JP2002276405A - Exhaust emission control device of diesel engine - Google Patents

Exhaust emission control device of diesel engine

Info

Publication number
JP2002276405A
JP2002276405A JP2001079266A JP2001079266A JP2002276405A JP 2002276405 A JP2002276405 A JP 2002276405A JP 2001079266 A JP2001079266 A JP 2001079266A JP 2001079266 A JP2001079266 A JP 2001079266A JP 2002276405 A JP2002276405 A JP 2002276405A
Authority
JP
Japan
Prior art keywords
exhaust
passage
intake
engine
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079266A
Other languages
Japanese (ja)
Inventor
Toshitaka Minami
利貴 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2001079266A priority Critical patent/JP2002276405A/en
Publication of JP2002276405A publication Critical patent/JP2002276405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly and continuously combust PM collected in a DPF in a large operating range of an engine. SOLUTION: This exhaust emission control device of a diesel engine comprises a turbo charger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake passage, a first EGR passage for communicating the exhaust passage on the upstream side from the exhaust turbine with the intake passage on the downstream side from the intake compressor, a first EGR valve disposed in the first EGR passage, and an oxidation catalyst and a particulate filter that are disposed in the exhaust passage on the downstream side from the exhaust turbine. When an exhaust temperature range of the engine lies higher than an active temperature range of the oxidation catalyst, the exhaust emission control device performs the control for throttling the first EGR valve. When the exhaust temperature range of the engine lies lower than the active temperature range of the oxidation catalyst, the exhaust emission control device performs the control for throttling either or both of an intake shutter and an exhaust shutter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はディーゼルエンジン
の排気ガス中のパティキュレートを除去するための排気
浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for removing particulates in exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】最近の内燃機関、特にディーゼルエンジ
ンの排気ガスに対する規制は年々強化されており、 特に
カーボンを主成分とするパティキュレート(以下、P
M)の低減が急務となっている。このPMを排気から除
去する装置としてディーゼルパティキュレートフィルタ
(以下、DPF)が知られており、ディーゼルエンジン
を搭載した車両にDPFを装備させることを義務づける
動きも本格化してきている。
2. Description of the Related Art Regulations on the exhaust gas of recent internal combustion engines, especially diesel engines, have been strengthened year by year, and in particular, particulates (hereinafter referred to as P
M) is urgently needed. A diesel particulate filter (hereinafter, DPF) is known as a device for removing the PM from exhaust gas, and a movement to oblige a vehicle equipped with a diesel engine to be equipped with the DPF is also in full swing.

【0003】ところで、ディーゼルエンジンを搭載した
車両に装備されるDPFには、エンジンが繰り返し運転
されることによって捕集したPMが堆積するため、捕集
したPMを燃焼してDPFを再生させる必要がある。こ
の再生の手段としては、電気ヒータやバーナ等で加熱し
てPMを燃焼させる方式が知られている。このPMを燃
焼させる方式を採用した場合、DPFの再燃焼中はPM
の捕集が不可能なため、排気通路に複数のDPFを並列
に配設して捕集と燃焼を交互に行うシステムとなり、装
置が大掛かりになってしまうという問題が発生する。ま
た、PMを燃焼させる方式は、PM燃焼時の温度が高温
になるためフィルタの耐久性確保が問題となってしま
う。このような理由からこのPMを燃焼させる方式は、
広く採用されるに至っていない。
[0003] By the way, in a DPF mounted on a vehicle equipped with a diesel engine, PM collected by repeated operation of the engine accumulates. Therefore, it is necessary to regenerate the DPF by burning the collected PM. is there. As a method of this regeneration, a method of burning PM by heating with an electric heater, a burner or the like is known. When this method of burning PM is adopted, during the reburning of DPF, PM
Therefore, a system in which a plurality of DPFs are arranged in parallel in the exhaust passage to alternately perform collection and combustion is caused, and a problem that the apparatus becomes large-scale occurs. Further, in the method of burning PM, the temperature at the time of burning PM becomes high, so that there is a problem in securing the durability of the filter. For this reason, the method of burning PM is as follows:
It has not been widely adopted.

【0004】上記のような問題を踏まえ、近年ではディ
ーゼルエンジンの排気浄化装置として、連続再生式の排
気浄化装置が提案されており、例えば特許第30122
49号等に開示されている。図7を用いて従来より知ら
れる連続再生式のディーゼルエンジンの排気浄化装置に
ついて説明する。
[0004] In view of the above problems, a continuous regeneration type exhaust purification device has been proposed in recent years as an exhaust purification device for a diesel engine.
No. 49 and the like. With reference to FIG. 7, a conventionally known exhaust gas purifying apparatus for a continuous regeneration type diesel engine will be described.

【0005】シリンダブロックおよびシリンダヘッド等
からなるエンジン本体2には、吸気通路の一部を構成す
る吸気マニホールド3および排気通路の一部を構成する
排気マニホールド4が配設されており。吸気マニホール
ド3には吸気通路の一部を構成する吸気管5が接続され
ており、この吸気管5の最上流部に吸入空気を清浄化す
るエアクリーナ6が配設されている。エアクリーナ6で
清浄化された吸入空気は吸気管5を通り吸気マニホール
ド3を介して図示しないシリンダ内に供給される。上記
排気マニホールド4には排気通路の一部を形成する排気
管7が接続されており、シリンダ内で生成された排気ガ
スは排気マニホールド4および排気管7を通して排出さ
れる。
An engine body 2 including a cylinder block and a cylinder head is provided with an intake manifold 3 forming a part of an intake passage and an exhaust manifold 4 forming a part of an exhaust passage. An intake pipe 5 constituting a part of an intake passage is connected to the intake manifold 3, and an air cleaner 6 for purifying intake air is arranged at the most upstream portion of the intake pipe 5. The intake air purified by the air cleaner 6 passes through the intake pipe 5 and is supplied to the cylinder (not shown) via the intake manifold 3. An exhaust pipe 7 forming a part of an exhaust passage is connected to the exhaust manifold 4, and exhaust gas generated in the cylinder is discharged through the exhaust manifold 4 and the exhaust pipe 7.

【0006】図示のディーゼルエンジンは、吸入空気を
過給するためのターボチャージャー8を備えている。こ
のターボチャージャー8は、排気管7に配設された排気
タービン81と、吸気管5に配設された吸気コンプレッ
サ82とを有している。また、図示のディーゼルエンジ
ンは、上記排気タービン81より上流側の排気管7と上
記吸気コンプレッサ82より下流側の吸気管5とを連絡
する排気ガス環流(以下EGRとする)通路9を具備し
ている。EGR通路9にはEGRバルブ11が配設され
ている。このEGRバルブ11は、例えば図示しない負
圧タンクに接続されており、後述する制御手段10によ
り運転状態に応じて供給される負圧量が制御されること
により、その開度即ちEGR率が制御される。なお、E
GRはよく知られているように、燃焼後の排気ガスを環
流させた吸入空気をシリンダ内に投入してNOxの抑制
を図る排気浄化手段である。また、EGR通路とエンジ
ン側の連結は本従来例では吸気管、排気管となっている
が吸気通路の一部を構成する吸気、排気マニホールドで
も良いことは明らかである。
[0006] The illustrated diesel engine is provided with a turbocharger 8 for supercharging intake air. The turbocharger 8 has an exhaust turbine 81 provided in the exhaust pipe 7 and an intake compressor 82 provided in the intake pipe 5. The illustrated diesel engine includes an exhaust gas recirculation (hereinafter referred to as EGR) passage 9 that connects the exhaust pipe 7 upstream of the exhaust turbine 81 and the intake pipe 5 downstream of the intake compressor 82. I have. An EGR valve 11 is provided in the EGR passage 9. The EGR valve 11 is connected to, for example, a negative pressure tank (not shown), and the opening degree, that is, the EGR rate is controlled by controlling the amount of negative pressure supplied according to the operating state by a control means 10 described later. Is done. Note that E
As is well known, the GR is an exhaust gas purifying unit that suppresses NOx by introducing intake air obtained by circulating exhaust gas after combustion into a cylinder. Further, in the conventional example, the connection between the EGR passage and the engine side is an intake pipe and an exhaust pipe, but it is obvious that the intake and exhaust manifolds constituting a part of the intake passage may be used.

【0007】上記排気タービン81より下流側の排気管
7には、上流側より順に酸化触媒12、DPF13およ
びNOx触媒14が配設されている。酸化触媒12は、
例えばハニカム状のコーディエライト、あるいは耐熱鋼
からなる担体の表面に、活性アルミナ等をコートしてウ
ォッシュコート層を形成し、このコート層に白金、パラ
ジウム、あるいはロジウム等の貴金属からなる触媒活性
成分を担持させたものが使用される。この酸化触媒12
は、排気ガス中のNOを酸化してNOを生成させると
ともに、排気ガス中のHCとCOを酸化してHOとC
を生成させる。DPF13は、例えば多孔質のコー
ディエライト、あるいは炭化珪素によって多数のセルが
平行に形成され、セルの入口と出口が交互に閉鎖され
た、いわゆるウォールフロー型と呼ばれるハニカムフィ
ルタや、セラミック繊維をステンレス多孔管に何層にも
巻き付けた繊維型フィルタが使用され、排気ガス中のP
Mを捕集する。NOx触媒14は、その構成や成分は上
記酸化触媒12と同じようなものが使用でき、排気ガス
中のNO等のNOxをNやHOに還元させる。この
ような、連続再生式DPFは、酸化触媒12によって排
気ガス中のNOをNO に酸化させ、酸化触媒12の下
流側に配設したDPF13に流入するNOによって捕
集されたPMを燃焼させる。この時、400℃以下の低
い温度でPMが燃焼するため、電気ヒータやバーナ等の
特別な加熱手段を設ける必要がなく、また、低温にてP
Mの燃焼を連続的に起こしながら、同時にPMの捕集も
行うためDPFを複数設ける必要がないので、装置全体
を簡易に且つコンパクトにできるという利点を有してい
る。
An exhaust pipe downstream of the exhaust turbine 81
7, oxidation catalyst 12, DPF 13 and
And a NOx catalyst 14 are provided. The oxidation catalyst 12
For example, honeycomb-shaped cordierite or heat-resistant steel
The surface of a carrier made of
A coated layer of platinum,
Catalytic activity of precious metals such as rhodium and rhodium
What carried the component is used. This oxidation catalyst 12
Oxidizes NO in exhaust gas to NO2Generate
In both cases, HC and CO in the exhaust gas are oxidized to H2O and C
O2Is generated. The DPF 13 is, for example, a porous core.
Dierite or silicon carbide creates many cells
Formed in parallel, the inlet and outlet of the cell are closed alternately
The so-called wall flow type honeycomb filter
Layers of ruta and ceramic fibers in stainless steel perforated tube
A wound fiber type filter is used, and P in exhaust gas is used.
Collect M. The configuration and components of the NOx catalyst 14 are
The same catalyst as the oxidation catalyst 12 can be used.
NOx such as NO in the N2And H2Reduce to O. this
Such a continuous regeneration type DPF is discharged by the oxidation catalyst 12.
NO in gas and gas is NO 2And oxidized under the oxidation catalyst 12.
NO flowing into the DPF 13 disposed on the upstream side2Captured by
The collected PM is burned. At this time, low
PM burns at a low temperature, so electric heaters and burners
There is no need to provide any special heating means.
While burning M continuously, it also collects PM at the same time
It is not necessary to provide multiple DPFs to perform
Has the advantage of being simple and compact
You.

【0008】図示のディーゼルエンジンは、エンジンの
回転速度を検出するエンジン回転速度検出センサ15、
アクセルペダルの踏み込み量(アクセル開度)を検出す
るアクセルセンサ16、吸気マニホールド3内に配設さ
れシリンダ内に吸入される吸気の温度を検出する吸気温
度センサ17、該エンジン回転速度検出センサ15やア
クセルセンサ16および吸気温度センサ17等からの検
出信号に基づいて上記EGRバルブ11や図示しない燃
料噴射装置によってシリンダ内に噴射される燃料の噴射
量を制御する制御手段10を具備している。制御手段1
0はエンジン回転速度とアクセル開度をパラメータとす
る燃焼噴射量を設定した図10に示すような所謂燃料噴
射量を格納したメモリを具備しており、エンジン回転速
度検出センサ15およびアクセルセンサ16からの検出
信号に基づいて基本燃料噴射量を決定する。そして、制
御手段10は、基本燃料噴射量を吸気温度センサ15の
検出値に基づき補正し、最終的な燃料噴射量を決定す
る。なお、最終的な燃料噴射量は吸気温度のみならず、
他の様々なパラメータ(大気圧やスモーク限界噴射量
等)を参照して随時補正することが可能である。
The illustrated diesel engine has an engine speed sensor 15 for detecting the engine speed.
An accelerator sensor 16 for detecting the amount of depression of an accelerator pedal (accelerator opening), an intake temperature sensor 17 disposed in the intake manifold 3 for detecting the temperature of intake air taken into a cylinder, the engine rotational speed detection sensor 15, A control means 10 is provided for controlling the amount of fuel injected into the cylinder by the EGR valve 11 or a fuel injection device (not shown) based on detection signals from the accelerator sensor 16 and the intake air temperature sensor 17. Control means 1
0 is provided with a memory for storing a so-called fuel injection amount as shown in FIG. 10 in which a combustion injection amount is set using the engine rotation speed and the accelerator opening as parameters, and the engine rotation speed detection sensor 15 and the accelerator sensor 16 The basic fuel injection amount is determined based on the detection signal. Then, the control means 10 corrects the basic fuel injection amount based on the detection value of the intake air temperature sensor 15 to determine the final fuel injection amount. In addition, the final fuel injection amount is not only the intake air temperature,
The correction can be made at any time with reference to other various parameters (atmospheric pressure, smoke limit injection amount, and the like).

【0009】[0009]

【発明が解決しようとする課題】上記した酸化触媒12
におけるNOをNOに酸化する反応の効率、いわゆる
転化率は、現状の触媒では触媒温度によって大きく変化
する。例えば250℃から400℃の間における活性領
域では良好な酸化反応を見ることが出来るが、それ以外
の領域では十分にNOからNOへの転化が行われな
い。つまりPMを酸化させるだけの十分なNO成分が
発生しないのである。図8に示すのはPMの酸化燃焼に
よって発生するCOの発生量をエンジンの排気温度と
対比して示したものである。これを見ると250℃から
400℃の間で活発にPMが燃焼してフィルタが再生さ
れていることがわかる。逆にいえばそれ以外の温度領域
ではPMの燃焼(=DPFの再生)は殆ど行われない。
The oxidation catalyst 12 described above
The efficiency of the reaction for oxidizing NO to NO 2, that is, the conversion, greatly changes with the catalyst temperature in the current catalyst. For example, a good oxidation reaction can be seen in the active region between 250 ° C. and 400 ° C., but the conversion of NO to NO 2 is not sufficiently performed in other regions. That is, no sufficient NO 2 component for oxidizing PM is generated. FIG. 8 shows the amount of CO 2 generated by the oxidative combustion of PM in comparison with the exhaust gas temperature of the engine. From this, it can be seen that PM is actively combusted between 250 ° C. and 400 ° C. to regenerate the filter. Conversely, PM combustion (= regeneration of DPF) is hardly performed in other temperature regions.

【0010】車両に搭載されるディーゼルエンジンは、
運転状態によってエンジン回転速度やエンジン負荷が刻
々と変化し、そこから排出される排気ガス温度も運転状
態に応じて変化する。図9にはエンジン回転速度とエン
ジン負荷をパラメータとする排気ガスの温度領域が示さ
れている。図9からもわかるようにエンジンが高負荷時
で回転速度が高い時(領域X)、及びエンジンが低負荷
で回転速度が低い時(領域Z)には触媒の温度が活性温
度領域Y(250℃から400℃)から外れてしまい酸
化触媒でNOが十分にNOに酸化しない。よってDP
Fにより捕集されたPMが十分に燃焼されないのでフィ
ルタのPM捕集効率も落ち、フィルタ自体の目詰まりを
早めるなど好ましくない結果となってしまう。
A diesel engine mounted on a vehicle has:
The engine speed and the engine load change every moment depending on the operation state, and the temperature of the exhaust gas discharged therefrom also changes according to the operation state. FIG. 9 shows the temperature range of the exhaust gas using the engine speed and the engine load as parameters. As can be seen from FIG. 9, when the engine is under a high load and the rotation speed is high (region X), and when the engine is at a low load and the rotation speed is low (region Z), the temperature of the catalyst is set in the active temperature region Y (250 (400 ° C. to 400 ° C.), and the oxidation catalyst does not sufficiently oxidize NO to NO 2 . Therefore DP
Since the PM trapped by the F is not sufficiently burned, the PM trapping efficiency of the filter is also reduced, resulting in an undesired result such as quicker clogging of the filter itself.

【0011】本発明は以上の点に鑑みなされたものであ
り、その主たる技術的課題はエンジンの広い運転領域に
おいてDPFに捕集されたPMを確実に連続的に燃焼さ
せることを目的とする。
The present invention has been made in view of the above points, and a main technical problem thereof is to reliably and continuously burn PM trapped in a DPF in a wide operating range of an engine.

【0012】[0012]

【課題を解決するための手段】上記した技術的課題を解
決するために、本発明によれば、排気通路に配設された
排気タービンと吸気管に配設された吸気コンプレッサと
を有するターボチャージャーと、該排気タービンより上
流側の排気通路と該吸気コンプレッサより下流側の吸気
管とを連絡する第1のEGR通路と、該第1のEGR通
路に配設された第1のEGRバルブと、該排気タービン
より下流側の排気通路に配設された酸化触媒およびパテ
ィキュレートフィルタとを備えたディーゼルエンジンの
排気浄化装置において、エンジンの排気温度領域を検出
する排気温度領域検出手段と、該排気温度領域検出手段
により検出されたエンジンの排気温度領域が該酸化触媒
の活性温度領域より高温領域となる場合に該第1のEG
Rバルブを絞る制御を行う制御手段と、を具備する、こ
とを特徴とするディーゼルエンジンの排気浄化装置が提
供される。
According to the present invention, there is provided a turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake pipe. A first EGR passage that connects an exhaust passage upstream of the exhaust turbine and an intake pipe downstream of the intake compressor, a first EGR valve disposed in the first EGR passage, In an exhaust gas purifying apparatus for a diesel engine including an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine, exhaust temperature region detecting means for detecting an engine exhaust temperature region; When the exhaust gas temperature range of the engine detected by the range detecting means is higher than the active temperature range of the oxidation catalyst, the first EG
Control means for performing control for narrowing the R valve. An exhaust gas purification apparatus for a diesel engine is provided.

【0013】上記排気温度領域検出手段は、エンジンの
負荷を検出するエンジン負荷検出手段と、エンジンの回
転速度を検出するエンジン回転速度検出手段と、エンジ
ン負荷とエンジン回転速度をパラメータとしてエンジン
の排気温度領域を設定した排気温度領域マップとからな
っている。
The exhaust temperature region detecting means includes an engine load detecting means for detecting an engine load, an engine rotational speed detecting means for detecting an engine rotational speed, and an exhaust temperature of the engine using the engine load and the engine rotational speed as parameters. An exhaust temperature range map in which regions are set.

【0014】また、上記排気タービンより下流側の排気
通路と上記吸気コンプレッサより上流側の吸気管とを連
絡する第2のEGR通路と、該第2のEGR通路に配設
された第2のEGRバルブとを具備し、上記制御手段は
上記排気温度領域検出手段により検出されたエンジンの
排気温度領域が上記酸化触媒の活性温度領域より高温領
域となる場合には、第2のEGRバルブの開く制御す
る、ディーゼルエンジンの排気浄化装置が提供される。
上記第2のEGR通路にはEGRガスを冷却する冷却手
段を配設していることが望ましい。
A second EGR passage connecting an exhaust passage downstream of the exhaust turbine and an intake pipe upstream of the intake compressor; and a second EGR disposed in the second EGR passage. A valve for controlling the opening of the second EGR valve when the exhaust temperature range of the engine detected by the exhaust temperature range detecting means is higher than the active temperature range of the oxidation catalyst. An exhaust gas purification device for a diesel engine.
It is preferable that a cooling means for cooling the EGR gas is provided in the second EGR passage.

【0015】また、本発明によれば、排気通路に配設さ
れた排気タービンと吸気通路に配設された吸気コンプレ
ッサとを有するターボチャージャーと、該排気タービン
より上流側の排気通路と該吸気コンプレッサより下流側
の吸気管とを連絡する第1のEGR通路と、該第1のE
GR通路に配設された第1のEGRバルブと、該排気タ
ービンより下流側の排気通路に配設された酸化触媒およ
びパティキュレートフィルタとを備えたディーゼルエン
ジンの排気浄化装置において、該第1のEGR通路と該
吸気管の連結部よりも上流側の該吸気管に配設された吸
気シャッタと、該第1のEGR通路と該排気通路の連結
部よりも下流側の該排気通路に配設された排気シャッタ
と、エンジンの排気温度領域を検出する排気温度領域検
出手段と、該排気温度領域検出手段により検出されたエ
ンジンの排気温度領域が該酸化触媒の活性温度領域より
も低温領域となる場合に該吸気シャッタと該排気シャッ
タのいずれか一方または双方を絞る制御を行う制御手段
と、を具備する、ことを特徴とするディーゼルエンジン
の排気浄化装置が提供される。
Further, according to the present invention, a turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake passage, an exhaust passage upstream of the exhaust turbine, and the intake compressor A first EGR passage communicating with a downstream intake pipe, and a first EGR passage;
An exhaust gas purifying apparatus for a diesel engine, comprising: a first EGR valve disposed in a GR passage; and an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine. An intake shutter disposed in the intake pipe upstream of a connection between the EGR passage and the intake pipe; and an exhaust shutter disposed in the exhaust passage downstream of the connection between the first EGR passage and the exhaust passage. Exhaust shutter, exhaust temperature range detecting means for detecting an exhaust temperature range of the engine, and an exhaust temperature range of the engine detected by the exhaust temperature range detecting means becomes a lower temperature range than an active temperature range of the oxidation catalyst. Control means for performing control to narrow down one or both of the intake shutter and the exhaust shutter in some cases, It is subjected.

【0016】上記該制御手段は、上記排気温度領域検出
手段により検出されたエンジンの排気温度領域が低い
程、上記吸気シャッタ及び上記排気シャッタの開度を小
さくなるように段階的に制御することが望ましい。
The control means may control the opening degree of the intake shutter and the exhaust shutter in a stepwise manner as the exhaust temperature area of the engine detected by the exhaust temperature area detecting means decreases. desirable.

【0017】更に、本発明によれば、排気通路に配設さ
れた排気タービンと吸気管に配設された吸気コンプレッ
サとを有するターボチャージャーと、該排気タービンよ
り上流側の排気通路と該吸気コンプレッサより下流側の
吸気通路とを連絡する第1のEGR通路と、該第1のE
GR通路に配設された第1のEGRバルブと、該排気タ
ービンより下流側の排気通路に配設された酸化触媒およ
びパティキュレートフィルタと、吸気行程中に同一シリ
ンダーの排気バルブを開く排気バルブ作動機構とを備え
たディーゼルエンジンの排気浄化装置において、該第1
のEGR通路と該吸気通路の連結部よりも上流側の該吸
気通路に配設された吸気シャッタと、該第1のEGR通
路と該排気通路の連結部よりも下流側の該排気通路に配
設された排気シャッタと、エンジンの排気温度領域を検
出する排気温度領域検出手段と、該排気温度領域検出手
段により検出されたエンジンの排気温度領域が該酸化触
媒の活性温度領域よりも低温領域となる場合に該吸気シ
ャッタと該排気シャッタのいずれか一方または双方を絞
る制御を行う制御手段と、を具備する、ことを特徴とす
るディーゼルエンジンの排気浄化装置が提供される。
Further, according to the present invention, a turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake pipe, an exhaust passage upstream of the exhaust turbine, and the intake compressor A first EGR passage that communicates with a more downstream intake passage; and a first EGR passage.
A first EGR valve disposed in a GR passage, an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine, and an exhaust valve operation for opening an exhaust valve of the same cylinder during an intake stroke A diesel engine exhaust purification device comprising:
An intake shutter disposed in the intake passage upstream of a connection between the EGR passage and the intake passage; and an exhaust shutter disposed in the exhaust passage downstream of the connection between the first EGR passage and the exhaust passage. An exhaust shutter provided, exhaust temperature range detecting means for detecting an exhaust temperature range of the engine, and an exhaust temperature range of the engine detected by the exhaust temperature range detecting means being lower than an active temperature range of the oxidation catalyst. And a control unit for performing control to narrow down one or both of the intake shutter and the exhaust shutter in some cases.

【0018】[0018]

【発明の実施の形態】以下に図面を用いて本発明に好適
な実施例について詳細に説明する。図1は本発明に基づ
き構成されたディーゼルエンジンの排気浄化装置の一実
施形態を示す概略構成図である。なお、図1に示す実施
形態においては上記図7で示した従来の排気浄化装置と
同じ構成部材には同一の番号を付して詳細な説明は省略
する。また、図7におけるEGR通路9およびEGRバ
ルブ11は、図1に示す実施形態においてはそれぞれ第
1のEGR通路20および第1のEGRバルブ21とす
る。以下、図1に示す実施形態について図7に示す従来
技術と相違する点を述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing one embodiment of an exhaust gas purification device for a diesel engine configured according to the present invention. In the embodiment shown in FIG. 1, the same components as those of the conventional exhaust gas purification apparatus shown in FIG. Further, the EGR passage 9 and the EGR valve 11 in FIG. 7 are the first EGR passage 20 and the first EGR valve 21, respectively, in the embodiment shown in FIG. Hereinafter, the points of the embodiment shown in FIG. 1 which are different from the prior art shown in FIG. 7 will be described.

【0019】吸気管5と第1のEGR通路20の連結部
よりも上流側であって、吸気通路の一部をなす吸気管5
には、吸入空気量を制限する吸気シャッタ22が配設さ
れている。この吸気シャッタ22は、通常は全開に保持
されている。また、排気管7と第1のEGR通路20の
連結部よりも下流側のであって、排気通路の一部を構成
する排気管20には、排気ガスの流出を制限する排気シ
ャッタ23が配設されている。この排気シャッタ23も
上記吸気シャッタ22と同様に、通常状態では全開に保
持されている。なお、吸気シャッタ22および排気シャ
ッタ23は、図示しない負圧タンクに接続されており、
制御手段10により運転状態に応じて供給される負圧量
が制御されることにより、その開度が制御される。
The intake pipe 5 which is upstream of the connection between the intake pipe 5 and the first EGR passage 20 and forms a part of the intake passage
Is provided with an intake shutter 22 for limiting the amount of intake air. The intake shutter 22 is normally kept fully open. Further, an exhaust shutter 23 for restricting the outflow of exhaust gas is provided in the exhaust pipe 20 downstream of the connection between the exhaust pipe 7 and the first EGR passage 20 and constituting a part of the exhaust passage. Have been. The exhaust shutter 23 is held fully open in the normal state, similarly to the intake shutter 22. The intake shutter 22 and the exhaust shutter 23 are connected to a negative pressure tank (not shown).
The opening degree is controlled by controlling the amount of negative pressure supplied according to the operating state by the control means 10.

【0020】図1に示す実施形態においては、DPF1
7の下流側の排気管7(更に具体的にはDPF17とN
Ox触媒14間の排気管7)と吸気コンプレッサ82よ
り上流側の吸気通路を連絡する第2のEGR通路24を
備えている。この第2のEGR通路24には第2のEG
Rバルブ25が配置されている。なお、第2のEGRバ
ルブ25は、図示しない負圧タンクに接続されており、
制御手段10により運転状態に応じて供給される負圧量
が制御されることにより、その開閉が制御される。
In the embodiment shown in FIG.
The exhaust pipe 7 downstream of the DPF 7 (more specifically, the DPF 17 and the N
A second EGR passage 24 is provided for connecting the exhaust pipe 7) between the Ox catalyst 14 and the intake passage upstream of the intake compressor 82. The second EGR passage 24 has a second EG
An R valve 25 is provided. The second EGR valve 25 is connected to a negative pressure tank (not shown).
By controlling the amount of negative pressure supplied according to the operation state by the control means 10, the opening and closing thereof are controlled.

【0021】また、上記第2のEGR通路24には、E
GRガスを冷却するためのEGRクーラ23が配設され
ている。このEGRクーラ26は、EGRガスの通過す
る管の周囲を取り囲む熱交換器として構成し、エンジン
の冷却水をシリンダブロックから分流して通過させるこ
とにより、排気ガスを冷却水の温度程度まで低下させ
る。
In the second EGR passage 24, E
An EGR cooler 23 for cooling the GR gas is provided. The EGR cooler 26 is configured as a heat exchanger surrounding the pipe through which the EGR gas passes, and lowers the exhaust gas to about the temperature of the cooling water by diverting the engine cooling water from the cylinder block and passing it. .

【0022】図1に示す実施形態においては、排気温度
領域検出手段を具備している。以下、排気温度領域検出
手段について述べる。エンジンの排気温度は、主にエン
ジンに供給される燃料噴射量(負荷)とエンジン回転速
度によりほぼ決定される。図示の実施形態における排気
浄化装置の制御手段10は、図示しない内部メモリに図
2に示すようなエンジン回転速度とエンジン負荷をパラ
メータとする排気温度領域マップを有しており、エンジ
ン回転速度と燃料噴射量(負荷)から現在の排気温度が
どこの領域にあるかを検出する。ここで示される領域と
は、シリンダから排出された排気温度の酸化触媒12に
到達した時点での温度領域を指すものとするが、マップ
を定義する際に酸化触媒12に到達するまでの温度低下
を考慮に入れた排気マニホールド内4の温度領域として
設定してもよい。
The embodiment shown in FIG. 1 is provided with exhaust temperature range detecting means. Hereinafter, the exhaust temperature region detecting means will be described. The exhaust temperature of the engine is substantially determined mainly by the fuel injection amount (load) supplied to the engine and the engine speed. The control means 10 of the exhaust gas purification apparatus in the illustrated embodiment has an exhaust temperature range map in which the engine speed and the engine load are parameters as shown in FIG. From the injection amount (load), it is detected where the current exhaust gas temperature is. The region shown here refers to the temperature region at the time when the exhaust gas discharged from the cylinder reaches the oxidation catalyst 12, but when the map is defined, the temperature drop until reaching the oxidation catalyst 12 is defined. May be set as the temperature region in the exhaust manifold 4 in consideration of the above.

【0023】図2に示すX、Y、Zの境界線は主にマッ
プを定義する際のエンジンの排気温度に関する試験結果
と酸化触媒12の活性温度領域を参照して設定される。
Xは酸化触媒12の活性温度領域よりも高くなる領域で
あり、Yは酸化触媒12の活性温度領域に含まれる領
域、そしてZは酸化触媒12の活性温度領域よりも低く
なる領域である。また、この境界線は採用するディーゼ
ルエンジンの運転特性、採用する酸化触媒12の特性に
よって使用者が適宜変更できることは言うまでもない。
更に、上記温度領域は必ずしも3つである必要がなく、
もっと細分化して、あるいは二つに領域を定義すること
も可能である
The boundaries of X, Y, and Z shown in FIG. 2 are set mainly with reference to the test results regarding the exhaust gas temperature of the engine when defining the map and the active temperature region of the oxidation catalyst 12.
X is a region higher than the activation temperature region of the oxidation catalyst 12, Y is a region included in the activation temperature region of the oxidation catalyst 12, and Z is a region lower than the activation temperature region of the oxidation catalyst 12. Further, it is needless to say that the boundary line can be appropriately changed by the user depending on the operating characteristics of the diesel engine employed and the characteristics of the oxidation catalyst 12 employed.
Furthermore, the above-mentioned temperature ranges do not necessarily have to be three,
It is possible to further subdivide or define two areas

【0024】次に、図1に示す実施形態における排気浄
化装置の作動を説明する。エンジンの運転がスタートす
ると図示しない燃料噴射装置によりエンジンに燃料が供
給される。制御手段10はエンジン回転速度検出センサ
15およびアクセルセンサ16からのエンジン回転速度
信号とアクセル開度信号に基づいて、上記図10に示す
所謂燃料噴射量マップを参照し燃料噴射量を決定する。
制御手段10は、この時の燃料噴射量をエンジンの負荷
として検出する。
Next, the operation of the exhaust gas purifying apparatus in the embodiment shown in FIG. 1 will be described. When the operation of the engine starts, fuel is supplied to the engine by a fuel injection device (not shown). The control means 10 determines the fuel injection amount based on the engine speed signal from the engine speed sensor 15 and the accelerator sensor 16 and the so-called fuel injection amount map shown in FIG.
The control means 10 detects the fuel injection amount at this time as an engine load.

【0025】図1に示す実施形態における排気浄化装置
においては、上述したようにエンジン負荷を検出した
ら、制御手段10はエンジン負荷と上記のように検出さ
れたエンジン回転速度に基づいて図2に示す排気温度領
域マップより現在の排気温度領域を検出する。このよう
にして、現在の排気温度領域を検出したならば、御手段
10は現在の排気温度領域の基づき図3に示す制御マッ
プに従って、上記第1のEGRバルブ21と第2のEG
Rバルブ25および吸気シャッタ22と排気シャッタ2
3を制御する。
In the exhaust gas purifying apparatus of the embodiment shown in FIG. 1, when the engine load is detected as described above, the control means 10 displays the engine load and the engine rotational speed shown in FIG. The current exhaust temperature range is detected from the exhaust temperature range map. When the current exhaust temperature range is detected in this manner, the control means 10 controls the first EGR valve 21 and the second EG according to the control map shown in FIG. 3 based on the current exhaust temperature range.
R valve 25, intake shutter 22, and exhaust shutter 2
3 is controlled.

【0026】先ず、排気温度領域が酸化触媒の活性温度
領域Yにある場合には、図3の制御マップに従って第1
のEGRバルブ21を開き第2のEGRバルブ25を閉
止するとともに、吸気シャッタ22および排気シャッタ
23を開く。即ち、制御手段10は通常運転時における
EGR制御を実行する。
First, when the exhaust temperature range is in the active temperature range Y of the oxidation catalyst, the first temperature is determined according to the control map shown in FIG.
The EGR valve 21 is opened, the second EGR valve 25 is closed, and the intake shutter 22 and the exhaust shutter 23 are opened. That is, the control means 10 performs the EGR control during the normal operation.

【0027】次に、排気温度領域が酸化触媒の活性温度
領域よりも高い場合について説明する。エンジンの回転
速度が高く負荷が大きい場合は、排気温度が高くなる。
それが図2に示す排気温度領域マップの排気温度領域X
である。この場合、排気温度は酸化触媒12の活性温度
領域の上限を超えてしまい、NOを酸化する転化率が低
下するのでDPF13に堆積するPMの燃焼は行われな
くなる。よって酸化触媒12の温度を下げる為に、第1
のEGRバルブ21を絞るように作動させる。なお、図
示の実施形態においては第1のEGRバルブ21は最大
の絞り状態である閉止するものとする。このように第1
のEGRバルブ21を閉止すると、第1のEGR通路2
1を通じて吸気側に流入していた高温の排気ガスの全量
が排気タービン81を通過するようになる。これにより
ターボチャージャー8の仕事量が増大し、吸気コンプレ
ッサ82によって過給されシリンダ内へ流入する吸入空
気量が増大する。従って、エンジンのシリンダ内では上
述したように決定された燃料噴射量(燃料量)に対して
空気が過剰な状態(リーン)となって排気温度が低下す
ることになる。この結果、排気温度が図2における酸化
触媒12の活性温度領域Yに入り、DPF12によって
捕集されたPMの酸化燃焼が活発となりフィルタを再生
することができる。
Next, the case where the exhaust temperature range is higher than the active temperature range of the oxidation catalyst will be described. When the engine speed is high and the load is large, the exhaust gas temperature increases.
This is the exhaust temperature area X in the exhaust temperature area map shown in FIG.
It is. In this case, the exhaust gas temperature exceeds the upper limit of the active temperature range of the oxidation catalyst 12, and the conversion rate for oxidizing NO decreases, so that the PM deposited on the DPF 13 is not burned. Therefore, in order to lower the temperature of the oxidation catalyst 12, the first
Of the EGR valve 21 is throttled. In the illustrated embodiment, the first EGR valve 21 is in the maximum throttle state and is closed. Thus the first
When the EGR valve 21 is closed, the first EGR passage 2
The entire amount of the high-temperature exhaust gas flowing into the intake side through 1 passes through the exhaust turbine 81. As a result, the work of the turbocharger 8 increases, and the amount of intake air supercharged by the intake compressor 82 and flowing into the cylinder increases. Therefore, in the cylinder of the engine, the air becomes excessive (lean) with respect to the fuel injection amount (fuel amount) determined as described above, and the exhaust gas temperature decreases. As a result, the exhaust gas temperature enters the active temperature region Y of the oxidation catalyst 12 in FIG. 2, and the oxidative combustion of the PM collected by the DPF 12 becomes active, so that the filter can be regenerated.

【0028】なお、図示の実施形態における排気浄化装
置においては、EGRによるNOxの低減効果を確保す
るために、上記第1のEGRバルブ21を閉止したとき
には第2のEGR通路24に配設された第2のEGRバ
ルブ25を開制御し、EGR制御そのものは継続する。
この場合、EGRガスは排気タービン81を通過した後
の熱エネルギーを消費された排気ガスであること、EG
Rクーラ26により冷却されていること、および排気ガ
スを環流させる位置が吸気コンプレッサ82より上流
側、つまり大気圧状態であることから新気への環流はス
ムーズに行われ、絶対的な吸入空気量の増大を確保でき
るので、空気が過剰な状態(リーン)を維持することが
でき、排気温度を上昇させるような大きな影響はない。
なお、排気温度領域が酸化触媒の活性温度領域よりも高
い領域Xの場合には、吸気シャッタ22および排気シャ
ッタ23は図3の制御マップに示すように排気温度領域
が酸化触媒の活性温度領域Yにある通常運転時と同様に
開く。
In the exhaust gas purifying apparatus in the illustrated embodiment, the first EGR valve 21 is disposed in the second EGR passage 24 when the first EGR valve 21 is closed in order to ensure the effect of reducing NOx by EGR. The second EGR valve 25 is controlled to open, and the EGR control itself is continued.
In this case, the EGR gas is exhaust gas that has consumed thermal energy after passing through the exhaust turbine 81;
Since the air is cooled by the R cooler 26 and the position where the exhaust gas is recirculated is upstream of the intake compressor 82, that is, in the atmospheric pressure state, the recirculation to the fresh air is performed smoothly, and the absolute intake air amount , The air can be maintained in an excessive state (lean), and there is no significant effect of increasing the exhaust gas temperature.
When the exhaust temperature region is the region X higher than the active temperature region of the oxidation catalyst, the intake shutter 22 and the exhaust shutter 23 change the exhaust temperature region to the active temperature region Y of the oxidation catalyst as shown in the control map of FIG. Open as in normal operation.

【0029】次に、排気温度領域が酸化触媒の活性温度
領域よりも低い場合について説明する。排気温度領域検
出手段により排気温度領域がZと検出された場合には、
制御手段10は酸化触媒12の活性温度領域よりも低い
排気温度領域であると判定し、図3の制御マップに示す
ように排気温度領域が酸化触媒の活性温度領域Yにある
通常運転時と同様に、第1のEGRバルブ21を開き第
2のEGRバルブ25を閉止する。そして排気温度を上
昇させるために、図4の(a)に示すエンジン回転速度
とエンジン負荷をパラメータとして設定された吸気シャ
ッタの開度マップに基づいて上記吸気シャッタ22の開
度を制御するとともに、図4の(b)に示すエンジン回
転速度とエンジン負荷をパラメータとして設定された排
気シャッタの開度マップに基づいて上記排気シャッタ2
3の開度を制御する。図4の(a)および図4の(b)
に示すマップはいずれも図2で示した排気温度領域検出
手段に用いたマップのZの領域をさらに分割して吸気・
排気シャッタの開作動を段階的に設定したものである。
“3/4開度”とは全開位置に対して1/4閉じている
ということであり“1/4開度”とは3/4閉じている
ということである。
Next, the case where the exhaust temperature range is lower than the active temperature range of the oxidation catalyst will be described. When the exhaust temperature range is detected as Z by the exhaust temperature range detecting means,
The control means 10 determines that the exhaust temperature range is lower than the active temperature range of the oxidation catalyst 12, and the same as in the normal operation where the exhaust temperature range is in the active temperature range Y of the oxidation catalyst as shown in the control map of FIG. Then, the first EGR valve 21 is opened and the second EGR valve 25 is closed. In order to raise the exhaust gas temperature, the opening degree of the intake shutter 22 is controlled based on the opening degree map of the intake shutter which is set using the engine speed and the engine load as parameters as shown in FIG. The exhaust shutter 2 based on the exhaust shutter opening map in which the engine speed and the engine load are set as parameters shown in FIG.
3 is controlled. 4 (a) and 4 (b)
In each of the maps shown in FIG. 2, the region of Z in the map used for the exhaust gas temperature region detecting means shown in FIG.
The opening operation of the exhaust shutter is set stepwise.
"3/4 opening" means that it is 1/4 closed with respect to the fully open position, and "1/4 opening" means that it is 3/4 closed.

【0030】吸気シャッタを絞る制御を行うことにより
新気の吸入空気が制限されるとともにEGR通路の出口
付近の吸気通路内圧力が低下するため、EGRガス環流
量が増加する。また、排気シャッタを絞る制御を行うこ
とにより排気通路の一部を構成する排気管5とEGR通
路12の連結部の排圧が高まりさらにEGRガスの環流
量が増大する。
By controlling the throttle of the intake shutter, fresh intake air is restricted, and the pressure in the intake passage near the outlet of the EGR passage decreases, so that the EGR gas ring flow rate increases. Further, by performing the control of narrowing the exhaust shutter, the exhaust pressure of the connecting portion between the exhaust pipe 5 and the EGR passage 12 which constitutes a part of the exhaust passage increases, and the annular flow rate of the EGR gas increases.

【0031】排気ガスの温度はシリンダ内の燃焼時に空
気過剰率(λ)が1に近いほど、また吸入空気の温度が
高いほど高くなる。したがって通常であれば低回転、低
負荷状態で排気温度が酸化触媒12の活性領域に達しな
い運転領域であっても上記のような制御を実施すること
で吸入空気温度を上げて、吸入空気中の新気量を減ら
し、排気温度を活性温度領域Yにまで高めることが可能
となる。図4の(a)および図4の(b)の各マップに
示すように排気温度領域が酸化触媒の活性温度領域Yか
ら離れている領域つまり排気温度がより低い領域では吸
気シャッタ22および排気シャッタ23がより絞られる
制御が行われ、排気温度がより一層上昇させられること
になる。
The temperature of the exhaust gas increases as the excess air ratio (λ) approaches 1 during combustion in the cylinder and as the temperature of the intake air increases. Therefore, even in an operation region where the exhaust gas temperature does not reach the active region of the oxidation catalyst 12 under a low rotation speed and a low load state under normal conditions, the above-described control is carried out to increase the intake air temperature, thereby increasing the intake air temperature. And the exhaust gas temperature can be increased to the active temperature region Y. As shown in the maps of FIGS. 4A and 4B, the intake shutter 22 and the exhaust shutter are located in a region where the exhaust temperature region is far from the active temperature region Y of the oxidation catalyst, that is, in a region where the exhaust temperature is lower. The control for narrowing down 23 is performed, and the exhaust gas temperature is further raised.

【0032】なお、図1で示す実施形態には記載してい
ないが、さらに吸気行程に於いて、同一シリンダ内の排
気バルブを開弁するように作動させることも可能であ
る。図5には吸気バルブ30を作動する吸気バルブ作動
機構31および吸気行程中に同一シリンダーの排気バル
ブ40を開く排気バルブ作動機構41の一実施形態が示
されており、図6には図5に示された吸気バルブ作動機
構31および排気バルブ作動機構41により作動される
吸気バルブ30および排気バルブ40のリフトカーブが
示されている。図5に示す実施形態における排気バルブ
作動機構41は、排気カム42が排気行程に開弁する第
1の排気カムリフト421と吸気行程において開弁する
第2の排気カムリフト422を具備している。従って、
排気バルブ作動機構41によって作動される排気バルブ
40は、図6のリフトカーブに示すように排気行程で開
弁されるとともに、吸気行程においても短期間開弁され
る。図5の構成においては吸気行程における排気バルブ
の開弁が常に作動するように記載されているが、既知の
可変バルブ機構等を用いて、排気温度領域がZにある、
つまり酸化触媒17の活性領域よりも低いと判定された
場合にのみ吸気行程中の排気バルブ開弁制御を行うとい
うことも可能であり、排気温度を上昇させる必要がない
場合に排気ガスを必要以上に戻すことを防止できる。以
上により、特に排気シャッタを閉じるような制御を行っ
ている場合には排気通路中の排圧が高くなっているので
排気ガスがそのままシリンダ内に逆流し排気温度を上昇
させることが可能になる。
Although not described in the embodiment shown in FIG. 1, it is also possible to operate the exhaust valve in the same cylinder to open it during the intake stroke. FIG. 5 shows an embodiment of an intake valve operating mechanism 31 for operating the intake valve 30 and an exhaust valve operating mechanism 41 for opening the exhaust valve 40 of the same cylinder during the intake stroke. FIG. The lift curves of the intake valve 30 and the exhaust valve 40 operated by the illustrated intake valve operating mechanism 31 and exhaust valve operating mechanism 41 are shown. The exhaust valve operating mechanism 41 in the embodiment shown in FIG. 5 includes a first exhaust cam lift 421 in which the exhaust cam 42 opens during the exhaust stroke, and a second exhaust cam lift 422, which opens during the intake stroke. Therefore,
The exhaust valve 40 operated by the exhaust valve operating mechanism 41 is opened in the exhaust stroke as shown by the lift curve in FIG. 6, and is also opened for a short time in the intake stroke. In the configuration of FIG. 5, the opening of the exhaust valve in the intake stroke is described as always operating, but the exhaust temperature range is in Z by using a known variable valve mechanism or the like.
In other words, it is possible to perform the exhaust valve opening control during the intake stroke only when it is determined that the exhaust gas is lower than the active region of the oxidation catalyst 17. Can be prevented. As described above, especially when the control for closing the exhaust shutter is performed, the exhaust gas in the exhaust passage is high, so that the exhaust gas flows back into the cylinder as it is, and the exhaust temperature can be increased.

【0033】図示の実施形態においては、図2の排気温
度領域マップを用いて排気温度領域を検出することとし
ているが、これは必ずしも図2の領域に直接温度パラメ
ータ値を対応させる必要はなく図2のマップ上の領域が
排気温度及び酸化触媒の活性温度領域を考慮して定めら
れていれば良いのであって、図2の排気温度領域マップ
上の領域に直接的に各開閉弁のON−OFFを対応させ
ても発明としては全く同一である。また、図2の排気温
度領域マップの入力パラメータとしてエンジン回転速度
と負荷としたが負荷は前記したような燃料噴射量に限定
されるものでなく、アクセル開度あるいはエンジンの軸
に設けられるトルクセンサ等を負荷の検出に用いること
は可能であり他にも排気温度に関わる代用値を用いるこ
とに何ら問題はない。
In the illustrated embodiment, the exhaust temperature range is detected by using the exhaust temperature range map shown in FIG. 2. However, this is not necessarily required to directly correspond the temperature parameter value to the region shown in FIG. 2 may be determined in consideration of the exhaust temperature and the active temperature range of the oxidation catalyst. The invention is completely the same even if the OFF is made to correspond. Although the engine speed and the load are input parameters of the exhaust temperature range map of FIG. 2, the load is not limited to the fuel injection amount as described above. Can be used for load detection, and there is no problem in using a substitute value related to the exhaust gas temperature.

【0034】さらに、図示の実施形態では、排気温度領
域をエンジン回転速度と負荷により検出したがこれに限
るものではなく、エンジンの酸化触媒12に直接的に設
けられる排気温度センサ27によって検出してもよい。
また、酸化触媒とDPFを別体で記載しているが、DP
Fと酸化触媒が一体的に構成された排気浄化装置におい
ても本発明が有効であることは言うまでもない。
Further, in the illustrated embodiment, the exhaust temperature range is detected by the engine speed and the load. However, the present invention is not limited to this. The exhaust temperature range is detected by the exhaust temperature sensor 27 provided directly on the oxidation catalyst 12 of the engine. Is also good.
Also, the oxidation catalyst and DPF are described separately, but DP
It goes without saying that the present invention is also effective in an exhaust gas purification device in which F and the oxidation catalyst are integrally formed.

【0035】[0035]

【発明の効果】本発明に基づくディーゼルエンジンの排
気浄化装置によれば、酸化触媒とDPFを用いた所謂連
続再生式DPFを採用する場合に発生していた、排気温
度が運転状態により酸化触媒の活性温度領域を外れてし
まうという問題が、エンジンの運転状態にかかわらず広
い領域において解消される。
According to the exhaust gas purifying apparatus for a diesel engine according to the present invention, the exhaust gas temperature generated when the so-called continuous regeneration type DPF using the oxidation catalyst and the DPF is employed depends on the operating condition. The problem of deviating from the active temperature range is solved in a wide range regardless of the operating state of the engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づき構成されたディーゼルエンジン
の排気浄化装置
FIG. 1 is an exhaust gas purification apparatus for a diesel engine configured according to the present invention.

【図2】本発明における、排気温度領域マップFIG. 2 is an exhaust temperature range map according to the present invention.

【図3】本発明における排気温度領域別の制御マップFIG. 3 is a control map for each exhaust gas temperature region in the present invention.

【図4】本発明における吸気及び排気シャッタの開度制
御マップ
FIG. 4 is an opening control map of the intake and exhaust shutters according to the present invention.

【図5】本発明における排気排気2段カムの構造図FIG. 5 is a structural view of an exhaust / exhaust two-stage cam according to the present invention.

【図6】図5の構成における吸気及び排気のカムリフト
カーブ
6 is a cam lift curve of intake and exhaust in the configuration of FIG.

【図7】従来のディーゼルエンジンの排気浄化装置FIG. 7 shows a conventional exhaust gas purifying apparatus for a diesel engine.

【図8】連続再生式DPFにおける排気ガス温度とPM
の燃焼特性を示すグラフ
FIG. 8 shows exhaust gas temperature and PM in a continuous regeneration type DPF.
Graph showing the combustion characteristics of

【図9】ディーゼルエンジンのエンジン回転速度と負荷
に対する排気ガス温度の関係を示すグラフ
FIG. 9 is a graph showing the relationship between the engine speed and the load of the exhaust gas temperature of the diesel engine.

【図10】エンジン回転速度とアクセル開度から燃料噴
射量を演算する燃料噴射量
FIG. 10 shows a fuel injection amount for calculating a fuel injection amount from an engine speed and an accelerator opening.

【符号の説明】[Explanation of symbols]

2 エンジン本体 3 吸気マニホールド 4 排気マニホールド 5 吸気管 6 エアクリーナ 7 排気管 8 ターボチャージャー 81 排気タービン 82 吸気コンプレッサ 9 排気ガス環流(EGR)通路 10 制御手段(ECM) 11 EGRバルブ 12 酸化触媒 13 DPF 14 NOx触媒 15 エンジン回転速度検出センサ 16 アクセルセンサ 17 吸気温度センサ 20 第1のEGR通路 21 第1のEGRバルブ 22 吸気シャッタ 23 排気シャッタ 24 第2のEGR通路 25 第2のEGRバルブ 26 EGRクーラ 27 排気温度センサ 30 吸気バルブ 31 吸気カム 40 排気バルブ 41 排気バルブ作動機構 42 排気カム 421 第1の排気カムリフト 422 第2の排気カムリフト 2 Engine body 3 Intake manifold 4 Exhaust manifold 5 Intake pipe 6 Air cleaner 7 Exhaust pipe 8 Turbocharger 81 Exhaust turbine 82 Intake compressor 9 Exhaust gas recirculation (EGR) passage 10 Control means (ECM) 11 EGR valve 12 Oxidation catalyst 13 DPF 14 NOx Catalyst 15 Engine rotation speed detection sensor 16 Accelerator sensor 17 Intake air temperature sensor 20 First EGR passage 21 First EGR valve 22 Intake shutter 23 Exhaust shutter 24 Second EGR passage 25 Second EGR valve 26 EGR cooler 27 Exhaust temperature Sensor 30 Intake valve 31 Intake cam 40 Exhaust valve 41 Exhaust valve operating mechanism 42 Exhaust cam 421 First exhaust cam lift 422 Second exhaust cam lift

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/02 321 F01N 3/02 321H 3/24 3/24 E 3/26 3/26 L F02B 37/00 F02B 37/00 302F 302 F02D 23/00 F F02D 23/00 J P F02M 25/07 570P F02M 25/07 570 570D 570J F02B 37/00 301F 301G Fターム(参考) 3G005 DA02 EA16 FA35 GB15 GB17 GB24 GB26 GD11 GD16 GE09 HA04 HA05 HA12 HA18 JA02 JA13 JA16 JA23 JA24 JA28 JA39 JA42 JA45 JB02 JB05 3G062 AA01 AA05 BA04 BA06 CA06 EA05 ED01 ED03 ED08 FA05 GA04 GA09 GA12 GA13 GA14 GA15 GA22 3G090 AA01 BA01 CB00 CB21 DA12 DA18 DA20 EA02 EA05 EA06 EA07 3G091 AA10 AA11 AA18 AB02 AB05 AB13 BA04 CB07 EA01 EA03 EA08 EA17 HA10 HA15 HA16 HB05 HB06 3G092 AA02 AA17 AA18 DB03 DC03 DC09 DC12 DC15 EA01 EA02 EA22 EC09 FA18 HA06X HA11Z HB01Z HD01Z HD07X HD09X HE01Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/02 321 F01N 3/02 321H 3/24 3/24 E 3/26 3/26 L F02B 37 / 00F02B 37/00 302F 302 F02D 23/00 F F02D 23/00 JP F02M 25/07 570P F02M 25/07 570 570D 570J F02B 37/00 301F 301G F term (reference) 3G005 DA02 EA16 FA35 GB15 GB11 GB24 GB26 GD GD16 GE09 HA04 HA05 HA12 HA18 JA02 JA13 JA16 JA23 JA24 JA28 JA39 JA42 JA45 JB02 JB05 3G062 AA01 AA05 BA04 BA06 CA06 EA05 ED01 ED03 ED08 FA05 GA04 GA09 GA12 GA13 GA14 GA15 GA22 3G090 AA01 BA01 EA00 DA11 CB00 AA18 AB02 AB05 AB13 BA04 CB07 EA01 EA03 EA08 EA17 HA10 HA15 HA16 HB05 HB06 3G092 AA02 AA17 A A18 DB03 DC03 DC09 DC12 DC15 EA01 EA02 EA22 EC09 FA18 HA06X HA11Z HB01Z HD01Z HD07X HD09X HE01Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 排気通路に配設された排気タービンと吸
気通路に配設された吸気コンプレッサとを有するターボ
チャージャーと、該排気タービンより上流側の排気通路
と該吸気コンプレッサより下流側の吸気通路とを連絡す
る第1のEGR通路と、該第1のEGR通路に配設され
た第1のEGRバルブと、該排気タービンより下流側の
排気通路に配設された酸化触媒およびパティキュレート
フィルタとを備えたディーゼルエンジンの排気浄化装置
において、 エンジンの排気温度領域を検出する排気温
度領域検出手段と、該排気温度領域検出手段により検出
されたエンジンの排気温度領域が該酸化触媒の活性温度
領域より高温領域となる場合に該第1のEGRバルブを
絞る制御を行う制御手段と、を具備する、 ことを特徴
とするディーゼルエンジンの排気浄化装置。
1. A turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake passage, an exhaust passage upstream of the exhaust turbine, and an intake passage downstream of the intake compressor. A first EGR passage, a first EGR valve disposed in the first EGR passage, an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine. An exhaust gas purification device for a diesel engine, comprising: an exhaust temperature region detecting means for detecting an exhaust temperature region of the engine; and an exhaust temperature region of the engine detected by the exhaust temperature region detecting device, wherein Control means for controlling the throttle of the first EGR valve in a high temperature range. Emissions of exhaust gas purification device.
【請求項2】 該排気温度領域検出手段は、エンジンの
負荷を検出するエンジン負荷検出手段と、エンジンの回
転速度を検出するエンジン回転速度検出手段と、エンジ
ン負荷とエンジン回転速度をパラメータとしてエンジン
の排気温度領域を設定した排気温度領域マップとからな
っている、請求項1記載のディーゼルエンジンの排気浄
化装置。
2. The exhaust temperature range detecting means includes: an engine load detecting means for detecting an engine load; an engine rotational speed detecting means for detecting an engine rotational speed; and an engine load and an engine rotational speed as parameters. The exhaust gas purifying apparatus for a diesel engine according to claim 1, comprising an exhaust gas temperature region map in which an exhaust gas temperature region is set.
【請求項3】 該排気タービンより下流側の該排気通路
と該吸気コンプレッサより上流側の該吸気通路とを連絡
する第2のEGR通路と、該第2のEGR通路に配設さ
れた第2のEGRバルブとを具備し、該制御手段は該排
気温度領域検出手段により検出されたエンジンの排気温
度領域が該酸化触媒の活性温度領域より高温領域となる
場合には、該第2のEGRバルブの開く制御する、請求
項1記載のディーゼルエンジンの排気浄化装置。
3. A second EGR passage communicating between the exhaust passage downstream of the exhaust turbine and the intake passage upstream of the intake compressor, and a second EGR passage provided in the second EGR passage. The EGR valve of the second EGR valve is provided when the exhaust gas temperature range of the engine detected by the exhaust gas temperature range detecting means is higher than the active temperature range of the oxidation catalyst. The exhaust gas purifying apparatus for a diesel engine according to claim 1, wherein the exhaust gas is controlled to open.
【請求項4】 該第2のEGR通路にはEGRガスを冷
却する冷却手段を配設している、請求項3記載のディー
ゼルエンジンの排気浄化装置。
4. The exhaust gas purifying apparatus for a diesel engine according to claim 3, wherein cooling means for cooling EGR gas is provided in said second EGR passage.
【請求項5】 排気通路に配設された排気タービンと吸
気通路に配設された吸気コンプレッサとを有するターボ
チャージャーと、該排気タービンより上流側の排気通路
と該吸気コンプレッサより下流側の吸気通路とを連絡す
る第1のEGR通路と、該第1のEGR通路に配設され
た第1のEGRバルブと、該排気タービンより下流側の
排気通路に配設された酸化触媒およびパティキュレート
フィルタとを備えたディーゼルエンジンの排気浄化装置
において、 該第1のEGR通路と該吸気通路の連結部
よりも上流側の該吸気通路に配設された吸気シャッタ
と、該第1のEGR通路と該排気通路の連結部よりも下
流側の該排気通路に配設された排気シャッタと、エンジ
ンの排気温度領域を検出する排気温度領域検出手段と、
該排気温度領域検出手段により検出されたエンジンの排
気温度領域が該酸化触媒の活性温度領域よりも低温領域
となる場合に該吸気シャッタと該排気シャッタのいずれ
か一方または双方を絞る制御を行う制御手段と、を具備
する、ことを特徴とするディーゼルエンジンの排気浄化
装置。
5. A turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake passage, an exhaust passage upstream of the exhaust turbine, and an intake passage downstream of the intake compressor. A first EGR passage, a first EGR valve disposed in the first EGR passage, an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine. An exhaust shutter disposed in the intake passage upstream of a connection portion between the first EGR passage and the intake passage, the first EGR passage and the exhaust gas. An exhaust shutter provided in the exhaust passage downstream of the connecting portion of the passage, exhaust temperature region detecting means for detecting an exhaust temperature region of the engine,
A control for reducing one or both of the intake shutter and the exhaust shutter when the exhaust temperature range of the engine detected by the exhaust temperature range detection means is lower than the active temperature range of the oxidation catalyst; Means for purifying the exhaust gas of a diesel engine.
【請求項6】 該排気温度領域検出手段は、エンジンの
負荷を検出するエンジン負荷検出手段と、エンジン回転
速度を検出するエンジン回転速度検出手段と、エンジン
負荷とエンジン回転速度をパラメータとしてエンジンの
排気温度領域を設定した排気温度領域マップとからなっ
ている、請求項5記載のディーゼルエンジンの排気浄化
装置。
6. An exhaust temperature range detecting means includes: an engine load detecting means for detecting an engine load; an engine rotational speed detecting means for detecting an engine rotational speed; and an engine exhaust using the engine load and the engine rotational speed as parameters. 6. The exhaust gas purifying apparatus for a diesel engine according to claim 5, comprising an exhaust gas temperature region map in which a temperature region is set.
【請求項7】 該制御手段は、該排気温度領域検出手段
により検出されたエンジンの排気温度領域が低い程、該
吸気シャッタ及び該排気シャッタの開度を小さくなるよ
うに段階的に制御する、請求項5記載のディーゼルエン
ジン排気浄化装置。
7. The control means controls the opening degree of the intake shutter and the exhaust shutter in a stepwise manner as the exhaust temperature area of the engine detected by the exhaust temperature area detecting means decreases. The diesel engine exhaust purification device according to claim 5.
【請求項8】 排気通路に配設された排気タービンと吸
気通路に配設された吸気コンプレッサとを有するターボ
チャージャーと、該排気タービンより上流側の排気通路
と該吸気コンプレッサより下流側の吸気通路とを連絡す
る第1のEGR通路と、該第1のEGR通路に配設され
た第1のEGRバルブと、該排気タービンより下流側の
排気通路に配設された酸化触媒およびパティキュレート
フィルタと、吸気行程中に同一シリンダーの排気バルブ
を開く排気バルブ作動機構とを備えたディーゼルエンジ
ンの排気浄化装置において、 該第1のEGR通路と該
吸気通路の連結部よりも上流側の該吸気通路に配設され
た吸気シャッタと、該第1のEGR通路と該排気通路の
連結部よりも下流側の該排気通路に配設された排気シャ
ッタと、エンジンの排気温度領域を検出する排気温度領
域検出手段と、該排気温度領域検出手段により検出され
たエンジンの排気温度領域が該酸化触媒の活性温度領域
よりも低温領域となる場合に該吸気シャッタと該排気シ
ャッタのいずれか一方または双方を絞る制御を行う制御
手段と、を具備する、ことを特徴とするディーゼルエン
ジンの排気浄化装置。
8. A turbocharger having an exhaust turbine disposed in an exhaust passage and an intake compressor disposed in an intake passage, an exhaust passage upstream of the exhaust turbine, and an intake passage downstream of the intake compressor. A first EGR passage, a first EGR valve disposed in the first EGR passage, an oxidation catalyst and a particulate filter disposed in an exhaust passage downstream of the exhaust turbine. An exhaust valve operating mechanism for opening an exhaust valve of the same cylinder during an intake stroke, wherein the exhaust passage is located upstream of a connection between the first EGR passage and the intake passage. An exhaust shutter disposed in the exhaust passage downstream of a connection portion between the first EGR passage and the exhaust passage; Exhaust temperature region detecting means for detecting an air temperature region; and the intake shutter and the exhaust gas when the exhaust temperature region of the engine detected by the exhaust temperature region detecting device is lower than the active temperature region of the oxidation catalyst. Control means for performing control for reducing one or both of the shutters.
JP2001079266A 2001-03-19 2001-03-19 Exhaust emission control device of diesel engine Pending JP2002276405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079266A JP2002276405A (en) 2001-03-19 2001-03-19 Exhaust emission control device of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079266A JP2002276405A (en) 2001-03-19 2001-03-19 Exhaust emission control device of diesel engine

Publications (1)

Publication Number Publication Date
JP2002276405A true JP2002276405A (en) 2002-09-25

Family

ID=18935749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079266A Pending JP2002276405A (en) 2001-03-19 2001-03-19 Exhaust emission control device of diesel engine

Country Status (1)

Country Link
JP (1) JP2002276405A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420159A2 (en) * 2002-11-15 2004-05-19 Isuzu Motors Limited EGR system for internal combustion engine provided with a turbo-charger
EP1455078A1 (en) * 2003-03-06 2004-09-08 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Internal combustion engine having a turbocharger and an exhaust gas recirculation system
EP1493907A3 (en) * 2003-07-02 2005-05-11 Mazda Motor Corporation Egr control apparatus for engine
WO2005052334A2 (en) * 2003-11-19 2005-06-09 Southwest Research Institute Dual loop exhaust gas recirculation system for diesel engines and method of operation
JP2005155611A (en) * 2003-11-25 2005-06-16 Arvin Internatl (Uk) Ltd Internal combustion engine exhaust system
EP1548268A1 (en) * 2003-12-24 2005-06-29 Nissan Motor Company, Limited Exhaust gas recirculation system for internal combustion engine
EP1589213A1 (en) * 2004-04-21 2005-10-26 C.R.F. Società Consortile per Azioni Turbo-charged diesel engine with a "Long Route" exhaust gas recirculation system
US6973786B1 (en) * 2004-10-12 2005-12-13 International Engine Intellectual Property Company, Llc Emission reduction in a diesel engine by selective use of high-and low-pressure EGR loops
WO2006008600A3 (en) * 2004-07-09 2006-03-30 Toyota Motor Co Ltd Exhaust gas control apparatus for internal combustion engine
US7168250B2 (en) * 2005-04-21 2007-01-30 International Engine Intellectual Property Company, Llc Engine valve system and method
WO2007028482A1 (en) * 2005-09-10 2007-03-15 Daimler Ag Internal combustion engine
WO2007085944A1 (en) 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
JP2007270705A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Egr device for engine
JP2007297948A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
WO2007136142A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
WO2008050900A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2009097404A (en) * 2007-10-16 2009-05-07 Mazda Motor Corp Supercharging device for engine
US7591131B2 (en) * 2006-11-30 2009-09-22 Caterpillar Inc. Low pressure EGR system having full range capability
FR2928967A1 (en) * 2008-03-20 2009-09-25 Renault Sas Exhaust gas post-treatment device i.e. particle filter, regenerating method for motor vehicle's diesel engine, involves verifying whether risk situation is raised, in case of detected risk, increasing of recirculation and reducing of intake
DE102008018324A1 (en) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Internal combustion engine i.e. V6/V8 diesel engine, has exhaust gas recirculation system comprising partial lines, where partial lines and/or cooling elements are parallely connected
US7617678B2 (en) * 2005-02-07 2009-11-17 Borgwarner Inc. Exhaust throttle-EGR valve module for a diesel engine
EP2131022A1 (en) * 2008-06-04 2009-12-09 Iveco Motorenforschung AG Thermal management of the after treatment system
WO2010034450A1 (en) * 2008-09-26 2010-04-01 Emcon Technologies Germany (Augsburg) Gmbh Exhaust gas system and exhaust gas valve for controlling a volumetric flow rate of exhaust gas, and a method for controlling a volumetric flow rate
WO2010090035A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust emission control device and exhaust emission control method
WO2010090037A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
US7937213B2 (en) * 2005-12-08 2011-05-03 Renault S.A.S. Method for controlling an engine provided with an exhaust gas recycling loop
US7975478B2 (en) * 2007-06-26 2011-07-12 International Engine Intellectual Property Company, Llc Internal combustion engine having compressor with first and second tributary inlets
DE102009043085A1 (en) * 2009-09-25 2011-08-04 Volkswagen AG, 38440 Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation system
USRE42609E1 (en) * 2003-02-03 2011-08-16 Ford Global Technologies, Llc System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle with EGR
WO2011111591A1 (en) 2010-03-09 2011-09-15 ヤンマー株式会社 System of treating exhaust gas of engine
CN101429905B (en) * 2007-11-09 2012-07-11 现代自动车株式会社 Method and apparatus for controlling low pressure EGR valve of a turbocharged diesel engine
US8453446B2 (en) 2007-01-25 2013-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and method for controlling the same
US8630787B2 (en) 2005-12-20 2014-01-14 Borgwarner Inc. Controlling exhaust gas recirculation in a turbocharged engine system
US10132230B2 (en) 2005-12-20 2018-11-20 Borgwarner Inc. Controlling exhaust gas recirculation in a turbocharged compression-ignition engine system

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420159A2 (en) * 2002-11-15 2004-05-19 Isuzu Motors Limited EGR system for internal combustion engine provided with a turbo-charger
EP1420159A3 (en) * 2002-11-15 2006-05-17 Isuzu Motors Limited EGR system for internal combustion engine provided with a turbo-charger
US7043914B2 (en) * 2002-11-15 2006-05-16 Isuzu Motors Limited EGR system for internal combustion engine provided with a turbo-charger
USRE42609E1 (en) * 2003-02-03 2011-08-16 Ford Global Technologies, Llc System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle with EGR
EP1455078A1 (en) * 2003-03-06 2004-09-08 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Internal combustion engine having a turbocharger and an exhaust gas recirculation system
EP1493907A3 (en) * 2003-07-02 2005-05-11 Mazda Motor Corporation Egr control apparatus for engine
US6945236B2 (en) 2003-07-02 2005-09-20 Mazda Motor Corporation EGR control apparatus for engine
US6988365B2 (en) * 2003-11-19 2006-01-24 Southwest Research Institute Dual loop exhaust gas recirculation system for diesel engines and method of operation
WO2005052334A2 (en) * 2003-11-19 2005-06-09 Southwest Research Institute Dual loop exhaust gas recirculation system for diesel engines and method of operation
WO2005052334A3 (en) * 2003-11-19 2005-09-09 Southwest Res Inst Dual loop exhaust gas recirculation system for diesel engines and method of operation
JP2011094625A (en) * 2003-11-25 2011-05-12 Arvinmeritor Emissions Technologies Gmbh Internal combustion engine exhaust system
US8209967B2 (en) 2003-11-25 2012-07-03 Emcon Technologies Llc Internal combustion engine exhaust system
JP2005155611A (en) * 2003-11-25 2005-06-16 Arvin Internatl (Uk) Ltd Internal combustion engine exhaust system
US7080506B2 (en) 2003-12-24 2006-07-25 Nissan Motor Co., Ltd. Exhaust gas recirculation system for internal combustion engine
EP1548268A1 (en) * 2003-12-24 2005-06-29 Nissan Motor Company, Limited Exhaust gas recirculation system for internal combustion engine
EP1589213A1 (en) * 2004-04-21 2005-10-26 C.R.F. Società Consortile per Azioni Turbo-charged diesel engine with a "Long Route" exhaust gas recirculation system
JP2005307963A (en) * 2004-04-21 2005-11-04 Crf Soc Consortile Per Azioni Diesel engine with turbocharger equipped with exhaust gas recirculating system of long route
US7444804B2 (en) 2004-07-09 2008-11-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
WO2006008600A3 (en) * 2004-07-09 2006-03-30 Toyota Motor Co Ltd Exhaust gas control apparatus for internal combustion engine
CN100439685C (en) * 2004-07-09 2008-12-03 丰田自动车株式会社 Exhaust gas control apparatus for internal combustion engine
US6973786B1 (en) * 2004-10-12 2005-12-13 International Engine Intellectual Property Company, Llc Emission reduction in a diesel engine by selective use of high-and low-pressure EGR loops
US7617678B2 (en) * 2005-02-07 2009-11-17 Borgwarner Inc. Exhaust throttle-EGR valve module for a diesel engine
US7168250B2 (en) * 2005-04-21 2007-01-30 International Engine Intellectual Property Company, Llc Engine valve system and method
WO2007028482A1 (en) * 2005-09-10 2007-03-15 Daimler Ag Internal combustion engine
US7937213B2 (en) * 2005-12-08 2011-05-03 Renault S.A.S. Method for controlling an engine provided with an exhaust gas recycling loop
US10132230B2 (en) 2005-12-20 2018-11-20 Borgwarner Inc. Controlling exhaust gas recirculation in a turbocharged compression-ignition engine system
US8630787B2 (en) 2005-12-20 2014-01-14 Borgwarner Inc. Controlling exhaust gas recirculation in a turbocharged engine system
US7895838B2 (en) 2006-01-27 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
WO2007085944A1 (en) 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
JP2007270705A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Egr device for engine
JP2007297948A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
WO2007136142A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
CN101484684B (en) * 2006-06-29 2012-05-23 丰田自动车株式会社 Exhaust gas recirculation device of internal combustion engine, and control method thereof
US7717099B2 (en) 2006-06-29 2010-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
WO2008050900A1 (en) * 2006-10-25 2008-05-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
US7591131B2 (en) * 2006-11-30 2009-09-22 Caterpillar Inc. Low pressure EGR system having full range capability
US8453446B2 (en) 2007-01-25 2013-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and method for controlling the same
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
US7975478B2 (en) * 2007-06-26 2011-07-12 International Engine Intellectual Property Company, Llc Internal combustion engine having compressor with first and second tributary inlets
US20110232279A1 (en) * 2007-06-26 2011-09-29 International Engine Intellectual Property Company, Llc Internal Combustion Engine Having Compressor With First And Second Tributary Inlets
JP2009097404A (en) * 2007-10-16 2009-05-07 Mazda Motor Corp Supercharging device for engine
CN101429905B (en) * 2007-11-09 2012-07-11 现代自动车株式会社 Method and apparatus for controlling low pressure EGR valve of a turbocharged diesel engine
FR2928967A1 (en) * 2008-03-20 2009-09-25 Renault Sas Exhaust gas post-treatment device i.e. particle filter, regenerating method for motor vehicle's diesel engine, involves verifying whether risk situation is raised, in case of detected risk, increasing of recirculation and reducing of intake
DE102008018324B4 (en) * 2008-04-11 2019-08-29 Ford Global Technologies, Llc Exhaust gas recirculation system
DE102008018324A1 (en) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Internal combustion engine i.e. V6/V8 diesel engine, has exhaust gas recirculation system comprising partial lines, where partial lines and/or cooling elements are parallely connected
EP2131022A1 (en) * 2008-06-04 2009-12-09 Iveco Motorenforschung AG Thermal management of the after treatment system
WO2010034450A1 (en) * 2008-09-26 2010-04-01 Emcon Technologies Germany (Augsburg) Gmbh Exhaust gas system and exhaust gas valve for controlling a volumetric flow rate of exhaust gas, and a method for controlling a volumetric flow rate
EP2395218A1 (en) * 2009-02-06 2011-12-14 Honda Motor Co., Ltd. Internal combustion engine exhaust purifying device and exhaust purifying method
EP2395218A4 (en) * 2009-02-06 2012-02-15 Honda Motor Co Ltd Internal combustion engine exhaust purifying device and exhaust purifying method
JP2010180804A (en) * 2009-02-06 2010-08-19 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
US20110289917A1 (en) * 2009-02-06 2011-12-01 Honda Motor Co., Ltd. Internal combustion engine exhaust purifying device and exhaust purifying method
WO2010090035A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust emission control device and exhaust emission control method
US8813490B2 (en) 2009-02-06 2014-08-26 Honda Motor Co., Ltd. Internal combustion engine exhaust emission control device and exhaust emission control method
WO2010090037A1 (en) * 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
DE102009043085A1 (en) * 2009-09-25 2011-08-04 Volkswagen AG, 38440 Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation system
JP2011185177A (en) * 2010-03-09 2011-09-22 Yanmar Co Ltd Engine exhaust gas treating system
WO2011111591A1 (en) 2010-03-09 2011-09-15 ヤンマー株式会社 System of treating exhaust gas of engine
US8893479B2 (en) 2010-03-09 2014-11-25 Yanmar Co., Ltd. System of treating exhaust gas of engine

Similar Documents

Publication Publication Date Title
JP2002276405A (en) Exhaust emission control device of diesel engine
EP1270885B1 (en) Device for purifying exhaust gas of diesel engines
JP3951899B2 (en) Diesel engine exhaust purification system
EP1260684B1 (en) Device for purifying exhaust gas of diesel engines
JP4089396B2 (en) EGR system for internal combustion engine with turbocharger
JP4977993B2 (en) Diesel engine exhaust purification system
US6742329B2 (en) Exhaust emission control system of diesel engine
US7115237B2 (en) Exhaust gas purifying method and exhaust gas purifying system
JP2003184542A (en) Exhaust gas emissions control system for diesel engine
JP2002349239A (en) Exhaust emission control device for diesel engine
JP4161575B2 (en) Exhaust gas purification device for internal combustion engine
EP1365125A1 (en) Method for controlling an exhaust gas temperature of a turbocharged internal combustion engine
JP2004150416A (en) Regeneration method for particulate filter
JPH10196462A (en) Egr device of diesel engine
JP2003307117A (en) Exhaust emission control device of internal combustion engine
JP2005299628A (en) Filter regeneration control device for diesel engine
JPH0598932A (en) Exhaust emission control device for internal combustion engine
JP4400194B2 (en) Diesel engine exhaust purification system
JPS6132122Y2 (en)
JP2003286820A (en) Engine exhaust-emission control device
JP4349096B2 (en) Exhaust gas purification device for internal combustion engine
JP2002004838A (en) Exhaust emission control device for diesel engine
JP2003003832A (en) Continuous regeneration type diesel particulate filter for diesel engine
JPH04370310A (en) Exhaust gas post-processing device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107