JP2005147011A - Exhaust gas recirculation system for turbo supercharged engine - Google Patents

Exhaust gas recirculation system for turbo supercharged engine Download PDF

Info

Publication number
JP2005147011A
JP2005147011A JP2003386525A JP2003386525A JP2005147011A JP 2005147011 A JP2005147011 A JP 2005147011A JP 2003386525 A JP2003386525 A JP 2003386525A JP 2003386525 A JP2003386525 A JP 2003386525A JP 2005147011 A JP2005147011 A JP 2005147011A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
exhaust manifold
gas recirculation
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386525A
Other languages
Japanese (ja)
Inventor
Shuichi Nakamura
秀一 中村
Kenichiro Imaoka
健一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003386525A priority Critical patent/JP2005147011A/en
Publication of JP2005147011A publication Critical patent/JP2005147011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas recirculation system capable of securely performing EGR even under high supercharging by a turbo charger. <P>SOLUTION: In this exhaust gas recirculation system for a turbo supercharged engine, an exhaust manifold of the engine equipped with the turbo charger is divided into a first exhaust manifold part and a second exhaust manifold part in each cylinder of which exhaust stroke is not overlapped, and an exhaust gas recirculation passage equipped with a check valve is connected between each of the exhaust manifold parts and an intake system of the engine. In each of the exhaust manifold parts, a nozzle part of which cross section gradually decreases toward an exhaust gas confluence part of a turbine housing is provided for a connection part of the both exhaust manifold parts and the turbine housing of the turbo charger. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ターボ過給エンジンの排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for a turbocharged engine.

ディーゼルエンジンの燃焼時に発生するNOx(NOx)を低減するため、今日、排気ガスの一部をEGRガスとしてエンジンの吸気側へ排気還流(以下、「EGR」という)させる排気還流装置(EGR装置)が知られている。
NOxは高温の排気ガスのもとで空気中の酸素と窒素が反応してできるため、この排気還流装置はEGRで燃焼温度を下げてNOxの発生を抑制するものである。
In order to reduce NOx (NOx) generated during combustion of a diesel engine, an exhaust gas recirculation device (EGR device) that recirculates exhaust gas (hereinafter referred to as “EGR”) to the intake side of the engine as an EGR gas today. It has been known.
Since NOx is produced by the reaction of oxygen and nitrogen in the air under high-temperature exhaust gas, this exhaust gas recirculation device lowers the combustion temperature with EGR and suppresses the generation of NOx.

また、従来、多くの車両にはエンジン出力の向上を図る目的でターボチャージャが搭載され、ターボチャージャを備えたターボ過給エンジンにも排気還流装置が装着されている。
そして、ターボ過給エンジンのEGRは、ターボチャージャのタービンの上流側からコンプレッサの下流へ圧力差を利用して行われているが、ターボ過給エンジンでは、排気圧より給気圧の方が高くなる運転領域(特に低速高負荷域)が存在し、この運転領域でEGRを十分に行うことができなくなる虞があった。
Conventionally, many vehicles are equipped with a turbocharger for the purpose of improving engine output, and an exhaust gas recirculation device is also attached to a turbocharged engine equipped with a turbocharger.
The EGR of the turbocharged engine is performed using the pressure difference from the upstream side of the turbocharger turbine to the downstream side of the compressor. In the turbocharged engine, the supply air pressure is higher than the exhaust pressure. There is an operation region (especially a low speed and high load region), and there is a possibility that EGR cannot be sufficiently performed in this operation region.

そこで、斯かる不具合を解決し、高負荷域でもEGRを可能としたターボ過給エンジンの排気還流装置として、特許文献1及び非特許文献1に開示されるものが知られている。
これらの排気還流装置は、何れも総ての気筒の吸気が流れる部分に一個の共通のベンチュリを設けて、各気筒が一体化された吸気マニホールドにEGRさせたもので、この構造によれば、ベンチュリ効果によってEGR合流部の吸気圧が排気力より低くなってのど部を通る吸気の流速が早くなるため、EGR通路からEGRされる排気ガスが、ベンチュリののど部を流れる吸気に引っ張られてこれと合流することとなる。
Therefore, as an exhaust gas recirculation device for a turbocharged engine that solves such problems and enables EGR even in a high load range, those disclosed in Patent Document 1 and Non-Patent Document 1 are known.
Each of these exhaust gas recirculation devices is provided with one common venturi in a portion where the intake air of all cylinders flows, and EGR is performed on an intake manifold in which each cylinder is integrated. According to this structure, Since the intake pressure at the EGR junction becomes lower than the exhaust force due to the venturi effect, the flow velocity of the intake air passing through the throat increases, so the exhaust gas that is EGR from the EGR passage is pulled by the intake air that flows through the throat of the venturi. Will join.

また、その他のEGR方式として、内部EGR方式や排気脈動を利用した逆止弁式EGR方式が知られている。
内部EGR方式は、排気弁の閉弁タイミングを早め、燃焼室内に排気ガスの一部を残留させて吸気と混合,燃焼させるものであるが、昨今では、吸気行程時に排気弁を開いて、排気マニホールド側から排気ガスを燃焼室内に導入する方法も内部EGR方式として知られている。
特開2002−221103号公報 日産ディーゼル工業株式会社発行 テクニカル レビュー2003 No.15 第18頁〜第24頁
As other EGR methods, an internal EGR method and a check valve type EGR method using exhaust pulsation are known.
In the internal EGR system, the exhaust valve closing timing is advanced so that a part of the exhaust gas remains in the combustion chamber and is mixed and combusted with the intake air. Recently, however, the exhaust valve is opened during the intake stroke, and the exhaust gas is exhausted. A method of introducing exhaust gas from the manifold side into the combustion chamber is also known as an internal EGR system.
JP 2002-221103 A Technical Review 2003 No. issued by Nissan Diesel Industry Co., Ltd. 15 Pages 18-24

しかし乍ら、既述したように特許文献1及び非特許文献1に開示された排気還流装置は、総ての気筒に共通のベンチュリを設けて一体化された吸気マニホールドにEGRさせた構造上、吸気脈動を利用していないために吸気負圧が小さくなってしまう欠点(所謂、吸気干渉)がある。
そして、吸気負圧を大きくしてEGR率を高めるにはベンチュリののど部を大きく絞らなければならず、のど部を絞るに従い、吸気抵抗が増えてエンジン出力の低下及び燃費悪化を招いてしまう不具合があった。
However, as described above, the exhaust gas recirculation device disclosed in Patent Document 1 and Non-Patent Document 1 is provided with a common venturi for all the cylinders and is EGRed into an integrated intake manifold. There is a drawback (so-called intake interference) that intake negative pressure becomes small because intake pulsation is not used.
In order to increase the intake negative pressure and increase the EGR rate, the venturi throat must be squeezed greatly. As the throat is squeezed, the intake resistance increases, leading to a decrease in engine output and fuel consumption. was there.

また、既述した内部EGR方式では排気ガスの温度が高いため、NOxの低減効果が十分に得られない欠点が指摘されている。
一方、逆止弁式EGR方式にあっては、エンジンに装着したターボチャージャが可変ノズル式ターボチャージャの如くタービンハウジングの入口(排気ガス合流部)が所謂「一口」の場合、排気マニホールドからの排気ガスがタービンハウジングの入口で一つに合流する際に、逆位相の排気パルスが打ち消し合って(所謂、排気干渉)、EGR通路中の逆止弁が有効に作動しない問題があった。
Further, it has been pointed out that the above-described internal EGR system has a drawback that the exhaust gas temperature is high, so that the effect of reducing NOx cannot be sufficiently obtained.
On the other hand, in the check valve type EGR system, when the turbocharger mounted on the engine is a so-called “one-port” turbine inlet (exhaust gas confluence) like a variable nozzle turbocharger, the exhaust from the exhaust manifold When the gases merge together at the inlet of the turbine housing, the exhaust pulses in opposite phases cancel each other (so-called exhaust interference), and the check valve in the EGR passage does not operate effectively.

また、斯様に排気パルスが弱められてしまう結果、タービンを回す力が弱まってタービン効率が低下してしまう不具合も指摘されている。
本発明は斯かる実情に鑑み案出されたもので、上述の如き不具合を解消し、ターボチャージャによる高過給下に於ても、EGRを確実に行うことができるターボ過給エンジンの排気還流装置を提供することを目的とする。
Moreover, as a result of the exhaust pulse being weakened in this way, it has been pointed out that the power of turning the turbine is weakened and the turbine efficiency is lowered.
The present invention has been devised in view of such circumstances, and solves the above-described problems, and the exhaust gas recirculation of a turbocharged engine that can perform EGR reliably even under high supercharging by a turbocharger. An object is to provide an apparatus.

斯かる目的を達成するため、請求項1に係るターボ過給エンジンの排気還流装置は、ターボチャージャを備えたエンジンの排気マニホールドを、排気行程が互いにオーバーラップしない気筒毎に第1排気マニホールド部と第2排気マニホールド部とに分割し、各排気マニホールド部とエンジンの吸気系との間に、逆止弁を備えた排気還流通路を接続すると共に、両排気マニホールド部とターボチャージャのタービンハウジングとの接続部に、タービンハウジングの排気ガス合流部に向けて断面が徐々に減少するノズル部を排気マニホールド部毎に設けたことを特徴とする。   In order to achieve such an object, an exhaust gas recirculation device for a turbocharged engine according to claim 1 is configured such that an exhaust manifold of an engine provided with a turbocharger is connected to a first exhaust manifold portion for each cylinder whose exhaust strokes do not overlap each other. An exhaust gas recirculation passage having a check valve is connected between each exhaust manifold portion and the engine intake system, and the exhaust manifold portion and the turbine housing of the turbocharger are connected to each other. A nozzle portion whose cross section gradually decreases toward the exhaust gas merging portion of the turbine housing is provided for each exhaust manifold portion in the connection portion.

そして、請求項2に係る発明は、請求項1に記載のターボ過給エンジンの排気還流装置に於て、ノズル部は、各排気マニホールド部の排気ガス流出口側を、排気ガス合流部に向けて断面を徐々に減少させて設けられていることを特徴とし、請求項3に係る発明は、請求項1または請求項2に記載のターボ過給エンジンの排気還流装置に於て、タービンハウジングの排気ガス合流部の直下流に絞り部を設けたことを特徴とする。   According to a second aspect of the present invention, in the exhaust gas recirculation device for a turbocharged engine according to the first aspect, the nozzle portion directs the exhaust gas outlet side of each exhaust manifold portion toward the exhaust gas merging portion. The invention according to claim 3 is an exhaust gas recirculation device for a turbocharged engine according to claim 1 or 2, wherein A throttling portion is provided immediately downstream of the exhaust gas merging portion.

また、請求項4に係る発明は、請求項1または請求項2に記載のターボ過給エンジンの排気還流装置に於て、両排気マニホールド部とタービンハウジングとの接続部にスペーサを介装し、当該スペーサに絞り部を設けたことを特徴とする。
更にまた、請求項5に係る発明は、請求項1に記載のターボ過給エンジンの排気還流装置に於て、両排気マニホールド部とタービンハウジングとの接続部にスペーサを介装し、当該スペーサにノズル部を設けたことを特徴とし、請求項6に係る発明は、請求項5に記載のターボ過給エンジンの排気還流装置に於て、タービンハウジングの排気ガス合流部にディフューザを配置したことを特徴とする。
According to a fourth aspect of the present invention, in the exhaust gas recirculation device for a turbocharged engine according to the first or second aspect, a spacer is interposed at a connection portion between the two exhaust manifold portions and the turbine housing, The diaphragm is provided with a throttle portion.
Furthermore, the invention according to claim 5 is the exhaust gas recirculation device for the turbocharged engine according to claim 1, wherein a spacer is interposed in the connection portion between both the exhaust manifold portion and the turbine housing, and the spacer is attached to the spacer. The invention according to claim 6 is characterized in that, in the exhaust gas recirculation device for a turbocharged engine according to claim 5, a diffuser is disposed at an exhaust gas merging portion of the turbine housing. Features.

そして、請求項7に係る発明は、請求項1乃至請求項6のいずれか1項に記載のターボ過給エンジンの排気還流装置に於て、ターボ過給エンジンの吸気マニホールドを、第1,第2排気マニホールド部に対応して吸気行程が互いにオーバーラップしない気筒毎に第1吸気マニホールド部と第2吸気マニホールド部とに分割し、夫々の吸気入口にエジェクタを装着すると共に、第1吸気マニホールド部側のエジェクタと第1排気マニホールド部及び第の吸気マニホールド部側のエジェクタと第2排気マニホールド部との間に、夫々、排気還流通路を接続したことを特徴とする。   According to a seventh aspect of the present invention, in the exhaust gas recirculation device for a turbocharged engine according to any one of the first to sixth aspects, the intake manifold of the turbocharged engine is provided with The two intake manifold sections are divided into a first intake manifold section and a second intake manifold section for each cylinder whose intake strokes do not overlap with each other, and an ejector is attached to each intake inlet, and the first intake manifold section An exhaust gas recirculation passage is connected between the ejector on the side and the first exhaust manifold portion, and between the ejector on the side of the second intake manifold portion and the second exhaust manifold portion.

各請求項に係る発明によれば、排気マニホールドを、排気行程が互いにオーバーラップしない気筒毎に第1排気マニホールド部と第2排気マニホールド部とに分割し、且つ両排気マニホールド部とターボチャージャのタービンハウジングとの接続部に、タービンハウジングの排気ガス合流部に向けて断面が徐々に減少するノズル部を排気マニホールド部毎に設けたので、第1排気マニホールド部または第2排気マニホールド部からの排気パルスが、第2排気マニホールド部または第1排気マニホールド部に逃げることがなくなり、この結果、ターボチャージャのタービンハウジングの入口が「一口」でも、逆止弁に高圧の排気パルスが伝わってこれらが良好に作動することで高EGR率が得られると共に、タービンに高圧の排気パルスが伝わってタービン効率が良好となるため出力が向上し、また、ターボチャージャ7と逆止弁による高EGRの組合せによって低NOxと低燃費が両立できる利点を有する。   According to the invention according to each claim, the exhaust manifold is divided into a first exhaust manifold portion and a second exhaust manifold portion for each cylinder whose exhaust strokes do not overlap each other, and both the exhaust manifold portions and the turbine of the turbocharger are divided. Since the nozzle portion whose cross section gradually decreases toward the exhaust gas merging portion of the turbine housing is provided for each exhaust manifold portion at the connection portion with the housing, the exhaust pulse from the first exhaust manifold portion or the second exhaust manifold portion However, even if the inlet of the turbine housing of the turbocharger is “single”, the high-pressure exhaust pulse is transmitted to the check valve so that they do not escape to the second exhaust manifold part or the first exhaust manifold part. By operating, a high EGR rate is obtained and a high-pressure exhaust pulse is transmitted to the turbine. Te output because the turbine efficiency becomes good is improved, also it has the advantage that low NOx and low fuel consumption can be compatible with high EGR combinations by the check valve and a turbocharger 7.

そして、請求項3及び請求項4に係る発明によれば、各排気マニホールド部からターボチャージャの排気ガス合流部に流出した排気ガスが更に絞り部で流速が早まり、また、請求項6に係る発明によれば、各排気マニホールド部からの排気ガスがディフューザによってスムーズに排気ガス合流部へ流出するため、第1排気マニホールド部または第2排気マニホールド部からの排気パルスが、第2排気マニホールド部または第1排気マニホールド部に逃げることがより確実に防止でき、タービン効率が高まることとなる。   According to the inventions according to claim 3 and claim 4, the exhaust gas flowing out from each exhaust manifold portion to the exhaust gas merging portion of the turbocharger further increases the flow velocity at the throttle portion, and the invention according to claim 6 Since the exhaust gas from each exhaust manifold portion smoothly flows out to the exhaust gas merging portion by the diffuser, the exhaust pulse from the first exhaust manifold portion or the second exhaust manifold portion is changed to the second exhaust manifold portion or the second exhaust manifold portion. Escape to one exhaust manifold can be more reliably prevented, and the turbine efficiency is increased.

また、請求項7に係る発明にあっては、吸気マニホールドと排気マニホールドを吸排気行程が互いにオーバーラップしない気筒毎に分割して、これらの間に逆止弁を装着した排気還流通路を接続したので、吸排気干渉を防止し、脈動(吸排気パルス)を有効に利用して逆止弁を作動させ、過給圧の高い高負荷域に於てもEGR率を更に高めることができる利点を有する。   In the invention according to claim 7, the intake manifold and the exhaust manifold are divided into cylinders whose intake and exhaust strokes do not overlap each other, and an exhaust gas recirculation passage fitted with a check valve is connected between them. Therefore, it has the advantage of preventing intake / exhaust interference, operating the check valve effectively using pulsation (intake / exhaust pulse), and further increasing the EGR rate even in a high load range where the boost pressure is high. Have.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1乃至図3は請求項1乃至請求項3に係る排気還流装置の第一実施形態を示し、図1に於て、1は直列6気筒のディーゼルエンジン(以下、「エンジン」という)、3は当該エンジン1に装着された排気マニホールドで、エンジン1は1−4−2−6−3−5の点火順序とされている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 3 show a first embodiment of an exhaust gas recirculation apparatus according to claims 1 to 3, in which 1 is an in-line 6-cylinder diesel engine (hereinafter referred to as "engine"), 3 Is an exhaust manifold mounted on the engine 1, and the engine 1 has an ignition sequence of 1-4-2-6-3-5.

而して、排気マニホールド3は、排気行程が互いにオーバーラップしない気筒毎、即ち、#1〜#3気筒(前3気筒)側に装着された第1排気マニホールド部3aと、#4〜#6気筒(後3気筒)側に装着された第2排気マニホールド部3bとに分割されている。そして、図2に示すように両排気マニホールド部3a,3bの排気ガス流出口3a-1,3b-1が、仕切壁5で仕切られて可変ノズル式ターボチャージャ(以下、「ターボチャージャ」という)7のタービンハウジング9に集合,接続されており、両排気ガス流出口3a-1,3b-1から交互に、タービンハウジング9の所謂「一口」の排気ガス合流部11に排気ガスGが流出するようになっている。   Thus, the exhaust manifold 3 includes a first exhaust manifold portion 3a mounted on each cylinder where the exhaust strokes do not overlap each other, that is, on the # 1 to # 3 cylinders (front three cylinders) side, and # 4 to # 6. It is divided into a second exhaust manifold portion 3b mounted on the cylinder (rear three cylinders) side. Then, as shown in FIG. 2, the exhaust gas outlets 3a-1 and 3b-1 of both exhaust manifold portions 3a and 3b are partitioned by a partition wall 5 to be a variable nozzle type turbocharger (hereinafter referred to as “turbocharger”). The exhaust gas G flows out from the exhaust gas outlets 3a-1 and 3b-1 to the so-called "one-port" exhaust gas junction 11 of the turbine housing 9 alternately. It is like that.

そして、図2に示すように排気ガス流出口3a-1,3b-1は、排気ガス合流部11に向けて断面が徐々に減少する先細り形状のノズル部13,15とされて、#1〜#3気筒側から排気された排気ガスGがノズル部13で流速を早めて排気ガス合流部11に流出し、また、#4〜#6気筒側から排気された排気ガスGがノズル部15で流速を早めて排気ガス合流部11に流出するようになっており、斯かる構成により、第1排気マニホールド部3aまたは第2排気マニホールド部3bからの排気パルスが、第2排気マニホールド部3bまたは第1排気マニホールド部3aに逃げることがないようになっている。   As shown in FIG. 2, the exhaust gas outlets 3 a-1 and 3 b-1 are tapered nozzle portions 13 and 15 whose cross sections gradually decrease toward the exhaust gas merging portion 11. The exhaust gas G exhausted from the # 3 cylinder side is made to flow out to the exhaust gas merging unit 11 at a higher speed by the nozzle unit 13, and the exhaust gas G exhausted from the # 4 to # 6 cylinder side is output from the nozzle unit 15. The flow rate is increased and the exhaust gas flows out to the exhaust gas merging portion 11. With this configuration, the exhaust pulse from the first exhaust manifold portion 3 a or the second exhaust manifold portion 3 b is sent to the second exhaust manifold portion 3 b or the second exhaust manifold portion 3 b. 1 The exhaust manifold portion 3a is prevented from escaping.

更に、図2及び図3に示すようにタービンハウジング9には、排気ガス合流部11の直下流がベンチュリ状に絞られて絞り部17が設けられており、排気ガス合流部11に流出した各排気マニホールド部3a,3bからの排気ガスGが、夫々、この絞り部17で更に流速を早めてタービンハウジング7内のタービン7aを回転させた後、排気通路19を経て大気に放出されるようになっている。   Further, as shown in FIGS. 2 and 3, the turbine housing 9 is provided with a throttle portion 17 in which the downstream side of the exhaust gas merging portion 11 is narrowed in a venturi shape, and each of the exhaust gas flowing into the exhaust gas merging portion 11 is provided. The exhaust gas G from the exhaust manifold portions 3a and 3b is further discharged at a reduced speed through the exhaust passage 19 after rotating the turbine 7a in the turbine housing 7 by further increasing the flow velocity at the throttle portion 17, respectively. It has become.

そして、図1に示すようにタービン7aに直結してコンプレッサ7bが吸気通路21に装着されており、タービン7aで回転するコンプレッサ7bが吸入空気Aを圧縮して、過給された圧縮空気A-1が吸気通路21から吸気マニホールド23を介してエンジン1に送り込まれるようになっている。
尚、従来と同様、吸気通路21には、ターボチャージャ7で過給された圧縮空気A-1の温度を下げて吸気の充填効率を向上させるインタークーラ25が装着され、また、コンプレッサ7bの上流側の吸気通路21にはエアフィルタ27が装着されると共に、タービン7aの下流側の排気通路19に消音器29が装着されている。
As shown in FIG. 1, a compressor 7b is directly connected to the turbine 7a and is mounted in the intake passage 21, and the compressor 7b rotated by the turbine 7a compresses the intake air A so as to supercharge the compressed air A−. 1 is sent from the intake passage 21 to the engine 1 through the intake manifold 23.
As in the prior art, the intake passage 21 is provided with an intercooler 25 that lowers the temperature of the compressed air A-1 supercharged by the turbocharger 7 and improves the charging efficiency of the intake air, and is upstream of the compressor 7b. An air filter 27 is attached to the intake passage 21 on the side, and a silencer 29 is attached to the exhaust passage 19 on the downstream side of the turbine 7a.

そして、排気マニホールド3と、インタークーラ25下流側の吸気通路21に装着したエジェクタ30との間に、EGR通路(排気還流通路)31,33が接続されている。
一方のEGR通路31の排気ガス流入口は第1排気マニホールド部3aに接続され、他方のEGR通路33の排気ガス流入口は第2排気マニホールド部3bに接続されている。そして、EGR通路31とEGR通路33には、夫々、EGRクーラー35,37と逆止弁39,41が排気マニホールド3側から順次装着されているが、両EGR通路31,33の下流側は合流して、その合流部とエジェクタ30との間にEGRバルブ43が装着されている。
EGR passages (exhaust gas recirculation passages) 31 and 33 are connected between the exhaust manifold 3 and an ejector 30 attached to the intake passage 21 on the downstream side of the intercooler 25.
The exhaust gas inlet of one EGR passage 31 is connected to the first exhaust manifold portion 3a, and the exhaust gas inlet of the other EGR passage 33 is connected to the second exhaust manifold portion 3b. In the EGR passage 31 and the EGR passage 33, EGR coolers 35 and 37 and check valves 39 and 41 are sequentially mounted from the exhaust manifold 3 side, but the downstream sides of both EGR passages 31 and 33 are joined together. An EGR valve 43 is mounted between the junction and the ejector 30.

そして、各EGR通路31,33を流下するEGRガスが、エジェクタ30ののど部30aを流れる圧縮空気A-1(吸気)に引っ張られて吸気マニホールド23にEGRされるようになっている。
本実施形態に係る排気還流装置45はこのように構成されているから、ターボチャージャ7で過給された圧縮空気A-1が、インタークーラ25,エジェクタ30を介してエンジン1の吸気マニホールド23に供給され、また、逆止弁39,41の開作動で各EGR通路31,33に流入したEGRガスが、エジェクタ30ののど部30aを流れる圧縮空気A-1に引っ張られて吸気マニホールド23にEGRされ、また、各EGR通路31,33に流入したEGRガスの温度をEGRクーラー35,37が下げて燃焼時のスモークの悪化を抑え、NOxの低減を図ると共に、各EGR通路31,33に装着した逆止弁39,41が排気脈動によるEGRガスの逆流を防止する。
The EGR gas flowing down the EGR passages 31 and 33 is pulled by the compressed air A-1 (intake air) flowing through the throat portion 30a of the ejector 30 and is EGRed into the intake manifold 23.
Since the exhaust gas recirculation device 45 according to the present embodiment is configured as described above, the compressed air A-1 supercharged by the turbocharger 7 passes through the intercooler 25 and the ejector 30 to the intake manifold 23 of the engine 1. The EGR gas that is supplied and flows into the EGR passages 31 and 33 by opening the check valves 39 and 41 is pulled by the compressed air A-1 flowing through the throat 30a of the ejector 30 and is then supplied to the intake manifold 23 by EGR. In addition, the EGR coolers 35 and 37 lower the temperature of the EGR gas flowing into the EGR passages 31 and 33 to suppress the deterioration of smoke during combustion to reduce NOx, and are attached to the EGR passages 31 and 33. The check valves 39 and 41 thus prevented prevent the backflow of EGR gas due to exhaust pulsation.

そして、既述したように本実施形態は、排気マニホールド3を、排気行程が互いにオーバーラップしない気筒毎に第1排気マニホールド部3aと第2排気マニホールド部3bとに分割し、且つタービンハウジング9に接続される第1,第2排気マニホールド部3a,3bの排気ガス流出口3a-1,3b-1を、排気ガス合流部11に向けて断面が徐々に減少する先細り形状のノズル部13,15とすると共に、タービンハウジング9の排気ガス合流部11の直下流にベンチュリ状の絞り部17を設けたので、第1排気マニホールド部3a側から排気された排気ガスGがノズル部13で流速を早めて排気ガス合流部11に流出し、また、第2排気マニホールド部3b側から排気された排気ガスGがノズル部15で流速を早めて夫々、排気ガス合流部11に流出した後、絞り部17で更に流速を早めてタービン7aへと流下し、第1排気マニホールド部3aまたは第2排気マニホールド部3bからの排気パルスが、第2排気マニホールド部3bまたは第1排気マニホールド部3aに逃げることがない。   As described above, in the present embodiment, the exhaust manifold 3 is divided into the first exhaust manifold portion 3a and the second exhaust manifold portion 3b for each cylinder in which the exhaust strokes do not overlap with each other. Tapered nozzle portions 13 and 15 whose cross sections gradually decrease toward the exhaust gas merging portion 11 at the exhaust gas outlets 3a-1 and 3b-1 of the connected first and second exhaust manifold portions 3a and 3b. In addition, since the venturi-shaped throttle portion 17 is provided immediately downstream of the exhaust gas merging portion 11 of the turbine housing 9, the exhaust gas G exhausted from the first exhaust manifold portion 3a speeds up the flow velocity at the nozzle portion 13. The exhaust gas G that has flowed out into the exhaust gas merging portion 11 and exhausted from the second exhaust manifold portion 3b side has its flow velocity increased by the nozzle portion 15, respectively. 11, the flow rate is further increased by the throttle unit 17 and flows down to the turbine 7a. The exhaust pulse from the first exhaust manifold unit 3a or the second exhaust manifold unit 3b is transferred to the second exhaust manifold unit 3b or the first There is no escape to the exhaust manifold portion 3a.

従って、本実施形態によれば、ターボチャージャ7のタービンハウジング9の入口が「一口」でも、逆止弁39,41に高圧の排気パルスが伝わってこれらが良好に作動することで高EGR率が得られると共に、タービン7aに高圧の排気パルスが伝わってタービン効率が良好となるため出力が向上し、また、ターボチャージャ7と逆止弁39,41による高EGRの組合せによって低NOxと低燃費が両立できる利点を有する。   Therefore, according to the present embodiment, even if the inlet of the turbine housing 9 of the turbocharger 7 is “one-port”, the high-pressure exhaust pulse is transmitted to the check valves 39 and 41 and they operate well so that the high EGR rate is increased. As a result, a high-pressure exhaust pulse is transmitted to the turbine 7a and the turbine efficiency is improved, so that the output is improved, and the combination of high EGR by the turbocharger 7 and the check valves 39 and 41 provides low NOx and low fuel consumption. Has the advantage of being compatible.

図4は請求項1,請求項2及び請求項4の一実施形態に係る排気還流装置の排気マニホールド3とターボチャージャ7-1の接続部の断面図を示し、上記実施形態では、図2に示すように排気ガス合流部11の直下流に絞り部17をタービンハウジング9自体に設けたが、本実施形態は、既存の「一口」のターボチャージャ7-1を用い、そのタービンハウジング9-1と第1,第2排気マニホールド部3a,3bとを接続するに当たり、排気流路47中にベンチュリ状の絞り部49が形成されたスペーサ51を接続部分に介装したもので、排気流路47の内壁53は、排気抵抗を軽減するためタービンハウジング9-1の排気ガス合流部11-1の内壁55及び第1,第2排気マニホールド部3a,3bの排気ガス流出口3a-1,3b-1の内壁57,59となだらかに連続するように形成されている。   FIG. 4 shows a cross-sectional view of the connecting portion between the exhaust manifold 3 and the turbocharger 7-1 of the exhaust gas recirculation apparatus according to one embodiment of the first, second and fourth aspects. In the above embodiment, FIG. As shown, the throttle portion 17 is provided in the turbine housing 9 itself immediately downstream of the exhaust gas merging portion 11. However, in this embodiment, an existing “one-port” turbocharger 7-1 is used, and the turbine housing 9-1 is used. In connecting the first and second exhaust manifold portions 3a and 3b to each other, a spacer 51 in which a venturi-shaped throttle portion 49 is formed in the exhaust passage 47 is interposed in the connection portion. In order to reduce exhaust resistance, the inner wall 53 of the inner wall 55 of the exhaust gas merging portion 11-1 of the turbine housing 9-1 and the exhaust gas outlets 3a-1, 3b- of the first and second exhaust manifold portions 3a, 3b are provided. 1 inner wall 57, 59 It is formed so as gently and continuously.

尚、その他の構成は図1の実施形態と同様であるので、同一のものには同一符号を付してそれらの説明は省略する。
而して、本実施形態によっても、第1排気マニホールド部3a側から排気された排気ガスがノズル部13で流速を早めて排気ガス合流部11に流出し、また、第2排気マニホールド部3b側から排気された排気ガスがノズル部15で流速を早めて夫々排気ガス合流部11-1に流出した後、絞り部49で更に流速を早めてタービン7a-1へと流下し、第1排気マニホールド部3aまたは第2排気マニホールド部3bからの排気パルスが、第2排気マニホールド部3bまたは第1排気マニホールド部3aに逃げることがない。
Since other configurations are the same as those of the embodiment of FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.
Thus, also according to the present embodiment, the exhaust gas exhausted from the first exhaust manifold portion 3a side flows out to the exhaust gas merging portion 11 with the flow velocity increased by the nozzle portion 13 and also to the second exhaust manifold portion 3b side. The exhaust gas exhausted from the exhaust gas flows out into the exhaust gas merging unit 11-1 at the nozzle unit 15 at a higher flow rate, and further flows down to the turbine 7a-1 at the throttle unit 49 at a higher flow rate. The exhaust pulse from the part 3a or the second exhaust manifold part 3b does not escape to the second exhaust manifold part 3b or the first exhaust manifold part 3a.

従って、ターボチャージャ7-1のタービンハウジング9-1の入口が一つでも、逆止弁39,41に高圧の排気パルスが伝わって高EGR率が得られると共に、タービン7a-1に高圧の排気パルスが伝わってタービン効率が良好となるため出力及び燃費が向上し、また、ターボチャージャ7-1と逆止弁39,41による高EGRの組合せによって低NOxと低燃費が両立できることとなる。   Therefore, even if the inlet of the turbine housing 9-1 of the turbocharger 7-1 is one, a high-pressure exhaust pulse is transmitted to the check valves 39 and 41 to obtain a high EGR rate, and a high-pressure exhaust is supplied to the turbine 7a-1. Since the pulse is transmitted and the turbine efficiency is improved, the output and fuel consumption are improved, and the combination of high EGR by the turbocharger 7-1 and the check valves 39 and 41 makes it possible to achieve both low NOx and low fuel consumption.

図5は請求項1及び請求項5の一実施形態を示し、本実施形態も、排気マニホールド61を、排気行程が互いにオーバーラップしない気筒毎に第1排気マニホールド部61aと第2排気マニホールド部61bとに分割し、その排気ガス流出口61a-1,61b-1を仕切壁63で仕切ってターボチャージャ7-1のタービンハウジング9-1に集合,接続しているが、これらの接続に当たりスペーサ65を介装している。   FIG. 5 shows an embodiment of claims 1 and 5. In this embodiment, the exhaust manifold 61 is also divided into first exhaust manifold portion 61 a and second exhaust manifold portion 61 b for each cylinder whose exhaust strokes do not overlap each other. The exhaust gas outlets 61a-1 and 61b-1 are partitioned by a partition wall 63 and assembled and connected to the turbine housing 9-1 of the turbocharger 7-1. Is intervening.

そして、本実施形態は排気ガス流出口61a-1,61b-1側をタービンハウジング9-1の排気ガス合流部11-1に向けて断面が徐々に減少する先細り形状とせず、上記スペーサ65に、各排気ガス流出口61a-1,61b-1に対応するノズル部67,69を設けたことを特徴とする。
即ち、スペーサ65には、上記仕切壁63と一致する仕切壁71で仕切られた2つの排気流路73,75が排気ガス流出口61a-1,61b-1に対応して設けられている。そして、排気流路73,75は排気ガス合流部11-1に向けて断面が徐々に減少する先細り形状のノズル部67 ,69とされると共に、排気流路73,75の内壁77,79は排気ガス合流部11-1の内壁55及び排気ガス流出口61a-1,61b-1の内壁81,83となだらかに連続するように形成されている。
In this embodiment, the exhaust gas outlets 61a-1 and 61b-1 are not tapered toward the exhaust gas merging portion 11-1 of the turbine housing 9-1. The nozzle portions 67 and 69 corresponding to the exhaust gas outlets 61a-1 and 61b-1 are provided.
In other words, the spacer 65 is provided with two exhaust passages 73 and 75 partitioned by a partition wall 71 coinciding with the partition wall 63 corresponding to the exhaust gas outlets 61a-1 and 61b-1. The exhaust passages 73 and 75 are tapered nozzle portions 67 and 69 whose cross sections gradually decrease toward the exhaust gas joining portion 11-1, and the inner walls 77 and 79 of the exhaust passages 73 and 75 are The inner wall 55 of the exhaust gas merging portion 11-1 and the inner walls 81 and 83 of the exhaust gas outlets 61a-1 and 61b-1 are formed so as to be smoothly continuous.

尚、その他の構成は図1の実施形態と同様であるので、同一のものには同一符号を付してそれらの説明は省略する。
而して、本実施形態によれば、第1排気マニホールド部61a側から排気された排気ガスがノズル部67で流速を早めて排気ガス合流部11-1に流出し、また、第2排気マニホールド部61b側から排気された排気ガスがノズル部69で流速を早めて排気ガス合流部11-1に流出するため、第1排気マニホールド部61aまたは第2排気マニホールド部61bからの排気パルスが、第2排気マニホールド部61bまたは第1排気マニホールド部61aに逃げることがない。
Since other configurations are the same as those of the embodiment of FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.
Thus, according to the present embodiment, the exhaust gas exhausted from the first exhaust manifold 61a side is accelerated by the nozzle portion 67 and flows out to the exhaust gas junction 11-1, and the second exhaust manifold Since the exhaust gas exhausted from the portion 61b side is accelerated by the nozzle portion 69 and flows out to the exhaust gas merging portion 11-1, the exhaust pulse from the first exhaust manifold portion 61a or the second exhaust manifold portion 61b 2 No escape to the exhaust manifold portion 61b or the first exhaust manifold portion 61a.

従って、本実施形態によっても、逆止弁39,41に高圧の排気パルスが伝わって高EGR率が得られると共に、タービン7a-1に高圧の排気パルスが伝わってタービン効率が向上するため出力が向上し、また、ターボチャージャ7-1と逆止弁39,41による高EGRの組合せによって低NOxと低燃費が両立できる利点を有する。
図6乃至図8は請求項1,請求項5及び請求項6に係る排気還流装置の一実施形態を示し、本実施形態は、図5の実施形態と同様、仕切壁85で仕切られた2つの排気流路87,89を有するスペーサ91を用いて排気マニホールド61とターボチャージャ7-1を接続すると共に、排気流路87,89を、タービンハウジング9-1の排気ガス合流部11-1に向けて断面が徐々に減少する先細り形状のノズル部93,95としたものであるが、ノズル部93,95の噴出口総面積は排気ガス合流部11-1の流路面積よりも小さくなっている。
Therefore, also in this embodiment, a high EGR rate is obtained by transmitting high-pressure exhaust pulses to the check valves 39 and 41, and a high-pressure exhaust pulse is transmitted to the turbine 7a-1 to improve turbine efficiency, so that the output is increased. In addition, the combination of high EGR with the turbocharger 7-1 and the check valves 39, 41 has the advantage that both low NOx and low fuel consumption can be achieved.
FIGS. 6 to 8 show an embodiment of the exhaust gas recirculation apparatus according to claims 1, 5 and 6, and this embodiment is the same as the embodiment of FIG. The exhaust manifold 61 and the turbocharger 7-1 are connected using a spacer 91 having two exhaust passages 87 and 89, and the exhaust passages 87 and 89 are connected to the exhaust gas junction 11-1 of the turbine housing 9-1. The nozzle sections 93 and 95 are tapered so that the cross section gradually decreases toward the end, but the total outlet area of the nozzle sections 93 and 95 is smaller than the flow path area of the exhaust gas merging section 11-1. Yes.

そして、スペーサ91の噴出口近傍には、排気ガス合流部11-1内に挿入されてノズル部93,95からの排気ガスをそれに沿って膨張させる2枚の対向するガイド板97,99からなるディフューザが取り付けられており、斯様に排気ガス合流部11-1にディフューザを配置することで、各排気マニホールド部61a,61bからの排気ガスがスムーズに排気ガス合流部11-1へ流出するようになっている。   In the vicinity of the jet port of the spacer 91, there are two opposing guide plates 97 and 99 which are inserted into the exhaust gas merging portion 11-1 and expand the exhaust gas from the nozzle portions 93 and 95 along therewith. A diffuser is attached, and by arranging the diffuser in the exhaust gas merging portion 11-1, the exhaust gas from each of the exhaust manifold portions 61a and 61b flows smoothly to the exhaust gas merging portion 11-1. It has become.

而して、本実施形態によれば、ディフューザによって各排気マニホールド部61a,61bからの排気ガスがスムーズに排気ガス合流部11-1へ流出,膨張し、この結果、第1排気マニホールド部61aまたは第2排気マニホールド部61bからの排気パルスが、第2排気マニホールド部61bまたは第1排気マニホールド部61aに逃げることがなく、排気の全圧力損失が少なくなるため、上述した各実施形態と同様、所期の目的を達成することが可能となる。   Thus, according to the present embodiment, the exhaust gas from the exhaust manifold portions 61a and 61b smoothly flows out and expands to the exhaust gas merging portion 11-1 by the diffuser, and as a result, the first exhaust manifold portion 61a or Since the exhaust pulse from the second exhaust manifold portion 61b does not escape to the second exhaust manifold portion 61b or the first exhaust manifold portion 61a and the total pressure loss of the exhaust gas is reduced, the same as in the above-described embodiments. The purpose of the period can be achieved.

図9は請求項1乃至請求項3に係る排気還流装置の第二実施形態を示し、本実施形態に係る排気還流装置101は、図1の可変ノズル式のターボチャージャ7に代え、これより廉価な二段過給式のターボチャージャ(2ステージターボチャージャ)103,105を用いたもので、図示しないが排気マニホールド3に接続されるターボチャージャ103側のタービンハウジングが、図2のタービンハウジング9と同一構造となっている。   FIG. 9 shows a second embodiment of the exhaust gas recirculation apparatus according to claims 1 to 3. The exhaust gas recirculation apparatus 101 according to the present embodiment replaces the variable nozzle type turbocharger 7 of FIG. A turbocharger 103 side turbine housing 9 connected to the exhaust manifold 3 (not shown) is connected to the turbine housing 9 of FIG. 2 using a two-stage turbocharger (two-stage turbocharger) 103, 105. It has the same structure.

二段過給ターボチャージャは、通常、小さなエンジンで高出力を確保するために使用されており、一つのターボチャージャでは圧縮比に限度があるため、高い圧力で過給するために二段構造となっている。
そして、その他の構成は図1の実施形態と同様であるので、同一のものには同一符号を付してそれらの説明は省略する。
A two-stage turbocharger is usually used to ensure high output with a small engine, and since one turbocharger has a limit on the compression ratio, a two-stage turbocharger is used to supercharge at a high pressure. It has become.
Since other configurations are the same as those of the embodiment of FIG. 1, the same components are denoted by the same reference numerals, and description thereof is omitted.

而して、本実施形態によれば、図1の排気還流装置45と同様、所期の目的を達成することができることは勿論、二段過給式のターボチャージャ103,105によって高い圧力で過給を行い多くの吸気をエンジン1の燃焼室に送り込むことができるため、パティキュレート,NOxが低下し、出力と燃費が更に向上する利点を有する。
図10は請求項1乃至請求項3及び請求項7に係る排気還流装置の第一実施形態を示し、本実施形態に係る排気還流装置107は、図1の吸気マニホールド23に代え、吸気マニホールド109を、第1,第2排気マニホールド部3a,3bに対応して吸気行程が互いにオーバーラップしない気筒毎に第1吸気マニホールド部109aと第2吸気マニホールド部109bとに分割し、夫々の吸気入口にエジェクタ111,113を装着すると共に、エジェクタ111ののど部111aと第1排気マニホールド部3aとの間、そして、エジェクタ113ののど部113aと第2排気マニホールド部3bとの間に、夫々、EGRクーラー35,37と逆止弁39,41とEGRバルブ115,117が排気マニホールド3側から順次装着されたEGR通路119,121を接続したものである。
Thus, according to the present embodiment, as with the exhaust gas recirculation device 45 of FIG. 1, the intended purpose can be achieved, and the turbochargers 103 and 105 of the two-stage supercharging type can be supercharged at a high pressure. Since a large amount of intake air can be fed into the combustion chamber of the engine 1, particulates and NOx are reduced, and the output and fuel consumption are further improved.
FIG. 10 shows a first embodiment of the exhaust gas recirculation device according to claims 1 to 3 and claim 7. An exhaust gas recirculation device 107 according to this embodiment is replaced with an intake manifold 109 in place of the intake manifold 23 of FIG. Is divided into a first intake manifold portion 109a and a second intake manifold portion 109b for each cylinder in which the intake strokes do not overlap with each other corresponding to the first and second exhaust manifold portions 3a and 3b. EGR coolers are mounted between the ejector 111 throat portion 111a and the first exhaust manifold portion 3a, and between the ejector 113 throat portion 113a and the second exhaust manifold portion 3b. 35, 37, check valves 39, 41, and EGR valves 115, 117 are sequentially mounted from the exhaust manifold 3 side. It is obtained by connecting the R channel 19, 12.

尚、その他の構成は図1の実施形態と同様であるので、同一のものには同一符号を付してそれらの説明は省略する。
而して、本実施形態によれば、図11に示すように第1吸気マニホールド部109aと第1排気マニホールド部3aとの間、及び第2吸気マニホールド部109bと第2排気マニホールド部3bとの間で、夫々の排気パルス(正圧)の山と吸気パルス(負圧)の谷の時期が略合致するため、各EGR通路119,121の両側に大きな差圧ΔPが発生して逆止弁39,41が更に良好に機能し、ターボチャージャ7による過給下に於てもより確実なEGRが行われることとなる。
Since other configurations are the same as those of the embodiment of FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.
Thus, according to the present embodiment, as shown in FIG. 11, between the first intake manifold portion 109a and the first exhaust manifold portion 3a, and between the second intake manifold portion 109b and the second exhaust manifold portion 3b. Since the timing of each exhaust pulse (positive pressure) peak and intake pulse (negative pressure) valley substantially coincides with each other, a large differential pressure ΔP is generated on both sides of each of the EGR passages 119 and 121, and the check valve 39 and 41 function more satisfactorily, and more reliable EGR can be performed even under supercharging by the turbocharger 7.

而も、上述したように吸気マニホールド109を、吸気行程が互いにオーバーラップしない気筒毎に第1吸気マニホールド部109aと第2吸気マニホールド部109bとに分割したため、各吸気マニホールド部109a,109b内に於て、各気筒の吸気期間中に他の気筒のバルブが開いて吸気干渉が起こることがなく、吸気行程で生じた吸気パルスが圧力波となって、夫々のエジェクタ111,113に伝わるため、エジェクタ111,113ののど部111a,113aで流速が高まり、吸気の正圧が低くなった部分にEGR通路119,121からEGRガスが導入されることとなる。   However, as described above, the intake manifold 109 is divided into the first intake manifold portion 109a and the second intake manifold portion 109b for each cylinder in which the intake strokes do not overlap with each other. During the intake period of each cylinder, the valves of the other cylinders do not open and intake interference does not occur, and the intake pulse generated in the intake stroke is transmitted as pressure waves to the respective ejectors 111 and 113. The EGR gas is introduced from the EGR passages 119 and 121 into the portions where the flow velocity increases at the throat portions 111a and 113a of the 111 and 113 and the positive pressure of the intake air decreases.

このように本実施形態によれば、吸気マニホールド109と排気マニホールド3を、吸排気行程が互いにオーバーラップしない気筒毎に分割したため、吸排気干渉を防止することができ、脈動(吸排気パルス)を有効に利用して逆止弁39,41を作動させることができるため、図1の排気還流装置45に比し更に高いEGR率が得られる利点を有する。
図12は請求項1乃至請求項3及び請求項7に係る排気還流装置の第二実施形態を示し、本実施形態に係る排気還流装置123は、図10のターボチャージャ7に代え、図9の排気還流装置101で既述した二段過給式のターボチャージャ103,105を用いたもので、その他の構成は図10の実施形態と同様であるため、同一のものには同一符号を付してそれらの説明は省略する。
As described above, according to the present embodiment, the intake manifold 109 and the exhaust manifold 3 are divided for each cylinder in which the intake and exhaust strokes do not overlap each other, so that intake and exhaust interference can be prevented and pulsation (intake and exhaust pulses) is generated. Since the check valves 39 and 41 can be operated effectively, there is an advantage that a higher EGR rate can be obtained as compared with the exhaust gas recirculation device 45 of FIG.
FIG. 12 shows a second embodiment of the exhaust gas recirculation device according to claims 1 to 3 and claim 7, and the exhaust gas recirculation device 123 according to this embodiment is replaced with the turbocharger 7 of FIG. The two-stage supercharging turbochargers 103 and 105 described in the exhaust gas recirculation apparatus 101 are used, and other configurations are the same as those in the embodiment of FIG. Their description is omitted.

而して、本実施形態によれば、図10の実施形態と同様、所期の目的を達成することができることは勿論、二段過給式のターボチャージャ103,105によって高い圧力で過給を行い多くの吸気を燃焼室に送り込むことができるため、パティキュレート,NOxが低下し、出力と燃費が更に向上する利点を有する。   Thus, according to the present embodiment, as in the embodiment of FIG. 10, not only the intended purpose can be achieved, but also supercharging at a high pressure is performed by the two-stage turbochargers 103 and 105. Since a large amount of intake air can be sent into the combustion chamber, there is an advantage that particulates and NOx are reduced, and output and fuel consumption are further improved.

請求項1乃至請求項3の第一実施形態に係る排気還流装置の説明図である。It is explanatory drawing of the exhaust gas recirculation apparatus which concerns on 1st embodiment of Claim 1 thru | or 3. ターボチャージャと排気マニホールドの接続部の要部拡大断面図である。It is a principal part expanded sectional view of the connection part of a turbocharger and an exhaust manifold. ターボチャージャと排気マニホールドの接続部の要部拡大断面図である。It is a principal part expanded sectional view of the connection part of a turbocharger and an exhaust manifold. 請求項1,請求項2及び請求項4の一実施形態に係る排気還流装置の排気マニホールドとターボチャージャの接続部の要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part of a connection portion between an exhaust manifold and a turbocharger of an exhaust gas recirculation apparatus according to one embodiment of claim 1, claim 2, and claim 4. 請求項1及び請求項5の一実施形態に係る排気還流装置の排気マニホールドとターボチャージャの接続部の要部拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a main part of a connection portion between an exhaust manifold and a turbocharger of an exhaust gas recirculation apparatus according to one embodiment of claim 1 and claim 5. 請求項1,請求項5及び請求項6の一実施形態に係る排気還流装置の排気マニホールドとターボチャージャの接続部の要部拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a main part of a connection portion between an exhaust manifold and a turbocharger of an exhaust gas recirculation apparatus according to one embodiment of claim 1, claim 5 and claim 6. 排気マニホールドとターボチャージャの接続部の要部拡大断面図である。It is a principal part expanded sectional view of the connection part of an exhaust manifold and a turbocharger. 排気マニホールドとターボチャージャの接続部の斜視図である。It is a perspective view of the connection part of an exhaust manifold and a turbocharger. 請求項1乃至請求項3の第二実施形態に係る排気還流装置の説明図である。It is explanatory drawing of the exhaust gas recirculation apparatus which concerns on 2nd embodiment of Claim 1 thru | or 3. 請求項1乃至請求項3及び請求項7の第一実施形態に係る排気還流装置の説明図である。It is explanatory drawing of the exhaust gas recirculation apparatus which concerns on 1st embodiment of Claim 1 thru | or Claim 3 and Claim 7. 排気パルスと吸気パルスの波形図である。It is a wave form diagram of an exhaust pulse and an intake pulse. 請求項1乃至請求項3及び請求項7の第二実施形態に係る排気還流装置の説明図である。It is explanatory drawing of the exhaust gas recirculation apparatus which concerns on 2nd embodiment of Claim 1 thru | or Claim 3 and Claim 7.

符号の説明Explanation of symbols

1 エンジン
3,61 排気マニホールド
3a,61a 第1排気マニホールド部
3b,61b 第2排気マニホールド部
3a-1,3b-1,61a-1,61b-1 排気ガス流出口
7,7-1,103,105 ターボチャージャ
9,9-1 タービンハウジング
11,11-1 排気ガス合流部
13,15,67,69,93,95 ノズル部
17,49 絞り部
23,109 吸気マニホールド
25 インタークーラ
30,111,113 エジェクタ
30a,111a,113a のど部
31,33,119,121 EGR通路
35,37 EGRクーラー
39,41 逆止弁
43,115,117 EGRバルブ
45,101,107,123 排気還流装置
51,65,91 スペーサ
73,75,87,89 排気流路
97,99 ガイド板
109a 第1吸気マニホールド部
109b 第2吸気マニホールド部
1 Engine 3, 61 Exhaust manifolds 3a, 61a First exhaust manifold portions 3b, 61b Second exhaust manifold portions 3a-1, 3b-1, 61a-1, 61b-1 Exhaust gas outlets 7, 7-1, 103, 105 Turbocharger 9, 9-1 Turbine housing 11, 11-1 Exhaust gas confluence 13, 13, 67, 69, 93, 95 Nozzle 17, 49 Throttle 23, 109 Intake manifold 25 Intercooler 30, 111, 113 Ejectors 30a, 111a, 113a Throat portions 31, 33, 119, 121 EGR passages 35, 37 EGR coolers 39, 41 Check valves 43, 115, 117 EGR valves 45, 101, 107, 123 Exhaust gas recirculation devices 51, 65, 91 Spacers 73, 75, 87, 89 Exhaust flow path 97, 99 Guide plate 109a First intake manifold Part 109b second intake manifold part

Claims (7)

ターボチャージャを備えたエンジンの排気マニホールドを、排気行程が互いにオーバーラップしない気筒毎に第1の排気マニホールド部と第2の排気マニホールド部とに分割し、各排気マニホールド部とエンジンの吸気系との間に、逆止弁を備えた排気還流通路を接続すると共に、両排気マニホールド部とターボチャージャのタービンハウジングとの接続部に、タービンハウジングの排気ガス合流部に向けて断面が徐々に減少するノズル部を排気マニホールド部毎に設けたことを特徴とするターボ過給エンジンの排気還流装置。   An exhaust manifold of an engine equipped with a turbocharger is divided into a first exhaust manifold portion and a second exhaust manifold portion for each cylinder whose exhaust strokes do not overlap each other. An exhaust gas recirculation passage provided with a check valve is connected between them, and a nozzle whose cross section gradually decreases toward the exhaust gas merging portion of the turbine housing at the connection portion between the two exhaust manifold portions and the turbine housing of the turbocharger. An exhaust gas recirculation device for a turbocharged engine, wherein a portion is provided for each exhaust manifold portion. ノズル部は、各排気マニホールド部の排気ガス流出口側を、排気ガス合流部に向けて断面を徐々に減少させて設けられていることを特徴とする請求項1に記載のターボ過給エンジンの排気還流装置。   2. The turbocharged engine according to claim 1, wherein the nozzle portion is provided such that an exhaust gas outlet side of each exhaust manifold portion gradually decreases in cross section toward the exhaust gas merging portion. Exhaust gas recirculation device. タービンハウジングの排気ガス合流部の直下流に、絞り部を設けたことを特徴とする請求項1または請求項2に記載のターボ過給エンジンの排気還流装置。   The exhaust gas recirculation device for a turbocharged engine according to claim 1 or 2, wherein a throttle portion is provided immediately downstream of the exhaust gas merging portion of the turbine housing. 両排気マニホールド部とタービンハウジングとの接続部にスペーサを介装し、当該スペーサに絞り部を設けたことを特徴とする請求項1または請求項2に記載のターボ過給エンジンの排気還流装置。   The exhaust gas recirculation device for a turbocharged engine according to claim 1 or 2, wherein a spacer is provided at a connection portion between both exhaust manifold portions and the turbine housing, and a throttle portion is provided in the spacer. 両排気マニホールド部とタービンハウジングとの接続部にスペーサを介装し、当該スペーサにノズル部を設けたことを特徴とする請求項1に記載のターボ過給エンジンの排気還流装置。   2. The exhaust gas recirculation device for a turbocharged engine according to claim 1, wherein a spacer is provided at a connection portion between the two exhaust manifold portions and the turbine housing, and a nozzle portion is provided in the spacer. タービンハウジングの排気ガス合流部にディフューザを配置したことを特徴とする請求項5に記載のターボ過給エンジンの排気還流装置。   6. The exhaust gas recirculation device for a turbocharged engine according to claim 5, wherein a diffuser is disposed at an exhaust gas merging portion of the turbine housing. ターボ過給エンジンの吸気マニホールドを、第1,第2の排気マニホールド部に対応して吸気行程が互いにオーバーラップしない気筒毎に第1の吸気マニホールド部と第2の吸気マニホールド部とに分割し、夫々の吸気入口にエジェクタを装着すると共に、第1の吸気マニホールド部側のエジェクタと第1の排気マニホールド部及び第2の吸気マニホールド部側のエジェクタと第2の排気マニホールド部との間に、夫々、排気還流通路を接続したことを特徴とする請求項1乃至請求項6のいずれか1項に記載のターボ過給エンジンの排気還流装置。   The turbocharged engine intake manifold is divided into a first intake manifold portion and a second intake manifold portion for each cylinder in which the intake strokes do not overlap each other corresponding to the first and second exhaust manifold portions, At the same time, an ejector is mounted at each intake inlet, and between the ejector on the first intake manifold section side, the first exhaust manifold section, the ejector on the second intake manifold section side, and the second exhaust manifold section, respectively. The exhaust gas recirculation device for a turbocharged engine according to any one of claims 1 to 6, wherein an exhaust gas recirculation passage is connected.
JP2003386525A 2003-11-17 2003-11-17 Exhaust gas recirculation system for turbo supercharged engine Pending JP2005147011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386525A JP2005147011A (en) 2003-11-17 2003-11-17 Exhaust gas recirculation system for turbo supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386525A JP2005147011A (en) 2003-11-17 2003-11-17 Exhaust gas recirculation system for turbo supercharged engine

Publications (1)

Publication Number Publication Date
JP2005147011A true JP2005147011A (en) 2005-06-09

Family

ID=34694188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386525A Pending JP2005147011A (en) 2003-11-17 2003-11-17 Exhaust gas recirculation system for turbo supercharged engine

Country Status (1)

Country Link
JP (1) JP2005147011A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043913B2 (en) * 2003-06-23 2006-05-16 Komatsu Ltd. Turbocharger
JP2007064042A (en) * 2005-08-30 2007-03-15 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP2007064043A (en) * 2005-08-30 2007-03-15 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170301A (en) * 2005-12-22 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170306A (en) * 2005-12-22 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170196A (en) * 2005-12-19 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170197A (en) * 2005-12-19 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007205340A (en) * 2006-02-06 2007-08-16 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007211603A (en) * 2006-02-07 2007-08-23 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007218171A (en) * 2006-02-16 2007-08-30 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP2007231791A (en) * 2006-02-28 2007-09-13 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007263017A (en) * 2006-03-29 2007-10-11 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP2007315315A (en) * 2006-05-26 2007-12-06 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2008045491A (en) * 2006-08-17 2008-02-28 Kubota Corp Engine
JP2008185008A (en) * 2007-01-31 2008-08-14 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2008190409A (en) * 2007-02-05 2008-08-21 Nissan Diesel Motor Co Ltd Multiple cylinder engine
CN101943093A (en) * 2010-10-14 2011-01-12 张珊 Distribution auxiliary device of engine
CN101469631B (en) * 2007-12-24 2012-07-04 J·埃贝斯佩歇合资公司 Exhaust gas collector
JP2012255418A (en) * 2011-06-10 2012-12-27 Ihi Corp Scroll housing and supercharger
JP2012255426A (en) * 2011-06-10 2012-12-27 Ihi Corp Turbine and supercharger for vehicle
KR20130127450A (en) * 2010-10-25 2013-11-22 보르그워너 인코퍼레이티드 Exhaust-gas turbocharger
JP2014077377A (en) * 2012-10-09 2014-05-01 Yanmar Co Ltd Engine
CN105649757A (en) * 2014-12-01 2016-06-08 现代自动车株式会社 Apparatus for compensating for thermal expansion occurring from exhaust manifold
CN107461253A (en) * 2017-09-15 2017-12-12 河南柴油机重工有限责任公司 A kind of opposite-flushing type whirlpool rear exhaust apparatus
US10316803B2 (en) 2017-09-25 2019-06-11 Woodward, Inc. Passive pumping for recirculating exhaust gas
CN111836952A (en) * 2018-03-16 2020-10-27 康明斯公司 Exhaust system with integrated exhaust pulse converter
US10995705B2 (en) 2019-02-07 2021-05-04 Woodward, Inc. Modular exhaust gas recirculation system
US11174809B1 (en) 2020-12-15 2021-11-16 Woodward, Inc. Controlling an internal combustion engine system
US11215132B1 (en) 2020-12-15 2022-01-04 Woodward, Inc. Controlling an internal combustion engine system
US11293382B2 (en) 2020-01-08 2022-04-05 Woodward, Inc. Passive pumping for recirculating exhaust gas

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043913B2 (en) * 2003-06-23 2006-05-16 Komatsu Ltd. Turbocharger
JP4566093B2 (en) * 2005-08-30 2010-10-20 Udトラックス株式会社 Multi-cylinder engine
JP2007064042A (en) * 2005-08-30 2007-03-15 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP2007064043A (en) * 2005-08-30 2007-03-15 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170196A (en) * 2005-12-19 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170197A (en) * 2005-12-19 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170301A (en) * 2005-12-22 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007170306A (en) * 2005-12-22 2007-07-05 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007205340A (en) * 2006-02-06 2007-08-16 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007211603A (en) * 2006-02-07 2007-08-23 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP4628279B2 (en) * 2006-02-16 2011-02-09 Udトラックス株式会社 Multi-cylinder engine
JP2007218171A (en) * 2006-02-16 2007-08-30 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP2007231791A (en) * 2006-02-28 2007-09-13 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2007263017A (en) * 2006-03-29 2007-10-11 Nissan Diesel Motor Co Ltd Multiple cylinder engine
JP4637779B2 (en) * 2006-03-29 2011-02-23 Udトラックス株式会社 Multi-cylinder engine
JP2007315315A (en) * 2006-05-26 2007-12-06 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP4713406B2 (en) * 2006-05-26 2011-06-29 Udトラックス株式会社 Multi-cylinder engine
JP2008045491A (en) * 2006-08-17 2008-02-28 Kubota Corp Engine
JP2008185008A (en) * 2007-01-31 2008-08-14 Nissan Diesel Motor Co Ltd Multi-cylinder engine
JP2008190409A (en) * 2007-02-05 2008-08-21 Nissan Diesel Motor Co Ltd Multiple cylinder engine
CN101469631B (en) * 2007-12-24 2012-07-04 J·埃贝斯佩歇合资公司 Exhaust gas collector
CN101943093A (en) * 2010-10-14 2011-01-12 张珊 Distribution auxiliary device of engine
KR20130127450A (en) * 2010-10-25 2013-11-22 보르그워너 인코퍼레이티드 Exhaust-gas turbocharger
KR101858173B1 (en) * 2010-10-25 2018-06-28 보르그워너 인코퍼레이티드 Exhaust-gas turbocharger
JP2012255418A (en) * 2011-06-10 2012-12-27 Ihi Corp Scroll housing and supercharger
JP2012255426A (en) * 2011-06-10 2012-12-27 Ihi Corp Turbine and supercharger for vehicle
JP2014077377A (en) * 2012-10-09 2014-05-01 Yanmar Co Ltd Engine
CN105649757A (en) * 2014-12-01 2016-06-08 现代自动车株式会社 Apparatus for compensating for thermal expansion occurring from exhaust manifold
CN105649757B (en) * 2014-12-01 2019-11-19 现代自动车株式会社 For offsetting the device of the thermal expansion of exhaust manifold generation
CN107461253A (en) * 2017-09-15 2017-12-12 河南柴油机重工有限责任公司 A kind of opposite-flushing type whirlpool rear exhaust apparatus
US10316803B2 (en) 2017-09-25 2019-06-11 Woodward, Inc. Passive pumping for recirculating exhaust gas
US10634099B2 (en) 2017-09-25 2020-04-28 Woodward, Inc. Passive pumping for recirculating exhaust gas
CN111836952A (en) * 2018-03-16 2020-10-27 康明斯公司 Exhaust system with integrated exhaust pulse converter
US11230970B2 (en) 2018-03-16 2022-01-25 Cummins Inc. Exhaust system with integrated exhaust pulse converter
CN111836952B (en) * 2018-03-16 2022-05-27 康明斯公司 Exhaust system with integrated exhaust pulse converter
US10995705B2 (en) 2019-02-07 2021-05-04 Woodward, Inc. Modular exhaust gas recirculation system
US11293382B2 (en) 2020-01-08 2022-04-05 Woodward, Inc. Passive pumping for recirculating exhaust gas
US11174809B1 (en) 2020-12-15 2021-11-16 Woodward, Inc. Controlling an internal combustion engine system
US11215132B1 (en) 2020-12-15 2022-01-04 Woodward, Inc. Controlling an internal combustion engine system

Similar Documents

Publication Publication Date Title
JP2005147011A (en) Exhaust gas recirculation system for turbo supercharged engine
JP2005147010A (en) Exhaust gas reflux device for turbosupercharging engine
JP4713406B2 (en) Multi-cylinder engine
KR101683495B1 (en) Engine system having turbo charger
JP4778311B2 (en) Multi-cylinder engine
CN210343536U (en) Medium-pressure exhaust gas low-pressure side introducing system based on two-stage turbocharger
US20180100428A1 (en) Engine system
CN210343490U (en) High-pressure exhaust gas low-pressure side introducing system based on two-stage turbocharger
CN210343537U (en) High-pressure waste gas medium-pressure side introducing system based on two-stage turbocharger
KR20170128714A (en) Exhaust gas recirculation system
JP4359583B2 (en) Multi-cylinder engine
JP2007327382A (en) Multicylinder engine and its egr cooler
JP4827757B2 (en) Multi-cylinder engine
JP2008185008A (en) Multi-cylinder engine
JP5670170B2 (en) Supercharged multi-cylinder engine
JP4628279B2 (en) Multi-cylinder engine
KR20190010942A (en) Exhaust gas recirculation system for engine
CN111894765A (en) Exhaust gas recirculation system
KR20120059245A (en) Device for reducing air current noise of turbo-charger engine
US11230970B2 (en) Exhaust system with integrated exhaust pulse converter
JP4741379B2 (en) Multi-cylinder engine
JP2011080406A (en) Engine supercharging system
JP2007064042A (en) Multiple cylinder engine
JP2007051578A (en) Two stage supercharging system
JP2007211603A (en) Multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217