JP2007315230A - Apparatus for recirculating exhaust gas of internal combustion engine - Google Patents

Apparatus for recirculating exhaust gas of internal combustion engine Download PDF

Info

Publication number
JP2007315230A
JP2007315230A JP2006143880A JP2006143880A JP2007315230A JP 2007315230 A JP2007315230 A JP 2007315230A JP 2006143880 A JP2006143880 A JP 2006143880A JP 2006143880 A JP2006143880 A JP 2006143880A JP 2007315230 A JP2007315230 A JP 2007315230A
Authority
JP
Japan
Prior art keywords
egr
combustion engine
internal combustion
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006143880A
Other languages
Japanese (ja)
Inventor
Hiroki Murata
宏樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006143880A priority Critical patent/JP2007315230A/en
Priority to PCT/JP2007/061035 priority patent/WO2007136142A1/en
Publication of JP2007315230A publication Critical patent/JP2007315230A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of further appropriately supplying EGR gas in an apparatus for recirculating the exhaust gas of an internal combustion engine. <P>SOLUTION: The apparatus for recirculating the exhaust gas of the internal combustion engine comprises a super charger having a turbine in an exhaust passage and a compressor in an intake passage, an EGR passage for connecting the exhaust passage on the downstream side than the turbine to the intake passage on the upstream side than the compressor, and an inside EGR quantity changing means for changing the inside EGR quantity of the internal combustion engine. The ratio of the outside EGR quantity to be introduced into cylinders by flowing the exhaust gas of the internal combustion engine into the EGR passage to the inside EGR quantity to be remained in the cylinders is changed according to the load to be applied to the internal combustion engine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

ターボチャージャのタービンよりも下流の排気通路とコンプレッサよりも上流の吸気通路とを接続する低圧EGR通路により低温低圧のEGRガス(以下、低圧EGRという。)を供給することができる。また、ターボチャージャのタービンよりも上流の排気通路とコンプレッサよりも下流の吸気通路とを接続する高圧EGR通路により高温高圧のEGRガス(以下、高圧EGRという。)を供給することができる。   Low-temperature and low-pressure EGR gas (hereinafter referred to as low-pressure EGR) can be supplied by a low-pressure EGR passage that connects an exhaust passage downstream of the turbine of the turbocharger and an intake passage upstream of the compressor. Further, high-temperature and high-pressure EGR gas (hereinafter referred to as high-pressure EGR) can be supplied by a high-pressure EGR passage that connects an exhaust passage upstream of the turbine of the turbocharger and an intake passage downstream of the compressor.

しかし、低圧EGRは、排気がタービンを通過したり、インタークーラを通過したりすることによりEGRガスの温度が低下する。そのため、低負荷時に低圧EGRを行うと、インテークマニホルドの温度が低下しすぎて燃焼温度の低下を招き、HCの排出量が増加するおそれがある。   However, in the low pressure EGR, the temperature of the EGR gas is lowered by the exhaust gas passing through the turbine or the intercooler. For this reason, if low pressure EGR is performed at low load, the temperature of the intake manifold will decrease too much, leading to a decrease in combustion temperature, which may increase the amount of HC emissions.

そして、高負荷から中負荷までの運転状態で低圧EGRを行い、低負荷からアイドリングまでの運転状態で高圧EGRを行うことで、高負荷運転状態を除く運転状態において予混合圧縮着火の実施を実現し得る内燃機関の排気還流装置が知られている(例えば、特許文献1参照。)。
特開2002−21625号公報 特開平5−71428号公報 特開2004−162552号公報 特許第3046707号公報 特開平9−296740号公報
And, by performing low pressure EGR in the operation state from high load to medium load, and performing high pressure EGR in the operation state from low load to idling, it realizes premixed compression ignition in the operation state except the high load operation state There is known an exhaust gas recirculation device for an internal combustion engine (see, for example, Patent Document 1).
JP 2002-21625 A Japanese Patent Laid-Open No. 5-71428 JP 2004-162552 A Japanese Patent No. 3046707 Japanese Patent Laid-Open No. 9-296740

例えばNOx低減および出力増大を狙って低圧縮比化された内燃機関では、燃焼温度が
低いため、低負荷において高圧EGRを行ったとしても燃焼温度の低下を抑制することが困難となる。また、高圧EGRでは、排気がタービンよりも上流から吸気通路に流れ込むので、タービンへ供給されるエネルギが減少する。これにより、過給圧の低下および吸入空気量の減少を招くおそれがある。
For example, in an internal combustion engine with a low compression ratio aimed at reducing NOx and increasing output, the combustion temperature is low, so it is difficult to suppress a decrease in combustion temperature even if high pressure EGR is performed at a low load. Further, in the high pressure EGR, the exhaust gas flows into the intake passage from the upstream side of the turbine, so that the energy supplied to the turbine is reduced. This may lead to a decrease in supercharging pressure and a decrease in intake air amount.

また、内部EGRを行う従来技術では、可変容量型ターボチャージャのノズルを過度に閉じている。そうすると、タービンよりも上流の排気の圧力が上昇してしまうので、ポンプ損失が増加して燃費が悪化する。また、内部EGRはEGRクーラにより温度が低下されないので、燃焼室温度を過度に上昇させてNOxの排出量が増加するおそれがある。   Further, in the prior art that performs internal EGR, the nozzles of the variable capacity turbocharger are excessively closed. If it does so, since the pressure of exhaust_gas | exhaustion upstream from a turbine will rise, pump loss will increase and a fuel consumption will deteriorate. Further, since the temperature of the internal EGR is not lowered by the EGR cooler, there is a possibility that the combustion chamber temperature is excessively raised and the amount of NOx emission increases.

本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気還流装置において、より適切にEGRガスを供給することができる技術を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique capable of supplying EGR gas more appropriately in an exhaust gas recirculation apparatus for an internal combustion engine.

上記課題を達成するために本発明による内燃機関の排気還流装置は、以下の手段を採用した。すなわち、本発明による内燃機関の排気還流装置は、
排気通路にタービンを備え吸気通路にコンプレッサを備えた過給機と、
前記タービンよりも下流の排気通路と前記コンプレッサよりも上流の吸気通路とを接続
するEGR通路と、
内燃機関の内部EGR量を変更する内部EGR量変更手段と、
を備え、
前記内燃機関からの排気を前記EGR通路に流すことにより気筒内に導入される外部EGR量と、気筒内に残留する内部EGR量と、の割合を内燃機関の負荷に応じて変更することを特徴とする。
In order to achieve the above object, an exhaust gas recirculation apparatus for an internal combustion engine according to the present invention employs the following means. That is, the exhaust gas recirculation device for an internal combustion engine according to the present invention is:
A turbocharger equipped with a turbine in the exhaust passage and a compressor in the intake passage;
An EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor;
Internal EGR amount changing means for changing the internal EGR amount of the internal combustion engine;
With
The ratio of the external EGR amount introduced into the cylinder by flowing exhaust gas from the internal combustion engine through the EGR passage and the internal EGR amount remaining in the cylinder is changed in accordance with the load of the internal combustion engine. And

外部EGRは、内燃機関から排気通路へ排出された既燃ガスを、EGR通路、吸気通路の順に流して気筒内に導入することにより行われる。EGR通路は、タービンよりも下流の排気通路とコンプレッサにより圧縮される前の吸気が流れる吸気通路とを接続しているので、過給圧が高い場合であってもEGR通路内において排気通路側よりも吸気通路側の圧力を低くすることができる。そのため、過給圧が高い場合であってもEGRガスを循環させることができる。   The external EGR is performed by introducing the burned gas discharged from the internal combustion engine into the exhaust passage into the cylinder by flowing in the order of the EGR passage and the intake passage. Since the EGR passage connects the exhaust passage downstream of the turbine and the intake passage through which the intake air before being compressed by the compressor flows, even in the case where the supercharging pressure is high, the EGR passage is closer to the exhaust passage side. Also, the pressure on the intake passage side can be lowered. Therefore, the EGR gas can be circulated even when the supercharging pressure is high.

一方、内部EGRは、EGR通路を介さずに気筒内に残留する既燃ガスである。たとえば、吸気通路に吹き返した既燃ガスを気筒内に再吸入したり、排気通路に排出された既燃ガスを逆流させて気筒内に吸入したり、気筒内から排出される既燃ガスの量を減少させて気筒内に残留する既燃ガスの量を増加させたりして内部EGRが行われる。この内部EGRは、例えば可変動弁機構が排気弁の開閉特性を変更することにより行うことができる。この可変動弁機構は、排気弁の開弁時期、閉弁時期、リフト量、作用角を調整することにより、内燃機関の気筒内に吸入される新気量、EGR量、残留ガス量(内部EGR量)、ポンプ損失等を調整し、内燃機関の運転状態を変更する。例えば、排気弁の閉弁時期を排気上死点よりも早くすると、吸気通路側に吹き返す既燃ガスの量が増加し、この既燃ガスは吸気行程で気筒内に吸入される。そのため、気筒内に残留する既燃ガスが多くなる。また、排気弁の閉弁時期を排気上死点よりも遅くすると、排気通路に一旦排出された既燃ガスが吸気行程で気筒内に逆流する。そのため、気筒内に残留する既燃ガスが多くなる。このようにして、内部EGR量を増加させることができる。   On the other hand, the internal EGR is burned gas remaining in the cylinder without passing through the EGR passage. For example, the amount of burned gas blown back into the intake passage is re-inhaled into the cylinder, the burned gas discharged into the exhaust passage is backflowed into the cylinder, or the amount of burned gas discharged from the cylinder. The internal EGR is performed by reducing the amount of burnt gas remaining in the cylinder. This internal EGR can be performed, for example, by a variable valve mechanism changing the opening / closing characteristics of the exhaust valve. This variable valve mechanism adjusts the opening timing, closing timing, lift amount, and operating angle of the exhaust valve to adjust the amount of fresh air, EGR amount, and residual gas amount (internal EGR amount), pump loss, etc. are adjusted to change the operating state of the internal combustion engine. For example, if the closing timing of the exhaust valve is made earlier than the exhaust top dead center, the amount of burned gas that blows back to the intake passage increases, and this burned gas is sucked into the cylinder in the intake stroke. Therefore, the burnt gas remaining in the cylinder increases. Further, if the closing timing of the exhaust valve is made later than the exhaust top dead center, the burnt gas once discharged into the exhaust passage flows back into the cylinder in the intake stroke. Therefore, the burnt gas remaining in the cylinder increases. In this way, the internal EGR amount can be increased.

そして、内部EGRガスの温度は外部EGRガスの温度よりも高いので、気筒内における内部EGRガスの割合を増加させることにより、気筒内の温度を上昇させることができる。しかし、内燃機関の負荷が高いほど内部EGRによる気筒内の温度上昇が大きくなるため、燃焼温度が過度に上昇してNOxの排出量が増加するおそれがある。その点、外部
EGRガスの温度は内部EGRガスの温度よりも低いので、気筒内における外部EGRガスの割合を増加させることにより、気筒内の温度を低下させることができる。したがって、燃焼温度が低くなる低負荷運転ほど内部EGRの割合を高くし、外部EGRの割合を低くすることにより、燃焼温度の過度の低下を抑制することができる。これにより、HCの排出量を低減することができる。また、燃焼温度が高くなる高負荷運転ほど内部EGRの割合を低くし、外部EGRの割合を高くすることにより、燃焼温度が過度に上昇することを抑制することができる。これにより、NOxの排出を抑制することができる。さらに、
内部EGRを行うことにより、タービンを通過する排気の量の減少を抑制できるので機関出力の低下を抑制することができる。
And since the temperature of internal EGR gas is higher than the temperature of external EGR gas, the temperature in a cylinder can be raised by increasing the ratio of internal EGR gas in a cylinder. However, as the load on the internal combustion engine increases, the temperature rise in the cylinder due to the internal EGR increases, so that the combustion temperature may increase excessively and the NOx emissions may increase. In that respect, since the temperature of the external EGR gas is lower than the temperature of the internal EGR gas, the temperature in the cylinder can be lowered by increasing the ratio of the external EGR gas in the cylinder. Therefore, an excessive decrease in the combustion temperature can be suppressed by increasing the ratio of the internal EGR and decreasing the ratio of the external EGR as the low-load operation in which the combustion temperature is lowered. Thereby, the discharge amount of HC can be reduced. Further, by increasing the internal EGR rate and increasing the external EGR rate for higher load operation where the combustion temperature becomes higher, it is possible to suppress an excessive increase in the combustion temperature. Thereby, NOx emission can be suppressed. further,
By performing the internal EGR, a decrease in the amount of exhaust gas passing through the turbine can be suppressed, so that a decrease in engine output can be suppressed.

本発明においては、気筒内の温度を上昇させるときには上昇させる前よりも前記内部EGRの割合を高くし、気筒内の温度を低下させるときには低下させる前よりも前記外部EGRの割合を高くすることにより、気筒内の温度を調整することができる。   In the present invention, when the temperature in the cylinder is raised, the ratio of the internal EGR is made higher than before the temperature is raised, and when the temperature in the cylinder is lowered, the ratio of the external EGR is made higher than before the temperature is lowered. The temperature in the cylinder can be adjusted.

すなわち、外部EGRガスと内部EGRガスとでは、その温度が異なるため、気筒内での外部EGR量と内部EGR量との割合を変更することによりEGRガス全体としての温度を調整することができる。これにより、気筒内の温度を所望の温度に調整することができる。例えば気筒内の温度を低下させたい場合には、温度の低い外部EGRガスの割合を
高くし、気筒内の温度を上昇させたい場合には、温度の高い内部EGRガスの割合を低くする。
That is, since the temperature differs between the external EGR gas and the internal EGR gas, the temperature of the EGR gas as a whole can be adjusted by changing the ratio of the external EGR amount and the internal EGR amount in the cylinder. Thereby, the temperature in a cylinder can be adjusted to desired temperature. For example, when the temperature in the cylinder is to be lowered, the ratio of the external EGR gas having a low temperature is increased, and when the temperature in the cylinder is to be increased, the ratio of the internal EGR gas having a high temperature is decreased.

本発明においては、内燃機関の高負荷運転時には低負荷運転時よりも前記外部EGRの割合を高くすることができる。   In the present invention, the ratio of the external EGR can be made higher during high load operation of the internal combustion engine than during low load operation.

高負荷時においては気筒内の温度が高くなるが、このときに外部EGRの割合を高くすることにより、EGRガス全体の温度を低下させることがでるので、燃焼温度の過度の上昇によるNOxの発生を抑制することができる。なお、所定の負荷範囲において、負荷が
高くなるほど外部EGRの割合を高くしてもよい。
When the load is high, the temperature in the cylinder becomes high. At this time, by increasing the ratio of the external EGR, the temperature of the entire EGR gas can be lowered. Therefore, generation of NOx due to an excessive increase in the combustion temperature Can be suppressed. In the predetermined load range, the ratio of the external EGR may be increased as the load increases.

本発明においては、内燃機関の低負荷運転時には前記外部EGRの割合を0とすることができる。   In the present invention, the ratio of the external EGR can be set to zero during low load operation of the internal combustion engine.

ここで、低負荷運転時には、燃焼温度が過度に低下することがあるので、外部EGRにより燃焼温度を低下させる必要はほとんどない。一方、低負荷運転時に外部EGRの割合を0とすることにより、EGRガス全体の温度をより高くすることができるので、HCの排出をより減少させることができる。したがって、燃焼温度が所定温度よりも低いときに外部EGRを禁止してもよい。すなわち、ここでいう「低負荷」とは、例えばアイドルやアイドル近傍の低い負荷をいい、外部EGRを行うとHCが排出されるおそれのある負荷、またはHCの排出量が許容値を超えるおそれのある負荷とすることができる。   Here, at the time of low load operation, the combustion temperature may be excessively lowered, so that there is almost no need to lower the combustion temperature by the external EGR. On the other hand, by setting the ratio of external EGR to 0 during low-load operation, the temperature of the entire EGR gas can be increased, and HC emissions can be further reduced. Therefore, external EGR may be prohibited when the combustion temperature is lower than a predetermined temperature. In other words, the “low load” here means, for example, a low load in the vicinity of an idle or idle, a load that may discharge HC when external EGR is performed, or a discharge amount of HC may exceed an allowable value. It can be a certain load.

本発明においては、前記過給機は可変容量型ターボチャージャであり、前記外部EGRの割合を高くするときには割合を高くさせないときと比較して該可変容量型ターボチャージャのノズルを開くことができる。   In the present invention, the supercharger is a variable displacement turbocharger, and the nozzle of the variable displacement turbocharger can be opened when the proportion of the external EGR is increased compared to when the proportion is not increased.

内燃機関が低負荷運転しているときのように排気の量が少ない場合でも、可変容量型ターボチャージャのノズルを閉方向に回動させることにより、排気の流速を高めて排気タービンの回転速度及び回転力を増加させることができる。しかし、ノズルを閉方向に回動させると背圧が高くなる。これにより、内部EGRガスの割合が高くなり外部EGRガスの割合が低くなる。また、背圧が高くなることによりポンプ損失が増加する。   Even when the amount of exhaust is small, such as when the internal combustion engine is operating at a low load, by rotating the nozzle of the variable displacement turbocharger in the closing direction, the exhaust flow rate is increased and the rotational speed of the exhaust turbine The rotational force can be increased. However, when the nozzle is rotated in the closing direction, the back pressure increases. Thereby, the ratio of internal EGR gas becomes high and the ratio of external EGR gas becomes low. In addition, the pump loss increases as the back pressure increases.

ここで、例えば可変動弁機構により排気弁の開閉時期を変更することによっても内部EGRガスの割合を高くすることができる。そして、可変動弁機構により内部EGRガスの割合を増加させた場合には、前記ノズルを閉方向に回動させた場合と比較して背圧を低下させることができるので、ポンプ損失を低下させることができる。さらに、内部EGRガスの割合が増加する分だけノズルを開方向に回動させることができるので、ポンプ損失をより低減させることができる。   Here, for example, the ratio of the internal EGR gas can also be increased by changing the opening / closing timing of the exhaust valve by a variable valve mechanism. When the ratio of the internal EGR gas is increased by the variable valve mechanism, the back pressure can be reduced compared with the case where the nozzle is rotated in the closing direction, so that the pump loss is reduced. be able to. Furthermore, since the nozzle can be rotated in the opening direction by an amount corresponding to an increase in the ratio of the internal EGR gas, the pump loss can be further reduced.

本発明に係る内燃機関の排気還流装置によれば、内燃機関の負荷に応じて内部EGR量と外部EGR量との割合を変更することで、より適切にEGRガスを供給することができる。これにより、NOxおよびHCの排出量を低減させることができる。また、過給圧を
上昇させて機関出力を向上させることができる。
According to the exhaust gas recirculation apparatus for an internal combustion engine according to the present invention, the EGR gas can be supplied more appropriately by changing the ratio between the internal EGR amount and the external EGR amount according to the load of the internal combustion engine. As a result, NOx and HC emissions can be reduced. Further, the engine output can be improved by increasing the supercharging pressure.

以下、本発明に係る内燃機関の排気還流装置の具体的な実施態様について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust gas recirculation device for an internal combustion engine according to the present invention will be described with reference to the drawings.

図1は、本実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系および過給機の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクル・ディーゼルエンジンである。また内燃機関1は、圧縮比が例えば14から15.8の低圧縮比内燃機関である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the exhaust gas recirculation apparatus for an internal combustion engine according to this embodiment is applied, its intake / exhaust system, and a supercharger. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2. The internal combustion engine 1 is a low compression ratio internal combustion engine having a compression ratio of, for example, 14 to 15.8.

内燃機関1には、吸気管3および排気管4が接続されている。この吸気管3の途中には、排気のエネルギを駆動源として作動するターボチャージャ5のコンプレッサハウジング5aが設けられている。また、コンプレッサハウジング5aよりも上流の吸気管3には、該吸気管3内を流通する吸気の流量を調節する吸気スロットル6が設けられている。この吸気スロットル6は、電動アクチュエータにより開閉される。吸気スロットル6よりも上流の吸気管3には、該吸気管3内を流通する吸気の流量に応じた信号を出力するエアフローメータ7が設けられている。このエアフローメータ7により、内燃機関1の吸入空気量が測定される。   An intake pipe 3 and an exhaust pipe 4 are connected to the internal combustion engine 1. In the middle of the intake pipe 3, a compressor housing 5a of a turbocharger 5 that operates using exhaust energy as a drive source is provided. The intake pipe 3 upstream of the compressor housing 5a is provided with an intake throttle 6 for adjusting the flow rate of the intake air flowing through the intake pipe 3. The intake throttle 6 is opened and closed by an electric actuator. The intake pipe 3 upstream of the intake throttle 6 is provided with an air flow meter 7 that outputs a signal corresponding to the flow rate of intake air flowing through the intake pipe 3. The air flow meter 7 measures the intake air amount of the internal combustion engine 1.

一方、排気管4の途中には、前記ターボチャージャ5のタービンハウジング5bが設けられている。また、タービンハウジング5bよりも下流の排気管4には、排気浄化触媒8が設けられている。   On the other hand, a turbine housing 5 b of the turbocharger 5 is provided in the middle of the exhaust pipe 4. An exhaust purification catalyst 8 is provided in the exhaust pipe 4 downstream of the turbine housing 5b.

そして、内燃機関1には、排気管4内を流通する排気の一部を吸気管3へ再循環させるEGR装置30が備えられている。このEGR装置30は、EGR通路31、EGR弁32、およびEGRクーラ33を備えて構成されている。EGR通路31は、タービンハウジング5bよりも下流側の排気管4と、コンプレッサハウジング5aよりも上流の吸気管3と、を接続している。このEGR通路31を通って、排気が再循環される。そして、本実施例では、EGR通路31を通って再循環される排気を外部EGRガスと称している。また、EGR弁32は、EGR通路31の通路断面積を調整することにより、該EGR通路31を流れる外部EGRガスの量を調整する。さらに、EGRクーラ33は、該EGRクーラ33を通過する外部EGRガスの温度を低下させる。   The internal combustion engine 1 is provided with an EGR device 30 that recirculates a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3. The EGR device 30 includes an EGR passage 31, an EGR valve 32, and an EGR cooler 33. The EGR passage 31 connects the exhaust pipe 4 downstream of the turbine housing 5b and the intake pipe 3 upstream of the compressor housing 5a. Exhaust gas is recirculated through the EGR passage 31. In this embodiment, the exhaust gas recirculated through the EGR passage 31 is referred to as external EGR gas. Further, the EGR valve 32 adjusts the amount of the external EGR gas flowing through the EGR passage 31 by adjusting the passage sectional area of the EGR passage 31. Further, the EGR cooler 33 reduces the temperature of the external EGR gas that passes through the EGR cooler 33.

なお、本実施例では、前記ターボチャージャ5に可変容量型ターボチャージャを採用している。図2は、可変容量型ターボチャージャの構成を示す断面図である。図2(A)はノズルベーン51が開いている場合を示し、図2(B)はノズルベーン51が閉じている場合を示している。   In the present embodiment, a variable capacity turbocharger is adopted as the turbocharger 5. FIG. 2 is a cross-sectional view showing the configuration of the variable capacity turbocharger. 2A shows the case where the nozzle vane 51 is open, and FIG. 2B shows the case where the nozzle vane 51 is closed.

可変容量型ターボチャージャは、図に示すように、タービンハウジング5b内に設けられた排気タービン5cの周囲に複数のノズルベーン51を備えて構成されている。このノズルベーン51は、アクチュエータ52により開閉される。このノズルベーン51を閉じ側へ回動させると、隣接するノズルベーン51間の間隙が狭くなり、ノズルベーン51間の流路が閉じられることになる。一方、ノズルベーン51を開き側へ回動すると、隣接するノズルベーン51間の間隙が広くなり、ノズルベーン51間の流路が開かれることになる。   As shown in the figure, the variable displacement turbocharger is configured to include a plurality of nozzle vanes 51 around an exhaust turbine 5c provided in a turbine housing 5b. The nozzle vane 51 is opened and closed by an actuator 52. When the nozzle vane 51 is rotated to the closing side, the gap between the adjacent nozzle vanes 51 is narrowed, and the flow path between the nozzle vanes 51 is closed. On the other hand, when the nozzle vane 51 is rotated to the opening side, the gap between the adjacent nozzle vanes 51 is widened, and the flow path between the nozzle vanes 51 is opened.

このように構成された可変容量型ターボチャージャでは、アクチュエータ52によってノズルベーン51の回動方向と回動量とを調整することにより、ノズルベーン51間の流路の向き、及びノズルベーン51間の間隙を変更することが可能となる。即ち、ノズルベーン51の回動方向と回動量とを制御することにより、排気タービン5cに吹き付けられる排気の方向、流速、量が調節されることになる。   In the variable displacement turbocharger configured as described above, the direction of the flow path between the nozzle vanes 51 and the gap between the nozzle vanes 51 are changed by adjusting the rotation direction and the rotation amount of the nozzle vanes 51 by the actuator 52. It becomes possible. That is, by controlling the rotation direction and the rotation amount of the nozzle vane 51, the direction, flow rate, and amount of the exhaust blown to the exhaust turbine 5c are adjusted.

また、本実施例に係る内燃機関1は可変動弁機構60を備えている。各気筒2には排気弁61が2つ備えられおり、各排気弁61の開閉動作は排気側カム62によって行われる。この排気側カム62は排気側カムシャフト63に取り付けられ、更に排気側カムシャフ
ト63の端部には排気側プーリ64が設けられている。更に、排気側カムシャフト63と排気側プーリ64との相対的な回転位相を変更可能とする可変回転位相機構(以下、「排気側VVT」という)65が設けられている。この排気側VVT65は、ECU10からの指令に従って排気側カムシャフト63と排気側プーリ64との相対的な回転位相を制御する。
Further, the internal combustion engine 1 according to this embodiment includes a variable valve mechanism 60. Each cylinder 2 is provided with two exhaust valves 61, and each exhaust valve 61 is opened and closed by an exhaust side cam 62. The exhaust side cam 62 is attached to an exhaust side camshaft 63, and an exhaust side pulley 64 is provided at the end of the exhaust side camshaft 63. Furthermore, a variable rotation phase mechanism (hereinafter referred to as “exhaust side VVT”) 65 that can change the relative rotation phase between the exhaust side camshaft 63 and the exhaust side pulley 64 is provided. The exhaust side VVT 65 controls the relative rotation phase between the exhaust side camshaft 63 and the exhaust side pulley 64 in accordance with a command from the ECU 10.

そして、排気側カムシャフト63の回転駆動は、クランクシャフトの駆動力によって行われる。そして、クランクシャフトの駆動力によって排気側カムシャフト63が回転駆動され、さらには排気側カム62が回転されて、以て排気弁61の開閉動作が行われる。そして、本実施例では、可変動弁機構60により排気弁61の開閉時期を排気上死点よりも進角または遅角して、気筒2内の既燃ガスの量が変更される。本実施例では、このようにして気筒2内に残留する既燃ガスを内部EGRガスと称している。   The rotation of the exhaust camshaft 63 is driven by the driving force of the crankshaft. Then, the exhaust camshaft 63 is rotationally driven by the driving force of the crankshaft, and the exhaust cam 62 is further rotated, so that the exhaust valve 61 is opened and closed. In this embodiment, the open / close timing of the exhaust valve 61 is advanced or retarded from the exhaust top dead center by the variable valve mechanism 60 to change the amount of burned gas in the cylinder 2. In the present embodiment, the burned gas remaining in the cylinder 2 in this way is referred to as internal EGR gas.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。また、ECU10には、運転者がアクセルペダル11を踏み込んだ量に応じた電気信号を出力し、機関負荷を検出可能なアクセル開度センサ12、機関回転数を検出するクランクポジションセンサ13の他、各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU10に入力されるようになっている。一方、ECU10には、吸気スロットル6、EGR弁32、アクチュエータ52、およびVVT65が電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。   The internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. Further, the ECU 10 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 11 by the driver, an accelerator opening sensor 12 that can detect the engine load, a crank position sensor 13 that detects the engine speed, Various sensors are connected via electric wiring, and output signals of these various sensors are input to the ECU 10. On the other hand, the intake throttle 6, the EGR valve 32, the actuator 52, and the VVT 65 are connected to the ECU 10 through electric wiring, and these devices are controlled by the ECU 10.

そして、本実施例では、内部EGR量および外部EGR量がECU10により調整される。内部EGRの量は、VVT65を制御することにより調整することができる。排気弁61の閉じる時期を排気上死点よりも早くするほど、排気管4に排出されずに気筒2内に残留する既燃ガスの量が多くなる。その後吸気弁が開弁することにより既燃ガスが吸気管3に逆流するが、この逆流した既燃ガスは直後の吸気行程に再度気筒2内に流入する。すなわち、排気弁61の閉じる時期を排気上死点よりも早くするほど、内部EGR量を増加させることができる。また、排気弁61の閉じる時期を排気上死点よりも遅くするほど、吸気行程中に排気管4から気筒2内に逆流する既燃ガスの量が多くなる。すなわち、排気弁61の閉じる時期を排気上死点よりも遅くするほど、内部EGR量を増加させることができる。なお、本実施例においては可変動弁機構60が、本発明における内部EGR量変更手段に相当する。   In this embodiment, the internal EGR amount and the external EGR amount are adjusted by the ECU 10. The amount of internal EGR can be adjusted by controlling the VVT 65. The earlier the exhaust valve 61 closes than the exhaust top dead center, the greater the amount of burnt gas that remains in the cylinder 2 without being discharged into the exhaust pipe 4. After that, the burned gas flows backward to the intake pipe 3 by opening the intake valve, but the burned gas that has flowed back flows again into the cylinder 2 in the immediately following intake stroke. That is, the earlier the exhaust valve 61 closes than the exhaust top dead center, the more the internal EGR amount can be increased. Further, as the exhaust valve 61 closes later than the exhaust top dead center, the amount of burnt gas that flows back into the cylinder 2 from the exhaust pipe 4 during the intake stroke increases. That is, the internal EGR amount can be increased as the exhaust valve 61 closes later than the exhaust top dead center. In this embodiment, the variable valve mechanism 60 corresponds to the internal EGR amount changing means in the present invention.

一方、外部EGRの量は、吸気スロットル6を制御することにより調整することができる。吸気スロットル6の開弁量が小さくすることにより該吸気スロットル6よりも下流の吸気管3内の圧力を低下させることができる。これにより、排気管4と吸気管3との圧力差が大きくなるので、より多くの排気がEGR通路31を流れて外部EGR量が増加する。このときには、EGR弁32を全開としておく。このように吸気スロットル6の開度を調整することにより外部EGR量を調整することができる。なお、吸気スロットル6の代わりに、排気管4にEGR通路31が接続されている箇所よりも下流の排気管4に排気スロットルを設け、この排気スロットルの開閉により外部EGR量を調整することもできる。この場合、排気スロットルの開度を小さくするほど排気管4内の圧力が増加して外部EGR量が多くなる。さらに、EGR弁32の開度を調整することにより外部EGR量を調整することもできる。この場合、EGR弁32の開度を大きくするほど外部EGR量が増加する。   On the other hand, the amount of external EGR can be adjusted by controlling the intake throttle 6. By reducing the valve opening amount of the intake throttle 6, the pressure in the intake pipe 3 downstream of the intake throttle 6 can be reduced. As a result, the pressure difference between the exhaust pipe 4 and the intake pipe 3 increases, so that more exhaust flows through the EGR passage 31 and the amount of external EGR increases. At this time, the EGR valve 32 is fully opened. Thus, the external EGR amount can be adjusted by adjusting the opening of the intake throttle 6. Instead of the intake throttle 6, an exhaust throttle can be provided in the exhaust pipe 4 downstream of the location where the EGR passage 31 is connected to the exhaust pipe 4, and the external EGR amount can be adjusted by opening and closing the exhaust throttle. . In this case, as the opening of the exhaust throttle is reduced, the pressure in the exhaust pipe 4 is increased and the amount of external EGR is increased. Further, the amount of external EGR can be adjusted by adjusting the opening degree of the EGR valve 32. In this case, the external EGR amount increases as the opening degree of the EGR valve 32 is increased.

そして、内部EGRガスは外部EGRガスと比較して温度が高いため、内部EGRガスの量を多くするほど気筒2内の温度を上昇させることができる。また、外部EGRガスは
EGR通路31やEGRクーラ33を通過することにより温度が低下しているので、外部EGRガスの量を多くするほど気筒2内の温度を低下させることができる。また、内部EGRガスと外部EGRガスとの割合を調整することにより、気筒2内の温度を所望の温度に調整することができる。これにより、燃焼温度の過度の上昇を抑制することもできる。そして、内部EGR量の増減に応じて外部EGR量を増減させれば、EGRガスの総量を変化させないようにすることができる。また、可変動弁機構60により内部EGRガスの割合を高めることができるので、ノズルベーン51を過度に閉じる必要はなくなり、さらにはノズルベーン51を開くこともできる。これによりポンプ損失を低減させることができる。さらに、EGR通路31はタービンハウジング5bよりも下流に接続されているため、タービンハウジング5bよりも上流に接続されているEGR装置と比較して該タービンハウジング5bを通過する排気の量を多くすることができる。これにより、排気タービン5cの回転数をより高くすることができるため、過給圧をより高めることができるので機関出力を向上させることができる。
Since the internal EGR gas has a higher temperature than the external EGR gas, the temperature in the cylinder 2 can be increased as the amount of the internal EGR gas is increased. Further, since the temperature of the external EGR gas is lowered by passing through the EGR passage 31 and the EGR cooler 33, the temperature in the cylinder 2 can be lowered as the amount of the external EGR gas is increased. Moreover, the temperature in the cylinder 2 can be adjusted to a desired temperature by adjusting the ratio of the internal EGR gas and the external EGR gas. Thereby, the excessive raise of combustion temperature can also be suppressed. If the external EGR amount is increased or decreased according to the increase or decrease of the internal EGR amount, the total amount of EGR gas can be prevented from changing. Further, since the ratio of the internal EGR gas can be increased by the variable valve mechanism 60, it is not necessary to close the nozzle vane 51 excessively, and the nozzle vane 51 can be opened. Thereby, pump loss can be reduced. Further, since the EGR passage 31 is connected downstream of the turbine housing 5b, the amount of exhaust gas passing through the turbine housing 5b is increased as compared with the EGR device connected upstream of the turbine housing 5b. Can do. Thereby, since the rotation speed of the exhaust turbine 5c can be made higher, the supercharging pressure can be further increased, so that the engine output can be improved.

このようにして、燃焼温度の低い低圧縮比内燃機関であっても気筒2内の温度を上昇させてHCの排出量を低減させることができる。また、気筒2内の温度が過度に上昇することを抑制することができるので、NOxの排出量を低減することができる。さらに、機関
負荷が低いときであっても過給圧を高くすることができるので、気筒2内に十分な酸素を導入することができるため、未燃HCの排出量をより低減することができる。
In this way, even in a low compression ratio internal combustion engine having a low combustion temperature, the temperature in the cylinder 2 can be increased to reduce the amount of HC emission. In addition, since the temperature in the cylinder 2 can be prevented from rising excessively, the amount of NOx emission can be reduced. Furthermore, since the supercharging pressure can be increased even when the engine load is low, sufficient oxygen can be introduced into the cylinder 2, and the amount of unburned HC discharged can be further reduced. .

本実施例においては、機関負荷が低いときには外部EGRガスよりも内部EGRガスの割合を多くし、機関負荷が高いときには内部EGRガスよりも外部EGRガスの割合を多くする。その他のハードウェアについては、実施例1と同じなので説明を省略する。   In this embodiment, when the engine load is low, the ratio of the internal EGR gas is larger than that of the external EGR gas, and when the engine load is high, the ratio of the external EGR gas is larger than that of the internal EGR gas. The other hardware is the same as that of the first embodiment, and a description thereof will be omitted.

図3は、機関回転数および機関負荷と、EGRの種類の分布との関係を示した図である。また、図4は、図3においてAで示される機関回転数における、機関負荷とEGRの種類の分布との関係を示した図である。図3において、「外部EGR領域」は、気筒2内の全EGRガスに対して外部EGRガスの割合を可及的に高くする領域である。なお、気筒2内に残留する既燃ガスを完全に取り除くことは困難であるため、内部EGRの割合は厳密には0とならないが、簡単のため図3および図4では、内部EGRの割合を0としている。また、「内部EGR併用領域」では、内部EGRの割合が高められる。図4において、横軸は機関負荷であり、縦軸は全EGR量に占める内部EGRと外部EGRとの割合を示している。   FIG. 3 is a diagram showing the relationship between the engine speed and the engine load, and the distribution of EGR types. FIG. 4 is a graph showing the relationship between the engine load and the distribution of EGR types at the engine speed indicated by A in FIG. In FIG. 3, the “external EGR region” is a region in which the ratio of the external EGR gas to the total EGR gas in the cylinder 2 is as high as possible. Since it is difficult to completely remove the burned gas remaining in the cylinder 2, the ratio of the internal EGR is not strictly zero, but for simplicity, the ratio of the internal EGR is shown in FIGS. 0. In the “internal EGR combined use area”, the ratio of internal EGR is increased. In FIG. 4, the horizontal axis represents the engine load, and the vertical axis represents the ratio of the internal EGR and the external EGR to the total EGR amount.

図3に示したように、低負荷の場合には「内部EGR併用領域」となる。すなわち、低負荷の場合には排気の温度が低いため内部EGRが併用される。一方、中・高負荷の場合には「外部EGR領域」となる。すなわち、中・高負荷の場合には、排気の温度が高いため外部EGRのみを供給して気筒2内の温度が過度に上昇しないようにしている。また、図4に示すように、極低負荷の場合には外部EGRの割合を0としている。すなわち、機関負荷が0の場合には気筒2内に内部EGRのみが供給される。そして、機関負荷が少し大きくなると外部EGRが併用される。そして、機関負荷が大きくなるに従い外部EGRガスの割合が徐々に大きくなる。さらに中負荷以上となると気筒2内に外部EGRのみが供給される。   As shown in FIG. 3, in the case of a low load, it becomes an “internal EGR combined use region”. That is, in the case of a low load, the internal EGR is used together because the exhaust gas temperature is low. On the other hand, in the case of medium / high load, it becomes an “external EGR region”. That is, in the case of medium and high loads, since the exhaust gas temperature is high, only the external EGR is supplied so that the temperature in the cylinder 2 does not rise excessively. Further, as shown in FIG. 4, the ratio of external EGR is set to 0 in the case of an extremely low load. That is, when the engine load is zero, only the internal EGR is supplied into the cylinder 2. And when engine load becomes a little large, external EGR is used together. As the engine load increases, the ratio of external EGR gas gradually increases. Further, when the load becomes medium load or higher, only the external EGR is supplied into the cylinder 2.

そして、本実施例では、内部EGR量の目標値を内燃機関1の運転状態から決定し、実際の内部EGR量が目標値となるようにVVT65が制御される。具体的には、機関回転数、機関負荷、およびVVT65の制御値の関係を予め実験等により求めてマップ化しておき、該マップに機関回転数および機関負荷を代入してVVT65の制御値を得る。このときに、内燃機関1の冷却水温度、外気温度、または排出されるHC量も考慮してVVT
65の制御値を得ても良い。このVVT65の制御値に基づいてECU10がVVT65を制御することにより内部EGR量が調整される。一方、気筒2内の総EGR量の目標値を内燃機関1の運転状態から決定し、この総EGR量の目標値となるように吸気スロットル6が制御される。このときに、内燃機関1の冷却水温度、外気温度、または排出されるHC量も考慮して吸気スロットル6の制御値を得ても良い。例えば、エアフローメータ7により得られる吸入空気量に基づいて吸気スロットル6の開度が調整される。ここで、気筒2内の総EGR量の分だけエアフローメータ7により検出される吸入空気量が少なくなるため、この吸入空気量に基づいて気筒2内の総EGR量を間接的に求めることができる。具体的には、機関回転数、機関負荷、吸入空気量、および吸気スロットル6の開度の関係を予め実験等により求めてマップ化しておき、該マップに機関回転数、機関負荷、および吸入空気量を代入して吸気スロットル6の開度を得ることができる。以上のように、本実施例では内部EGRはオープンループ制御され、外部EGRは吸入空気量に基づいてフィードバック制御される。
In this embodiment, the target value of the internal EGR amount is determined from the operating state of the internal combustion engine 1, and the VVT 65 is controlled so that the actual internal EGR amount becomes the target value. Specifically, the relationship between the engine speed, the engine load, and the control value of the VVT 65 is obtained in advance through experiments or the like and mapped, and the engine speed and the engine load are substituted into the map to obtain the control value of the VVT 65. . At this time, considering the cooling water temperature of the internal combustion engine 1, the outside air temperature, or the amount of HC discharged, VVT
A control value of 65 may be obtained. The ECU 10 controls the VVT 65 based on the control value of the VVT 65 to adjust the internal EGR amount. On the other hand, the target value of the total EGR amount in the cylinder 2 is determined from the operating state of the internal combustion engine 1, and the intake throttle 6 is controlled so as to be the target value of the total EGR amount. At this time, the control value of the intake throttle 6 may be obtained in consideration of the coolant temperature of the internal combustion engine 1, the outside air temperature, or the amount of HC discharged. For example, the opening degree of the intake throttle 6 is adjusted based on the intake air amount obtained by the air flow meter 7. Here, since the intake air amount detected by the air flow meter 7 is reduced by the total EGR amount in the cylinder 2, the total EGR amount in the cylinder 2 can be indirectly obtained based on the intake air amount. . Specifically, the relationship between the engine speed, the engine load, the intake air amount, and the opening degree of the intake throttle 6 is obtained in advance by experiments or the like, and is mapped to the map. The opening of the intake throttle 6 can be obtained by substituting the amount. As described above, in this embodiment, the internal EGR is open-loop controlled, and the external EGR is feedback-controlled based on the intake air amount.

このように構成された内燃機関の排気還流装置では、内燃機関1が低負荷で運転されている場合には、内部EGRガスの割合を高くすることにより気筒2内の温度を上昇させることができる。これにより、燃焼温度が高くなるので未燃HCの排出を抑制することができる。一方、内燃機関1が高負荷で運転されている場合には、外部EGRガスの割合を高くする若しくは外部EGRガスのみを供給することにより燃焼温度を低下させることができるので、NOxの排出を抑制することができる。また、内部EGRを行うことにより従
来のような高圧EGRを行う必要がなくなるので、ノズルベーン51を従来よりも開くことができる。これにより、ポンプ損失を低減させることができるので、燃費を向上させることができる。さらに、内部EGRガスと外部EGRガスとの割合を徐々に変えることにより、気筒内のEGR温度を徐々に変えることができるので、気筒2内のEGRガスの温度および燃焼温度が急変することが抑制される。これにより、気筒2内の温度制御を容易に行うことができる。
In the exhaust gas recirculation device for an internal combustion engine configured as described above, when the internal combustion engine 1 is operated at a low load, the temperature in the cylinder 2 can be increased by increasing the proportion of the internal EGR gas. . Thereby, since combustion temperature becomes high, discharge | emission of unburned HC can be suppressed. On the other hand, when the internal combustion engine 1 is operated at a high load, the combustion temperature can be lowered by increasing the proportion of the external EGR gas or by supplying only the external EGR gas, so that NOx emission is suppressed. can do. Moreover, since it is not necessary to perform the high pressure EGR as in the prior art by performing the internal EGR, the nozzle vane 51 can be opened more than in the prior art. Thereby, since pump loss can be reduced, fuel consumption can be improved. Further, since the EGR temperature in the cylinder can be gradually changed by gradually changing the ratio between the internal EGR gas and the external EGR gas, it is possible to suppress a sudden change in the temperature of the EGR gas and the combustion temperature in the cylinder 2. Is done. Thereby, the temperature control in the cylinder 2 can be easily performed.

さらに、アイドルおよびアイドル近傍の低負荷の場合には、外部EGRの割合を0とすることにより気筒2内でのEGR温度の低下を抑制することができるので、低圧縮比内燃機関であっても気筒2内での燃焼温度の低下を抑制することができる。これにより、未燃HCの排出量を低減することができる。   Further, in the case of idling and a low load near the idling, the EGR temperature drop in the cylinder 2 can be suppressed by setting the ratio of the external EGR to 0. Therefore, even in a low compression ratio internal combustion engine A decrease in combustion temperature in the cylinder 2 can be suppressed. Thereby, the discharge amount of unburned HC can be reduced.

実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系および過給機の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an exhaust gas recirculation device for an internal combustion engine according to an embodiment is applied, an intake / exhaust system thereof, and a supercharger. FIG. 可変容量型ターボチャージャの構成を示す断面図である。図2(A)はノズルベーンが開いている場合を示し、図2(B)はノズルベーンが閉じている場合を示している。It is sectional drawing which shows the structure of a variable capacity | capacitance type turbocharger. 2A shows a case where the nozzle vane is open, and FIG. 2B shows a case where the nozzle vane is closed. 機関回転数および機関負荷と、EGRの種類の分布との関係を示した図である。It is the figure which showed the relationship between an engine speed and an engine load, and distribution of the type of EGR. 図3においてAで示される機関回転数における、機関負荷とEGRの種類の分布との関係を示した図である。FIG. 4 is a diagram showing the relationship between engine load and EGR type distribution at the engine speed indicated by A in FIG. 3.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ターボチャージャ
5a コンプレッサハウジング
5b タービンハウジング
5c 排気タービン
6 吸気スロットル
7 エアフローメータ
8 排気浄化触媒
10 ECU
11 アクセルペダル
12 アクセル開度センサ
13 クランクポジションセンサ
30 EGR装置
31 EGR通路
32 EGR弁
33 EGRクーラ
51 ノズルベーン
52 アクチュエータ
60 可変動弁機構
61 排気弁
62 排気側カム
63 排気側カムシャフト
64 排気側プーリ
65 可変回転位相機構(排気側VVT)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Intake pipe 4 Exhaust pipe 5 Turbocharger 5a Compressor housing 5b Turbine housing 5c Exhaust turbine 6 Intake throttle 7 Air flow meter 8 Exhaust purification catalyst 10 ECU
11 Accelerator pedal 12 Accelerator opening sensor 13 Crank position sensor 30 EGR device 31 EGR passage 32 EGR valve 33 EGR cooler 51 Nozzle vane 52 Actuator 60 Variable valve mechanism 61 Exhaust valve 62 Exhaust side cam 63 Exhaust side camshaft 64 Exhaust side pulley 65 Variable rotation phase mechanism (exhaust side VVT)

Claims (5)

排気通路にタービンを備え吸気通路にコンプレッサを備えた過給機と、
前記タービンよりも下流の排気通路と前記コンプレッサよりも上流の吸気通路とを接続するEGR通路と、
内燃機関の内部EGR量を変更する内部EGR量変更手段と、
を備え、
前記内燃機関からの排気を前記EGR通路に流すことにより気筒内に導入される外部EGR量と、気筒内に残留する内部EGR量と、の割合を内燃機関の負荷に応じて変更することを特徴とする内燃機関の排気還流装置。
A turbocharger equipped with a turbine in the exhaust passage and a compressor in the intake passage;
An EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor;
Internal EGR amount changing means for changing the internal EGR amount of the internal combustion engine;
With
The ratio of the external EGR amount introduced into the cylinder by flowing exhaust gas from the internal combustion engine through the EGR passage and the internal EGR amount remaining in the cylinder is changed in accordance with the load of the internal combustion engine. An exhaust gas recirculation device for an internal combustion engine.
気筒内の温度を上昇させるときには上昇させる前よりも前記内部EGRの割合を高くし、気筒内の温度を低下させるときには低下させる前よりも前記外部EGRの割合を高くすることにより、気筒内の温度を調整することを特徴とする請求項1に記載の内燃機関の排気還流装置。   When the temperature in the cylinder is raised, the ratio of the internal EGR is made higher than before the temperature is raised, and when the temperature in the cylinder is lowered, the percentage of the external EGR is made higher than before the temperature is lowered. The exhaust gas recirculation apparatus for an internal combustion engine according to claim 1, wherein: 内燃機関の高負荷運転時には低負荷運転時よりも前記外部EGRの割合を高くすることを特徴とする請求項1または2に記載の内燃機関の排気還流装置。   The exhaust gas recirculation device for an internal combustion engine according to claim 1 or 2, wherein the ratio of the external EGR is made higher during high load operation of the internal combustion engine than during low load operation. 内燃機関の低負荷運転時には前記外部EGRの割合を0とすることを特徴とする請求項1または2に記載の内燃機関の排気還流装置。   The exhaust gas recirculation device for an internal combustion engine according to claim 1 or 2, wherein the ratio of the external EGR is set to 0 when the internal combustion engine is operated at a low load. 前記過給機は可変容量型ターボチャージャであり、前記外部EGRの割合を高くするときには割合を高くさせないときと比較して該可変容量型ターボチャージャのノズルを開くことを特徴とする請求項1から4の何れかに記載の内燃機関の排気還流装置。   The supercharger is a variable displacement turbocharger, and when the ratio of the external EGR is increased, the nozzle of the variable displacement turbocharger is opened as compared with a case where the ratio is not increased. 5. An exhaust gas recirculation device for an internal combustion engine according to any one of 4 above.
JP2006143880A 2006-05-24 2006-05-24 Apparatus for recirculating exhaust gas of internal combustion engine Withdrawn JP2007315230A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006143880A JP2007315230A (en) 2006-05-24 2006-05-24 Apparatus for recirculating exhaust gas of internal combustion engine
PCT/JP2007/061035 WO2007136142A1 (en) 2006-05-24 2007-05-24 Exhaust gas recirculation system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143880A JP2007315230A (en) 2006-05-24 2006-05-24 Apparatus for recirculating exhaust gas of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007315230A true JP2007315230A (en) 2007-12-06

Family

ID=38319563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143880A Withdrawn JP2007315230A (en) 2006-05-24 2006-05-24 Apparatus for recirculating exhaust gas of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2007315230A (en)
WO (1) WO2007136142A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197801A (en) * 2008-02-19 2009-09-03 Crf Soc Consortile Per Azioni Egr control system
JP2010209807A (en) * 2009-03-11 2010-09-24 Mazda Motor Corp Control method and control device for gasoline engine
WO2011142112A1 (en) * 2010-05-11 2011-11-17 Mazda Motor Corporation Diesel engine for automobile, control device and control method
JP2012007545A (en) * 2010-06-25 2012-01-12 Daihatsu Motor Co Ltd Internal combustion engine
JP2012140953A (en) * 2010-12-31 2012-07-26 Fev Gmbh Nox controller having internal and external exhaust gas recirculation
JP2013133765A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Automobile engine controller
JP2013133763A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Controller of compressed self ignition engine with turbocharger
JP2013532797A (en) * 2010-07-31 2013-08-19 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine and method of operating the same
WO2014017189A1 (en) * 2012-07-25 2014-01-30 日産自動車株式会社 Control device and control method of internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233809B (en) * 2008-01-08 2015-05-20 马克卡车公司 Method for reducing discharge of diesel engine and diesel engine
WO2009088506A1 (en) 2008-01-08 2009-07-16 Mack Trucks, Inc. Method for reducing diesel engine emissions, and diesel engine
FR2928967B1 (en) * 2008-03-20 2010-04-02 Renault Sas REGENERATION WITHOUT OVERHEATING AN AUTOMOTIVE VEHICLE POST-PROCESSING DEVICE
US7934486B1 (en) * 2010-04-02 2011-05-03 Ford Global Technologies, Llc Internal and external LP EGR for boosted engines
US8733320B2 (en) 2010-04-02 2014-05-27 Ford Global Technologies, Llc Combustion stability enhancement via internal EGR control
DE102012203085B4 (en) * 2011-03-09 2024-06-27 Ford Global Technologies, Llc Improved combustion stability through internal EGR control
DE102017208189A1 (en) * 2017-05-16 2018-12-06 Volkswagen Ag Internal combustion engine and method for operating such an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038512B2 (en) * 1991-09-10 2000-05-08 ヤンマーディーゼル株式会社 Exhaust gas recirculation system for diesel engine
JP3046707B2 (en) * 1994-03-22 2000-05-29 日産ディーゼル工業株式会社 Diesel engine exhaust recirculation system
JPH09296740A (en) * 1996-03-04 1997-11-18 Hino Motors Ltd Exhaust gas recirculation equipment for internal combustion engine
JP3796102B2 (en) * 2000-07-10 2006-07-12 日野自動車株式会社 EGR device
JP2002276405A (en) * 2001-03-19 2002-09-25 Isuzu Motors Ltd Exhaust emission control device of diesel engine
JP2003193852A (en) * 2001-12-26 2003-07-09 Hino Motors Ltd Intake pressure controller for engine with turbosupercharger
JP3994783B2 (en) * 2002-04-19 2007-10-24 日産自動車株式会社 Control device for internal combustion engine
JP2004162552A (en) * 2002-11-11 2004-06-10 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
EP1455078B1 (en) * 2003-03-06 2008-11-19 Ford Global Technologies, LLC Internal combustion engine having a turbocharger and an exhaust gas recirculation system
JP2007002668A (en) * 2003-07-01 2007-01-11 Tokudaiji Jidosha Bunka Kenkyusho:Kk Diesel engine exhaust emission control device and control means
US6932063B1 (en) * 2004-08-12 2005-08-23 Eaton Corporation Internal EGR cooler
DE102004045394A1 (en) * 2004-09-18 2006-03-23 Robert Bosch Gmbh Internal combustion engine
FR2880068A1 (en) * 2004-12-28 2006-06-30 Renault Sas Diesel engine control method for e.g. car, involves reintroducing external and internal exhaust gas recirculation gas, coming from exhaust or inlet valve, in cylinder during different operation points of diesel engine
DE102005043130A1 (en) * 2005-09-10 2007-03-15 Daimlerchrysler Ag Internal combustion engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197801A (en) * 2008-02-19 2009-09-03 Crf Soc Consortile Per Azioni Egr control system
JP2010209807A (en) * 2009-03-11 2010-09-24 Mazda Motor Corp Control method and control device for gasoline engine
CN102933825A (en) * 2010-05-11 2013-02-13 马自达汽车株式会社 Diesel engine for automobile, control device and control method
WO2011142112A1 (en) * 2010-05-11 2011-11-17 Mazda Motor Corporation Diesel engine for automobile, control device and control method
JP2011236821A (en) * 2010-05-11 2011-11-24 Mazda Motor Corp Diesel engine for automobile
US9234478B2 (en) 2010-05-11 2016-01-12 Mazda Motor Corporation Diesel engine for automobile, control device and control method
JP2012007545A (en) * 2010-06-25 2012-01-12 Daihatsu Motor Co Ltd Internal combustion engine
US8955317B2 (en) 2010-07-31 2015-02-17 Daimler Ag Internal combustion engine and associated operating method
JP2013532797A (en) * 2010-07-31 2013-08-19 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine and method of operating the same
US20130000600A1 (en) * 2010-12-31 2013-01-03 Thorsten Schnorbus Nox adjustment control with internal and external exhaust gas recirculation
JP2012140953A (en) * 2010-12-31 2012-07-26 Fev Gmbh Nox controller having internal and external exhaust gas recirculation
US9371781B2 (en) 2010-12-31 2016-06-21 Fev Gmbh NOX adjustment control with internal and external exhaust gas recirculation
JP2013133765A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Automobile engine controller
JP2013133763A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Controller of compressed self ignition engine with turbocharger
WO2014017189A1 (en) * 2012-07-25 2014-01-30 日産自動車株式会社 Control device and control method of internal combustion engine
CN104471216A (en) * 2012-07-25 2015-03-25 日产自动车株式会社 Control device and control method of internal combustion engine
JP5733478B2 (en) * 2012-07-25 2015-06-10 日産自動車株式会社 Control device and control method for internal combustion engine
CN104471216B (en) * 2012-07-25 2016-04-27 日产自动车株式会社 The control gear of internal-combustion engine and controlling method
US9964055B2 (en) 2012-07-25 2018-05-08 Nissan Motor Co., Ltd. Control device and control method of internal combustion engine

Also Published As

Publication number Publication date
WO2007136142A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
EP2179158B1 (en) Control apparatus and control method for internal combustion engine
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
JP4872644B2 (en) Internal combustion engine with EGR device
JP2009041485A (en) Exhaust emission control device of internal combustion engine
JP2006233898A (en) Egr device
JP4442643B2 (en) Exhaust gas purification control device for internal combustion engine
JP5092962B2 (en) Control device for an internal combustion engine with a supercharger
WO2014208361A1 (en) Engine control device
US20180266365A1 (en) Exhaust gas control apparatus of internal combustion engine
JP6520982B2 (en) Control device for internal combustion engine
WO2008152491A1 (en) Exhaust gas recirculation system for internal combustion engine and exhaust gas recirculation system control method
JP5803326B2 (en) Lean burn engine with turbocharger
JP2009264335A (en) Multistage supercharging system for internal combustion engine
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP2006299892A (en) Internal combustion engine with supercharger
JP4867713B2 (en) Control device for internal combustion engine with EGR device
JP5679776B2 (en) Exhaust gas recirculation control method for internal combustion engine
JP2010169056A (en) Control device for egr device
JP2009191660A (en) Control device of internal combustion engine
JP2008223710A (en) Exhaust recirculation device of internal combustion engine
WO2010095258A1 (en) Internal combustion engine
JP4719142B2 (en) Multi-cylinder 4-cycle engine with internal EGR system
JP2005299570A (en) Premixed combustion control system for compression ignition internal combustion engine

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081029