder engine Download PDF

Info

Publication number
JP4741379B2
JP4741379B2 JP2006028971A JP2006028971A JP4741379B2 JP 4741379 B2 JP4741379 B2 JP 4741379B2 JP 2006028971 A JP2006028971 A JP 2006028971A JP 2006028971 A JP2006028971 A JP 2006028971A JP 4741379 B2 JP4741379 B2 JP 4741379B2
Authority
JP
Japan
Prior art keywords
exhaust
intake
check valve
egr
cylinder engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006028971A
Other languages
Japanese (ja)
Other versions
JP2007205340A (en
Inventor
秀一 中村
健一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2006028971A priority Critical patent/JP4741379B2/en
Publication of JP2007205340A publication Critical patent/JP2007205340A/en
Application granted granted Critical
Publication of JP4741379B2 publication Critical patent/JP4741379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

この発明は、過給を行う多気筒エンジンにおいて、NOxの低減と出力や燃費の向上との両立を実現するための技術に関する。   The present invention relates to a technique for realizing both reduction of NOx and improvement of output and fuel consumption in a multi-cylinder engine that performs supercharging.

エンジンのEGR(排気環流:Exhaust Gas Recirculation)システムとして、排気系から吸気系へ排気の一部を環流させるものがよく採用される。このようなEGR装置においては、ターボ過給機のタービン上流からコンプレッサ下流へ排気を環流させる場合、過給圧が排気圧よりも高くなる運転領域が生じやすく、EGRが十分に得られない。   As an engine EGR (Exhaust Gas Recirculation) system, a system that circulates part of the exhaust gas from the exhaust system to the intake system is often used. In such an EGR device, when exhaust gas is circulated from the turbine upstream of the turbocharger to the compressor downstream, an operation region in which the supercharging pressure becomes higher than the exhaust pressure is likely to occur, and EGR cannot be sufficiently obtained.

EGR率を高めるため、バタフライバルブによる排気絞りやスロットルバルブによる吸気絞りを行うことが考えられるが、ポンピングロスの悪化が問題となる。VNT(可変ノズル式ターボチャージャ)絞りは、排気マニホールド圧のみでなく、吸気マニホールド圧も上昇するので、EGR率を向上させるのに排気マニホールド圧の方が吸気マニホールド圧よりも高くなるまでVNT絞りを効かせる必要があり、ポンピングロスの悪化を招いてしまうのである。そのため、リードバルブ(逆止弁)を用いて排気脈動によりEGRを行う方式(特許文献1、特許文献2)、混合区間を用いて排気脈動を大きくする方式(特許文献3)、可変バルブを用いて内部EGRを行う方式(特許文献4)、が知られている。
特開2000−249004号 特開2005−147010号 特開2003−534488号 特開2001−107810号
In order to increase the EGR rate, exhaust throttling by a butterfly valve or intake throttling by a throttle valve can be considered, but deterioration of pumping loss becomes a problem. The VNT (variable nozzle turbocharger) throttle increases not only the exhaust manifold pressure but also the intake manifold pressure. It is necessary to make it effective, and the pumping loss is worsened. Therefore, a method of performing EGR by exhaust pulsation using a reed valve (check valve) (Patent Document 1, Patent Document 2), a method of increasing exhaust pulsation using a mixing section (Patent Document 3), and a variable valve A method of performing internal EGR (Patent Document 4) is known.
JP 2000-249004 JP 2005-147010 A JP 2003-534488 A JP 2001-107810 A

特許文献1〜特許文献3の場合、分割型の排気マニホールドに接続されるターボ過給機がシングルエントリ方式(タービン入口が1つ)の場合、位相の異なる気筒群間の排気パルス(正圧波の山)が互いに打ち消し合うため、十分なEGR率が得られない。特許文献4の場合、排気(EGRガス)の冷却が行えないのである。特許文献2においては、分割型の排気マニホールドと分割型の吸気マニホールドとの間を同一の気筒群同士の関係に接続するEGR通路が設けられるものの、排気パルスが吸気行程の初期に到達するため、吸気脈動の谷とのタイミングが合わず、EGR率が十分に向上できない。   In the case of Patent Literature 1 to Patent Literature 3, when the turbocharger connected to the split type exhaust manifold is a single entry system (one turbine inlet), exhaust pulses (positive pressure waves) between cylinder groups having different phases are used. Mountains) cancel each other, so a sufficient EGR rate cannot be obtained. In the case of Patent Document 4, the exhaust (EGR gas) cannot be cooled. In Patent Document 2, although an EGR passage that connects the split type exhaust manifold and the split type intake manifold to each other in the relationship between the same cylinder groups is provided, the exhaust pulse reaches the initial stage of the intake stroke. The timing of the intake pulsation valley does not match and the EGR rate cannot be improved sufficiently.

この発明は、このような課題を解決するための有効な手段の提供を目的とする。   An object of this invention is to provide an effective means for solving such a problem.

第1の発明は、過給を行う多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールドと、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールドと、これらの排気マニホールドと吸気マニホールドとの間を同一の気筒群同士を接続するEGR通路と、排気マニホールド間を排気が逆流するのを防止する手段と、各EGR通路の最下流部に配置される逆止弁と、を備え、各EGR通路は、前記逆止弁の上流にEGRクーラが配置され、前記排気マニホールド内の排気脈動の山が逆止弁に到達するタイミングを前記吸気マニホールド内の吸気脈動の谷が逆止弁に到達するタイミングに近づけるべく、前記逆止弁の上流側の該逆止弁と前記EGRクーラとの区間の通路長を含む通路部分を、前記逆止弁の下流側の通路部分よりも長く設定したことを特徴とする。 In a multi-cylinder engine that performs supercharging, a first invention includes an exhaust manifold that is divided for each cylinder group in which the exhaust strokes do not overlap, an intake manifold that is divided for each cylinder group in which the intake strokes do not overlap, EGR passages that connect the same cylinder group between the exhaust manifold and the intake manifold, means for preventing exhaust from flowing back between the exhaust manifolds, and a check arranged at the most downstream part of each EGR passage Each EGR passage is provided with an EGR cooler upstream of the check valve, and the timing at which the peak of exhaust pulsation in the exhaust manifold reaches the check valve In order to approach the timing at which the valley reaches the check valve, a passage portion including the passage length of the section between the check valve upstream of the check valve and the EGR cooler is connected to the downstream side of the check valve. Characterized in that set to be longer than the portion.

第2の発明は、第1の発明に係る多気筒エンジンにおいて、排気マニホールド間を排気が逆流するのを防止する手段として、各排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部を備えたことを特徴とする。 In the multi-cylinder engine according to the first aspect of the present invention, the multi-cylinder engine according to the first aspect of the present invention has a tapered shape with the downstream portion of the exhaust manifold as a means for preventing the exhaust gas from flowing backward between the exhaust manifolds toward the junction. It is characterized by having a nozzle part for narrowing down .

第3の発明は、第1の発明に係る多気筒エンジンにおいて、排気マニホールド間を排気が逆流するのを防止する手段して、ツインエントリ方式のターボ過給機を備えたことを特徴とする。 According to a third invention, in the multi-cylinder engine according to the first invention, a twin-entry turbocharger is provided as means for preventing the exhaust gas from flowing back between the exhaust manifolds.

第4の発明は、第1の発明に係る多気筒エンジンにおいて、吸気負圧を増幅する手段を備えたことを特徴とする。 According to a fourth invention, in the multi-cylinder engine according to the first invention, there is provided means for amplifying the intake negative pressure .

第5の発明は、第4の発明に係る多気筒エンジンにおいて、吸気負圧を増幅する手段として、ベンチュリを各吸気マニホールド毎に配置したことを特徴とする。 According to a fifth invention, in the multi-cylinder engine according to the fourth invention , a venturi is arranged for each intake manifold as means for amplifying the intake negative pressure .

第6の発明は、第4の発明に係る多気筒エンジンにおいて、吸気負圧を増幅する手段として、スロットルバルブを各吸気マニホールド毎に配置したことを特徴とする。 A sixth invention is characterized in that, in the multi-cylinder engine according to the fourth invention , a throttle valve is arranged for each intake manifold as means for amplifying the intake negative pressure.

第7の発明は、第4の発明に係る多気筒エンジンにおいて、吸気負圧を増幅する手段として、吸気管の分岐部と各吸気マニホールドとの間をそれぞれ連結する共鳴管を備えたことを特徴とする。 According to a seventh aspect of the invention, in the multi-cylinder engine according to the fourth aspect of the invention , as a means for amplifying the intake negative pressure, a resonance pipe for connecting the branch portion of the intake pipe and each intake manifold is provided. And

第1の発明においては、ターボ過給機がシングルエントリ方式(タービン入口が1つ)の場合においても、分割型の排気マニホール間を排気が逆流するのを防止する手段により、EGR通路の逆止弁に排気パルス(正圧波の山)が弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られるのである。また、排気マニホールド内の排気脈動が山となるタイミングは、吸気マニホールド内の吸気脈動が谷となるタイミングよりも早いが、逆止弁はEGR通路の最下流部に配置され、逆止弁の下流側のEGR通路が短く上流側のEGR通路が長くなるので、排気パルスが逆止弁に到達するタイミングを遅らせることができる。つまり、排気パルスが逆止弁に到達するタイミングを吸気脈動の谷が逆止弁に到達するタイミングに近づけられるのである。このため、逆止弁前後の瞬間的な差圧が増大するため、EGR率をさらに一段と向上させることができる。   In the first aspect of the invention, even when the turbocharger is of a single entry system (one turbine inlet), the EGR passage is non-returned by means for preventing the exhaust from flowing back between the split type exhaust manifolds. The exhaust pulse (crest of positive pressure wave) is transmitted to the valve without being weakened, and the check valve is operated effectively, so a high EGR rate is obtained. In addition, the timing at which the exhaust pulsation in the exhaust manifold reaches a peak is earlier than the timing at which the intake pulsation in the intake manifold becomes a trough, but the check valve is arranged at the most downstream part of the EGR passage and is downstream of the check valve. Since the EGR passage on the side is short and the EGR passage on the upstream side is long, the timing at which the exhaust pulse reaches the check valve can be delayed. That is, the timing at which the exhaust pulse reaches the check valve can be made closer to the timing at which the valley of the intake pulsation reaches the check valve. For this reason, since the instantaneous differential pressure before and after the check valve increases, the EGR rate can be further improved.

この場合、逆止弁上流のEGRクーラにより、EGRガス(排気)が冷やされ、圧力波の伝播速度が遅くなるため、排気パルスが逆止弁に到達するまでの時間を稼ぐことができる。EGRクーラは、逆止弁との区間(EGRガスの温度が低い通路長)を長く取るため、EGR通路の出来るだけ上流側に配置することが好ましい。 In this case , the EGR gas (exhaust gas) is cooled by the EGR cooler upstream of the check valve, and the propagation speed of the pressure wave becomes slow, so that it is possible to gain time until the exhaust pulse reaches the check valve. The EGR cooler is preferably arranged as upstream as possible in the EGR passage in order to take a long section with the check valve (passage length in which the temperature of the EGR gas is low).

第2の発明においては、先細形状のノズルにより、排気の流れが加速され、動圧が上がり、静圧(排気圧力)が下げられるため、排気マニホールド間を排気が逆流するのを抑えられる。このため、EGR通路の逆止弁に排気パルスが弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られるのである。また、先細形状のノズルから吹き出るブローダウン流(排気行程初期の噴き出し排気)の流速により、エゼクタ作用が生じると、排気行程(押し出し)中の気筒側の排気マニホールドから排気が吸引されるため、ポンピングロスの改善も図れる。 In the second aspect of the invention , the tapered nozzle accelerates the flow of exhaust, increases the dynamic pressure, and lowers the static pressure (exhaust pressure), so that the exhaust can be prevented from flowing back between the exhaust manifolds. Therefore, the exhaust pulse is transmitted to the check valve in the EGR passage without being weakened, and the check valve is effectively operated, so that a high EGR rate is obtained. In addition, if the ejector action occurs due to the flow velocity of the blow-down flow (jet exhaust at the beginning of the exhaust stroke) that blows out from the tapered nozzle, the exhaust is sucked from the exhaust manifold on the cylinder side during the exhaust stroke (push-out). Loss can be improved.

第3の発明においては、ターボ過給機がツインエントリ方式(タービン入口が2つのタイプ)のため、排気干渉が避けられ、タービンへのエネルギ伝達が良好に維持しえるほか、排気の逆流も抑えられ、EGR通路の逆止弁に排気パルスが弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られるのである。 In the third invention , since the turbocharger is a twin entry system (two types of turbine inlets), exhaust interference can be avoided, energy transmission to the turbine can be maintained well, and exhaust backflow can be suppressed. Therefore, the exhaust pulse is transmitted to the check valve in the EGR passage without being weakened, and the check valve is effectively operated, so that a high EGR rate is obtained.

第4の発明においては、吸気負圧の増幅により、逆止弁前後の瞬間的な差圧がさらに増大するため、EGR率を一段と向上させることができる。 In the fourth invention , the instantaneous differential pressure before and after the check valve further increases due to the amplification of the intake negative pressure, so that the EGR rate can be further improved.

第5の発明においては、スロットルバルブの吸気絞りにより、吸気負圧(吸気脈動)が増幅され、逆止弁前後の瞬間的な差圧を増大させることができる。 In the fifth invention , the intake negative pressure (intake pulsation) is amplified by the intake throttle of the throttle valve, and the instantaneous differential pressure before and after the check valve can be increased.

第6の発明においては、ベンチュリにより、吸気の流れが加速され、動圧が上がり、静圧が下げられる。つまり、吸気負圧が増幅され、エゼクタ作用により、逆止弁前後の瞬間的な差圧を増大させることができる。 In the sixth invention , the venturi accelerates the flow of intake air, increases the dynamic pressure, and decreases the static pressure. That is, the intake negative pressure is amplified, and the instantaneous differential pressure before and after the check valve can be increased by the ejector action.

第7の発明においては、共鳴管の共鳴作用により、吸気負圧が増幅され、逆止弁前後の瞬間的な差圧を増大させることができる。また、慣性過給が働くため、吸気流量も効率よく十分に得られる。 In the seventh aspect of the invention , the intake negative pressure is amplified by the resonance action of the resonance tube, and the instantaneous differential pressure before and after the check valve can be increased. In addition, since the inertia supercharging works, the intake flow rate can be obtained efficiently and sufficiently.

図1において、2は多気筒エンジン1(6気筒ディーゼルエンジン)の吸気通路であり、吸気マニホールド3a,3bと吸気管4とから構成される。吸気マニホールド3a,3bは、吸気行程が実質的にオーバラップしない気筒群毎(#1,2,3と#4,5,6)に分割される。吸気管4は、インタクーラ5の下流側が分岐され、各マニホールド3a,3bの集合部に接続される。6aはターボチャージャ6のコンプレッサであり、7はエアクリーナである。   In FIG. 1, reference numeral 2 denotes an intake passage of a multi-cylinder engine 1 (6-cylinder diesel engine), which includes intake manifolds 3 a and 3 b and an intake pipe 4. The intake manifolds 3a and 3b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the intake strokes do not substantially overlap. The intake pipe 4 is branched on the downstream side of the intercooler 5 and connected to the collective part of the manifolds 3a and 3b. 6a is a compressor of the turbocharger 6, and 7 is an air cleaner.

8はエンジン1の排気通路であり、排気マニホールド9a,9bと排気管10とから構成される。排気マニホールド9a,9bは、排気行程が実質的にオーバラップしない気筒群(#1,2,3と#4,5,6)毎に分割され、これらマニホールド9a,9bの合流部11にターボチャージャ6のタービン6bを介して排気管8が接続される。ターボチャージャ6のコンプレッサ6aは、タービン6bの回転により駆動され、各気筒への吸気を過給する。ターボチャージャ6としては、タービン入口が1つ(シングルエントリ方式)の可変ノズル式が用いられる。12はマフラである。   Reference numeral 8 denotes an exhaust passage of the engine 1 and includes exhaust manifolds 9 a and 9 b and an exhaust pipe 10. The exhaust manifolds 9a and 9b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the exhaust strokes do not substantially overlap, and a turbocharger is formed at the junction 11 of these manifolds 9a and 9b. The exhaust pipe 8 is connected via a turbine 6b. The compressor 6a of the turbocharger 6 is driven by the rotation of the turbine 6b and supercharges intake air to each cylinder. As the turbocharger 6, a variable nozzle type having one turbine inlet (single entry type) is used. 12 is a muffler.

合流部11は、図2のように構成される。排気マニホールド9a,9bは、互いに集合部下流が1つのフランジ20に結集され、その接合面に合流部11を開口する。1つのフランジ20に結集する集合部下流は、合流部11へ向けて通路を先細形状に絞るノズル部23a,23bに形成される。25はタービンハウジングであり、排気マニホールド9a,9bのフランジ20に対応するフランジ26が形成され、タービン6bの入口がフランジ26の接合面に開口する。排気マニホールド9a,9bのフランジ20にタービンハウジング25のフランジ26が連結される。ノズル部23a,23b下流の合流部11を一旦絞ってから徐々に拡げるスロート形状のディフューザ部29がタービンハウジングの内部に形成される。   The junction 11 is configured as shown in FIG. The exhaust manifolds 9a and 9b are gathered together at one flange 20 on the downstream side of the gathering part, and the joining part 11 is opened at the joint surface. The downstream of the gathering portion gathered in one flange 20 is formed in nozzle portions 23 a and 23 b that narrow the passage toward the joining portion 11 in a tapered shape. Reference numeral 25 denotes a turbine housing, in which a flange 26 corresponding to the flange 20 of the exhaust manifolds 9 a and 9 b is formed, and an inlet of the turbine 6 b opens at a joint surface of the flange 26. The flange 26 of the turbine housing 25 is connected to the flange 20 of the exhaust manifolds 9a and 9b. A throat-shaped diffuser portion 29 is formed inside the turbine housing, which once squeezes the merging portion 11 downstream of the nozzle portions 23a and 23b and then gradually expands.

合流部11においては、先細形状のノズル部23a,23bにより、排気の流れが加速され、動圧が上がり、静圧が下げられるため、排気マニホールド9a,9b間を排気が逆流するのを抑えられるほか、ノズル部23aまたは23bから吹き出るブローダウン流(排気行程初期の噴き出し排気)の流速により、動圧が上がり、静圧が下げられ、エゼクタ作用を生じると、排気(押し出し)行程中の気筒側の排気マニホールド9bまたは9aから排気がディフューザ部29へ吸引されるのである。その後は、ディフューザ部29により、排気の流れが減速され、スクロールの静圧(排気圧力)を上げるようになっている。   In the merging portion 11, the flow of exhaust is accelerated by the tapered nozzle portions 23 a and 23 b, the dynamic pressure is increased, and the static pressure is lowered, so that the exhaust is prevented from flowing back between the exhaust manifolds 9 a and 9 b. In addition, if the dynamic pressure is increased and the static pressure is lowered by the flow velocity of the blow-down flow (ejection exhaust at the initial stage of the exhaust stroke) that blows out from the nozzle portion 23a or 23b, and the ejector action occurs, the cylinder side during the exhaust (extrusion) stroke The exhaust is sucked into the diffuser portion 29 from the exhaust manifold 9b or 9a. Thereafter, the flow of exhaust is decelerated by the diffuser unit 29, and the static pressure (exhaust pressure) of the scroll is increased.

図1において、35はターボチャージャ6のタービン6b上流からターボチャージャ6のコンプレッサ6a下流へ排気の一部を環流させるEGR装置であり、排気マニホールド9a,9bと吸気マニホールド3a,3b(吸気管4の分岐路)との間を同一の気筒群同士の関係に接続するEGR通路36a,36bが備えられる。EGR通路36a,36bにおいて、EGRガスを冷却するEGRクーラ37,EGR流量を調整するEGRバルブ38,EGRガスの逆流を規制する逆止弁(リードバルブ)39が介装される。吸気管4の分岐路にベンチュリ40a,40bが設けられ、ベンチュリ40a,40bにEGR通路36a,36bが開口される。ベンチュリ40a,40bにより、吸気の流れが加速され、動圧が上がり、静圧が下がられる。つまり、吸気負圧が増幅され、エゼクタ作用により、逆止弁39を開いてEGRガスを吸気マニホールド3a,3bへ吸引しやくなる。   In FIG. 1, reference numeral 35 denotes an EGR device that circulates a part of the exhaust gas from the upstream side of the turbine 6b of the turbocharger 6 to the downstream side of the compressor 6a of the turbocharger 6. The exhaust manifolds 9a and 9b EGR passages 36a and 36b are provided for connecting the same cylinder group to each other. In the EGR passages 36a and 36b, an EGR cooler 37 for cooling the EGR gas, an EGR valve 38 for adjusting the EGR flow rate, and a check valve (reed valve) 39 for regulating the backflow of the EGR gas are interposed. Venturis 40a and 40b are provided in the branch passages of the intake pipe 4, and EGR passages 36a and 36b are opened in the venturis 40a and 40b. By the venturis 40a and 40b, the flow of the intake air is accelerated, the dynamic pressure increases, and the static pressure decreases. That is, the intake negative pressure is amplified, and the check valve 39 is opened by the ejector action, so that the EGR gas is easily sucked into the intake manifolds 3a and 3b.

逆止弁39は、EGR通路36a,36bの最下流部(出口部付近)に配置される。逆止弁39の上流にEGRバルブ38が、その上流にEGRクーラ37が配置される。EGRクーラ37により、EGRガスが冷やされ、圧力伝播速度が遅くなり、排気パルスが逆止弁39に到達するまでの時間を稼ぐことができる。EGRクーラ37は、逆止弁39との区間(EGRガスの温度が低い通路長)を大きく取るため、EGR通路36a,36bの出来るだけ上流側に配置することが好ましい。   The check valve 39 is disposed in the most downstream part (near the outlet part) of the EGR passages 36a and 36b. An EGR valve 38 is disposed upstream of the check valve 39 and an EGR cooler 37 is disposed upstream thereof. The EGR cooler 37 cools the EGR gas, slows the pressure propagation speed, and allows time for the exhaust pulse to reach the check valve 39. The EGR cooler 37 is preferably arranged on the upstream side of the EGR passages 36a and 36b as much as possible in order to increase the section with the check valve 39 (passage length with low EGR gas temperature).

図3は、吸排気脈動のシミュレーション結果を例示する特性図であり、Eは逆止弁39の直上流の排気脈動、Fは逆止弁39の直下流の吸気脈動、Gは従前の逆止弁(例えば、図1において、EGRクーラ37とEGRバルブ38との中間部に配置される)の直下流の排気脈動、を表示する。   FIG. 3 is a characteristic diagram illustrating the simulation result of intake and exhaust pulsation, where E is the exhaust pulsation immediately upstream of the check valve 39, F is the intake pulsation immediately downstream of the check valve 39, and G is the previous check. The exhaust pulsation immediately downstream of the valve (for example, disposed in an intermediate portion between the EGR cooler 37 and the EGR valve 38 in FIG. 1) is displayed.

排気マニホールド9a,9b内の排気脈動が山となるタイミングは、吸気マニホールド3a,3b内の吸気脈動が谷となるタイミングよりも早く、Gの場合、排気パルスが吸気行程の初期に到達するため、吸気脈動の谷とのタイミングが合わず、EGR率が十分に向上できない。Eの場合、逆止弁39がEGR通路36a,36bの最下流部に配置される。これにより、逆止弁39の下流側のEGR通路部分が短く上流側のEGR通路部分が長くなり、排気パルスが逆止弁39に到達するタイミングが遅くなるので、排気パルスが逆止弁39に到達するタイミングAを吸気脈動の谷が逆止弁39に到達するタイミングBに近づけられるのである。   The timing at which the exhaust pulsation in the exhaust manifolds 9a and 9b reaches a peak is earlier than the timing at which the intake pulsation in the intake manifolds 3a and 3b becomes a trough. In the case of G, the exhaust pulse reaches the initial stage of the intake stroke. The timing of the intake pulsation valley does not match and the EGR rate cannot be improved sufficiently. In the case of E, the check valve 39 is arranged at the most downstream portion of the EGR passages 36a and 36b. As a result, the EGR passage portion on the downstream side of the check valve 39 is short and the upstream EGR passage portion is long, and the timing at which the exhaust pulse reaches the check valve 39 is delayed. The arrival timing A can be made closer to the timing B at which the valley of the intake pulsation reaches the check valve 39.

図4は、Eの場合とGの場合とのEGR率を比較する特性図であり、KはEの場合のEGR率、MはGの場合のEGR率、を表示する。Eの場合の方がGの場合よりも、逆止弁前後の瞬間的な差圧が大きく、Kの方がMよりも高いEGR率が得られる。   FIG. 4 is a characteristic diagram for comparing the EGR rates in the case of E and G, where K represents the EGR rate in the case of E, and M represents the EGR rate in the case of G. In the case of E, the instantaneous differential pressure before and after the check valve is larger than that in the case of G, and K has a higher EGR rate than M.

このような構成により、シングルエントリ方式のターボチャージャ6においても、排気の逆流が抑えられ、合流部11のエゼクタ作用により、タービン6bへの排気パルスは、強められるため、タービン効率の向上が得られる。また、排気の逆流が抑えられるので、EGR通路36a,36bの逆止弁39に排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、高いEGR率が得られるのである。合流部11のエゼクタ作用により、排気(押し出し)行程中の気筒側の排気マニホール圧が低下するため、ポンピングロスの低減も得られる。   With such a configuration, even in the single entry type turbocharger 6, the backflow of the exhaust is suppressed, and the exhaust pulse to the turbine 6 b is strengthened by the ejector action of the merging portion 11, so that the turbine efficiency can be improved. . Further, since the backflow of the exhaust gas is suppressed, the exhaust pulse is transmitted to the check valves 39 of the EGR passages 36a and 36b without being weakened, and the check valve 39 is effectively operated, so that a high EGR rate is obtained. . The exhaust manifold pressure on the cylinder side during the exhaust (push-out) stroke is reduced by the ejector action of the merging portion 11, so that the pumping loss can be reduced.

逆止弁39は、EGR通路36a,36bの最下流部に配置されるので、EGR通路36a,36bの全長を変えることなく、逆止弁39の下流側のEGR通路部分が短く上流側のEGR通路部分が長くなるため、排気パルスが逆止弁39に到達するタイミングを遅らせることができる。つまり、排気パルスが逆止弁39に到達するタイミングを吸気脈動の谷が逆止弁39に到達するタイミングに近づけられる(図3、参照)。その結果、逆止弁39前後の瞬間的な差圧が増大するため、EGR率をさらに一段と向上させることができる(図4、参照)。   Since the check valve 39 is disposed at the most downstream portion of the EGR passages 36a and 36b, the EGR passage portion on the downstream side of the check valve 39 is short without changing the overall length of the EGR passages 36a and 36b. Since the passage portion becomes longer, the timing at which the exhaust pulse reaches the check valve 39 can be delayed. That is, the timing at which the exhaust pulse reaches the check valve 39 is brought closer to the timing at which the valley of the intake pulsation reaches the check valve 39 (see FIG. 3). As a result, since the instantaneous differential pressure before and after the check valve 39 increases, the EGR rate can be further improved (see FIG. 4).

ターボチャージャ6が可変ノズル式のため、可変ノズルの制御を加えることにより、広い運転領域において、高過給と大量EGRが可能となり、NOxおよびPM(Particulate Matter)の低減と出力や燃費の向上との高度な両立も実現できるのである。EGR通路36a,36bにおいて、EGRクーラ37は、逆止弁39との区間(EGRガスの温度が低い通路長)を大きく取るため、EGR通路36a,36bの出来るだけ上流側に配置すると、排気パルスが逆止弁39に到達するまでの時間を稼ぐことができる。また、EGRクーラ37の下流側にEGRバルブ38および逆止弁39(リードバルブ)を配置するので、これらバルブの耐久性も良好に確保される。   Since the turbocharger 6 is a variable nozzle type, by adding variable nozzle control, high supercharging and large amount of EGR are possible in a wide operating range, reducing NOx and PM (Particulate Matter) and improving output and fuel consumption. It is possible to achieve a high level of compatibility. In the EGR passages 36a and 36b, the EGR cooler 37 has a large section (passage length where the temperature of the EGR gas is low) with the check valve 39. Can earn time until it reaches the check valve 39. Further, since the EGR valve 38 and the check valve 39 (reed valve) are disposed on the downstream side of the EGR cooler 37, the durability of these valves is also ensured.

ディフューザ部29は、タービンハウジング25と一体に形成するのでなく、図5のように別体のスペーサとしてタービンハウジング25のフランジ26と排気マニホールド9a,9bのフランジ20との間に介装してもよい。先細形状のノズル部23a,23bについても、排気マニホールド9a,9bと一体に形成するのでなく、図6のように別体のスペーサとして排気マニホールド9a,9bのフランジ20とタービンハウジング25のフランジ30との間に介装してもよい。   The diffuser portion 29 is not formed integrally with the turbine housing 25 but may be interposed between the flange 26 of the turbine housing 25 and the flange 20 of the exhaust manifolds 9a and 9b as a separate spacer as shown in FIG. Good. The tapered nozzle portions 23a and 23b are not formed integrally with the exhaust manifolds 9a and 9b. As shown in FIG. 6, the flanges 20 of the exhaust manifolds 9a and 9b and the flange 30 of the turbine housing 25 are provided as separate spacers. You may interpose between.

排気マニホールド9a,9b間を排気が逆流するのを防止する手段としてツインエントリ方式のターボチャージャを用いることも考えられる。その場合、タービン入口が2つのため、排気干渉が避けられ、タービン6bへのエネルギ伝達を良好に維持しえる。また、ノズル部23a,23bおよびディフューザ部29に類似した作用がタービン内部で生じるため、EGR通路36a,36bの逆止弁39に排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、高いEGR率が得られるのである。   It is conceivable to use a twin entry type turbocharger as means for preventing the exhaust gas from flowing backward between the exhaust manifolds 9a and 9b. In that case, since there are two turbine inlets, exhaust interference can be avoided, and energy transmission to the turbine 6b can be maintained well. Further, since an action similar to that of the nozzle portions 23a and 23b and the diffuser portion 29 occurs inside the turbine, the exhaust pulse is transmitted to the check valves 39 in the EGR passages 36a and 36b without being weakened, and the check valves 39 are effectively used. High EGR rate is obtained because it is operated.

図7の実施形態においては、ベンチュリ40a,40bの代わりにスロットルバルブ41a,41bが吸気マニホールド3a,3b毎に配置される。EGR通路36a,36bの出口部は、吸気マニホールド3a,3bの集合部に接続され、スロットルバルブ41a,41bの吸気絞りにより、吸気負圧(吸気脈動)が増幅され、逆止弁39前後の瞬間的な差圧を増大させるようになっている。   In the embodiment of FIG. 7, throttle valves 41a and 41b are arranged for each of the intake manifolds 3a and 3b instead of the venturis 40a and 40b. The outlet portions of the EGR passages 36a and 36b are connected to the collective portions of the intake manifolds 3a and 3b. The intake negative pressure (intake pulsation) is amplified by the intake throttles of the throttle valves 41a and 41b. The differential pressure is increased.

図8の実施形態においては、ベンチュリ40a,40bの代わりに吸気管4の分岐部43と吸気マニホールド3a,3bとの間を連結する共鳴管42a,42bが配置され、共鳴管42a,42bにEGR通路36a,36bの出口部が接続されるのである。この場合、共鳴管42a,42bの共鳴作用により、吸気負圧が増幅され、逆止弁39前後の瞬間的な差圧を増大させることができる。また、慣性過給が働くため、吸気流量も効率よく十分に得られる。   In the embodiment of FIG. 8, instead of the venturis 40a and 40b, resonance pipes 42a and 42b that connect the branch portion 43 of the intake pipe 4 and the intake manifolds 3a and 3b are arranged, and EGR is provided in the resonance pipes 42a and 42b. The outlet portions of the passages 36a and 36b are connected. In this case, the suction negative pressure is amplified by the resonance action of the resonance tubes 42a and 42b, and the instantaneous differential pressure before and after the check valve 39 can be increased. In addition, since the inertia supercharging works, the intake flow rate can be obtained efficiently and sufficiently.

図7および図8において、図1と同一の部位は、同一の符号を付け、重複説明は省略する。   7 and 8, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

この発明の実施形態を係る全体的な概略構成図である。1 is an overall schematic configuration diagram according to an embodiment of the present invention. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold. 同じく吸排気脈動と逆止弁の配置との関係を例示する特性図である。It is a characteristic view which similarly illustrates the relationship between intake / exhaust pulsation and the arrangement of check valves. 同じくEGR流量と逆止弁の配置との関係を例示する特性図である。It is a characteristic view which similarly illustrates the relationship between the EGR flow rate and the arrangement of check valves. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold. 別の実施形態を係る全体的な概略構成図である。It is a whole schematic block diagram concerning another embodiment. 別の実施形態を係る全体的な概略構成図である。It is a whole schematic block diagram concerning another embodiment.

符号の説明Explanation of symbols

1 多気筒エンジン(6気筒ディーゼルエンジン)
2 吸気通路
3a,3b 吸気マニホールド
5 インタクーラ
6 ターボチャージャ(可変ノズル式ターボチャージャ)
6a コンプレッサ
6b タービン
8 排気通路
9a,9b 排気マニホールド
23a,23b 先細形状のノズル部
25 タービンハウジング
29 スロート形状のディフューザ部
35 EGR装置
37 EGRクーラ
38 EGRバルブ
39 逆止弁(リードバルブ)
40a,40b ベンチュリ
41a,41b スロットルバルブ
42a,42b 共鳴管
1 Multi-cylinder engine (6-cylinder diesel engine)
2 Intake passage 3a, 3b Intake manifold 5 Intercooler 6 Turbocharger (variable nozzle type turbocharger)
6a Compressor 6b Turbine 8 Exhaust passages 9a, 9b Exhaust manifolds 23a, 23b Tapered nozzle section 25 Turbine housing 29 Throat diffuser section 35 EGR device 37 EGR cooler 38 EGR valve 39 Check valve (reed valve)
40a, 40b Venturi 41a, 41b Throttle valve 42a, 42b Resonance tube

Claims (7)

過給を行う多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールドと、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールドと、これらの排気マニホールドと吸気マニホールドとの間を同一の気筒群同士を接続するEGR通路と、排気マニホールド間を排気が逆流するのを防止する手段と、各EGR通路の最下流部に配置される逆止弁と、を備え、
各EGR通路は、前記逆止弁の上流にEGRクーラが配置され、前記排気マニホールド内の排気脈動の山が逆止弁に到達するタイミングを前記吸気マニホールド内の吸気脈動の谷が逆止弁に到達するタイミングに近づけるべく、前記逆止弁の上流側の該逆止弁と前記EGRクーラとの区間の通路長を含む通路部分を、前記逆止弁の下流側の通路部分よりも長く設定したことを特徴とする多気筒エンジン。
In a multi-cylinder engine that performs supercharging, an exhaust manifold that is divided for each cylinder group in which the exhaust strokes do not overlap, an intake manifold that is divided for each cylinder group in which the intake strokes do not overlap, and these exhaust manifolds and intake manifolds An EGR passage that connects the same cylinder group to each other, a means for preventing exhaust from flowing back between the exhaust manifolds, and a check valve disposed at the most downstream portion of each EGR passage,
In each EGR passage, an EGR cooler is arranged upstream of the check valve, and when the exhaust pulsation peak in the exhaust manifold reaches the check valve, the intake pulsation valley in the intake manifold becomes the check valve. In order to approach the arrival timing, the passage portion including the passage length of the section between the check valve upstream of the check valve and the EGR cooler is set longer than the passage portion downstream of the check valve. This is a multi-cylinder engine.
排気マニホールド間を排気が逆流するのを防止する手段として、各排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部を備えたことを特徴とする請求項1に記載の多気筒エンジン。   The means for preventing exhaust gas from flowing back between the exhaust manifolds is provided with a nozzle portion that narrows the downstream of the collection portion of each exhaust manifold toward the merge portion. Multi-cylinder engine. 排気マニホールド間を排気が逆流するのを防止する手段して、ツインエントリ方式のターボ過給機を備えたことを特徴とする請求項1に記載の多気筒エンジン。 The multi-cylinder engine according to claim 1 , further comprising a twin-entry turbocharger as means for preventing the exhaust gas from flowing backward between the exhaust manifolds. 吸気負圧を増幅する手段を備えたことを特徴とする請求項1に記載の多気筒エンジン。   The multi-cylinder engine according to claim 1, further comprising means for amplifying the intake negative pressure. 吸気負圧を増幅する手段として、ベンチュリを各吸気マニホールド毎に配置したことを特徴とする請求項4に記載の多気筒エンジン。   The multi-cylinder engine according to claim 4, wherein a venturi is arranged for each intake manifold as means for amplifying the intake negative pressure. 吸気負圧を増幅する手段として、スロットルバルブを各吸気マニホールド毎に配置したことを特徴とする請求項4に記載の多気筒エンジン。   The multi-cylinder engine according to claim 4, wherein a throttle valve is arranged for each intake manifold as means for amplifying the intake negative pressure. 吸気負圧を増幅する手段として、吸気管の分岐部と各吸気マニホールドとの間をそれぞれ連結する共鳴管を備えたことを特徴とする請求項4に記載の多気筒エンジン。   The multi-cylinder engine according to claim 4, further comprising: a resonance pipe that connects a branch portion of the intake pipe and each intake manifold as means for amplifying the intake negative pressure.
JP2006028971A 2006-02-06 2006-02-06 Multi-cylinder engine Active JP4741379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028971A JP4741379B2 (en) 2006-02-06 2006-02-06 Multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028971A JP4741379B2 (en) 2006-02-06 2006-02-06 Multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007205340A JP2007205340A (en) 2007-08-16
JP4741379B2 true JP4741379B2 (en) 2011-08-03

Family

ID=38485003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028971A Active JP4741379B2 (en) 2006-02-06 2006-02-06 Multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4741379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5905703B2 (en) * 2011-10-21 2016-04-20 日野自動車株式会社 EGR device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222024A (en) * 1996-02-15 1997-08-26 Ishikawajima Harima Heavy Ind Co Ltd Exhaust bypass device of turbo supercharged engine
SE521798C2 (en) * 1999-03-09 2003-12-09 Volvo Lastvagnar Ab Combustion engine with exhaust gas recirculation
JP4278939B2 (en) * 2002-09-06 2009-06-17 三菱重工業株式会社 EGR device for internal combustion engine
JP2005133605A (en) * 2003-10-29 2005-05-26 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device for engine with supercharger
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine

Also Published As

Publication number Publication date
JP2007205340A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4965870B2 (en) Multi-cylinder engine
JP2005147011A (en) Exhaust gas recirculation system for turbo supercharged engine
JP2007231906A (en) Multi-cylinder engine
JP2005147010A (en) Exhaust gas reflux device for turbosupercharging engine
JP4713406B2 (en) Multi-cylinder engine
JP2000249004A (en) Egr device provided with reed valve
JP4925880B2 (en) Exhaust gas recirculation device for an internal combustion engine with a supercharger
KR100786297B1 (en) Engine inhalation device
JP4741379B2 (en) Multi-cylinder engine
JP4778311B2 (en) Multi-cylinder engine
JP4799435B2 (en) Multi-cylinder engine
JP4628279B2 (en) Multi-cylinder engine
JP2007315345A (en) Intake structure for internal combustion chamber
JP2007198342A (en) Multicylinder engine
JP2007211603A (en) Multi-cylinder engine
JP5168268B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4637779B2 (en) Multi-cylinder engine
JP2007327382A (en) Multicylinder engine and its egr cooler
JP4359583B2 (en) Multi-cylinder engine
JP4827757B2 (en) Multi-cylinder engine
JP2007218167A (en) Multicylinder engine and egr cooler
JP4566093B2 (en) Multi-cylinder engine
JP5595018B2 (en) EGR device
JP5670170B2 (en) Supercharged multi-cylinder engine
JP2007064042A (en) Multiple cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4741379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250