JP4965870B2 - Multi-cylinder engine - Google Patents

Multi-cylinder engine Download PDF

Info

Publication number
JP4965870B2
JP4965870B2 JP2006052829A JP2006052829A JP4965870B2 JP 4965870 B2 JP4965870 B2 JP 4965870B2 JP 2006052829 A JP2006052829 A JP 2006052829A JP 2006052829 A JP2006052829 A JP 2006052829A JP 4965870 B2 JP4965870 B2 JP 4965870B2
Authority
JP
Japan
Prior art keywords
nozzle
opening area
exhaust
valve
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006052829A
Other languages
Japanese (ja)
Other versions
JP2007231791A (en
Inventor
秀一 中村
健一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2006052829A priority Critical patent/JP4965870B2/en
Publication of JP2007231791A publication Critical patent/JP2007231791A/en
Application granted granted Critical
Publication of JP4965870B2 publication Critical patent/JP4965870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、ターボチャージャを備える多気筒エンジンにおいて、排気対策(NOx等の低減)および出力・燃費の向上を図るべく、広い運転領域において、ポンピングロスの悪化を抑えつつ、高過給・大量EGRを実現するための技術に関する。   In a multi-cylinder engine equipped with a turbocharger, the present invention aims at high supercharging / mass EGR while suppressing deterioration of pumping loss in a wide operating range in order to improve exhaust measures (reduction of NOx, etc.) and improve output and fuel consumption. It is related with the technology for realizing.

エンジンのEGR(排気環流:Exhaust Gas Recirculation)システムとして、排気系から吸気系へ排気の一部を環流させるものがよく採用される。このようなEGR装置においては、ターボチャージャのタービン上流からコンプレッサ下流へ排気を環流させる場合、過給圧が排気圧よりも高くなる運転領域が生じやすく、EGRが十分に得られない。   As an engine EGR (Exhaust Gas Recirculation) system, a system that circulates part of the exhaust gas from the exhaust system to the intake system is often used. In such an EGR device, when exhaust gas is circulated from the turbine upstream of the turbocharger to the compressor downstream, an operation region in which the supercharging pressure becomes higher than the exhaust pressure is likely to occur, and EGR cannot be sufficiently obtained.

EGR率を高めるため、バタフライバルブによる排気絞りやスロットルバルブによる吸気絞りを行うことが考えられる(特許文献4)が、ポンピングロスの悪化が問題となる。VNT(可変ノズル式ターボチャージャ)絞りは、排気マニホールド圧のみでなく、吸気マニホールド圧も上昇するので、EGR率を向上させるのに排気マニホールド圧の方が吸気マニホールド圧よりも高くなるまでVNT絞りを効かせる必要があり、ポンピングロスの悪化を招いてしまうのである。そのため、リードバルブ(逆止弁)を用いて排気脈動によりEGRを行う方式(特許文献1)、EGR通路に混合区間を用いて排気脈動(EGRガスの動圧)を大きくする方式(特許文献2)、可変バルブを用いて内部EGRを行う方式(特許文献3)、排気ガス合流部へ向けて先細形状のノズル部を設けることにより、排気パルスが逆流するのを防止する方式(特許文献5)、が知られている。
特開2000−249004号 特表2003−534488号 特開2001−107810号 特開2002−021625号 特開2005−147011号
In order to increase the EGR rate, exhaust throttling by a butterfly valve or intake throttling by a throttle valve can be considered (Patent Document 4), but deterioration of pumping loss becomes a problem. The VNT (variable nozzle turbocharger) throttle increases not only the exhaust manifold pressure but also the intake manifold pressure. Therefore, to improve the EGR rate, the VNT throttle is increased until the exhaust manifold pressure is higher than the intake manifold pressure. It is necessary to make it effective, and the pumping loss is worsened. Therefore, a method of performing EGR by exhaust pulsation using a reed valve (check valve) (Patent Document 1) and a method of increasing exhaust pulsation (dynamic pressure of EGR gas) using a mixing section in the EGR passage (Patent Document 2) ), A system that performs internal EGR using a variable valve (Patent Document 3), and a system that prevents the exhaust pulse from flowing backward by providing a tapered nozzle section toward the exhaust gas merging section (Patent Document 5) ,It has been known.
JP 2000-249004 Special table 2003-534488 JP 2001-107810 A JP 2002-021625 A JP-A-2005-147011

特許文献1,特許文献2においては、分割型の排気マニホールドに接続されるターボチャージャがシングルエントリ方式(タービン入口が1つ)の場合、位相の異なる排気パルスが互い打ち消し合うため、十分なEGR率が得られない。特許文献3の場合、筒内に吸入される排気(EGRガス)の冷却が行えないのである。   In Patent Document 1 and Patent Document 2, when the turbocharger connected to the split-type exhaust manifold is a single entry system (one turbine inlet), exhaust pulses having different phases cancel each other, so that a sufficient EGR rate Cannot be obtained. In the case of Patent Document 3, the exhaust (EGR gas) sucked into the cylinder cannot be cooled.

特許文献5においては、先細形状のノズル部により、排気マニホールド間を排気パルスが逆流するのを抑えられるため、EGR通路の逆止弁へ排気パルスを弱めることなく伝えられ、EGR率の向上が得られるものの、先細形状のノズル部は、開口面積が一定のため、設定が難しく、運転状態によっては、排気抵抗(ポンピングロス)が過大となり、出力・燃費の向上を損なう可能性が考えられる。   In Patent Document 5, the tapered nozzle portion prevents the exhaust pulse from flowing back between the exhaust manifolds. Therefore, the exhaust pulse is transmitted to the check valve in the EGR passage without weakening, and the EGR rate is improved. However, since the opening area of the tapered nozzle portion is constant, setting is difficult, and depending on the operating state, the exhaust resistance (pumping loss) may be excessive, which may impair improvement in output and fuel consumption.

この発明は、このような課題を解決するため、排気対策(NOx等の低減)と出力・燃費の向上との両立を図るべく、広い運転領域において、ポンピングロスを抑えつつ、高過給・大量EGRを実現しえる手段の提供を目的とする。   In order to solve such problems, the present invention achieves both high supercharging and large volume while suppressing pumping loss in a wide operating range in order to achieve both exhaust measures (reduction of NOx, etc.) and improvement of output and fuel consumption. The purpose is to provide a means to realize EGR.

第1の発明は、ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、これら排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部、前記各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって同時にかつ均等に制御すべく可変とする手段、前記ターボチャージャのタービン上流の前記排気マニホールドと同じくコンプレッサ下流の吸気マニホールドとの間を接続するEGR通路、前記EGR通路に介装される逆止弁、を備え、前記各ノズルの開口面積を可変とする手段は、各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって運転状態の検出信号に基づいて同時かつ均等に制御する手段、を備えたことを特徴とする。 In a first aspect of the present invention, in a multi-cylinder engine equipped with a turbocharger, an exhaust manifold divided for each cylinder group in which exhaust strokes do not overlap, and a downstream portion of the exhaust manifold gathering portion is narrowed toward a converging portion. nozzle means for said variable to control simultaneously and equally substantial opening area facing the merging portion with the one property that is set in accordance with the operating state of each nozzle section, said turbine upstream of the turbocharger EGR passage which connects the same compressor downstream of the intake manifold and the exhaust manifold, a check valve interposed in said EGR passage, comprising a means for varying the opening area of each nozzle of each nozzle Based on the detection signal of the driving state at the same time with one characteristic that is set according to the driving state the substantial opening area facing the junction It means for controlling the like, characterized by comprising a.

第2の発明は、ターボチャージャを備える多気筒エンジンにおいて、排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールド、これら排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部、前記各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって同時にかつ均等に制御すべく可変とする手段、前記ターボチャージャのタービン上流の前記排気マニホールドと同じくコンプレッサ下流の前記吸気マニホールドとの間を接続するEGR通路、前記EGR通路に介装される逆止弁、を備え、前記各ノズル部の開口面積を可変とする手段は、各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって運転状態の検出信号に基づいて同時かつ均等に制御する手段、を備えたことを特徴とする。 According to a second aspect of the present invention, in a multi-cylinder engine equipped with a turbocharger, an exhaust manifold divided for each cylinder group where the exhaust strokes do not overlap, an intake manifold divided for each cylinder group where the intake strokes do not overlap, and these exhaust manifolds nozzle portion to narrow the set portion downstream of the shape tapered toward these merging section, the one property with it and evenly simultaneously set in accordance with the operating state a substantial opening area facing the confluent portion of the nozzle portion means for variable to control, EGR passage connecting between said exhaust manifold and also compressor downstream of the intake manifold of the turbine upstream of the turbocharger, comprising a check valve, interposed in said EGR passage, The means for making the opening area of each nozzle part variable means that the substantial opening area facing the merging part of each nozzle part is in an operating state. Depending characterized by comprising a means for controlling simultaneously and evenly on the basis of one of the detection signals of the characteristics with the operating state that is set.

第3の発明は、第1の発明または第2の発明に係る多気筒エンジンにおいて、前記各ノズル部の開口面積を可変とする手段は、ノズル部間の隔壁を合流部へ延長する突起、突起の両側に配置される弁体、突起と弁体との最短距離をノズル部の実質的な開口面積としてその拡縮方向へ弁板を揺動可能に支持する手段、を備えたことを特徴とする。 According to a third aspect of the present invention, in the multi-cylinder engine according to the first or second aspect of the invention, the means for changing the opening area of each nozzle portion is a protrusion or protrusion that extends the partition wall between the nozzle portions to the merging portion. And a means for supporting the valve plate so as to be capable of swinging in the expansion / contraction direction with the shortest distance between the protrusion and the valve body as a substantial opening area of the nozzle portion. .

第4の発明は、第1の発明または第2の発明に係る多気筒エンジンにおいて、前記各ノズル部の開口面積を可変とする手段は、各ノズル部が臨む合流部を下流へ絞るディフューザ、ノズル間の隔壁を構成する弁体、弁体とディフューザとの最短距離をノズル部の実質的な開口面積としてその拡縮方向へ弁板を進退可能に支持する手段と、を備えたことを特徴とする。 According to a fourth aspect of the present invention, in the multi-cylinder engine according to the first or second aspect of the invention, the means for varying the opening area of each nozzle portion is a diffuser or nozzle that squeezes the merging portion facing each nozzle portion downstream And a means for supporting the valve plate so that the valve plate can be advanced and retracted in the expansion / contraction direction with the shortest distance between the valve body and the diffuser as a substantial opening area of the nozzle portion. .

第1の発明においては、先細形状のノズル部により、排気の流れが加速され、動圧が上がり、静圧(排気圧力)が下がるため、排気噴き出し中の気筒側の排気マニホールドからブローダウン流が排気(押し出し)行程の気筒側の排気マニホールドへ逃げるのを抑えられる。このため、位相の異なる排気パルスが弱められることなくターボチャージャのタービンへ送り込まれ、タービン効率の向上が得られるほか、EGR通路の逆止弁へ排気パルスが弱められることなく伝えられ、逆止弁を有効に作動させるため、EGR率を高めることができる。また、先細形状のノズル部から吹き出るブローダウン流により、エゼクタ作用を生じると、排気(押し出し)行程中の気筒側の排気マニホールドから排気が下流へ吸引され、ポンピングロスを低減させることができる。   In the first aspect of the invention, the tapered nozzle portion accelerates the exhaust flow, increases the dynamic pressure, and lowers the static pressure (exhaust pressure). Therefore, the blowdown flow is generated from the exhaust manifold on the cylinder side during exhaust emission. Escape to the exhaust manifold on the cylinder side during the exhaust (push-out) stroke can be suppressed. For this reason, exhaust pulses with different phases are sent to the turbine of the turbocharger without being weakened, improving the turbine efficiency, and being transmitted to the check valve in the EGR passage without being weakened. The EGR rate can be increased in order to operate effectively. Further, when an ejector action is generated by the blow-down flow blown from the tapered nozzle portion, the exhaust is sucked downstream from the exhaust manifold on the cylinder side during the exhaust (pushing) stroke, and the pumping loss can be reduced.

先細形状のノズル部は、排気抵抗となるが、各ノズル部の合流部に臨む実質的な開口面積を可変として制御する手段を備えるため、運転状態に基づいて各ノズル部の合流部に臨む実質的な開口面積を最適に制御することができる。例えば、運転状態を代表するエンジン回転数に基づいて、低回転域においては、ノズル部の実質的な開口面積を小さく、高回転域においては、ノズル部の実質的な開口面積を大きく設定することにより、高回転域においても、ポンピングロスを小さく抑えつつ、高過給および大量EGRを行うことが可能となり、広い運転領域において、排気対策(NOx等の低減)と出力・燃費の向上との両立を実現できるのである。 The tapered nozzle portion provides exhaust resistance, but has means for controlling the substantial opening area facing each merge portion of each nozzle portion as variable , so that the substantial nozzle portion faces each merge portion based on the operating state. The optimal opening area can be optimally controlled . For example, based on the engine speed representing the operating state, the substantial opening area of the nozzle portion is set to be small in the low rotation range, and the substantial opening area of the nozzle portion is set to be large in the high rotation range. This makes it possible to carry out high supercharging and large-volume EGR while keeping the pumping loss small even in the high engine speed range, and achieves both exhaust measures (reduction of NOx, etc.) and improved output and fuel consumption in a wide operating range. Can be realized.

第2の発明においては、EGR通路の接続が同一の気筒群同士のため、同一の気筒群に属する各気筒間において、排気行程と吸気行程がオーバラップするので、ポンピングロスを悪化させることなく、EGR率の向上を効率よく促進しえる。また、各ノズル部の合流部に臨む実質的な開口面積を可変として制御する手段を備えるため、広い運転領域において、ポンピングロスを小さく抑えつつ、高過給および大量EGRを行うことが可能となり、排気対策(NOx等の低減)と出力・燃費の向上との両立を実現することができる。 In the second invention, since the EGR passages are connected to each other in the same cylinder group, the exhaust stroke and the intake stroke overlap between the cylinders belonging to the same cylinder group, so that the pumping loss is not deteriorated. The EGR rate can be improved efficiently. In addition, since it has means to control the substantial opening area facing each merge part of each nozzle as variable , it is possible to perform high supercharging and large volume EGR while keeping pumping loss small in a wide operation region, It is possible to achieve both exhaust measures (reducing NOx, etc.) and improving output and fuel consumption.

第3の発明においては、弁体が揺動すると、弁体と突起との最短距離が拡縮され、ノズル部の実質的な開口面積を適確に可変とすることができるIn the third aspect of the invention, when the valve body swings, the shortest distance between the valve body and the projection is expanded and reduced, and the substantial opening area of the nozzle portion can be made variable appropriately .

第4の発明においては、弁体が進退すると、弁体とディフューザ(下流へ絞られる通路の内面)との最短距離が拡縮され、ノズル部の実質的な開口面積を適確に可変とすることができる。合流部は、ノズル間の延長線上を進退可能な弁体により、先細形状のノズル部を延長する形に仕切られる。つまり、弁体は、各ノズル部の開口間をディフューザの中心線に沿って進退可能なものを1つ備えるのみで良く、簡単な機構により、ノズル部の実質的な開口面積を正確かつ容易に可変とすることができる。また、コスト的に有利となるIn the fourth invention, when the valve body advances and retreats, the shortest distance between the valve body and the diffuser (the inner surface of the passage narrowed downstream) is expanded and contracted, and the substantial opening area of the nozzle portion is appropriately variable. Can do. The joining portion is partitioned into a shape in which the tapered nozzle portion is extended by a valve body that can advance and retreat on an extension line between the nozzles. In other words, the valve body only needs to have one that can advance and retract between the openings of each nozzle portion along the center line of the diffuser, and the simple opening mechanism makes the substantial opening area of the nozzle portion accurate and easy. It can be variable. Moreover, it becomes advantageous in cost .

図1において、2は多気筒エンジン1(6気筒ディーゼルエンジン)の吸気通路であり、吸気マニホールド3a,3bと吸気管4とから構成される。吸気マニホールド3a,3bは、吸気行程が実質的にオーバラップしない気筒群毎(#1,2,3と#4,5,6)に分割される。吸気管4は、インタクーラ5の下流側が分岐され、各マニホールド3a,3bの集合部に接続される。6aはターボチャージャ6のコンプレッサであり、7はエアクリーナである。   In FIG. 1, reference numeral 2 denotes an intake passage of a multi-cylinder engine 1 (6-cylinder diesel engine), which includes intake manifolds 3 a and 3 b and an intake pipe 4. The intake manifolds 3a and 3b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the intake strokes do not substantially overlap. The intake pipe 4 is branched on the downstream side of the intercooler 5 and connected to the collective part of the manifolds 3a and 3b. 6a is a compressor of the turbocharger 6, and 7 is an air cleaner.

8はエンジン1の排気通路であり、排気マニホールド9a,9bと排気管10とから構成される。排気マニホールド9a,9bは、排気行程が実質的にオーバラップしない気筒群(#1,2,3と#4,5,6)毎に分割され、これらマニホールド9a,9bの合流部11にターボチャージャ6のタービン6bを介して排気管8が接続される。ターボチャージャ6のコンプレッサ6aは、タービン6bの回転により駆動され、各気筒への吸気を過給する。ターボチャージャ6としては、タービン入口が1つ(シングルエントリ方式)の可変ノズル式が用いられる。12はマフラである。   Reference numeral 8 denotes an exhaust passage of the engine 1 and includes exhaust manifolds 9 a and 9 b and an exhaust pipe 10. The exhaust manifolds 9a and 9b are divided into cylinder groups (# 1, 2, 3 and # 4, 5, 6) in which the exhaust strokes do not substantially overlap, and a turbocharger is formed at the junction 11 of these manifolds 9a and 9b. The exhaust pipe 8 is connected via a turbine 6b. The compressor 6a of the turbocharger 6 is driven by the rotation of the turbine 6b and supercharges intake air to each cylinder. As the turbocharger 6, a variable nozzle type having one turbine inlet (single entry type) is used. 12 is a muffler.

合流部11は、図2のように構成される。排気マニホールド9a,9bは、集合部下流が1つのフランジに結集され、合流部11へ向けて通路を先細形状に絞るノズル部23a,23bに形成される。25はタービンハウジングであり、タービン入口26のフランジと排気マニホールド9a,9bのフランジとの間に合流部11を形成するスペーサ27が介装される。ノズル部23a,23bの合流部11に臨む実質的な開口面積を可変とするため、スペーサ27の内部において、ノズル部23a,23b間の隔壁28を合流部11へ延長する突起29と、突起29の両側に配置される弁体30a,30bと、突起29との最短距離xをノズル部23a,23bの実質的な開口面積としてその拡縮方向へ弁体30a,30bを揺動可能に支持する手段、が備えられる。   The junction 11 is configured as shown in FIG. The exhaust manifolds 9 a and 9 b are formed in nozzle portions 23 a and 23 b that converge at one flange on the downstream side of the collecting portion and narrow the passage toward the joining portion 11. Reference numeral 25 denotes a turbine housing, and a spacer 27 is formed between the flange of the turbine inlet 26 and the flanges of the exhaust manifolds 9a and 9b. In order to make the substantial opening area of the nozzle portions 23a and 23b facing the merge portion 11 variable, inside the spacer 27, a projection 29 extending the partition wall 28 between the nozzle portions 23a and 23b to the merge portion 11 and the projection 29 Means for supporting the valve bodies 30a, 30b so as to be swingable in the expansion / contraction direction with the shortest distance x between the valve bodies 30a, 30b arranged on both sides of the nozzles 23 and the projection 29 as a substantial opening area of the nozzle portions 23a, 23b. Are provided.

弁体30a,30bを支持するのが回転軸31a,31bであり、スペーサ27の外部において、リンク32a,32bの一端に結合される(図3、参照)。34はロッド34aの伸縮可能なアクチュエータであり、ロッド34aの先端がリンク32a,32bの他端に長穴33a,33bを介して連結され、ロッド34aが伸縮すると、弁体30a,30bが回転軸31a,31bと一体に揺動するようになっている。図3において、θは弁体30a,30bの開度であり、最短距離xに相応する。   The rotary shafts 31a and 31b support the valve bodies 30a and 30b, and are coupled to one end of the links 32a and 32b outside the spacer 27 (see FIG. 3). Reference numeral 34 denotes an actuator that can expand and contract the rod 34a. The tip of the rod 34a is connected to the other ends of the links 32a and 32b via elongated holes 33a and 33b, and when the rod 34a expands and contracts, the valve bodies 30a and 30b rotate. It swings integrally with 31a and 31b. In FIG. 3, θ is the opening degree of the valve bodies 30a, 30b and corresponds to the shortest distance x.

図1において、35はターボチャージャ6のタービン6b上流からターボチャージャ6のコンプレッサ6a下流へ排気の一部を環流させるEGR装置であり、排気マニホールド9a,9bと吸気マニホールド3a,3b(吸気管4の分岐路40a,40b)との間を同一の気筒群同士の関係に接続するEGR通路36a,36bが備えられる。EGR通路36a,36bにおいて、EGRガスを冷却するEGRクーラ37,EGR流量を調整するEGRバルブ38,EGRガスの逆流を規制する逆止弁(リードバルブ)39が介装される。逆止弁39は、EGR通路36a,36bの下流側に配置される。逆止弁39上流にEGRバルブ38、その上流にEGRクーラ37、が配置される。EGR通路36a,36bの接続が同一の気筒群同士のため、同一の気筒群に属する各気筒間において、排気行程と吸気行程がオーバラップするので、EGR率の向上を促進することができる。   In FIG. 1, reference numeral 35 denotes an EGR device that circulates a part of the exhaust gas from the upstream side of the turbine 6b of the turbocharger 6 to the downstream side of the compressor 6a of the turbocharger 6. The exhaust manifolds 9a and 9b EGR passages 36a and 36b are provided for connecting the branch passages 40a and 40b) to the relationship between the same cylinder groups. In the EGR passages 36a and 36b, an EGR cooler 37 for cooling the EGR gas, an EGR valve 38 for adjusting the EGR flow rate, and a check valve (reed valve) 39 for regulating the backflow of the EGR gas are interposed. The check valve 39 is disposed downstream of the EGR passages 36a and 36b. An EGR valve 38 is disposed upstream of the check valve 39 and an EGR cooler 37 is disposed upstream thereof. Since the EGR passages 36a and 36b are connected to each other in the same cylinder group, the exhaust stroke and the intake stroke overlap between the cylinders belonging to the same cylinder group, so that the improvement of the EGR rate can be promoted.

弁体30a,30b(図2,図3、参照)については、ロッド34aが初期(伸び)位置の場合、ノズル部23a,23bから吹き出る排気の流れに影響を及ぼさない退避状態に保持され、ロッド34aが縮むと、突起29との最短距離x(ノズル部23a,23bの実質的な開口面積)を縮める方向へ揺動する一方、ロッド34aが初期位置へ伸びると、突起29との最短距離xを拡げる方向へ揺動するのである。この場合、ノズル部23a,23bの実質的な開口面積は、弁体30a30bの初期位置において、最大となるため、ノズル部23a,23bについては、高速域に最適な開口面積(EGR率の十分に高められる範囲において、ポンピングロスが最小となる開口面積)に設定され、低速域側においては、弁体30a,30bの揺動により、ノズル部23a,23bの実質的な開口面積(最短距離x)が縮められ、低速域側に最適な開口面積(EGR率の十分に高められる範囲において、ポンピングロスが最小となる開口面積)に設定される(図8,図9、参照)。   Regarding the valve bodies 30a and 30b (see FIGS. 2 and 3), when the rod 34a is in the initial (extension) position, the valve body 30a and 30b is held in a retracted state that does not affect the flow of the exhaust gas blown from the nozzle portions 23a and 23b. When 34a contracts, it swings in the direction of shortening the shortest distance x (substantial opening area of the nozzle portions 23a, 23b) with the protrusion 29, while the shortest distance x with the protrusion 29 when the rod 34a extends to the initial position. It swings in the direction of expanding the angle. In this case, since the substantial opening area of the nozzle portions 23a and 23b is maximized at the initial position of the valve body 30a30b, the nozzle portions 23a and 23b have an optimum opening area (EGR ratio sufficient for the high speed range). In the range to be increased, the opening area is set such that the pumping loss is minimized. On the low speed range side, the substantial opening area (shortest distance x) of the nozzle portions 23a and 23b is caused by the swinging of the valve bodies 30a and 30b. Is set to an optimum opening area on the low speed region side (an opening area that minimizes the pumping loss in a range where the EGR rate is sufficiently increased) (see FIGS. 8 and 9).

ノズル部の実質的な開口面積が最適値の場合、先細形状のノズル部23a,23bにより、排気の流れが加速され、動圧が上がり、静圧(排気圧力)が下がるため、排気噴き出し中の気筒側の排気マニホールド9aまたは9bからブローダウン流が排気(押し出し)行程の気筒側の排気マニホールド9bまたは9aへ逃げるのを抑えられる。このため、位相の異なる排気パルスが弱められることなくターボチャージャ6のタービン6bへ送り込まれ、タービン効率の向上が得られるばかりでなく、EGR通路36a,36bの逆止弁39へ排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、EGR率を高めることができる。排気マニホールド圧は、排気噴き出し中の排気パルスの山P1が高くなり、EGR率の向上が十分に得られる(図13,図14、参照)。また、先細形状のノズル部23a,23bか吹き出るブローダウン流により、エゼクタ作用を生じるため、排気(押し出し)行程中の山P2が低めになり、ポンピングロスが小さくなる(図13,図15、参照)。   When the substantial opening area of the nozzle portion is the optimum value, the flow of exhaust gas is accelerated by the tapered nozzle portions 23a and 23b, the dynamic pressure increases, and the static pressure (exhaust pressure) decreases. It is possible to prevent the blowdown flow from escaping from the cylinder side exhaust manifold 9a or 9b to the cylinder side exhaust manifold 9b or 9a in the exhaust (push-out) stroke. For this reason, the exhaust pulses having different phases are sent to the turbine 6b of the turbocharger 6 without being weakened to improve the turbine efficiency, and the exhaust pulses are weakened to the check valves 39 of the EGR passages 36a and 36b. The EGR rate can be increased because the check valve 39 is effectively operated. As for the exhaust manifold pressure, the peak P1 of the exhaust pulse during exhaust ejection becomes high, and the EGR rate is sufficiently improved (see FIGS. 13 and 14). Moreover, since the ejector action is generated by the blow-down flow blown out from the tapered nozzle portions 23a and 23b, the peak P2 during the exhaust (push-out) stroke becomes lower and the pumping loss becomes smaller (see FIGS. 13 and 15). ).

ノズル部23a,23bの開口面積が最適値よりも大きい場合、ノズル部23a,23bから吹き出るブローダウン流の動圧が小さく、排気噴き出し中の気筒側の排気マニホールド9aまたは9bからブローダウン流が排気(押し出し)行程の気筒側の排気マニホールド9bまたは9aへ逃げるのを十分に抑えらきれず、かつ、排気のエゼクタ作用も不足がちになる。このため、排気マニホールド圧は、排気噴き出し中の排気パルスの山P1が低めになり、EGR率の向上が十分に得られない(図10,図11、参照)。また、排気(押し出し)行程中の山P2が高めになり、ポンピングロスが大きくなる(図10、図12、参照)。ノズル部23a,23bの開口面積が最適値よりも小さい場合、排気マニホールド圧は、排気噴き出し中の排気パルスの山P1および排気(押し出し)行程中の山P2が全体的に高くなり、EGR率の向上は十分に得られるものの、ポンピングロスが過大となってしまう(図16〜図18、参照)。   When the opening area of the nozzle portions 23a and 23b is larger than the optimum value, the dynamic pressure of the blowdown flow blown out from the nozzle portions 23a and 23b is small, and the blowdown flow is exhausted from the exhaust manifold 9a or 9b on the cylinder side during exhaust discharge. Escape to the exhaust manifold 9b or 9a on the cylinder side of the (push-out) stroke cannot be sufficiently suppressed, and the exhaust ejector action tends to be insufficient. For this reason, the exhaust manifold pressure is such that the peak P1 of the exhaust pulse during exhaust ejection becomes lower, and the EGR rate cannot be sufficiently improved (see FIGS. 10 and 11). Further, the peak P2 during the exhaust (pushing) stroke becomes higher, and the pumping loss becomes larger (see FIGS. 10 and 12). When the opening areas of the nozzle portions 23a and 23b are smaller than the optimum value, the exhaust manifold pressure is generally higher at the peak P1 of the exhaust pulse during the exhaust ejection and the peak P2 during the exhaust (pushing) stroke. Although sufficient improvement can be obtained, the pumping loss becomes excessive (see FIGS. 16 to 18).

図1において、50はタービン6bの可変ノズル機構(図示せず),EGR通路36a,36bのEGRバルブ38,弁体30a,30bのアクチュエータ34を制御するコントロールユニットであり、制御に必要な運転状態の検出手段として、エンジン回転数をフライホイール回転から検出するエンジン回転センサ51と、エンジン負荷をアクセル開度(ペダル操作量)から検出するエンジン負荷センサ52と、が備えられる。   In FIG. 1, reference numeral 50 denotes a control unit that controls a variable nozzle mechanism (not shown) of the turbine 6b, an EGR valve 38 of the EGR passages 36a and 36b, and an actuator 34 of the valve bodies 30a and 30b. As the detection means, an engine rotation sensor 51 that detects the engine speed from the flywheel rotation and an engine load sensor 52 that detects the engine load from the accelerator opening (the pedal operation amount) are provided.

図4は、コントロールユニットの制御内容を説明するフローチャートチャートであり、S1およびS2においては、エンジン回転数Nの検出値およびエンジン負荷L(アクセル開度)の検出値を読み込む。S3〜S5においては、これらの検出値に基づいて、可変ノズル機構,EGRバルブ38,弁体30a,30bのアクチュエータ34を順次に制御する。 FIG. 4 is a flowchart for explaining the control contents of the control unit. In S1 and S2, a detected value of the engine speed N and a detected value of the engine load L (accelerator opening) are read. In S3 to S5, the variable nozzle mechanism, the EGR valve 38, and the actuators 34 of the valve bodies 30a and 30b are sequentially controlled based on these detected values.

図5〜図7は、コントロールユニットの制御特性を例示するものであり、S3においては、エンジン回転数Nの検出値とエンジン負荷Lの検出値とから図5に基づいて弁体30a,30bと突起29との最短距離x(弁体の開度θ,図20の突出量m)を制御する。S4においては、エンジン回転数Nの検出値とエンジン負荷Lの検出値とから図6に基づいてタービンノズル開度を制御する。S5においては、エンジン回転数Nの検出値とエンジン負荷とから図7に基づいて開度EGRバルブ開度を制御するのである。図5において、mは後述する弁体45(図20、参照)の突出量であり、最短距離xに相当する。   5 to 7 exemplify the control characteristics of the control unit. In S3, the valve bodies 30a and 30b are detected from the detected value of the engine speed N and the detected value of the engine load L based on FIG. The shortest distance x with respect to the protrusion 29 (opening degree θ of the valve body, protrusion amount m in FIG. 20) is controlled. In S4, the turbine nozzle opening is controlled based on the detected value of the engine speed N and the detected value of the engine load L based on FIG. In S5, the opening degree EGR valve opening degree is controlled based on the detected value of the engine speed N and the engine load based on FIG. In FIG. 5, m is a protrusion amount of a valve body 45 (see FIG. 20) described later, and corresponds to the shortest distance x.

このような構成にすると、シングルエントリ方式のターボチャージャ6においても、先細形状のノズル23a,23bにより、排気パルスの逆流が抑えられ、合流部11のエゼクタ作用により、タービン6bへの排気パルスは強められるため、タービン効率の向上が得られる。また、排気パルスの逆流が抑えられるので、EGR通路36a,36bの逆止弁39へ排気パルスが弱められることなく伝えられ、逆止弁39を有効に作動させるため、高いEGR率が得られるのである。また、合流部11のエゼクタ作用により、排気(押し出し)行程中の気筒側の排気マニホール圧が低下するため、ポンピングロスの改善も得られる(図13〜図15、参照)。   With such a configuration, even in the single entry type turbocharger 6, the backflow of the exhaust pulse is suppressed by the tapered nozzles 23 a and 23 b, and the exhaust pulse to the turbine 6 b is strengthened by the ejector action of the merging portion 11. Therefore, the turbine efficiency can be improved. In addition, since the back flow of the exhaust pulse is suppressed, the exhaust pulse is transmitted to the check valve 39 in the EGR passages 36a and 36b without being weakened, and the check valve 39 is effectively operated, so that a high EGR rate is obtained. is there. Further, since the exhaust manifold pressure on the cylinder side during the exhaust (pushing) stroke is reduced by the ejector action of the merging portion 11, an improvement in pumping loss can be obtained (see FIGS. 13 to 15).

先細形状のノズル部23a,23bは、高速域に最適な開口面積に設定されるが、ノズル部23a,23bの合流部11に臨む実質的な開口面積(弁体と突起との最短距離x)を可変とする手段を備えるため、低回転域においても、最適な最短距離xに制御されるので、ポンピングロスを小さく抑えつつ、高過給および大量EGRを行うことが可能となり、広い運転領域において、排気対策(NOx等の低減)と出力・燃費の向上との両立を実現できる。また、可変ノズル式ターボチャージャ6の制御特性(図6、参照)と共にEGRバルブ38の制御特性(図7、参照)も働くため、低速高負荷域においても、高過給と大量EGRが可能となり、排気対策(NOxおよびPMの低減)と出力・燃費の向上との両立を高度に促進しえるのである。   The tapered nozzle portions 23a and 23b are set to have an optimum opening area in the high speed range, but a substantial opening area (the shortest distance x between the valve element and the projection) facing the joining portion 11 of the nozzle portions 23a and 23b. Since it is equipped with a means for making the variable variable, the optimum shortest distance x is controlled even in the low rotation range, so that it is possible to perform high supercharging and large amount of EGR while keeping the pumping loss small, and in a wide operating range. , Both exhaust measures (reduction of NOx, etc.) and improvement of output and fuel consumption can be realized. In addition, the control characteristics (see FIG. 7) of the EGR valve 38 work together with the control characteristics (see FIG. 6) of the variable nozzle type turbocharger 6, so that high supercharging and large amount of EGR are possible even in the low speed and high load range. Therefore, it is possible to highly promote the coexistence of exhaust measures (NOx and PM reduction) and improved output and fuel consumption.

弁体30a,30bおよび突起29は、図19のようにタービンハウジング25の内部(タービン入口26)に配置してもよい。EGR通路36a,36bにおいて、EGRクーラ37の下流側にEGRバルブ38および逆止弁39(リードバルブ)を配置するので、これらバルブの耐久性も良好に確保される。   The valve bodies 30a and 30b and the protrusion 29 may be arranged inside the turbine housing 25 (turbine inlet 26) as shown in FIG. In the EGR passages 36a and 36b, since the EGR valve 38 and the check valve 39 (reed valve) are arranged on the downstream side of the EGR cooler 37, the durability of these valves is also ensured.

図20は、弁体30a,30bおよび突起29に代わる別の実施形態を表すものであり、排気マニホールド9a,9b側に合流部11が先細形状のノズル部23a,23bと共に一体成形される。合流部11は下流へ通路を絞るディフューザに形成され、ノズル23a,23b間の隔壁28にディフューザ11の最小通路断面部へ向けて進退可能な弁板45が備えられる。46は弁体45を摺動可能に支持するガイドであり、ノズル23a,23b間の隔壁28の一部を構成するように配置される。排気マニホールド9a,9bの外部において、ロッド47aが伸縮可能なアクチュエータ47が設けられ、ロッド42aの先端に弁板45が連結され、ロッド47aが伸縮すると、弁板45が合流部11の中心線に沿って進退することにより、弁体45の先端とディフューザ11の通路面との最短距離x(弁体45の突出量m)が拡縮するようになっている。   FIG. 20 shows another embodiment instead of the valve bodies 30a and 30b and the protrusion 29, and the merging portion 11 is integrally formed with the tapered nozzle portions 23a and 23b on the exhaust manifolds 9a and 9b side. The junction portion 11 is formed as a diffuser that narrows the passage downstream, and a valve plate 45 that can advance and retreat toward the minimum passage cross-section of the diffuser 11 is provided in the partition wall 28 between the nozzles 23a and 23b. 46 is a guide which supports the valve body 45 so that sliding is possible, and it is arrange | positioned so that a part of partition 28 between nozzles 23a and 23b may be comprised. Outside the exhaust manifolds 9a and 9b, an actuator 47 that can extend and contract the rod 47a is provided, and the valve plate 45 is connected to the tip of the rod 42a. When the rod 47a expands and contracts, the valve plate 45 is aligned with the center line of the junction portion 11. By advancing and retreating along, the shortest distance x (protrusion amount m of the valve body 45) between the tip of the valve body 45 and the passage surface of the diffuser 11 is expanded or reduced.

これによると、弁板45は、1つのみで良く、弁体45の突出量mがアクチュエータ43のストローク量と1:1の関係にあるため、コントロールユニット(図1、参照)により、簡単かつ正確に制御しえることになる。図20において、図1,図2と同一の部品については、同一の符号を用いて、重複説明は省略する。   According to this, only one valve plate 45 is required, and the projecting amount m of the valve body 45 has a 1: 1 relationship with the stroke amount of the actuator 43. Therefore, the control unit (see FIG. 1) It can be controlled accurately. 20, parts that are the same as those in FIGS. 1 and 2 are denoted by the same reference numerals, and a duplicate description thereof is omitted.

この発明の実施形態を係る全体的な概略構成図である。1 is an overall schematic configuration diagram according to an embodiment of the present invention. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold. 弁体の開閉機構に係る説明図である。It is explanatory drawing which concerns on the opening / closing mechanism of a valve body. コントロールユニットの制御内容を説明するフローチャートである。It is a flowchart explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. コントロールユニットの制御内容を説明する特性図である。It is a characteristic view explaining the control content of a control unit. 運転域とEGR率と最短距離xとの関係を例示する特性図である。It is a characteristic view which illustrates the relationship between an operation area, an EGR rate, and the shortest distance x. 運転域とポンプ損失と最短距離xとの関係を例示する特性図である。It is a characteristic view which illustrates the relationship between an operation area, pump loss, and the shortest distance x. 吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of intake / exhaust pulsation. EGR流量のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of an EGR flow rate. 筒内圧のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of in-cylinder pressure. 吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of intake / exhaust pulsation. EGR流量のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of an EGR flow rate. 筒内圧のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of in-cylinder pressure. 吸排気脈動のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of intake / exhaust pulsation. EGR流量のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of an EGR flow rate. 筒内圧のシミュレーション結果を例示する特性図である。It is a characteristic view which illustrates the simulation result of in-cylinder pressure. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold. 排気マニホールドの合流部に係る構成図である。It is a block diagram which concerns on the confluence | merging part of an exhaust manifold.

符号の説明Explanation of symbols

1 多気筒エンジン(6気筒ディーゼルエンジン)
2 吸気通路
3a,3b 吸気マニホールド
5 インタクーラ
6 ターボチャージャ(可変ノズル式ターボチャージャ)
6a コンプレッサ
6b タービン
8 排気通路
9a,9b 排気マニホールド
23a,23b 先細形状のノズル部
25 タービンハウジング
27 スペーサ
28 ノズル間の隔壁
29 突起
30a,30b 弁体
31a,31b 弁体の回転軸
32a,32b リンク
34 弁体のアクチュエータ
35 EGR装置
37 EGRクーラ
38 EGRバルブ
39 逆止弁(リードバルブ)
45 弁体
46 ガイド
47 弁体のアクチュエータ
50 コントロールユニット
51 エンジン回転センサ
52 エンジン負荷センサ
1 Multi-cylinder engine (6-cylinder diesel engine)
2 Intake passage 3a, 3b Intake manifold 5 Intercooler 6 Turbocharger (variable nozzle type turbocharger)
6a Compressor 6b Turbine 8 Exhaust passage 9a, 9b Exhaust manifold 23a, 23b Tapered nozzle part 25 Turbine housing 27 Spacer 28 Partition between nozzles 29 Projection 30a, 30b Valve body 31a, 31b Rotating shaft 32a, 32b of valve body Link 34 Valve body actuator 35 EGR device 37 EGR cooler 38 EGR valve 39 Check valve (reed valve)
45 Valve body 46 Guide 47 Valve body actuator 50 Control unit 51 Engine rotation sensor 52 Engine load sensor

Claims (4)

ターボチャージャを備える多気筒エンジンにおいて、
排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、これら排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部、前記各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって同時にかつ均等に制御すべく可変とする手段、前記ターボチャージャのタービン上流の前記排気マニホールドと同じくコンプレッサ下流の吸気マニホールドとの間を接続するEGR通路、前記EGR通路に介装される逆止弁、を備え
前記各ノズルの開口面積を可変とする手段は、各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって運転状態の検出信号に基づいて同時かつ均等に制御する手段、を備えたことを特徴とする多気筒エンジン。
In a multi-cylinder engine equipped with a turbocharger,
Exhaust manifold exhaust stroke is divided for each cylinder group do not overlap, the nozzle portion to narrow the set portion downstream of the exhaust manifold in the shape tapered toward these merging portion, the substantially facing the confluent portion of the nozzle portion the opening area with one characteristic that is set according to operating conditions to control simultaneously and equivalent means for varying, also connects the compressor downstream of the intake manifold and the exhaust manifold of the turbine upstream of the turbocharger EGR passage, provided with a check valve, interposed in said EGR passage,
The means for making the opening area of each nozzle variable is the same and equal based on the detection signal of the operation state with one characteristic that sets the substantial opening area facing the merging portion of each nozzle portion according to the operation state. multi-cylinder engine, characterized in that it comprises means, for controlling the.
ターボチャージャを備える多気筒エンジンにおいて、
排気行程がオーバラップしない気筒群毎に分割される排気マニホールド、吸気行程がオーバラップしない気筒群毎に分割される吸気マニホールド、これら排気マニホールドの集合部下流をこれらの合流部へ向けて先細形状に絞るノズル部、前記各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって同時にかつ均等に制御すべく可変とする手段、前記ターボチャージャのタービン上流の前記排気マニホールドと同じくコンプレッサ下流の前記吸気マニホールドとの間を接続するEGR通路、前記EGR通路に介装される逆止弁、を備え
前記各ノズル部の開口面積を可変とする手段は、各ノズル部の合流部に臨む実質的な開口面積を運転状態に応じて設定される1つの特性をもって運転状態の検出信号に基づいて同時かつ均等に制御する手段、を備えたことを特徴とする多気筒エンジン。
In a multi-cylinder engine equipped with a turbocharger,
An exhaust manifold that is divided for each cylinder group that does not overlap the exhaust stroke, an intake manifold that is divided for each cylinder group that does not overlap the intake stroke, and a shape that tapers the downstream of the exhaust manifold's collecting part toward these merge parts nozzle throttling, means for said variable in order to simultaneously and uniformly controlled with one characteristic that is set according substantial opening area to the operating state facing the confluent portion of the nozzle portion, of the turbine upstream of the turbocharger EGR passage connecting between said intake manifold of the same compressor downstream to the exhaust manifold, comprising a check valve, interposed in said EGR passage,
The means for varying the opening area of each nozzle section is configured to simultaneously set a substantial opening area facing the merging section of each nozzle section based on an operation state detection signal with one characteristic set according to the operation state. A multi-cylinder engine characterized by comprising means for uniformly controlling .
前記各ノズル部の開口面積を可変とする手段は、ノズル部間の隔壁を合流部へ延長する突起、突起の両側に配置される弁体、突起と弁体との最短距離をノズル部の実質的な開口面積としてその拡縮方向へ弁板を揺動可能に支持する手段、を備えたことを特徴とする請求項1または請求項2に記載の多気筒エンジン。 The means for making the opening area of each nozzle part variable includes a protrusion extending the partition wall between the nozzle parts to the joining part, a valve element disposed on both sides of the protrusion, and a minimum distance between the protrusion and the valve element. The multi-cylinder engine according to claim 1 or 2, further comprising means for supporting the valve plate so as to be swingable in an expansion / contraction direction as a general opening area. 前記各ノズル部の開口面積を可変とする手段は、各ノズル部が臨む合流部を下流へ絞るディフューザ、ノズル間の隔壁を構成する弁体、弁体とディフューザとの最短距離をノズル部の実質的な開口面積としてその拡縮方向へ弁板を進退可能に支持する手段と、を備えたことを特徴とする請求項1または請求項2に記載の多気筒エンジン。 The means for making the opening area of each nozzle part variable includes a diffuser that squeezes downstream a joining part that each nozzle part faces, a valve body that forms a partition wall between the nozzles, and a minimum distance between the valve body and the diffuser. The multi-cylinder engine according to claim 1 or 2, further comprising means for supporting the valve plate so as to be able to advance and retreat in a direction of expansion and contraction as a general opening area.
JP2006052829A 2006-02-28 2006-02-28 Multi-cylinder engine Expired - Fee Related JP4965870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052829A JP4965870B2 (en) 2006-02-28 2006-02-28 Multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052829A JP4965870B2 (en) 2006-02-28 2006-02-28 Multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007231791A JP2007231791A (en) 2007-09-13
JP4965870B2 true JP4965870B2 (en) 2012-07-04

Family

ID=38552643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052829A Expired - Fee Related JP4965870B2 (en) 2006-02-28 2006-02-28 Multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4965870B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503869B1 (en) * 2007-09-27 2009-06-15 Avl List Gmbh INTERNAL COMBUSTION ENGINE WITH A MULTILING AIR EXHAUST BOLDER
JP4973541B2 (en) * 2008-02-25 2012-07-11 マツダ株式会社 Supercharged engine system
US8141357B2 (en) 2007-10-12 2012-03-27 Mazda Motor Corporation Supercharger for an engine
WO2009118471A1 (en) * 2008-02-29 2009-10-01 Melchior Jean-Frederic Pressure wave supercharged internal combustion engine
SE532306C2 (en) * 2008-04-28 2009-12-08 Scania Cv Abp Cooling
JP2009293388A (en) * 2008-06-02 2009-12-17 Aisin Seiki Co Ltd Structure of air flow controller
JP5326630B2 (en) * 2009-02-13 2013-10-30 マツダ株式会社 Exhaust passage structure of multi-cylinder engine
JP4725656B2 (en) 2009-02-13 2011-07-13 マツダ株式会社 Exhaust passage structure of multi-cylinder engine
JP5262862B2 (en) * 2009-03-10 2013-08-14 マツダ株式会社 Method and apparatus for controlling exhaust system of multi-cylinder engine
JP5262863B2 (en) * 2009-03-10 2013-08-14 マツダ株式会社 Method and apparatus for controlling exhaust system of multi-cylinder engine
DE102011007386B4 (en) * 2011-04-14 2016-08-18 Man Diesel & Turbo Se Exhaust gas utilization turbine, waste heat recovery system and method for operating a waste heat recovery system
WO2018113930A1 (en) 2016-12-20 2018-06-28 Volvo Truck Corporation A method for controlling an internal combustion engine
JP7405065B2 (en) 2020-12-09 2023-12-26 トヨタ自動車株式会社 Internal combustion engine exhaust passage structure
CN115030842B (en) * 2022-08-10 2022-11-29 潍柴动力股份有限公司 Exhaust pipe for EGR route

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513916C2 (en) * 1999-08-23 2000-11-27 Motortestct Mtc Ab Device for transferring exhaust gases from a supercharged combustion engine exhaust collector to its inlet line
JP2003239777A (en) * 2001-12-11 2003-08-27 Hino Motors Ltd Egr device
JP2005147011A (en) * 2003-11-17 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas recirculation system for turbo supercharged engine
JP2005147049A (en) * 2003-11-18 2005-06-09 Nissan Diesel Motor Co Ltd Exhaust gas reflux device for engine with supercharger

Also Published As

Publication number Publication date
JP2007231791A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4965870B2 (en) Multi-cylinder engine
US8256402B2 (en) Exhaust passage structure of multi-cylinder engine
US20120096856A1 (en) Internal combustion engine
JP5433534B2 (en) Internal combustion engine with a supercharger
JP2007231906A (en) Multi-cylinder engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP2000249004A (en) Egr device provided with reed valve
JP2008031942A (en) Engine with supercharger
JP4713406B2 (en) Multi-cylinder engine
JP6772901B2 (en) Internal combustion engine exhaust system
JP5280113B2 (en) Exhaust gas recirculation device in a multi-cylinder internal combustion engine
JP4628279B2 (en) Multi-cylinder engine
JP4799435B2 (en) Multi-cylinder engine
JP4359583B2 (en) Multi-cylinder engine
JP2010116894A (en) Control device of internal combustion engine
JP4741379B2 (en) Multi-cylinder engine
JP2007211603A (en) Multi-cylinder engine
JP5670170B2 (en) Supercharged multi-cylinder engine
JP4637779B2 (en) Multi-cylinder engine
JP7296272B2 (en) internal combustion engine
JP2008190409A (en) Multiple cylinder engine
JP2018013114A (en) EGR control device
JP2012127261A (en) Egr device of multi-cylinder engine
JP2007198342A (en) Multicylinder engine
US10598087B2 (en) Intake/outlet pipe optimization method for rotary engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees