JP2007263017A - Multiple cylinder engine - Google Patents

Multiple cylinder engine Download PDF

Info

Publication number
JP2007263017A
JP2007263017A JP2006090325A JP2006090325A JP2007263017A JP 2007263017 A JP2007263017 A JP 2007263017A JP 2006090325 A JP2006090325 A JP 2006090325A JP 2006090325 A JP2006090325 A JP 2006090325A JP 2007263017 A JP2007263017 A JP 2007263017A
Authority
JP
Japan
Prior art keywords
intake
exhaust
egr
resonance
cylinder engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090325A
Other languages
Japanese (ja)
Other versions
JP4637779B2 (en
Inventor
Shuichi Nakamura
秀一 中村
Kenichiro Imaoka
健一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2006090325A priority Critical patent/JP4637779B2/en
Publication of JP2007263017A publication Critical patent/JP2007263017A/en
Application granted granted Critical
Publication of JP4637779B2 publication Critical patent/JP4637779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize high charging/great quantity EGR in a wide operation range to accelerate reduction of NOx and improvement of output/fuel economy in a multiple cylinder engine provided with a turbocharger. <P>SOLUTION: This engine is provided with exhaust manifolds 9a, 9b divided to each group of cylinders in which exhaust strokes do not overlap, exhaust ejectors 23a, 23b narrowing a downstream part of a collection part of each exhaust manifold in a tapered shape toward a turbine inlet of a turbo charger 6, intake manifolds 3a, 3b divided to each group of cylinders in which intake strokes do not overlap, intake resonance pipes 40a, 40b established between the collection part of each manifold and a branch part of an intake pipe, EGR passages 36a, 36b connecting a downstream end part of the intake resonance pipe and the collection part of the exhaust manifold, and a check valve 39 installed in the EGR passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ターボチャージャを備える多気筒エンジンにおいて、NOxの低減および出力・燃費の向上を実現するための技術に関する。   The present invention relates to a technique for reducing NOx and improving output and fuel consumption in a multi-cylinder engine equipped with a turbocharger.

エンジンのEGR(Exhaust Gas Recirculation)システムとして、排気系から吸気系へ排気の一部を環流させるものがよく採用される。このようなEGRシステムにおいては、ターボチャージャのタービン上流からコンプレレッサ下流へ排気を環流させる場合、過給圧が排気圧よりも高くなる運転領域が生じやすく、EGRが十分に得られない。そのため、リードバルブ(逆止弁)により排気脈動(排気パルス)を利用してEGRを行う方式(特許文献1,特許文献4)、混合区間を用いてそれ以降のEGR通路の静圧を高めるようにしたもの(特許文献2)、内部EGR(排気弁を開いて吸気行程中の気筒へ排気の一部を流入させる)を用いる方式(特許文献3)、が知られている。
特開2000−249004号 特開2003−534488号 特開2001−107810号 実開昭63−060066号
As an engine EGR (Exhaust Gas Recirculation) system, a system that circulates part of the exhaust from the exhaust system to the intake system is often used. In such an EGR system, when exhaust gas is circulated from the turbine upstream of the turbocharger to the compressor downstream, an operation region in which the supercharging pressure becomes higher than the exhaust pressure is likely to occur, and sufficient EGR cannot be obtained. Therefore, a method of performing EGR using exhaust pulsation (exhaust pulse) with a reed valve (check valve) (Patent Document 1, Patent Document 4), and using a mixing section to increase the static pressure in the subsequent EGR passage (Patent Document 2), and a system (Patent Document 3) using an internal EGR (opening an exhaust valve to allow a part of exhaust gas to flow into a cylinder in an intake stroke) is known.
JP 2000-249004 JP 2003-534488 A JP 2001-107810 A Japanese Utility Model Sho 63-060066

特許文献1,特許文献2の場合、分割型の排気マニホールドに接続されるターボチャージャがシングルエントリ方式(タービン入口が1つ)の場合、排気噴き出し中の気筒側の排気マニホールドから排気(押し出し)行程中の排気マニホールドへ排気パルス(排気脈動)が逃げやすく、EGR率の向上に排気パルスを十分に利用しえない。特許文献3の場合、排気(EGRガス)の冷却が行えないのである。特許文献4においては、吸気共鳴管が備えられ、EGR量を増やすのに吸気絞りが行われるため、ポンピングロスの悪化が問題となる。   In the case of Patent Document 1 and Patent Document 2, when the turbocharger connected to the split-type exhaust manifold is of a single entry system (one turbine inlet), the exhaust (push-out) stroke is performed from the exhaust manifold on the cylinder side during exhaust ejection. The exhaust pulse (exhaust pulsation) easily escapes to the exhaust manifold inside, and the exhaust pulse cannot be fully used to improve the EGR rate. In the case of Patent Document 3, the exhaust (EGR gas) cannot be cooled. In Patent Document 4, an intake resonance pipe is provided, and intake throttling is performed to increase the EGR amount. Therefore, deterioration of pumping loss becomes a problem.

この発明は、このような課題を解決するため、ターボチャージャを備える多気筒エンジンにおいて、NOxの低減および出力・燃費の向上を促進するべく、広い運転領域において、高過給・大量EGRを実現しえる手段の提供を目的とする。   In order to solve such problems, the present invention achieves high supercharging and mass EGR in a wide operating range in a multi-cylinder engine equipped with a turbocharger in order to promote NOx reduction and output / fuel efficiency improvement. The purpose of this is to provide a means.

第1の発明は、ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、各排気マニホールドの集合部下流をターボチャージャのタービン入口へ向けて先細形状に絞る排気エゼクタ、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールド、各吸気マニホールドの集合部と吸気管の分岐部との間に設定される吸気共鳴管、吸気共鳴管の下流端部と排気マニホールドの集合部との間を接続するEGR通路、EGR通路に介装される逆止弁、を備えたことを特徴とする。   In a first aspect of the present invention, in a multi-cylinder engine having a turbocharger, an exhaust manifold divided for each cylinder group in which the exhaust strokes do not overlap, and a downstream portion of each exhaust manifold is tapered toward a turbine inlet of the turbocharger. The exhaust ejector to be throttled, the intake manifold divided for each cylinder group in which the intake strokes do not overlap, the intake resonance pipe set between the collection part of each intake manifold and the branch part of the intake pipe, the downstream end of the intake resonance pipe And an EGR passage that connects between the exhaust manifold and a collecting portion of the exhaust manifold, and a check valve interposed in the EGR passage.

第2の発明は、第1の発明に係る多気筒エンジンにおいて、各吸気共鳴管の長さLは、以下の条件を満足するように設定したことを特徴とする請求項2に記載の多気筒エンジン。   According to a second aspect of the present invention, in the multi-cylinder engine according to the first aspect, the length L of each intake resonance pipe is set so as to satisfy the following condition. engine.

Figure 2007263017
Figure 2007263017

第3の発明は、第2の発明に係る多気筒エンジンにおいて、共鳴回転速度Nは、タービン入口圧よりもコンプレッサ出口圧が高くなる運転領域に設定したことを特徴とする。   According to a third aspect of the invention, in the multi-cylinder engine according to the second aspect of the invention, the resonance rotational speed N is set in an operating region where the compressor outlet pressure is higher than the turbine inlet pressure.

第4の発明は、第1の発明に係る多気筒エンジンにおいて、EGR通路は、排気マニホールドの集合部と共鳴管の下流端部との間を同一の気筒群同士の関係に接続したことを特徴とする。   According to a fourth aspect of the invention, in the multi-cylinder engine according to the first aspect of the invention, the EGR passage is connected between the collecting portion of the exhaust manifold and the downstream end portion of the resonance pipe in the same relationship between the cylinder groups. And

第5の発明は、第1の発明に係る多気筒エンジンにおいて、EGR通路は、逆止弁の上流にEGRバルブ、その上流にEGRクーラ、を備えたことを特徴とする。   According to a fifth invention, in the multi-cylinder engine according to the first invention, the EGR passage includes an EGR valve upstream of the check valve and an EGR cooler upstream thereof.

第1の発明においては、ターボチャージャがシングルエントリ方式(タービン入口が1つ)の場合においても、排気エゼクタにより、排気の流れが加速され、動圧が上がるため、排気噴き出し中の気筒側の排気マニホールドから排気(押し出し)行程中の気筒側の排気マニホールドへ排気パルスが逃げるのを抑えられ、タービン効率の向上が得られるばかりでなく、EGR通路の逆止弁へ排気パルスが弱められることなく伝えられ、逆止弁を有効に作動させるため、高いEGR率が得られる。また、動圧が上がると、静圧が下がるため、排気(押し出し)行程中の気筒側の排気マニホールドから排気が吸引され、ポンピングロスも低減される。   In the first aspect of the invention, even when the turbocharger is of a single entry system (one turbine inlet), the exhaust flow is accelerated by the exhaust ejector and the dynamic pressure is increased. The exhaust pulse is prevented from escaping from the manifold to the exhaust manifold on the cylinder side during the exhaust (push-out) stroke, and not only the turbine efficiency is improved, but also the exhaust pulse is transmitted to the check valve in the EGR passage without being weakened. In order to operate the check valve effectively, a high EGR rate can be obtained. Further, when the dynamic pressure increases, the static pressure decreases, so that the exhaust is sucked from the cylinder side exhaust manifold during the exhaust (pushing) stroke, and the pumping loss is reduced.

吸気系においては、吸気共鳴管により、吸気脈動の振幅および位相が制御され、逆止弁前後の瞬間的な差圧(吸気圧とこれを超える排気圧との落差)が拡大され、EGR率をさらに一段と向上させることができる。エンジン回転速度が共鳴回転速度(吸気系の固有振動数)と等しくなると、吸気脈動が共鳴して増幅され、逆止弁前後の瞬間的な差圧を拡大させる。共鳴回転速度よりも低速側においては、吸気脈動の位相が進み、吸気脈動の谷が排気パルスの山に近づくため、逆止弁前後の瞬間的な差圧が拡大する。共鳴回転速度よりも高速側においては、吸気脈動の位相が遅れ、吸気行程の後半に吸気脈動の谷が生じるため、逆止弁前後の瞬間的な差圧は若干小さくなるが、吸気行程の前半に吸気脈動の山が生じるので、ポンピングロスが低減されるのである。吸気脈動の振幅は、吸気共鳴管の上流側よりも下流側の方が大きく、EGR通路は吸気共鳴管の下流端部(吸気マニホールドの集合部直上流)に接続されるので、逆止弁前後の瞬間的な差圧を十分に拡大させることができる。   In the intake system, the amplitude and phase of the intake pulsation are controlled by the intake resonance pipe, and the instantaneous differential pressure before and after the check valve (the difference between the intake pressure and the exhaust pressure exceeding this) is expanded, and the EGR rate is increased. This can be further improved. When the engine rotation speed becomes equal to the resonance rotation speed (the natural frequency of the intake system), the intake pulsation is resonated and amplified, increasing the instantaneous differential pressure before and after the check valve. On the lower speed side than the resonance rotational speed, the phase of the intake pulsation advances and the valley of the intake pulsation approaches the peak of the exhaust pulse, so the instantaneous differential pressure before and after the check valve increases. On the higher speed side than the resonance rotational speed, the phase of the intake pulsation is delayed, and an intake pulsation valley occurs in the latter half of the intake stroke, so the instantaneous differential pressure before and after the check valve is slightly reduced, but the first half of the intake stroke As a result, a peak of the intake pulsation is generated, so that the pumping loss is reduced. The amplitude of the intake pulsation is larger on the downstream side than on the upstream side of the intake resonance pipe, and the EGR passage is connected to the downstream end of the intake resonance pipe (immediately upstream of the intake manifold assembly). The instantaneous differential pressure can be sufficiently expanded.

第2の発明においては、共鳴管の長さLは、共鳴回転速度Nがエンジンの使用回転速度域内にあることを条件に設定される。共鳴回転速度Nは、(f/m)と比例関係にあり、共鳴周派数fは、(A/LV)1/2と比例関係にあり、Lを大きく設定すると、共鳴回転速度Nが低速側となる一方、Lを小さく設定すると、共鳴回転速度Nが高速側となる。従って、共鳴管の長さLは、広い運転領域において、EGR率を十分に高める上からは、共鳴回転速度Nが中速域内にあるように設定することが望ましい。 In the second invention, the length L of the resonance tube is set on condition that the resonance rotational speed N is within the operating rotational speed range of the engine. The resonance rotation speed N is proportional to (f / m), the resonance frequency f is proportional to (A / LV) 1/2 , and when L is set large, the resonance rotation speed N is low. On the other hand, when L is set small, the resonance rotational speed N becomes the high speed side. Therefore, the length L of the resonance tube is desirably set so that the resonance rotational speed N is in the middle speed range in order to sufficiently increase the EGR rate in a wide operation range.

第3の発明においては、共鳴作用により、ターボチャージャのタービン入口圧よりもコンプレッサ出口圧が高くなる運転領域において、EGR率が最大限に高められる。エンジン最高トルク点でターボチャージャ効率が最大となる場合、エンジン最高トルク点を含む中速域に共鳴回転速度Nを設定することにより、広い運転領域において、EGR率を十分に高められるのである。   In the third aspect of the invention, the EGR rate is maximized in the operating region where the compressor outlet pressure is higher than the turbine inlet pressure of the turbocharger due to the resonance action. When the turbocharger efficiency is maximized at the engine maximum torque point, the EGR rate can be sufficiently increased in a wide operation range by setting the resonance rotational speed N in the medium speed range including the engine maximum torque point.

第4の発明においては、EGR通路の接続が同一の気筒群同士のため、同一の気筒群に属する各気筒間において、排気行程と吸気行程がオーバラップするので、EGR率の向上を効果的に促進しえる。   In the fourth invention, since the EGR passages are connected to each other in the same cylinder group, the exhaust stroke and the intake stroke overlap between the cylinders belonging to the same cylinder group, so that the EGR rate can be effectively improved. Can promote.

第5の発明においては、EGRガス(排気)は、EGRクーラにより冷却され、EGRバルブおよび逆止弁を流れるため、これらバルブの耐久性を良好に確保することができる。また、排気パルスが逆止弁に到達するまでの時間を稼ぐことにより、吸気脈動の谷の時期と逆止弁上流の排気脈動の山とのタイミングを合わせることができる。   In the fifth invention, since the EGR gas (exhaust gas) is cooled by the EGR cooler and flows through the EGR valve and the check valve, the durability of these valves can be ensured satisfactorily. In addition, by obtaining the time until the exhaust pulse reaches the check valve, the timing of the valley of the intake pulsation and the peak of the exhaust pulsation upstream of the check valve can be matched.

図1において、10は多気筒エンジン1(6気筒ディーゼルエンジン)の吸気通路であり、吸気マニホールド3a,3bと吸気管4とから構成される。吸気マニホールド3a,3bは、吸気行程が実質的にオーバラップしない気筒群毎(#1,2,3と#4,5,6)に分割される。吸気管4は、インタクーラ5の下流側が分岐され、各マニホールド3a,3bの集合部に接続される。6aはターボチャージャ6のコンプレッサであり、7はエアクリーナである。   In FIG. 1, reference numeral 10 denotes an intake passage of a multi-cylinder engine 1 (6-cylinder diesel engine), which includes intake manifolds 3 a and 3 b and an intake pipe 4. The intake manifolds 3a and 3b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the intake strokes do not substantially overlap. The intake pipe 4 is branched on the downstream side of the intercooler 5 and connected to the collective part of the manifolds 3a and 3b. 6a is a compressor of the turbocharger 6, and 7 is an air cleaner.

8はエンジンの排気通路であり、排気マニホールド9a,9bと排気管10とから構成される。排気マニホールド9a,9bは、排気行程が実質的にオーバラップしない気筒群(#1,2,3と#4,5,6)毎に分割され、これらマニホールド9a,9bの合流部11にターボチャージャ6のタービン6bを介して排気管10が接続される。ターボチャージャ6のコンプレッサ6aは、タービン6bの回転により駆動され、各気筒への吸気を過給する。ターボチャージャ6としては、タービン入口が1つの可変ノズル式が採用される。12はマフラである。   Reference numeral 8 denotes an engine exhaust passage, which includes exhaust manifolds 9 a and 9 b and an exhaust pipe 10. The exhaust manifolds 9a and 9b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the exhaust strokes do not substantially overlap, and a turbocharger is formed at the junction 11 of these manifolds 9a and 9b. The exhaust pipe 10 is connected via a turbine 6b. The compressor 6a of the turbocharger 6 is driven by the rotation of the turbine 6b and supercharges intake air to each cylinder. As the turbocharger 6, a variable nozzle type having one turbine inlet is employed. 12 is a muffler.

合流部11は、図2のように構成される。排気マニホールド9a,9bは、互いに集合部下流が1つのフランジ20に結集され、その接合面に合流部11を開口する。1つのフランジ20に結集する集合部下流は、合流部11へ向けて通路を絞る先細形状の排気エゼクタ23a,23bに形成される。25はタービンハウジングであり、排気マニホールド9a,9bのフランジ20に対応するフランジ26が形成され、タービン6bの入口がフランジ26の接合面に開口する。排気マニホールド9a,9bのフランジ20にタービンハウジング25のフランジ26が連結される。排気エゼクタ23a,23b下流の合流部11を一旦絞ってから徐々に拡げるスロート形状のディフューザ部29がタービンハウジング25の内部に形成される。   The junction 11 is configured as shown in FIG. The exhaust manifolds 9a and 9b are gathered together at one flange 20 on the downstream side of the gathering part, and the joining part 11 is opened at the joint surface. The downstream portion of the gathering portion gathered at one flange 20 is formed in tapered exhaust ejectors 23 a and 23 b that narrow the passage toward the joining portion 11. Reference numeral 25 denotes a turbine housing, in which a flange 26 corresponding to the flange 20 of the exhaust manifolds 9 a and 9 b is formed, and an inlet of the turbine 6 b opens at a joint surface of the flange 26. The flange 26 of the turbine housing 25 is connected to the flange 20 of the exhaust manifolds 9a and 9b. A throat-shaped diffuser portion 29 is formed inside the turbine housing 25 that once squeezes the merging portion 11 downstream of the exhaust ejectors 23 a and 23 b and then gradually expands.

合流部11においては、先細形状の排気エゼクタ23a,23bにより、排気の流れが加速され、動圧が上がるため、排気噴き出し中の気筒側の排気マニホールド9aまたは9bから排気(押し出し)行程中の気筒側の排気マニホールド9bまたは9aへ排気が逃げるのを抑えられる。先細形状の排気エゼクタ23a,23bにより、動圧が上がると、静圧が下がるため、排気(押し出し)行程中の気筒側の排気マニホールド9bまたは9aから排気がディフューザ部29へ吸引されるのである。その後は、ディフューザ部29により、動圧が静圧に効率よく変換され、スクロールへの排気圧を高めるようになっている。   In the merging portion 11, the exhaust flow is accelerated by the tapered exhaust ejectors 23 a and 23 b, and the dynamic pressure rises. Therefore, the cylinder in the exhaust (push-out) stroke from the exhaust manifold 9 a or 9 b on the cylinder side that is exhausting the exhaust. The exhaust is prevented from escaping to the side exhaust manifold 9b or 9a. When the dynamic pressure increases by the tapered exhaust ejectors 23a and 23b, the static pressure decreases. Therefore, the exhaust is sucked into the diffuser portion 29 from the cylinder side exhaust manifold 9b or 9a during the exhaust (pushing) stroke. Thereafter, the dynamic pressure is efficiently converted into a static pressure by the diffuser unit 29, and the exhaust pressure to the scroll is increased.

図1において、35はターボチャージャ6のタービン6b上流からターボチャージャ6のコンプレッサ6a下流へ排気の一部を環流させるEGR装置であり、排気マニホールド9a,9bの集合部と吸気管4の分岐路40a,40bとの間を同一の気筒群同士の関係に接続するEGR通路36a,36bが備えられる。EGR通路36a,36bにおいて、EGRガスを冷却するEGRクーラ37,EGR流量を調整するEGRバルブ38,EGRガスの逆流を規制する逆止弁39(リードバルブ)が介装される。逆止弁39は、EGR通路36a,36bの下流側に配置される。逆止弁39上流にEGRバルブ38、その上流にEGRクーラ37、が配置される。EGR通路36a,36bの接続が同一の気筒群同士のため、同一の気筒群に属する各気筒間において、排気行程と吸気行程がオーバラップするので、EGR率の向上を効果的に促進しえる。   In FIG. 1, reference numeral 35 denotes an EGR device that circulates a part of the exhaust gas from the upstream side of the turbine 6b of the turbocharger 6 to the downstream side of the compressor 6a of the turbocharger 6, and a collecting portion 40a of the intake manifolds 9a and 9b , 40b are provided with EGR passages 36a, 36b that connect the same cylinder group to each other. In the EGR passages 36a and 36b, an EGR cooler 37 for cooling the EGR gas, an EGR valve 38 for adjusting the EGR flow rate, and a check valve 39 (reed valve) for regulating the backflow of the EGR gas are interposed. The check valve 39 is disposed downstream of the EGR passages 36a and 36b. An EGR valve 38 is disposed upstream of the check valve 39 and an EGR cooler 37 is disposed upstream thereof. Since the EGR passages 36a and 36b are connected to each other in the same cylinder group, the exhaust stroke and the intake stroke overlap between the cylinders belonging to the same cylinder group, so that the improvement of the EGR rate can be effectively promoted.

吸気管4の分岐路40a,40bにおいて、EGR通路36a,36bの接続部42(出口)とその上流の分岐部41(分岐点)との間が吸気共鳴管(吸気マニホールド3a,3bの吸気脈動の振幅および位相を制御する手段)に設定される。吸気共鳴管40a,40bの長さLは、以下の条件を満足するように設定される。   In the branch passages 40a and 40b of the intake pipe 4, the space between the connection portion 42 (exit) of the EGR passages 36a and 36b and the upstream branch portion 41 (branch point) is the intake resonance pipe (intake pulsation of the intake manifolds 3a and 3b). (Means for controlling the amplitude and phase). The length L of the intake resonance tubes 40a and 40b is set so as to satisfy the following conditions.

Figure 2007263017
Figure 2007263017

共鳴回転速度Nは、(f/m)と比例関係にあり、共鳴周派数fは、(A/LV)1/2と比例関係にあり、Lを大きく設定すると、共鳴回転速度Nが低速側となる一方、Lを小さく設定すると、共鳴回転速度Nが高速側となる。この場合、共鳴回転速度Nは、吸気共鳴管の長さLにより、EGRが困難な運転領域(ターボチャージャ効率が最大およびその付近となり、タービン入口圧よりもコンプレッサ出口圧の方が高くなる)に設定される。エンジン最高トルク点でターボチャージャ効率が最大となる場合、共鳴回転速度Nは、エンジン最高トルク点を含む中速域に設定する。 The resonance rotation speed N is proportional to (f / m), the resonance frequency f is proportional to (A / LV) 1/2 , and when L is set large, the resonance rotation speed N is low. On the other hand, when L is set small, the resonance rotational speed N becomes the high speed side. In this case, the resonance rotational speed N is in an operating region where the EGR is difficult due to the length L of the intake resonance pipe (the turbocharger efficiency is at and near the maximum, and the compressor outlet pressure is higher than the turbine inlet pressure). Is set. When the turbocharger efficiency becomes maximum at the engine maximum torque point, the resonance rotational speed N is set to a medium speed range including the engine maximum torque point.

EGR通路36a,36bは、吸気共鳴管40a,40bの下流端部(吸気マニホールド3a,3bの集合部直上流)に接続される。図3は、吸気振動モードを説明するものであり、吸気脈動の振幅は、吸気共鳴管40a,40bの上流側よりも下流側の方が大きい。吸気共鳴管40a,40bにおいて、吸気脈動の振幅が小さい上流側にEGR通路36a,36bを接続すると、吸気圧とこれを超える排気圧との落差(逆止弁39前後の瞬間的な差圧)が小さく、EGR流量を十分に得られない(図10および図11、参照)。この実施形態においては、EGR通路36a,36bを吸気脈動の振幅が大きい下流端部に接続するので、吸気圧とこれを超える排気圧との落差が大きく、EGR流量を十分に得られるのである(図4〜図11、参照)。図3において、EGR通路36a,36bは、吸気マニホールド3a,3bの集合部入口からL’だけ離れる位置に接続される。L’は出来るだけ小さい方が良い。   The EGR passages 36a and 36b are connected to the downstream ends of the intake resonance tubes 40a and 40b (immediately upstream of the gathered portions of the intake manifolds 3a and 3b). FIG. 3 illustrates the intake vibration mode. The amplitude of the intake pulsation is greater on the downstream side than on the upstream side of the intake resonance tubes 40a and 40b. When the EGR passages 36a and 36b are connected to the upstream side where the amplitude of the intake pulsation is small in the intake resonance pipes 40a and 40b, the difference between the intake pressure and the exhaust pressure exceeding this (the instantaneous differential pressure before and after the check valve 39) The EGR flow rate cannot be obtained sufficiently (see FIGS. 10 and 11). In this embodiment, since the EGR passages 36a and 36b are connected to the downstream end portion where the amplitude of the intake pulsation is large, the difference between the intake pressure and the exhaust pressure exceeding this is large, and the EGR flow rate can be sufficiently obtained ( (See FIGS. 4 to 11). In FIG. 3, the EGR passages 36a and 36b are connected to positions separated by L ′ from the inlets of the collecting portions of the intake manifolds 3a and 3b. L 'should be as small as possible.

このような構成にすると、シングルエントリ方式のターボチャージャ6においても、先細形状の排気エゼクタ23a,23bにより、排気パルスの逆流が抑えられるため、タービン効率の向上が得られる。また、EGR通路36a,36bの逆止弁39へ排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、高いEGR率が得られるのである。また、合流部11のエゼクタ作用により、排気(押し出し)行程中の気筒側の排気マニホールド圧が低下するため、ポンピングロスの改善も得られる。   With such a configuration, even in the single entry type turbocharger 6, the backflow of exhaust pulses can be suppressed by the tapered exhaust ejectors 23 a and 23 b, so that the turbine efficiency can be improved. Further, the exhaust pulse is transmitted to the check valve 39 in the EGR passages 36a and 36b without being weakened, and the check valve 39 is effectively operated, so that a high EGR rate is obtained. In addition, since the exhaust manifold pressure on the cylinder side during the exhaust (pushing) stroke is reduced by the ejector action of the merging portion 11, an improvement in pumping loss can be obtained.

吸気系においては、吸気共鳴管40a,40bにより、吸気脈動の振幅および位相が制御され、逆止弁39前後の瞬間的な差圧が拡大され、EGR率をさらに一段と向上させることができる。   In the intake system, the amplitude and phase of intake pulsation are controlled by the intake resonance tubes 40a and 40b, the instantaneous differential pressure before and after the check valve 39 is expanded, and the EGR rate can be further improved.

エンジン回転速度が共鳴回転速度Nと等しくなると、吸気脈動が共鳴して増幅される。吸気脈動の谷は、吸気行程の中頃に生じるが、吸気脈動が増幅されるため、吸気圧とこれを超える排気圧との落差が拡大される(図6、参照)。このため、ターボチャージャ効率が最大およびその付近となり、タービン入口圧(排気圧)よりもコンプレッサ出口圧(過給圧)の方が高く、従来は、EGRが困難な運転領域において、ターボチャージャ効率を低下させることなく、共鳴作用により、EGR率を最大限に高められる(図7、参照)。   When the engine rotation speed becomes equal to the resonance rotation speed N, the intake pulsation is resonated and amplified. The valley of the intake pulsation occurs in the middle of the intake stroke. However, since the intake pulsation is amplified, the difference between the intake pressure and the exhaust pressure exceeding this is expanded (see FIG. 6). For this reason, the turbocharger efficiency is at and near the maximum, and the compressor outlet pressure (supercharging pressure) is higher than the turbine inlet pressure (exhaust pressure). Conventionally, the turbocharger efficiency is improved in the operation region where EGR is difficult. The resonance effect can maximize the EGR rate without reducing it (see FIG. 7).

共鳴回転速度Nよりも低速側においては、吸気脈動の位相が進み、吸気脈動の谷が排気パルスの山に近づくため、吸気圧とこれを超える排気圧との落差が拡大され、EGR率が十分に高められる(図4および図5、参照)。共鳴回転速度Nよりも高速側においては、吸気脈動の位相が遅れ、吸気行程の後半に吸気脈動の谷が生じるため、EGR率は若干低下する(図8および図9、参照)。高速側においては、吸気行程の前半に吸気脈動の山が生じるので、ポンピングロスが低減されるのである。   On the lower speed side than the resonance rotational speed N, the phase of the intake pulsation advances, and the valley of the intake pulsation approaches the peak of the exhaust pulse, so the difference between the intake pressure and the exhaust pressure exceeding this is expanded, and the EGR rate is sufficient (See FIGS. 4 and 5). On the higher speed side than the resonance rotational speed N, the phase of the intake pulsation is delayed, and the valley of the intake pulsation occurs in the latter half of the intake stroke, so the EGR rate slightly decreases (see FIGS. 8 and 9). On the high speed side, a peak of intake pulsation occurs in the first half of the intake stroke, so that the pumping loss is reduced.

これらの結果、広い運転領域において、ポンピングロスを抑えつつ、高過給と大量EGRが可能となり、NOxの低減および出力・燃費の向上を大いに促進しえる。EGR通路36a,36bの接続部42は、吸気共鳴管40a,40bの下流端部に設定されるので、EGR通路36a,36bを吸気共鳴管40a,40bの上流側に接続する場合に較べると、吸気圧とこれを超える排気圧との落差が大きく、EGR流量を十分に得られるのである。また、共鳴回転速度Nの設定を可変とする手段(たとえば、吸気共鳴管40a,40bの実質的な長さLを可変する手段)を追加すると、高速域(図8および図9、参照)においても、共鳴作用により、吸気脈動の谷が吸気行程の中頃に生じるため、EGR率を十分に向上させることが可能となる。   As a result, it is possible to achieve high supercharging and large-volume EGR while suppressing pumping loss in a wide operating range, which can greatly promote the reduction of NOx and the improvement of output and fuel consumption. Since the connecting portion 42 of the EGR passages 36a and 36b is set at the downstream end of the intake resonance tubes 40a and 40b, compared to the case where the EGR passages 36a and 36b are connected to the upstream side of the intake resonance tubes 40a and 40b, The difference between the intake pressure and the exhaust pressure exceeding this is large, and a sufficient EGR flow rate can be obtained. Further, if a means for changing the setting of the resonance rotational speed N (for example, means for changing the substantial length L of the intake resonance tubes 40a and 40b) is added, in the high speed range (see FIGS. 8 and 9). However, the resonance action causes a valley of the intake pulsation to occur in the middle of the intake stroke, so that the EGR rate can be sufficiently improved.

EGR通路36a,36bにおいて、EGRクーラ37の下流側にEGRバルブ38および逆止弁39(リードバルブ)を配置するので、これらバルブの耐久性も良好に確保される。ディフューザ部29は、タービンハウジング25と一体に形成するのでなく、図12のように別体のスペーサとしてタービンハウジング25のフランジ26と排気マニホールド9a,9bのフランジ20との間に介装してもよい。先細形状の排気エゼクタ23a,23bについても、排気マニホールド9a,9bと一体に形成するのでなく、図13のように別体のスペーサとして排気マニホールド9a,9bのフランジ20とタービンハウジング25のフランジ26との間に介装してもよい。   In the EGR passages 36a and 36b, since the EGR valve 38 and the check valve 39 (reed valve) are arranged on the downstream side of the EGR cooler 37, the durability of these valves is also ensured. The diffuser portion 29 is not formed integrally with the turbine housing 25, but may be interposed between the flange 26 of the turbine housing 25 and the flange 20 of the exhaust manifolds 9a and 9b as a separate spacer as shown in FIG. Good. The tapered exhaust ejectors 23a and 23b are not formed integrally with the exhaust manifolds 9a and 9b. As shown in FIG. 13, the flanges 20 of the exhaust manifolds 9a and 9b and the flange 26 of the turbine housing 25 are provided as separate spacers. You may interpose between.

この発明の実施形態を係る全体的な概略構成図である。1 is an overall schematic configuration diagram according to an embodiment of the present invention. 同じく排気マニホールドの合流部に係る構成図である。It is the block diagram which similarly concerns on the confluence | merging part of an exhaust manifold. 吸気振動モードに係る説明図である。It is explanatory drawing which concerns on an intake vibration mode. 低速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of the intake-exhaust pulsation of a low speed area. 低速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the EGR flow rate in a low speed region. 中速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of the intake-exhaust pulsation of a medium speed range. 中速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the EGR flow rate in the medium speed range. 高速域の吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the intake-exhaust pulsation of a high speed region. 高速域のEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic diagram which illustrates the simulation result of the EGR flow rate in a high speed region. 比較例として吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of intake and exhaust pulsation as a comparative example. 比較例としてEGR流量のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of an EGR flow rate as a comparative example. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold.

符号の説明Explanation of symbols

1 多気筒エンジン(6気筒ディーゼルエンジン)
2 吸気通路
3a,3b 吸気マニホールド
5 インタクーラ
6 ターボチャージャ(可変ノズル式ターボチャージャ)
6a コンプレッサ
6b タービン
8 排気通路
9a,9b 排気マニホールド
23a,23b 先細形状のノズル部
25 タービンハウジング
29 スロート形状のディフューザ部
35 EGR装置
37 EGRクーラ
38 EGRバルブ
39 逆止弁(リードバルブ)
40a,40b 共鳴管
41 吸気管の分岐点
42 EGR通路の出口(接続部)
1 Multi-cylinder engine (6-cylinder diesel engine)
2 Intake passage 3a, 3b Intake manifold 5 Intercooler 6 Turbocharger (variable nozzle type turbocharger)
6a Compressor 6b Turbine 8 Exhaust passages 9a, 9b Exhaust manifolds 23a, 23b Tapered nozzle part 25 Turbine housing 29 Throat diffuser part 35 EGR device 37 EGR cooler 38 EGR valve 39 Check valve (reed valve)
40a, 40b Resonant pipe 41 Branch point of intake pipe 42 EGR passage outlet (connecting portion)

Claims (5)

ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、各排気マニホールドの集合部下流をターボチャージャのタービン入口へ向けて先細形状に絞る排気エゼクタ、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールド、各吸気マニホールドの集合部と吸気管の分岐部との間に設定される吸気共鳴管、吸気共鳴管の下流端部と排気マニホールドの集合部との間を接続するEGR通路、EGR通路に介装される逆止弁、を備えたことを特徴とする多気筒エンジン。   In a multi-cylinder engine equipped with a turbocharger, an exhaust manifold divided for each cylinder group in which the exhaust strokes do not overlap, an exhaust ejector that narrows the downstream of the collection portion of each exhaust manifold toward the turbine inlet of the turbocharger, and an intake stroke Intake manifolds divided for each cylinder group that do not overlap, intake resonance pipes set between the collection parts of the intake manifolds and branch parts of the intake pipes, the downstream ends of the intake resonance pipes and the collection parts of the exhaust manifolds A multi-cylinder engine comprising: an EGR passage connecting between the two and a check valve interposed in the EGR passage. 各吸気共鳴管の長さLは、以下の条件を満足するように設定したことを特徴とする請求項1に記載の多気筒エンジン。
Figure 2007263017
The multi-cylinder engine according to claim 1, wherein the length L of each intake resonance pipe is set so as to satisfy the following condition.
Figure 2007263017
共鳴回転速度Nは、タービン入口圧よりもコンプレッサ出口圧が高くなる運転領域に設定したことを特徴とする請求項2に記載の多気筒エンジン。   The multi-cylinder engine according to claim 2, wherein the resonance rotational speed N is set in an operation region in which the compressor outlet pressure is higher than the turbine inlet pressure. EGR通路は、排気マニホールドの集合部と共鳴管の下流端部との間を同一の気筒群同士の関係に接続したことを特徴とする請求項1に記載の多気筒エンジン。   2. The multi-cylinder engine according to claim 1, wherein the EGR passage is connected between a collecting portion of the exhaust manifold and a downstream end portion of the resonance pipe in a relationship between the same cylinder groups. EGR通路は、逆止弁の上流にEGRバルブ、その上流にEGRクーラ、を備えたことを特徴とする請求項1に記載の多気筒エンジン。   The multi-cylinder engine according to claim 1, wherein the EGR passage includes an EGR valve upstream of the check valve and an EGR cooler upstream thereof.
JP2006090325A 2006-03-29 2006-03-29 Multi-cylinder engine Active JP4637779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090325A JP4637779B2 (en) 2006-03-29 2006-03-29 Multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090325A JP4637779B2 (en) 2006-03-29 2006-03-29 Multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007263017A true JP2007263017A (en) 2007-10-11
JP4637779B2 JP4637779B2 (en) 2011-02-23

Family

ID=38636245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090325A Active JP4637779B2 (en) 2006-03-29 2006-03-29 Multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4637779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248980A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Internal combustion engine with turbosupercharger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168325A (en) * 1989-11-24 1991-07-22 Mazda Motor Corp Suction device of multiple cylinder engine
JPH03179156A (en) * 1989-12-07 1991-08-05 Hino Motors Ltd Exhaust gas recirculation system for multicylinder engine
JP2004100508A (en) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd Egr device for internal combustion engine
JP2005133605A (en) * 2003-10-29 2005-05-26 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device for engine with supercharger
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168325A (en) * 1989-11-24 1991-07-22 Mazda Motor Corp Suction device of multiple cylinder engine
JPH03179156A (en) * 1989-12-07 1991-08-05 Hino Motors Ltd Exhaust gas recirculation system for multicylinder engine
JP2004100508A (en) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd Egr device for internal combustion engine
JP2005133605A (en) * 2003-10-29 2005-05-26 Nissan Diesel Motor Co Ltd Exhaust gas recirculation device for engine with supercharger
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248980A (en) * 2009-04-14 2010-11-04 Toyota Motor Corp Internal combustion engine with turbosupercharger

Also Published As

Publication number Publication date
JP4637779B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4965870B2 (en) Multi-cylinder engine
US9157396B2 (en) Nozzled turbine
JP6765260B2 (en) Blow-by gas processing device for internal combustion engine with supercharger
JP2005147011A (en) Exhaust gas recirculation system for turbo supercharged engine
JP2007231906A (en) Multi-cylinder engine
JP4713406B2 (en) Multi-cylinder engine
JP2000249004A (en) Egr device provided with reed valve
KR100786297B1 (en) Engine inhalation device
JP4799435B2 (en) Multi-cylinder engine
JP4637779B2 (en) Multi-cylinder engine
JP4628279B2 (en) Multi-cylinder engine
JP4778311B2 (en) Multi-cylinder engine
JP2007211603A (en) Multi-cylinder engine
JP2007315345A (en) Intake structure for internal combustion chamber
JP4741379B2 (en) Multi-cylinder engine
CN210422761U (en) Engine with supercharging system
JP4827757B2 (en) Multi-cylinder engine
JP2007198342A (en) Multicylinder engine
JP2007327382A (en) Multicylinder engine and its egr cooler
JP4359583B2 (en) Multi-cylinder engine
JP2007218167A (en) Multicylinder engine and egr cooler
WO2020253286A1 (en) Supercharged engine
US11230970B2 (en) Exhaust system with integrated exhaust pulse converter
JP5670170B2 (en) Supercharged multi-cylinder engine
JP4566093B2 (en) Multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250