JP2007218171A - Multiple cylinder engine - Google Patents

Multiple cylinder engine Download PDF

Info

Publication number
JP2007218171A
JP2007218171A JP2006039601A JP2006039601A JP2007218171A JP 2007218171 A JP2007218171 A JP 2007218171A JP 2006039601 A JP2006039601 A JP 2006039601A JP 2006039601 A JP2006039601 A JP 2006039601A JP 2007218171 A JP2007218171 A JP 2007218171A
Authority
JP
Japan
Prior art keywords
intake
exhaust
resonance
egr
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006039601A
Other languages
Japanese (ja)
Other versions
JP4628279B2 (en
Inventor
Shuichi Nakamura
秀一 中村
Kenichiro Imaoka
健一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2006039601A priority Critical patent/JP4628279B2/en
Publication of JP2007218171A publication Critical patent/JP2007218171A/en
Application granted granted Critical
Publication of JP4628279B2 publication Critical patent/JP4628279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To compatibly attain high supercharging and a great amount of EGR in a wide operation range to take exhaust emission measure and improve output/fuel economy in a multiple cylinder engine provided with a turbocharger. <P>SOLUTION: This engine is provided with exhaust manifolds 9a, 9b divided into cylinder groups of which exhaust strokes do not overlap, intake manifolds 3a, 3b divided into cylinder groups of which intake strokes do not overlap, means 23a, 23b preventing reverse flow of exhaust pulse in a merging part of the exhaust manifolds, resonance pipes 40a, 40b connecting a branch part 41 of a intake air passage 2 and a collecting part inlet of each intake manifold as a means amplifying intake pulsation and controlling phase of the intake pulsation, EGR passages 36a, 36b connecting the resonance pipes and the exhaust manifolds in a relation of same cylinder group, and means 50, 51 varying resonance rotation speed of an intake system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ターボチャージャを備える多気筒エンジンにおいて、排気対策および出力・燃費の向上を図るべく、広い運転領域で高過給と大量EGRとの両立を実現するための技術に関する。   The present invention relates to a technique for realizing both high supercharging and a large amount of EGR in a wide operation region in order to improve exhaust measures and improve output and fuel consumption in a multi-cylinder engine equipped with a turbocharger.

エンジンのEGR(排気環流:Exhaust Gas Recirculation)システムとして、排気系から吸気系へ排気の一部を環流させるものがよく採用される。このようなEGR装置においては、ターボチャージャのタービン上流からコンプレッサ下流へ排気を環流させる場合、過給圧が排気圧よりも高くなる運転領域が生じやすく、EGRが十分に得られない。   As an engine EGR (Exhaust Gas Recirculation) system, one that circulates part of the exhaust gas from the exhaust system to the intake system is often used. In such an EGR device, when exhaust gas is circulated from the turbine upstream of the turbocharger to the compressor downstream, an operation region in which the supercharging pressure becomes higher than the exhaust pressure is likely to occur, and EGR cannot be sufficiently obtained.

EGR率を高めるため、バタフライバルブによる排気絞りやスロットルバルブによる吸気絞りを行うことが考えられるが、ポンピングロスの悪化が問題となる。VNT(可変ノズル式ターボチャージャ)絞りは、排気マニホールド圧のみでなく、吸気マニホールド圧も上昇するので、EGR率を向上させるのに排気マニホールド圧の方が吸気マニホールド圧よりも高くなるまでVNT絞りを効かせる必要があり、ポンピングロスの悪化を招いてしまうのである。そのため、リードバルブ(逆止弁)を用いて排気脈動によりEGRを行う方式(特許文献1、特許文献2)、EGR通路に混合区間を用いて排気脈動(EGRガスの動圧)を大きくする方式(特許文献3)、可変バルブを用いて内部EGRを行う方式(特許文献4)、が知られている。
特開2000−249004号 特開2005−147010号 特表2003−534488号 特開2001−107810号
In order to increase the EGR rate, exhaust throttling by a butterfly valve or intake throttling by a throttle valve can be considered, but deterioration of pumping loss becomes a problem. The VNT (variable nozzle turbocharger) throttle increases not only the exhaust manifold pressure but also the intake manifold pressure. Therefore, to improve the EGR rate, the VNT throttle is increased until the exhaust manifold pressure is higher than the intake manifold pressure. It is necessary to make it effective, and the pumping loss is worsened. Therefore, a system that performs EGR by exhaust pulsation using a reed valve (check valve) (Patent Document 1, Patent Document 2), and a system that increases exhaust pulsation (dynamic pressure of EGR gas) using a mixing section in the EGR passage (Patent Document 3) and a method of performing internal EGR using a variable valve (Patent Document 4) are known.
JP 2000-249004 JP 2005-147010 A Special table 2003-534488 JP 2001-107810 A

特許文献1〜特許文献3の場合、分割型の排気マニホールドに接続されるターボチャージャがシングルエントリ方式(タービン入口が1つ)の場合、位相の異なる気筒群間の排気パルス(正圧波)が互いに打ち消し合うため、十分なEGR率が得られない。特許文献4の場合、排気(EGRガス)の冷却が行えないのである。また、特許文献2においては、分割型の排気マニホールドと分割型の吸気マニホールドとの間を同一の気筒群同士の関係に接続するEGR通路が設けられるものの、排気パルスの山が吸気行程の初期に到達するため、吸気脈動の谷(吸気行程の中頃で生じる)とのタイミングが合わず、EGR率が十分に向上できない。   In the case of Patent Documents 1 to 3, when the turbocharger connected to the split type exhaust manifold is a single entry system (one turbine inlet), exhaust pulses (positive pressure waves) between cylinder groups having different phases are mutually connected. Because they cancel each other, a sufficient EGR rate cannot be obtained. In the case of Patent Document 4, the exhaust (EGR gas) cannot be cooled. Further, in Patent Document 2, although an EGR passage for connecting the split type exhaust manifold and the split type intake manifold to each other in the same cylinder group is provided, the peak of the exhaust pulse is at the initial stage of the intake stroke. Therefore, the timing of the valley of the intake pulsation (which occurs in the middle of the intake stroke) is not matched, and the EGR rate cannot be improved sufficiently.

この発明は、このような課題を解決するための有効な手段の提供を目的とする。   An object of this invention is to provide an effective means for solving such a problem.

第1の発明は、ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールドと、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールドと、これら排気マニホールドの合流部を排気パルスが逆流するのを防止する手段と、吸気脈動の増幅および吸気脈動の位相を制御する手段として吸気通路の分岐部と各吸気マニホールドの集合部との間を連結する共鳴管と、これら共鳴管と排気マニホールドとの間を同一の気筒群同士の関係に接続するEGR通路と、吸気系の共鳴回転数を可変とする手段、を備えたことを特徴とする。   In a multi-cylinder engine having a turbocharger, a first invention is an exhaust manifold that is divided for each cylinder group in which the exhaust strokes do not overlap, an intake manifold that is divided for each cylinder group in which the intake strokes do not overlap, As a means for preventing the exhaust pulse from flowing back through the merging portion of the exhaust manifold and a means for controlling the amplification of the intake pulsation and the phase of the intake pulsation, the branch portion of the intake passage and the collection portion of each intake manifold are connected. A resonance pipe, an EGR passage for connecting the resonance pipe and the exhaust manifold in the same relationship between the cylinder groups, and means for changing the resonance rotational speed of the intake system are provided.

第2の発明は、第1の発明に係る多気筒エンジンにおいて、各共鳴管の長さLは、以下の条件を満足するように設定したことを特徴とする。   The second invention is characterized in that, in the multi-cylinder engine according to the first invention, the length L of each resonance tube is set so as to satisfy the following conditions.

Figure 2007218171
Figure 2007218171

第3の発明は、第2の発明に係る多気筒エンジンにおいて、共鳴回転速度NR1は、タービン入口圧よりもコンプレッサ出口圧が高くなる運転領域に設定したことを特徴とする。 The third invention is characterized in that, in the multi-cylinder engine according to the second invention, the resonance rotational speed N R1 is set in an operation region in which the compressor outlet pressure is higher than the turbine inlet pressure.

第4の発明は、第2の発明に係る多気筒エンジンにおいて、吸気系の共鳴回転数を可変とする手段は、共鳴管の長さLに拠る共鳴回転速度NR1を高速側の共鳴回転数NR2またはその逆に切り替えるべくEGR通路との接続部上流で各共鳴管が共鳴回転数NR2に対応する長さL’となる部位の共鳴管を相互に結ぶ通路を開閉するバルブと、を備えたことを特徴とする。 According to a fourth aspect of the invention, in the multi-cylinder engine according to the second aspect of the invention, the means for changing the resonance rotational speed of the intake system sets the resonance rotational speed N R1 depending on the length L of the resonance tube to the resonance rotational speed on the high speed side. A valve that opens and closes a path that connects the resonance pipes of portions where the resonance pipes have a length L ′ corresponding to the resonance rotational speed N R2 upstream of the connection with the EGR passage to switch to N R2 or vice versa. It is characterized by having.

第5の発明は、第4の発明に係る多気筒エンジンにおいて、吸気系の共鳴回転数を可変とする手段は、開閉バルブを運転状態に基づいて制御する手段と、を備えたことを特徴とする。   According to a fifth aspect of the invention, in the multi-cylinder engine according to the fourth aspect of the invention, the means for changing the resonance rotational speed of the intake system includes means for controlling the open / close valve based on the operating state. To do.

第6の発明は、第1の発明に係る多気筒エンジンにおいて、排気マニホールドの合流部を排気パルスが逆流するのを防止する手段として、各排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部を備えたことを特徴とする。   According to a sixth aspect of the present invention, in the multi-cylinder engine according to the first aspect of the invention, as a means for preventing the exhaust pulses from flowing back through the merged portion of the exhaust manifold, the downstream of the collective portion of each exhaust manifold is directed toward these merged portions. It is characterized by having a nozzle portion that narrows to a tapered shape.

第7の発明は、第1の発明に係る多気筒エンジンにおいて、ターボチャージャとして可変ノズル式を用いて吸気通路の分岐部上流にコンプレッサを介装する一方、このターボチャージャのタービンを排気マニホールドの合流部に連結したことを特徴とする。   According to a seventh aspect of the present invention, in the multi-cylinder engine according to the first aspect, a variable nozzle type is used as a turbocharger and a compressor is interposed upstream of the branch portion of the intake passage, while the turbine of the turbocharger is joined to the exhaust manifold. It is connected to the part.

第8の発明は、第1の発明に係る多気筒エンジンにおいて、各EGR通路は、逆止弁の上流にEGRバルブ、その上流にEGRクーラ、を備えたことを特徴とする。   According to an eighth aspect of the present invention, in the multi-cylinder engine according to the first aspect, each EGR passage includes an EGR valve upstream of the check valve and an EGR cooler upstream thereof.

第1の発明においては、ターボチャージャがシングルエントリ方式(タービン入口が1つ)の場合においても、分割型の排気マニホール間を排気パルスが逆流するのを防止する手段により、EGR通路の逆止弁に排気パルス(正圧波)が弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られるのである。また、共鳴管(吸気脈動の増幅および吸気脈動の位相を制御する手段)により、逆止弁前後の瞬間的な差圧が拡大され、EGR率をさらに一段と向上させることができる。   In the first invention, even when the turbocharger is of a single entry system (one turbine inlet), the check valve for the EGR passage is provided by means for preventing the exhaust pulse from flowing back between the split type exhaust manifolds. The exhaust pulse (positive pressure wave) is transmitted without being weakened, and the check valve is effectively operated, so that a high EGR rate is obtained. Moreover, the instantaneous differential pressure before and after the check valve is expanded by the resonance tube (means for controlling the amplitude of intake pulsation and the phase of intake pulsation), and the EGR rate can be further improved.

エンジン回転数が吸気系の共鳴回転数と等しくなると、共鳴作用により、吸気脈動が増幅される。吸気脈動の谷は、吸気行程の中頃で生じるが、吸気脈動の振幅が大きいため、排気圧との十分な落差が得られ、EGR率が最大限に高められる。共鳴回転数よりも低速側においては、吸気脈動の位相が進み、吸気脈動の谷が排気パルスの山(排気行程初期の排気噴き出し中に生じる)に近づくので、十分に高いEGR率が得られる。   When the engine speed becomes equal to the resonance speed of the intake system, the intake pulsation is amplified by the resonance action. The valley of the intake pulsation occurs in the middle of the intake stroke, but since the amplitude of the intake pulsation is large, a sufficient drop from the exhaust pressure is obtained and the EGR rate is maximized. On the lower speed side than the resonance rotational speed, the phase of the intake pulsation advances, and the valley of the intake pulsation approaches the peak of the exhaust pulse (which occurs during exhaust ejection at the beginning of the exhaust stroke), so that a sufficiently high EGR rate is obtained.

共鳴回転数よりも高速側においては、吸気脈動の位相が遅れ、吸気脈動の谷は排気パルスの山から離れるが、吸気脈動の振幅が大きいので、EGR率は若干に留まるものの、低下する傾向が考えられる。この共鳴回転数よりも高速側において、吸気系の共鳴回転数を可変とする手段により、共鳴回転数が高速側に変わると、共鳴作用により、吸気脈動が増幅され、位相の遅れも生じない。吸気脈動の山は、吸気行程の中頃で生じるようになり、吸気脈動の増幅により、EGR率が最大限に高められるのである。   On the higher speed side than the resonance speed, the phase of the intake pulsation is delayed, and the valley of the intake pulsation moves away from the peak of the exhaust pulse, but the amplitude of the intake pulsation is large, so the EGR rate tends to decrease although it remains slightly. Conceivable. If the resonance rotational speed is changed to the high speed side by means for changing the resonance rotational speed of the intake system on the higher speed side than the resonance rotational speed, the intake pulsation is amplified by the resonance action, and the phase is not delayed. The peak of the intake pulsation occurs in the middle of the intake stroke, and the amplification of the intake pulsation maximizes the EGR rate.

第2の発明においては、共鳴管の長さLは、共鳴回転速度NR1がエンジンの常用回転速度域内にあることを条件に設定される。共鳴回転速度NR1は、f/mと比例関係にあり、共鳴周派数fは、{A/(LV)}1/2と比例関係にあり、Lを大きく設定すると、共鳴回転速度NR1が低速側となる一方、Lを小さく設定すると、共鳴回転速度NR1が高速側となる。従って、共鳴管の長さLは、広い運転領域において、EGR率を十分に高める上からは、共鳴回転速度NR1が中速域内にあるように設定することが望ましい。 In the second invention, the length L of the resonance tube is set on condition that the resonance rotational speed N R1 is in the normal rotational speed range of the engine. The resonance rotational speed N R1 is proportional to f / m, the resonance frequency f is proportional to {A / (LV)} 1/2 , and when L is set large, the resonance rotational speed N R1 On the other hand, when L is set small, the resonance rotational speed N R1 becomes the high speed side. Therefore, the length L of the resonance tube is desirably set so that the resonance rotational speed N R1 is in the middle speed range in order to sufficiently increase the EGR rate in a wide operation range.

第3の発明においては、共鳴作用により、ターボチャージャのタービン入口圧よりもコンプレッサ出口圧が高くなる運転領域において、EGR率が最大限に高められる。エンジン最高トルク点でターボチャージャ効率が最大となる場合、エンジン最高トルク点を含む中速域に共鳴回転速度NR1を設定することにより、広い運転領域において、EGR率を十分に高められるのである。 In the third aspect of the invention, the EGR rate is maximized in the operating region where the compressor outlet pressure is higher than the turbine inlet pressure of the turbocharger due to the resonance action. When the turbocharger efficiency becomes maximum at the engine maximum torque point, the EGR rate can be sufficiently increased in a wide operation range by setting the resonance rotational speed N R1 in the medium speed range including the engine maximum torque point.

第4の発明においては、開閉バルブが閉弁状態の場合、共鳴管は長さLとなり、エンジン回転数がLに対応する共鳴回転数NR1と等しくなると、共鳴作用により、吸気脈動が増幅される。開閉バルブが開弁すると、共鳴管は長さL’となり、エンジン回転数がL’に対応する共鳴回転数NR2と等しくなると、共鳴作用により、吸気脈動が増幅される。共鳴管の長さL’に対応する共鳴回転数NR2は、共鳴管の長さLに対応する共鳴回転数NR1よりも高速側に設定されるため、共鳴回転数NR1よりも高速側においても、共鳴作用により、EGR率を最大限に高めることができる。 In the fourth invention, when the on-off valve is in the closed state, the resonance tube has a length L, and when the engine speed becomes equal to the resonance speed N R1 corresponding to L, the intake pulsation is amplified by the resonance action. The When the on-off valve is opened, the resonance tube has a length L ′, and when the engine speed becomes equal to the resonance speed N R2 corresponding to L ′, the intake pulsation is amplified by the resonance action. Since the resonance speed N R2 corresponding to the length L ′ of the resonance tube is set at a higher speed side than the resonance speed N R1 corresponding to the length L of the resonance pipe, it is higher than the resonance speed N R1. Also, the EGR rate can be maximized by the resonance effect.

第5の発明においては、運転状態に基づいて開閉バルブを適確に制御できる。例えば、運転状態を代表するエンジン回転数に基づいて、中速域と高速域との境において、開閉バルブを開閉するように制御することにより、広い運転領域(低速域〜高速域)において、EGR率を効率よく十分に高められる。制御のパラメータにエンジン回転数のほか、エンジン負荷を加えることにより、開閉バルブをさらにきめ細かく制御することも可能となる。   In the fifth invention, the on-off valve can be accurately controlled based on the operating state. For example, EGR is controlled in a wide operating range (low speed range to high speed range) by controlling the open / close valve to open and close at the boundary between the medium speed range and the high speed range based on the engine speed representing the operating state. The rate can be increased efficiently and sufficiently. By adding the engine load in addition to the engine speed to the control parameter, it becomes possible to control the on-off valve more finely.

第6の発明においては、先細形状のノズル部により、排気の流れが加速され、動圧が上がり、静圧(排気圧力)が下げられるため、排気マニホールド間を排気パルスが逆流するのを抑えられる。このため、EGR通路の逆止弁に排気パルスが弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られるのである。また、先細形状のノズルから吹き出るブローダウン流(排気行程初期の噴き出し排気)の流速により、エゼクタ作用が生じると、排気行程(押し出し)中の気筒側の排気マニホールドから排気が吸引されるため、タービン効率の向上ばかりでなく、ポンピングロスの改善も得られる。   In the sixth aspect of the invention, the tapered nozzle portion accelerates the flow of exhaust, increases the dynamic pressure, and lowers the static pressure (exhaust pressure), thereby preventing the exhaust pulse from flowing back between the exhaust manifolds. . Therefore, the exhaust pulse is transmitted to the check valve in the EGR passage without being weakened, and the check valve is effectively operated, so that a high EGR rate is obtained. Also, if the ejector action occurs due to the flow rate of the blowdown flow (jet exhaust at the beginning of the exhaust stroke) that blows out from the tapered nozzle, exhaust is sucked from the exhaust manifold on the cylinder side during the exhaust stroke (extrusion). Not only is efficiency improved, but pumping loss is also improved.

第7の発明においては、可変ノズル式ターボチャージャにより、ノズル開度の制御を加えると、低速高負荷域においても、高過給と大量EGRとの両立が可能となり、排気対策(NOxやPMの低減)および出力・燃費の高度な向上を実現しやすくなる。   In the seventh aspect of the invention, by controlling the nozzle opening with a variable nozzle type turbocharger, it is possible to achieve both high supercharging and a large amount of EGR even in a low speed and high load region, and to take measures against exhaust (NOx and PM Reduction) and advanced improvement in output and fuel consumption.

第8の発明においては、EGRガス(排気)は、EGRクーラにより冷却され、EGRバルブおよび逆止弁を流れるため、これらバルブの耐久性を良好に確保することができる。   In the eighth invention, since the EGR gas (exhaust gas) is cooled by the EGR cooler and flows through the EGR valve and the check valve, the durability of these valves can be ensured satisfactorily.

図1において、2は多気筒エンジン1(6気筒ディーゼルエンジン)の吸気通路であり、吸気マニホールド3a,3bと吸気管4とから構成される。吸気マニホールド3a,3bは、吸気行程が実質的にオーバラップしない気筒群毎(#1,2,3と#4,5,6)に分割される。吸気管4は、インタクーラ5の下流側が分岐され、各マニホールド3a,3bの集合部に接続される。6aはターボチャージャ6のコンプレッサであり、7はエアクリーナである。   In FIG. 1, reference numeral 2 denotes an intake passage of a multi-cylinder engine 1 (6-cylinder diesel engine), which includes intake manifolds 3 a and 3 b and an intake pipe 4. The intake manifolds 3a and 3b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the intake strokes do not substantially overlap. The intake pipe 4 is branched on the downstream side of the intercooler 5 and connected to the collective part of the manifolds 3a and 3b. 6a is a compressor of the turbocharger 6, and 7 is an air cleaner.

8はエンジン1の排気通路であり、排気マニホールド9a,9bと排気管10とから構成される。排気マニホールド9a,9bは、排気行程が実質的にオーバラップしない気筒群(#1,2,3と#4,5,6)毎に分割され、これらマニホールド9a,9bの合流部11にターボチャージャ6のタービン6bを介して排気管8が接続される。ターボチャージャ6のコンプレッサ6aは、タービン6bの回転により駆動され、各気筒への吸気を過給する。ターボチャージャ6としては、タービン入口が1つ(シングルエントリ方式)の可変ノズル式が用いられる。12はマフラである。   Reference numeral 8 denotes an exhaust passage of the engine 1 and includes exhaust manifolds 9 a and 9 b and an exhaust pipe 10. The exhaust manifolds 9a and 9b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the exhaust strokes do not substantially overlap, and a turbocharger is formed at the junction 11 of these manifolds 9a and 9b. The exhaust pipe 8 is connected via a turbine 6b. The compressor 6a of the turbocharger 6 is driven by the rotation of the turbine 6b and supercharges intake air to each cylinder. As the turbocharger 6, a variable nozzle type having one turbine inlet (single entry type) is used. 12 is a muffler.

合流部11は、図2のように構成される。排気マニホールド9a,9bは、互いに集合部下流が1つのフランジ20に結集され、その接合面に合流部11を開口する。1つのフランジ20に結集する集合部下流は、合流部11へ向けて通路を先細形状に絞るノズル部23a,23bに形成される。25はタービンハウジングであり、排気マニホールド9a,9bのフランジ20に対応するフランジ26が形成され、タービン6bの入口がフランジ26の接合面に開口する。排気マニホールド9a,9bのフランジ20にタービンハウジング25のフランジ26が連結される。ノズル部23a,23b下流の合流部11を一旦絞ってから徐々に拡げるスロート形状のディフューザ部29がタービンハウジングの内部に形成される。   The junction 11 is configured as shown in FIG. The exhaust manifolds 9a and 9b are gathered together at one flange 20 on the downstream side of the gathering part, and the joining part 11 is opened at the joint surface. The downstream of the gathering portion gathered in one flange 20 is formed in nozzle portions 23 a and 23 b that narrow the passage toward the joining portion 11 in a tapered shape. Reference numeral 25 denotes a turbine housing, in which a flange 26 corresponding to the flange 20 of the exhaust manifolds 9 a and 9 b is formed, and an inlet of the turbine 6 b opens at a joint surface of the flange 26. The flange 26 of the turbine housing 25 is connected to the flange 20 of the exhaust manifolds 9a and 9b. A throat-shaped diffuser portion 29 is formed inside the turbine housing, which once squeezes the merging portion 11 downstream of the nozzle portions 23a and 23b and then gradually expands.

合流部11においては、先細形状のノズル部23a,23bにより、排気の流れが加速され、動圧が上がり、静圧が下げられるため、排気マニホールド9a,9b間を排気パルスが逆流する(排気行程初期の噴き出し排気が一方の排気マニホールド9aまたは9bから他方の排気マニホールド9bまたは9aへ逃げる)のを抑えられるほか、ノズル部23aまたは23bから吹き出るブローダウン流(排気行程初期の噴き出し排気)の流速により、動圧が上がり、静圧が下げられ、エゼクタ作用を生じると、排気(押し出し)行程中の気筒側の排気マニホールド9bまたは9aから排気がディフューザ部29へ吸引されるのである。その後は、ディフューザ部29により、排気の流れが減速され、スクロールの静圧(排気圧)を上げるようになっている。   In the merging portion 11, the flow of exhaust is accelerated by the tapered nozzle portions 23a and 23b, the dynamic pressure is increased, and the static pressure is lowered. Therefore, the exhaust pulse flows back between the exhaust manifolds 9a and 9b (exhaust stroke). In addition to restraining the initial blowout exhaust from escaping from one exhaust manifold 9a or 9b to the other exhaust manifold 9b or 9a), the flow rate of the blowdown flow (pumped exhaust at the beginning of the exhaust stroke) blown out from the nozzle portion 23a or 23b When the dynamic pressure increases, the static pressure decreases, and the ejector action occurs, the exhaust is sucked into the diffuser section 29 from the cylinder side exhaust manifold 9b or 9a during the exhaust (pushing) stroke. Thereafter, the flow of the exhaust is decelerated by the diffuser unit 29, and the static pressure (exhaust pressure) of the scroll is increased.

図1において、35はターボチャージャ6のタービン6b上流からターボチャージャ6のコンプレッサ6a下流へ排気の一部を環流させるEGR装置であり、排気マニホールド9a,9bと吸気マニホールド3a,3b(吸気管4の分岐路)との間を同一の気筒群同士の関係に接続するEGR通路36a,36bが備えられる。EGR通路36a,36bにおいて、EGRガスを冷却するEGRクーラ37,EGR流量を調整するEGRバルブ38,EGRガスの逆流を規制する逆止弁(リードバルブ)39が介装される。逆止弁39は、EGR通路36a,36bの下流側に配置される。逆止弁39上流にEGRバルブ38、その上流にEGRクーラ37、が配置される。EGR通路36a,36bの接続が同一の気筒群同士のため、同一の気筒群に属する各気筒間において、排気行程と吸気行程がオーバラップするので、EGR率の向上を促進しえる。   In FIG. 1, reference numeral 35 denotes an EGR device that circulates part of the exhaust gas from the upstream side of the turbine 6b of the turbocharger 6 to the downstream side of the compressor 6a of the turbocharger 6, and includes exhaust manifolds 9a and 9b and intake manifolds 3a and 3b (intake pipe 4 EGR passages 36a and 36b are provided for connecting the same cylinder group to each other. In the EGR passages 36a and 36b, an EGR cooler 37 for cooling the EGR gas, an EGR valve 38 for adjusting the EGR flow rate, and a check valve (reed valve) 39 for regulating the backflow of the EGR gas are interposed. The check valve 39 is disposed downstream of the EGR passages 36a and 36b. An EGR valve 38 is disposed upstream of the check valve 39 and an EGR cooler 37 is disposed upstream thereof. Since the EGR passages 36a and 36b are connected to each other in the same cylinder group, the exhaust stroke and the intake stroke overlap between the cylinders belonging to the same cylinder group, so that the EGR rate can be improved.

吸気管4の分岐路において、吸気マニホールド3a,3bの集合部入口とその上流の分岐部41(分岐点)との間が共鳴管40a,40b(吸気脈動の増幅および吸気脈動の位相を制御する手段)に構成される。共鳴管40a,40bの長さLは、以下の条件を満足するように設定される。   In the branch path of the intake pipe 4, the resonance pipes 40a and 40b (amplification of the intake pulsation and the phase of the intake pulsation are controlled between the inlet portion of the intake manifolds 3a and 3b and the upstream branch 41 (branch point). Means). The length L of the resonance tubes 40a and 40b is set so as to satisfy the following conditions.

Figure 2007218171
Figure 2007218171

共鳴回転数NR1は、f/mと比例関係にあり、共鳴周派数fは、{A/(LV)}1/2と比例関係にあり、Lを大きく設定すると、共鳴回転速度NR1が低速側となる一方、Lを小さく設定すると、共鳴回転速度NR1が高速側となる。この場合、共鳴回転速度NR1は、共鳴管40a,40bの長さLにより、EGRが困難な運転領域(ターボチャージャ効率が最大およびその近辺になり、タービン入口圧よりもコンプレッサ出口圧の方が高くなる)に設定される。エンジン最高トルク点でターボチャージャ効率が最大となる場合、共鳴回転速度NR1は、エンジン最高トルク点を含む中速域に設定する。 The resonance speed N R1 is proportional to f / m, the resonance frequency f is proportional to {A / (LV)} 1/2 , and when L is set large, the resonance speed N R1 On the other hand, when L is set small, the resonance rotational speed N R1 becomes the high speed side. In this case, the resonance rotational speed N R1 is determined by the length L of the resonance tubes 40a and 40b, so that the EGR is difficult (the turbocharger efficiency becomes maximum and the vicinity thereof, and the compressor outlet pressure is higher than the turbine inlet pressure). Higher). When the turbocharger efficiency is maximized at the engine maximum torque point, the resonance rotational speed N R1 is set to a medium speed range including the engine maximum torque point.

EGR通路36a,36bは、共鳴管40a,40bの下流側(吸気マニホールド3a,3bの集合部入口に出来るだけ近づく位置)に接続される。共鳴管40a,40bにおいて、共鳴回転数NR1をこれよりも高速側の共鳴回転数NR2またはその逆に切り替えるため、EGR通路36a,36bとの接続部42上流(共鳴管40a,40bが共鳴回転数NR2に対応する長さL’となる部位)を互いに接続する通路50と、これを開閉するバルブ51と、が設けられる。 The EGR passages 36a and 36b are connected to the downstream side of the resonance tubes 40a and 40b (positions as close as possible to the inlets of the collecting portions of the intake manifolds 3a and 3b). In the resonance tubes 40a and 40b, in order to switch the resonance rotation speed N R1 to the resonance rotation speed N R2 on the higher speed side or vice versa, upstream of the connection portion 42 with the EGR passages 36a and 36b (the resonance tubes 40a and 40b are resonant). A passage 50 that connects a portion having a length L ′ corresponding to the rotational speed N R2 ) and a valve 51 that opens and closes the passage 50 are provided.

開閉バルブ51が閉弁状態の場合、共鳴管40a,40bは長さLとなり、エンジン回転数がLに対応する共鳴回転数NR1と等しくなると、共鳴作用により、吸気脈動が増幅される。開閉バルブ51が開弁すると、共鳴管40a,40bは長さL’となり、エンジン回転数がL’に対応する共鳴回転数NR2と等しくなると、共鳴作用により、吸気脈動が増幅される。共鳴管40a,40bの長さL’に対応する共鳴回転数NR2は、共鳴管40a,40bの長さLに対応する共鳴回転数NR1よりも高速側に設定のため、共鳴回転数NR1よりも高速側においても、共鳴作用により、後述のようにEGR率を最大限に高められるのである。 When the on-off valve 51 is in the closed state, the resonance tubes 40a and 40b have a length L, and when the engine speed becomes equal to the resonance speed N R1 corresponding to L, the intake pulsation is amplified by the resonance action. When the on-off valve 51 is opened, the resonance tubes 40a and 40b have a length L ′, and when the engine speed becomes equal to the resonance speed N R2 corresponding to L ′, the intake pulsation is amplified by the resonance action. The resonance speed N R2 corresponding to the length L ′ of the resonance tubes 40a, 40b is set at a higher speed than the resonance speed N R1 corresponding to the length L of the resonance tubes 40a, 40b. Even at a higher speed side than R1 , the EGR rate can be maximized by the resonance action as will be described later.

図1において、55はタービン6bの可変ノズル機構(図示せず),EGR通路36a,36bのEGRバルブ38,通路50の開閉バルブ51を制御するコントロールユニットであり、制御に必要な運転状態の検出手段として、エンジン回転数をフライホイール回転から検出するエンジン回転センサ56と、エンジン負荷をアクセル開度(ペダル操作量)から検出するエンジン負荷センサ57と、が備えられる。   In FIG. 1, reference numeral 55 denotes a control unit that controls a variable nozzle mechanism (not shown) of the turbine 6b, an EGR valve 38 of the EGR passages 36a and 36b, and an open / close valve 51 of the passage 50, and detects an operating state necessary for the control. As means, an engine rotation sensor 56 for detecting the engine speed from the flywheel rotation and an engine load sensor 57 for detecting the engine load from the accelerator opening (the pedal operation amount) are provided.

図6は、コントロールユニット55の制御内容を説明するフローチャートチャートであり、S1およびS2においては、エンジン回転数の検出値およびエンジン負荷(アクセル開度)の検出値を読み込む。S3〜S5においては、これらの検出値に基づいて、可変ノズル機構,EGRバルブ38,開閉バルブ51を順次に制御する。図3〜図5は、コントロールユニット55の制御特性を例示するものであり、S3においては、エンジン回転数の検出値とエンジン負荷の検出値とから図3に基づいてターボチャージャ6のタービンノズル開度を制御する。S4においては、エンジン回転数の検出値とエンジン負荷の検出値とから図4に基づいてEGRバルブ38の開度を制御する。S5においては、エンジン回転数の検出値から図5に基づいて開閉バルブ51のON-OFF(切り替え)を制御するのである。図5において、開閉バルブ51は、エンジン回転数の検出値が設定値N0以上になると開弁する一方、エンジン回転数の検出値が設定値N0よりも低い設定値以下になると閉弁するように制御される。 FIG. 6 is a flowchart illustrating the control contents of the control unit 55. In S1 and S2, a detected value of the engine speed and a detected value of the engine load (accelerator opening) are read. In S3 to S5, the variable nozzle mechanism, the EGR valve 38, and the open / close valve 51 are sequentially controlled based on these detected values. 3 to 5 illustrate control characteristics of the control unit 55. In S3, the turbine nozzle opening of the turbocharger 6 is determined based on FIG. 3 from the detected value of the engine speed and the detected value of the engine load. Control the degree. In S4, the opening degree of the EGR valve 38 is controlled based on the detected value of the engine speed and the detected value of the engine load based on FIG. In S5, ON / OFF (switching) of the on-off valve 51 is controlled based on the detected value of the engine speed based on FIG. In FIG. 5, the opening / closing valve 51 opens when the detected value of the engine speed becomes equal to or higher than the set value N 0 , while closing when the detected value of the engine speed becomes lower than the set value lower than the set value N 0. To be controlled.

このような構成にすると、シングルエントリ方式のターボチャージャ6においても、先細形状のノズル23a,23bにより、排気パルスの逆流が抑えられ、合流部11のエゼクタ作用により、タービン6bへの排気パルスは強められるため、タービン効率の向上が得られる。また、排気パルスの逆流が抑えられるので、EGR通路36a,36bの逆止弁39へ排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、高いEGR率が得られるのである。また、合流部11のエゼクタ作用により、排気(押し出し)行程中の気筒側の排気マニホール圧が低下するため、ポンピングロスの改善も得られる。   With such a configuration, even in the single entry type turbocharger 6, the backflow of the exhaust pulse is suppressed by the tapered nozzles 23 a and 23 b, and the exhaust pulse to the turbine 6 b is strengthened by the ejector action of the merging portion 11. Therefore, the turbine efficiency can be improved. In addition, since the back flow of the exhaust pulse is suppressed, the exhaust pulse is transmitted to the check valve 39 in the EGR passages 36a and 36b without being weakened, and the check valve 39 is effectively operated, so that a high EGR rate is obtained. is there. Further, the exhaust manifold pressure on the cylinder side during the exhaust (push-out) stroke is reduced by the ejector action of the merging portion 11, so that the pumping loss can be improved.

開閉バルブ51の閉弁状態において、エンジン回転数が吸気系の共鳴回転数と等しくなると、共鳴作用により、吸気脈動が増幅される。吸気脈動の谷は、吸気行程の中頃で生じるが、吸気脈動の振幅が大きいため、排気圧との十分な落差が得られ、EGR率が最大限に高められる。共鳴回転数よりも低速側においては、吸気脈動の位相が進み、吸気脈動の谷が排気パルスの山(排気行程初期の排気噴き出し中に生じる)に近づくので、十分に高いEGR率が得られる(図10,図11、参照)。共鳴回転数よりも高速側においては、吸気脈動の位相が遅れ、吸気脈動の谷は排気パルスの山から離れるが、吸気脈動の振幅が大きいので、EGR率は若干に留まるものの、低下する傾向がある(図14,図15、参照)。   In the closed state of the on-off valve 51, when the engine speed becomes equal to the resonance speed of the intake system, the intake pulsation is amplified by the resonance action. The valley of the intake pulsation occurs in the middle of the intake stroke, but since the amplitude of the intake pulsation is large, a sufficient drop from the exhaust pressure is obtained and the EGR rate is maximized. On the lower speed side than the resonance rotational speed, the phase of the intake pulsation advances, and the valley of the intake pulsation approaches the peak of the exhaust pulse (which occurs during exhaust ejection at the beginning of the exhaust stroke), so a sufficiently high EGR rate is obtained ( (See FIGS. 10 and 11). On the higher speed side than the resonance rotational speed, the phase of the intake pulsation is delayed, and the valley of the intake pulsation moves away from the peak of the exhaust pulse, but the amplitude of the intake pulsation is large, so the EGR rate tends to decrease although it stays slightly. Yes (see FIGS. 14 and 15).

エンジン回転数が設定値N0以上になると、開閉バルブ51の開弁により、共鳴管40a,40bが長さL’となり、共鳴回転数NR2が設定されるため、共鳴回転数NR1よりも高速側においても、共鳴作用により、吸気脈動が増幅され、位相の遅れも生じない。吸気脈動の山は、吸気行程の中頃で生じるが、吸気脈動の増幅により、EGR率が最大限に高められるのである(図12,図13、参照)。 When the engine speed reaches the set value N 0 or more, the opening of the opening and closing valve 51, resonance tube 40a, because 40b length L ', and the resonance rotation speed N R2 is set, than the resonance rotational speed N R1 Even on the high speed side, the intake pulsation is amplified by the resonance action, and no phase delay occurs. The peak of the intake pulsation occurs in the middle of the intake stroke, but the EGR rate is maximized by the amplification of the intake pulsation (see FIGS. 12 and 13).

排気パルスの逆流を防止する手段およびこれに伴う排気のエゼクタ効果のほか、吸気脈動の増幅および吸気脈動の位相を制御する手段,吸気系の共鳴回転数を可変とする手段により、広い運転領域(低速域〜高速域)において、逆止弁39前後の瞬間的な差圧を効果的に拡大させることができる。また、可変ノズル式ターボチャージャ6の制御特性(図3、参照)と共にEGRバルブ38の制御特性(図4、参照)も働くため、低速高負荷域においても、高過給と大量EGRが可能となり、排気対策(NOxやPMの低減)および出力・燃費の向上を大きく促進しえるのである。   In addition to means for preventing the backflow of the exhaust pulse and the exhaust ejector effect associated therewith, the means for controlling the amplification of the intake pulsation and the phase of the intake pulsation, and the means for changing the resonance rotational speed of the intake system, In the low speed range to the high speed range, the instantaneous differential pressure before and after the check valve 39 can be effectively increased. In addition, since the control characteristics of the EGR valve 38 (see FIG. 4) work together with the control characteristics of the variable nozzle turbocharger 6 (see FIG. 3), high supercharging and large amount of EGR are possible even in the low speed and high load range. It can greatly promote exhaust measures (reduction of NOx and PM) and improvement of output and fuel consumption.

図10,図11は、低速域(開閉バルブが閉弁状態)、図12,図13は、中速域(開閉バルブが閉弁状態)〜高速域(開閉バルブが開弁状態)、図14,図15は、高速域(開閉バルブが閉弁状態)、のシミュレーション結果を例示する。   10 and 11 show a low speed range (open / close valve is closed), and FIGS. 12 and 13 show a medium speed range (open / close valve is closed) to a high speed range (open / close valve is open), FIG. , FIG. 15 exemplifies a simulation result in a high speed range (the on-off valve is in a closed state).

EGR通路36a,36bにおいて、EGRクーラ37の下流側にEGRバルブ38および逆止弁39(リードバルブ)を配置するので、これらバルブの耐久性も良好に確保される。ディフューザ部29は、タービンハウジング25と一体に形成するのでなく、図16のように別体のスペーサとしてタービンハウジング25のフランジ26と排気マニホールド9a,9bのフランジ20との間に介装してもよい。先細形状のノズル部23a,23bについても、排気マニホールド9a,9bと一体に形成するのでなく、図17のように別体のスペーサとして排気マニホールド9a,9bのフランジ20とタービンハウジング25のフランジ30との間に介装してもよい。   In the EGR passages 36a and 36b, since the EGR valve 38 and the check valve 39 (reed valve) are arranged on the downstream side of the EGR cooler 37, the durability of these valves is also ensured. The diffuser portion 29 is not formed integrally with the turbine housing 25 but may be interposed between the flange 26 of the turbine housing 25 and the flange 20 of the exhaust manifolds 9a and 9b as a separate spacer as shown in FIG. Good. The tapered nozzle portions 23a and 23b are not formed integrally with the exhaust manifolds 9a and 9b. As shown in FIG. 17, the flanges 20 of the exhaust manifolds 9a and 9b and the flange 30 of the turbine housing 25 are provided as separate spacers. You may interpose between.

開閉バルブ51の制御特性については、エンジン負荷とエンジン回転数と、をパラメータとして図7のように設定することも考えられる。その場合、高負荷域においては、開閉バルブ51のON-OFF(切り替え)により、EGR率は、図9のA線のように向上する。低負荷〜中負荷においては、開閉バルブ51のON-OFF(切り替え)により、EGR率は、図8のB線のように向上する。図8,図9において、C線,D線は、共鳴回転数NR1が固定の場合、E線,F線は、共鳴回転数NR2が固定の場合、のEGR率の変化を例示する。 Regarding the control characteristics of the on-off valve 51, it may be possible to set the engine load and the engine speed as parameters as shown in FIG. In that case, in the high load region, the EGR rate is improved as indicated by line A in FIG. 9 by turning on and off the switching valve 51. In a low load to a medium load, the EGR rate is improved as indicated by line B in FIG. 8 and 9, the C line and the D line illustrate the change in the EGR rate when the resonance speed N R1 is fixed, and the E line and the F line illustrate the change in the EGR rate when the resonance speed N R2 is fixed.

この発明の実施形態を係る全体的な概略構成図である。1 is an overall schematic configuration diagram according to an embodiment of the present invention. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold. タービンノズルの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a turbine nozzle. EGRバルブの制御内容を説明する特性図である。It is a characteristic figure explaining the control contents of an EGR valve. 開閉バルブの制御内容を説明する特性図である。It is a characteristic view explaining the control content of an on-off valve. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. 開閉バルブの制御内容を説明する特性図である。It is a characteristic view explaining the control content of an on-off valve. 開閉バルブの制御に係る低負荷域〜中負荷域のEGR特性図である。It is an EGR characteristic view of a low load region to a medium load region related to control of the on-off valve. 開閉バルブの制御に係る高負荷域のEGR特性図である。FIG. 6 is an EGR characteristic diagram in a high load range related to control of the on-off valve. 低速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of the intake-exhaust pulsation of a low speed area. 低速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the EGR flow rate in a low speed region. 中高速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of the intake-exhaust pulsation of a medium-high speed range. 中高速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of the EGR flow rate in the middle and high speed range. 高速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the intake-exhaust pulsation of a high speed region. 高速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the EGR flow rate in a high speed region. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold.

符号の説明Explanation of symbols

1 多気筒エンジン(6気筒ディーゼルエンジン)
2 吸気通路
3a,3b 吸気マニホールド
5 インタクーラ
6 ターボチャージャ(可変ノズル式ターボチャージャ)
6a コンプレッサ
6b タービン
8 排気通路
9a,9b 排気マニホールド
23a,23b 先細形状のノズル部
25 タービンハウジング
29 スロート形状のディフューザ部
35 EGR装置
37 EGRクーラ
38 EGRバルブ
39 逆止弁(リードバルブ)
40a,40b 共鳴管
41 吸気管の分岐点
42 EGR通路と共鳴管との接続部
50 共鳴管間を結ぶ通路
51 開閉バルブ
55 コントロールユニット
56 エンジン回転センサ
57 エンジン負荷センサ
1 Multi-cylinder engine (6-cylinder diesel engine)
2 Intake passage 3a, 3b Intake manifold 5 Intercooler 6 Turbocharger (variable nozzle type turbocharger)
6a Compressor 6b Turbine 8 Exhaust passages 9a, 9b Exhaust manifolds 23a, 23b Tapered nozzle part 25 Turbine housing 29 Throat diffuser part 35 EGR device 37 EGR cooler 38 EGR valve 39 Check valve (reed valve)
40a, 40b Resonance pipe 41 Branch point of intake pipe 42 Connection portion between EGR passage and resonance pipe 50 Passage connecting resonance pipes 51 Open / close valve 55 Control unit 56 Engine rotation sensor 57 Engine load sensor

Claims (8)

ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールドと、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールドと、これら排気マニホールドの合流部を排気パルスが逆流するのを防止する手段と、吸気脈動の増幅および吸気脈動の位相を制御する手段として吸気通路の分岐部と各吸気マニホールドの集合部との間を連結する共鳴管と、これら共鳴管と排気マニホールドとの間を同一の気筒群同士の関係に接続するEGR通路と、吸気系の共鳴回転数を可変とする手段、を備えたことを特徴とする多気筒エンジン。   In a multi-cylinder engine equipped with a turbocharger, an exhaust manifold that is divided for each cylinder group in which the exhaust strokes do not overlap, an intake manifold that is divided for each cylinder group in which the intake strokes do not overlap, and a joining portion of these exhaust manifolds A means for preventing the exhaust pulse from flowing backward, a resonance pipe connecting the branch portion of the intake passage and the collection portion of each intake manifold as means for controlling the amplification of the intake pulsation and the phase of the intake pulsation, and these resonances A multi-cylinder engine comprising an EGR passage that connects a pipe and an exhaust manifold in the same cylinder group relationship, and means for varying a resonance rotational speed of an intake system. 各共鳴管の長さLは、以下の条件を満足するように設定したことを特徴とする請求項1に記載の多気筒エンジン。
Figure 2007218171
The multi-cylinder engine according to claim 1, wherein the length L of each resonance tube is set so as to satisfy the following conditions.
Figure 2007218171
共鳴回転速度NR1は、タービン入口圧よりもコンプレッサ出口圧が高くなる運転領域に設定したことを特徴とする請求項2に記載の多気筒エンジン。 The multi-cylinder engine according to claim 2, wherein the resonance rotational speed N R1 is set in an operation region where the compressor outlet pressure is higher than the turbine inlet pressure. 吸気系の共鳴回転数を可変とする手段は、共鳴管の長さLに拠る共鳴回転速度NR1を高速側の共鳴回転数NR2またはその逆に切り替えるべくEGR通路との接続部上流で各共鳴管が共鳴回転数NR2に対応する長さL’となる部位の共鳴管を相互に結ぶ通路を開閉するバルブと、を備えたことを特徴とする請求項2に記載の多気筒エンジン。 Means for the resonance rotational speed of the intake system is variable, each of the connection portions upstream of the EGR passage to switch the resonance rotational speed N R1 with respect to the length L of the resonance tube resonance rotational speed N R2 or vice versa fast side The multi-cylinder engine according to claim 2, further comprising: a valve that opens and closes a passage that connects the resonance tubes of a portion having a length L 'corresponding to the resonance rotational speed N R2 . 吸気系の共鳴回転数を可変とする手段は、開閉バルブを運転状態に基づいて制御する手段と、を備えたことを特徴とする請求項4に記載の多気筒エンジン。   5. The multi-cylinder engine according to claim 4, wherein the means for changing the resonance rotational speed of the intake system includes means for controlling the open / close valve based on an operating state. 排気マニホールドの合流部を排気パルスが逆流するのを防止する手段として、各排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部を備えたことを特徴とする請求項1に記載の多気筒エンジン。   2. A means for preventing a backflow of exhaust pulses from flowing into the merged portion of the exhaust manifold, further comprising a nozzle portion that narrows the downstream of the collective portion of each exhaust manifold toward the merged portion. The multi-cylinder engine described in 1. ターボチャージャとして可変ノズル式を用いて吸気通路の分岐部上流にコンプレッサを介装する一方、このターボチャージャのタービンを排気マニホールドの合流部に連結したことを特徴とする請求項1に記載の多気筒エンジン。   The multi-cylinder according to claim 1, wherein a variable nozzle type is used as a turbocharger and a compressor is interposed upstream of a branch portion of the intake passage, while a turbine of the turbocharger is connected to a merging portion of an exhaust manifold. engine. 各EGR通路は、逆止弁の上流にEGRバルブ、その上流にEGRクーラ、を備えたことを特徴とする請求項1に記載の多気筒エンジン。   2. The multi-cylinder engine according to claim 1, wherein each EGR passage includes an EGR valve upstream of the check valve and an EGR cooler upstream thereof.
JP2006039601A 2006-02-16 2006-02-16 Multi-cylinder engine Active JP4628279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039601A JP4628279B2 (en) 2006-02-16 2006-02-16 Multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039601A JP4628279B2 (en) 2006-02-16 2006-02-16 Multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007218171A true JP2007218171A (en) 2007-08-30
JP4628279B2 JP4628279B2 (en) 2011-02-09

Family

ID=38495731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039601A Active JP4628279B2 (en) 2006-02-16 2006-02-16 Multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4628279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100451A2 (en) * 2008-02-08 2009-08-13 Cummins, Inc. Apparatus, system, and method for efficiently operating an internal combustion engine utilizing exhaust gas recirculation
JP2013087752A (en) * 2011-10-21 2013-05-13 Hino Motors Ltd Egr device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360066U (en) * 1986-10-07 1988-04-21
JPH04164122A (en) * 1990-05-17 1992-06-09 Mazda Motor Corp Intake device of engine
JPH08291713A (en) * 1995-04-20 1996-11-05 Mazda Motor Corp Engine having mechanical supercharger
JP2000249004A (en) * 1999-03-02 2000-09-12 Isuzu Motors Ltd Egr device provided with reed valve
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360066U (en) * 1986-10-07 1988-04-21
JPH04164122A (en) * 1990-05-17 1992-06-09 Mazda Motor Corp Intake device of engine
JPH08291713A (en) * 1995-04-20 1996-11-05 Mazda Motor Corp Engine having mechanical supercharger
JP2000249004A (en) * 1999-03-02 2000-09-12 Isuzu Motors Ltd Egr device provided with reed valve
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100451A2 (en) * 2008-02-08 2009-08-13 Cummins, Inc. Apparatus, system, and method for efficiently operating an internal combustion engine utilizing exhaust gas recirculation
WO2009100451A3 (en) * 2008-02-08 2009-11-12 Cummins, Inc. Apparatus, system, and method for efficiently operating an internal combustion engine utilizing exhaust gas recirculation
US8316829B2 (en) 2008-02-08 2012-11-27 Cummins Ip, Inc. Apparatus, system, and method for efficiently operating an internal combustion engine utilizing exhaust gas recirculation
CN101970845B (en) * 2008-02-08 2013-12-18 卡明斯公司 Apparatus, system, and method utilizing exhaust gas recirculation
JP2013087752A (en) * 2011-10-21 2013-05-13 Hino Motors Ltd Egr device

Also Published As

Publication number Publication date
JP4628279B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4965870B2 (en) Multi-cylinder engine
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
US7311090B2 (en) Engine exhaust gas passage flow orifice and method
JP2005147011A (en) Exhaust gas recirculation system for turbo supercharged engine
JP2007231906A (en) Multi-cylinder engine
JP2005147010A (en) Exhaust gas reflux device for turbosupercharging engine
JP2000249004A (en) Egr device provided with reed valve
JP4713406B2 (en) Multi-cylinder engine
JP2007127070A (en) Internal combustion engine with supercharger
JP4628279B2 (en) Multi-cylinder engine
JP4799435B2 (en) Multi-cylinder engine
JP2009097336A (en) Supercharging device for in-line four cylinder engine
JP2007211603A (en) Multi-cylinder engine
JP4778311B2 (en) Multi-cylinder engine
JP4637779B2 (en) Multi-cylinder engine
JP5280113B2 (en) Exhaust gas recirculation device in a multi-cylinder internal combustion engine
JP4741379B2 (en) Multi-cylinder engine
JP4359583B2 (en) Multi-cylinder engine
JP2007327382A (en) Multicylinder engine and its egr cooler
JP2007198342A (en) Multicylinder engine
JP4827757B2 (en) Multi-cylinder engine
JP2007218167A (en) Multicylinder engine and egr cooler
JP5595018B2 (en) EGR device
JP2007064042A (en) Multiple cylinder engine
JP5670170B2 (en) Supercharged multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250