JP2008261256A - Egr system of internal combustion engine - Google Patents

Egr system of internal combustion engine Download PDF

Info

Publication number
JP2008261256A
JP2008261256A JP2007103562A JP2007103562A JP2008261256A JP 2008261256 A JP2008261256 A JP 2008261256A JP 2007103562 A JP2007103562 A JP 2007103562A JP 2007103562 A JP2007103562 A JP 2007103562A JP 2008261256 A JP2008261256 A JP 2008261256A
Authority
JP
Japan
Prior art keywords
exhaust
passage
lpl
egr
hpl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103562A
Other languages
Japanese (ja)
Other versions
JP4910849B2 (en
Inventor
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007103562A priority Critical patent/JP4910849B2/en
Publication of JP2008261256A publication Critical patent/JP2008261256A/en
Application granted granted Critical
Publication of JP4910849B2 publication Critical patent/JP4910849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique suitably executing EGR by securing EGR control accuracy even when throttling an exhaust throttle valve when executing PM regenerating processing, in an EGR system for simultaneously using an HPL device and an LPL device. <P>SOLUTION: This EGR system has: the exhaust throttle valve arranged in an exhaust passage on the downstream side of a turbine of a turbocharger; the HPL device having an HPL passage for connecting the exhaust passage on the upstream side of the turbine to an intake passage on the downstream side a compressor of the turbocharger and an HPL valve arranged in the HPL passage; the LPL device having an LPL passage for connecting the exhaust passage on the downstream side of the exhaust throttle valve to the intake passage on the upstream side of the compressor and an LPL valve arranged in the LPL passage; and an EGR control means for controlling an EGR gas quantity by con6trolling opening of the HPL valve and the LPL valve. The EGR system controls the EGR gas quantity by controlling the opening of the LPL valve by closing the HPL valve when opening of the exhaust throttle valve is throttled to closing side opening more than predetermined opening. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関のEGRシステムに関する。   The present invention relates to an EGR system for an internal combustion engine.

内燃機関からのNOxの排出量を低減する技術として、排気の一部を吸気系に流入させて内燃機関の燃焼室に戻すEGRが知られている。この技術に関して、ターボチャージャを備えた内燃機関において、ターボチャージャのタービンより上流の排気通路とターボチャージャのコンプレッサより下流の吸気通路とを接続するHPL通路を介して排気の一部を内燃機関に戻すHPL手段と、タービンより下流の排気通路とコンプレッサより上流の吸気通路とを接続するLPL通路を介して排気の一部を内燃機関に戻すLPL手段と、を備え、内燃機関の運転状態に応じてHPL手段とLPL手段とを併用又は切り替えてEGRを行う技術も知られている(例えば特許文献1を参照)。HPL手段によって内燃機関に戻される排気(HPLガス)の量は、HPL通路に設けられHPL通路の流路面積を変更するHPL弁の開度を制御することによって調節することができる。同様に、LPL手段によって内燃機関に戻される排気(LPLガス)の量は、LPL通路に設けられLPL通路の流路面積を変更するLPL弁の開度を制御することによって調節することができる。   As a technique for reducing the amount of NOx emitted from an internal combustion engine, EGR is known in which a part of exhaust gas flows into an intake system and is returned to the combustion chamber of the internal combustion engine. With regard to this technique, in an internal combustion engine equipped with a turbocharger, a part of the exhaust gas is returned to the internal combustion engine via an HPL passage that connects an exhaust passage upstream of the turbocharger turbine and an intake passage downstream of the turbocharger compressor. HPL means, and LPL means for returning part of the exhaust gas to the internal combustion engine via an LPL passage connecting the exhaust passage downstream of the turbine and the intake passage upstream of the compressor, and depending on the operating state of the internal combustion engine A technique for performing EGR by using or switching between HPL means and LPL means is also known (see, for example, Patent Document 1). The amount of exhaust gas (HPL gas) returned to the internal combustion engine by the HPL means can be adjusted by controlling the opening degree of the HPL valve provided in the HPL passage and changing the flow passage area of the HPL passage. Similarly, the amount of exhaust gas (LPL gas) returned to the internal combustion engine by the LPL means can be adjusted by controlling the opening of an LPL valve provided in the LPL passage and changing the flow passage area of the LPL passage.

また、排気中のPMを捕集する能力を有するフィルタを排気通路の途中に設けて大気中に放出されるPMの量を低減する技術が知られている。フィルタを備えた内燃機関では、フィルタのPM捕集能力を好適に維持するために、フィルタにおけるPMの堆積量が所定の許容量を越えた時にフィルタの温度を上昇させることによって堆積したPMを酸化させる処理(以下PM再生処理という)を実行することがある。PM再生処理の技術に関して、PM再生処理を実行する際に、フィルタより下流に設けられた排気絞り弁を絞ることが検討されている。こうすることで背圧が上昇し排気温度が上昇するので、PMの酸化反応を促進させることができる。
特開2005−076456号公報 特開2006−183485号公報 特開2006−226205号公報
In addition, a technique for reducing the amount of PM released into the atmosphere by providing a filter having an ability to collect PM in the exhaust in the middle of the exhaust passage is known. In an internal combustion engine equipped with a filter, in order to suitably maintain the PM collecting ability of the filter, the accumulated PM is oxidized by raising the temperature of the filter when the accumulated amount of PM in the filter exceeds a predetermined allowable amount. Processing (hereinafter referred to as PM regeneration processing) may be executed. Regarding the technology of PM regeneration processing, it has been studied to throttle an exhaust throttle valve provided downstream from the filter when performing PM regeneration processing. By doing so, the back pressure rises and the exhaust gas temperature rises, so that the PM oxidation reaction can be promoted.
Japanese Patent Laying-Open No. 2005-076456 JP 2006-183485 A JP 2006-226205 A

ところで、HPL手段及びLPL手段を併設するEGRシステムにフィルタ及びPM再生処理システムを組み込む場合、タービンより下流且つLPL通路の接続箇所より上流の排気通路にフィルタ及び排気絞り弁を配置する構成が考えられる。   By the way, when a filter and a PM regeneration processing system are incorporated in an EGR system having both HPL means and LPL means, a configuration in which a filter and an exhaust throttle valve are arranged in an exhaust passage downstream from the turbine and upstream from a connection point of the LPL passage is conceivable. .

しかしながら、このように構成されたEGRシステムにおいて、PM再生処理を実行する際に上述のように排気絞り弁を絞った場合、背圧が上昇することによってHPL通路の上流と下流との圧力差が大きくなるため、HPL弁を精度良く制御することが困難になり、従ってHPLガス量の制御精度が十分に得られなくなる虞があった。   However, in the EGR system configured as described above, when the exhaust throttle valve is throttled as described above when the PM regeneration process is performed, the back pressure rises and the pressure difference between the upstream and downstream of the HPL passage is increased. Since it becomes large, it becomes difficult to control the HPL valve with high accuracy, and therefore there is a risk that the control accuracy of the HPL gas amount cannot be sufficiently obtained.

また、背圧が上昇すると、排気行程において気筒内から排気通路に排出される既燃ガスの量が減少し、内部EGR量が増加する傾向がある。そのため、排気絞り弁を絞らない場合と同様のHPL弁及び/又はLPL弁の開度制御を行うと、内部EGR量と、HPL手段及びLPL手段によって内燃機関に戻される排気である外部EGRガスの量と、を合計した全EGR量が想定より多くなり、失火等の燃焼不良を招く虞があった。   Further, when the back pressure increases, the amount of burned gas discharged from the cylinder to the exhaust passage during the exhaust stroke tends to decrease, and the internal EGR amount tends to increase. Therefore, when the opening control of the HPL valve and / or the LPL valve is performed in the same manner as when the exhaust throttle valve is not throttled, the internal EGR amount and the external EGR gas that is the exhaust gas returned to the internal combustion engine by the HPL means and the LPL means The total amount of EGR, which is the sum of the amounts, is larger than expected, and there is a risk of causing a combustion failure such as misfire.

本発明はこのような問題点に鑑みてなされたものであり、HPL手段及びLPL手段を併用するEGRシステムにおいて、PM再生処理の実行時等に排気絞り弁を絞る場合においても十分なEGR制御精度を確保し、好適にEGRを実行可能にする技術を提供することを目的とする。   The present invention has been made in view of such problems, and in an EGR system using both HPL means and LPL means, sufficient EGR control accuracy can be obtained even when the exhaust throttle valve is throttled at the time of PM regeneration processing or the like. It is an object of the present invention to provide a technique for ensuring EGR and preferably enabling execution of EGR.

上記目的を達成するため、本発明の内燃機関のEGRシステムは、内燃機関の排気通路に設けられたタービンと内燃機関の吸気通路に設けられたコンプレッサとを有するターボチャージャと、前記タービンより下流の排気通路に設けられ排気通路の流路面積を変更する排気絞り弁と、前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続するHPL通路及び該HPL通路に設けられ該HPL通路の流路面積を変更するHPL弁を有し該HPL通路を介して排気の一部を内燃機関に導くHPL手段と、前記排気絞り弁より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続するLPL通路及び該LPL通路に設けられ該LPL通路の流路面積を変更するLPL弁を有し該LPL通路を介して排気の一部を内燃機関に導くLPL手段と、前記HPL弁及び前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御するEGR制御手段と、を備え、前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL弁を所定開度(H)に略固定するとともに、前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御することを特徴とする。   To achieve the above object, an EGR system for an internal combustion engine according to the present invention includes a turbocharger having a turbine provided in an exhaust passage of the internal combustion engine and a compressor provided in an intake passage of the internal combustion engine, and a downstream of the turbine. An exhaust throttle valve that is provided in the exhaust passage and changes the flow passage area of the exhaust passage, an HPL passage that connects an exhaust passage upstream of the turbine and an intake passage downstream of the compressor, and the HPL passage provided in the HPL passage An HPL means having an HPL valve for changing the flow area of the exhaust gas, and an HPL means for guiding part of the exhaust gas to the internal combustion engine through the HPL passage, an exhaust passage downstream from the exhaust throttle valve, and an intake passage upstream from the compressor An LPL passage to be connected and an LPL valve provided in the LPL passage to change the flow area of the LPL passage, and a part of the exhaust gas through the LPL passage LPL means for leading to the internal combustion engine, and EGR control means for controlling the amount of exhaust gas returned to the internal combustion engine by controlling the opening of the HPL valve and the LPL valve, and the EGR control means comprises the exhaust gas When the opening of the throttle valve is throttled to the opening closer to the closing side than the predetermined opening (S), the HPL valve is substantially fixed to the predetermined opening (H) and the opening of the LPL valve is controlled. To control the amount of exhaust gas returned to the internal combustion engine.

ここで、「所定開度(S)」とは、排気絞り弁を絞った場合の排気通路の背圧が、HPL弁によるHPLガス量の制御に関して十分な制御精度を確保することが可能な圧力より低くなるような排気絞り弁の開度の下限値である。つまり、排気絞り弁の開度が所定開度(S)以上の開度(開き側の開度)であるならば、排気絞り弁より上流の排気通路における背圧が過剰に高くなることはなく、従ってHPL通路の上流及び下流の圧力差が過剰に大きくなることはなく、HPL弁の開度制御によって十分精度良くHPLガス量を制御することが可能である。逆に、排気絞り弁の開度が所定開度(S)より小さい開度(閉じ側の開度)になると、排気絞り弁より上流の排気通路における背圧が過剰に高くなり、HPL通路の上流及び下流の圧力差が過剰に大きくなり、HPL弁の開度制御によってHPLガス量を精度良く制御することが困難になる。   Here, the “predetermined opening degree (S)” is a pressure at which the back pressure of the exhaust passage when the exhaust throttle valve is throttled can ensure sufficient control accuracy with respect to the control of the HPL gas amount by the HPL valve. This is the lower limit value of the opening of the exhaust throttle valve that becomes lower. In other words, if the opening of the exhaust throttle valve is an opening (opening side opening) equal to or greater than the predetermined opening (S), the back pressure in the exhaust passage upstream of the exhaust throttle valve will not be excessively high. Therefore, the pressure difference between the upstream and downstream of the HPL passage does not become excessively large, and the amount of HPL gas can be controlled with sufficient accuracy by controlling the opening of the HPL valve. Conversely, when the opening of the exhaust throttle valve becomes smaller than the predetermined opening (S) (opening on the closing side), the back pressure in the exhaust passage upstream of the exhaust throttle valve becomes excessively high, and the HPL passage The pressure difference between the upstream and downstream becomes excessively large, and it becomes difficult to accurately control the amount of HPL gas by controlling the opening of the HPL valve.

また、「所定開度(H)」とは、予め定められるHPL弁の開度である。   The “predetermined opening degree (H)” is a predetermined opening degree of the HPL valve.

上記構成によれば、排気絞り弁の開度が所定開度(S)より閉じ側の開度にまで絞られる場合には、HPL弁開度が略固定される。つまり、HPLガス量は略一定値となる。そして、LPL弁の開度を制御することによって内燃機関に戻される排気の量が制御される。排気絞り弁が所定開度(S)より更に絞られている場合においても、LPL通路は排気絞り弁より下流の排気通路から排気を取り出すように設けられているので、LPL通路の上流及び下流の圧力差は過剰に大きくなることはなく、従って、LPL弁の開度制御によるLPLガス量の制御精度は十分確保することができる。よって、略一定量のHPLガスと、十分な精度で制御されたLPLガスとの総量として、要求される全EGRガス量を精度良く内燃機関に供給することが可能になる。   According to the above configuration, the HPL valve opening is substantially fixed when the opening of the exhaust throttle valve is throttled to the opening closer to the closing side than the predetermined opening (S). That is, the amount of HPL gas becomes a substantially constant value. The amount of exhaust gas returned to the internal combustion engine is controlled by controlling the opening of the LPL valve. Even when the exhaust throttle valve is further throttled from the predetermined opening (S), the LPL passage is provided so as to extract exhaust from the exhaust passage downstream of the exhaust throttle valve. The pressure difference does not become excessively large. Therefore, the control accuracy of the LPL gas amount by the opening degree control of the LPL valve can be sufficiently ensured. Therefore, it is possible to accurately supply the required total EGR gas amount to the internal combustion engine as a total amount of the substantially constant amount of HPL gas and the LPL gas controlled with sufficient accuracy.

上記構成において、特に所定開度(H)を全閉としても良い。この場合、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られている場合には、要求される全EGRガス量をLPL手段のみを用いて内燃機関に供給することになる。つまり、精度良く制御可能なLPL弁の開度のみを調節することによって、全EGRガス量を制御することができるので、排気絞り弁が絞られている時の全EGRガス量をより精度良く制御することが可能になる。   In the above configuration, in particular, the predetermined opening (H) may be fully closed. In this case, when the opening of the exhaust throttle valve is throttled to the opening closer to the closing side than the predetermined opening (S), the required total EGR gas amount is supplied to the internal combustion engine using only the LPL means. It will be. In other words, since the total EGR gas amount can be controlled by adjusting only the opening degree of the LPL valve that can be controlled with high accuracy, the total EGR gas amount when the exhaust throttle valve is throttled can be controlled with higher accuracy. It becomes possible to do.

排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合、上述のように排気絞り弁より上流の排気通路における背圧が上昇するので、排気行程から吸気行程にかけて気筒内から排気通路に排出される既燃ガスの量が減少する傾向がある。つまり、気筒内に残留する既燃ガス(内部EGRガス)の量が増加する傾向がある。従って、前記HPL手段及び前記LPL手段によって前記内燃機関に戻される排気である外部EGRガスの量が、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない場合と同じ量であると、内燃機関に供給される全EGRガス量は過多になる可能性がある。その場合、失火等の燃焼不良を招く虞がある。   When the opening of the exhaust throttle valve is throttled to the opening on the closing side from the predetermined opening (S), the back pressure in the exhaust passage upstream from the exhaust throttle valve increases as described above, so that the exhaust stroke to the intake stroke There is a tendency that the amount of burned gas discharged from the cylinder into the exhaust passage decreases. That is, the amount of burnt gas (internal EGR gas) remaining in the cylinder tends to increase. Therefore, when the amount of the external EGR gas, which is the exhaust gas that is returned to the internal combustion engine by the HPL unit and the LPL unit, is not reduced to the opening side closer to the closing side than the predetermined opening degree (S). If the amount is the same, the total amount of EGR gas supplied to the internal combustion engine may be excessive. In that case, there is a risk of causing a combustion failure such as misfire.

そこで、本発明においては、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、外部EGRガスの量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の外部EGRガス量より少なくなるように、前記LPL弁の開度を制御しても良い。   Therefore, in the present invention, when the opening degree of the exhaust throttle valve is throttled to the opening side closer to the closing degree than the predetermined opening degree (S), the amount of external EGR gas is set to the predetermined opening degree of the exhaust throttle valve. The opening degree of the LPL valve may be controlled so as to be smaller than the normal external EGR gas amount that is not restricted to the opening degree on the closing side from the degree (S).

こうすることで、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合においても、内燃機関に過剰な量のEGRガスが供給されることを抑制できる。   By doing so, it is possible to suppress an excessive amount of EGR gas from being supplied to the internal combustion engine even when the opening of the exhaust throttle valve is throttled to an opening closer to the closing side than the predetermined opening (S).

本発明は、前記タービンより下流且つ前記排気絞り弁より上流の排気通路に設けられ排気中のPMを捕集するフィルタと、前記フィルタのPM捕集能力を維持すべく前記フィルタに堆積したPMを酸化させるPM再生手段と、を更に備えた内燃機関に適用することができる。   The present invention provides a filter that is provided in an exhaust passage downstream from the turbine and upstream from the exhaust throttle valve, and that collects PM accumulated in the filter so as to maintain the PM collection capability of the filter. The present invention can be applied to an internal combustion engine further provided with PM regeneration means for oxidizing.

この場合、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が絞られる場合に、上述のようにHPL弁を所定開度(H)に略固定又は全閉するとともに、LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御すればよい。   In this case, when the exhaust throttle valve is throttled to promote the oxidation of PM by the PM regeneration means, the HPL valve is substantially fixed or fully closed at a predetermined opening (H) as described above, and the LPL valve is opened. The amount of exhaust gas returned to the internal combustion engine may be controlled by controlling the degree.

こうすることで、PM再生手段によってフィルタに堆積したPMを酸化させる処理が行われている最中においても、精度良くEGRを実行することができる。   By doing so, EGR can be executed with high accuracy even during the process of oxidizing the PM deposited on the filter by the PM regeneration means.

PM再生手段によってPMを酸化する処理(PM再生処理)が行われている時は、フィルタにおいてPMが酸化反応することによって排気中の酸素が消費されるとともに、二酸化炭素が生成され、排気中の二酸化炭素濃度が上昇する傾向がある。そのため、PM再生処理が行われていない時と同じ量の全EGRガスが内燃機関に供給されると、気筒内の不活性ガス量が過剰になり、失火等の燃焼不良を招く虞がある。   When a process for oxidizing PM (PM regeneration process) is performed by the PM regeneration means, oxygen in the exhaust is consumed as a result of the oxidation reaction of PM in the filter, and carbon dioxide is generated and exhausted in the exhaust. The carbon dioxide concentration tends to increase. For this reason, if the same amount of all EGR gas as that when the PM regeneration process is not performed is supplied to the internal combustion engine, the amount of inert gas in the cylinder becomes excessive, which may lead to poor combustion such as misfire.

そこで、本発明においては、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が所定開度(S)より閉じ側の開度に絞られる場合、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の全EGRガス量より少なくなるように、前記LPL弁の開度を制御しても良い。   Therefore, in the present invention, when the exhaust throttle valve is throttled to the opening on the closing side from the predetermined opening (S) in order to promote the oxidation of PM by the PM regeneration means, the internal EGR gas amount and the external EGR gas amount are Of the LPL valve so that the total EGR gas amount is less than the normal total EGR gas amount where the opening degree of the exhaust throttle valve is not restricted to the opening degree on the closing side from the predetermined opening degree (S). The opening degree may be controlled.

こうすることで、PM再生処理が行われている時であっても気筒内の不活性ガス量が過剰になることを抑制することができる。   By doing so, it is possible to prevent the amount of the inert gas in the cylinder from becoming excessive even when the PM regeneration process is being performed.

上記構成においは、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が所定開度(S)より閉じ側の開度に絞られる場合、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量から算出されるEGR率が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時のEGR率より小さくなるように、前記LPL弁の開度を制御しても良い。   In the above configuration, when the exhaust throttle valve is throttled to the opening side closer to the closing side than the predetermined opening degree (S) so as to promote the oxidation of PM by the PM regeneration means, the internal EGR gas amount and the external EGR gas amount are summed up. The LPL is calculated so that the EGR rate calculated from the total EGR gas amount is smaller than the normal EGR rate at which the opening of the exhaust throttle valve is not restricted to the opening on the closing side from the predetermined opening (S). The opening degree of the valve may be controlled.

ここで、全EGRガス量は、外部EGRガス量と内部EGRガス量とを別々に算出し、それらを合計して求めることができる。外部EGRガス量は、例えば、HPL通路の上流と下流との差圧と、HPL弁の開度と、に基づいてHPLガス量を算出し、LPL通路の上流と下流との差圧と、LPL弁の開度と、に基づいてLPLガス量を算出し、各算出されたHPLガス量及びLPLガス量の総量として求めることができる。また、内部EGRガス量は、例えば、背圧と内部EGRガス量との関係を予め実験等により求めてマップ化又は関数化し、それに基づいて背圧の測定値から内部EGRガス量を求めることができる。   Here, the total EGR gas amount can be obtained by separately calculating the external EGR gas amount and the internal EGR gas amount and summing them. The external EGR gas amount is calculated, for example, based on the differential pressure between the upstream and downstream of the HPL passage and the opening of the HPL valve, the differential pressure between the upstream and downstream of the LPL passage, and the LPL The LPL gas amount can be calculated based on the opening degree of the valve, and can be obtained as the total amount of the calculated HPL gas amount and LPL gas amount. Further, the internal EGR gas amount can be obtained by mapping or functioning the relationship between the back pressure and the internal EGR gas amount through experiments or the like in advance, and determining the internal EGR gas amount from the measured value of the back pressure based on the relationship. it can.

全EGRガス量は、前記排気絞り弁の開度が全開とされ且つ前記HPL手段及び前記LPL手段によってEGRが行われない場合の吸入空気量と、実際の吸入空気量と、の差に基づいて算出することもできる。   The total EGR gas amount is based on the difference between the intake air amount when the exhaust throttle valve is fully opened and EGR is not performed by the HPL means and the LPL means and the actual intake air amount. It can also be calculated.

吸気圧力が等しくても、排気絞り弁を絞らず且つEGRを行わない無EGR状態における吸入空気量に対して、EGRを行ったり排気絞り弁を絞ったりした状態での吸入空気量は、内燃機関に供給されている全EGRガス量の分だけ少なくなる。従って、実際の吸入空気量と無EGR状態での吸入空気量との差に基づいて、全EGRガス量を推定することができる。例えば、吸気圧力と無EGR状態での吸入空気量との関係は予め実験等により求めてマップ化又は関数化し、それに基づいて吸気圧力の測定値から無EGR状態での吸入空気量(無EGR吸入空気量)を算出するとともに、実際の吸入空気量(実吸入空気量)を測定し、無EGR吸入空気量と実吸入空気量との差として全EGRガス量を求めることができる。   Even if the intake pressure is equal, the intake air amount in the state where EGR is performed or the exhaust throttle valve is throttled is compared to the intake air amount in the non-EGR state where the exhaust throttle valve is not throttled and EGR is not performed. The total amount of EGR gas supplied to the engine is reduced. Accordingly, the total EGR gas amount can be estimated based on the difference between the actual intake air amount and the intake air amount in the non-EGR state. For example, the relationship between the intake pressure and the intake air amount in the non-EGR state is obtained in advance through experiments or the like, mapped or functioned, and based on the measured value of the intake pressure, the intake air amount in the non-EGR state (no EGR intake) In addition to calculating the air amount), the actual intake air amount (actual intake air amount) is measured, and the total EGR gas amount can be obtained as the difference between the non-EGR intake air amount and the actual intake air amount.

なお、上記各構成は、可能な限り組み合わせて採用し得る。   In addition, said each structure can be employ | adopted combining as much as possible.

本発明により、HPL手段及びLPL手段を併用するEGRシステムにおいて、PM再生処理の実行時等に排気絞り弁を絞る場合においても十分なEGR制御精度を確保し、好適にEGRを実行することが可能になる。   According to the present invention, in an EGR system using both HPL means and LPL means, it is possible to ensure sufficient EGR control accuracy even when the exhaust throttle valve is throttled at the time of PM regeneration processing, etc., and to perform EGR suitably. become.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本実施例に係るEGRシステムを適用する内燃機関とその吸気系及び排気系の概略構成を模式的に示す図である。内燃機関1は4つの気筒2を有する水冷式4サイクルディーゼルエンジンである。   FIG. 1 is a diagram schematically showing a schematic configuration of an internal combustion engine to which the EGR system according to the present embodiment is applied and its intake system and exhaust system. The internal combustion engine 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

各気筒2の吸気ポート(不図示)は吸気マニホールド17において集合し、吸気通路3と連通している。吸気マニホールド17には吸気の圧力を測定する吸気圧センサ22が設けられている。吸気マニホールド17と吸気通路3との接続部近傍には、後述するHPL通路41が接続されている。HPL通路41の接続箇所より上流の吸気通路3には、吸気通路3を流通する吸気の量を調節する第2スロットル弁9が配置されている。第2スロットル弁9より上流の吸気通路3には、吸気を冷却するインタークーラ8が配置されている。インタークーラ8より上流の吸気通路3には、ターボチャージャ13のコンプレッサ11が配置されている。コンプレッサ11より上流の吸気通路3には、後述するLPL通路
31が接続されている。LPL通路31の接続箇所より上流の吸気管3には、吸気通路3に流入する新気の量を調節する第1スロットル弁6が配置されている。第1スロットル弁6より上流の吸気通路3には、吸気通路3に流入する新気の量を測定するエアフローメータ7が設けられている。吸気通路3には、さらに上流においてエアクリーナ(図示略)が接続されている。以下、吸気通路3、吸気マニホールド17、及びこれらに配置されたインタークーラ8やコンプレッサ11等を総称して「吸気系」と呼ぶことがある。
The intake ports (not shown) of the respective cylinders 2 gather in the intake manifold 17 and communicate with the intake passage 3. The intake manifold 17 is provided with an intake pressure sensor 22 for measuring the pressure of intake air. An HPL passage 41, which will be described later, is connected in the vicinity of the connection portion between the intake manifold 17 and the intake passage 3. A second throttle valve 9 that adjusts the amount of intake air flowing through the intake passage 3 is disposed in the intake passage 3 upstream from the connection location of the HPL passage 41. An intercooler 8 for cooling the intake air is disposed in the intake passage 3 upstream of the second throttle valve 9. A compressor 11 of a turbocharger 13 is disposed in the intake passage 3 upstream from the intercooler 8. An LPL passage 31 described later is connected to the intake passage 3 upstream of the compressor 11. A first throttle valve 6 that adjusts the amount of fresh air flowing into the intake passage 3 is disposed in the intake pipe 3 upstream of the connection point of the LPL passage 31. An air flow meter 7 that measures the amount of fresh air flowing into the intake passage 3 is provided in the intake passage 3 upstream of the first throttle valve 6. An air cleaner (not shown) is connected to the intake passage 3 further upstream. Hereinafter, the intake passage 3, the intake manifold 17, the intercooler 8, the compressor 11, and the like arranged in these may be collectively referred to as “intake system”.

このように構成された吸気系では、エアクリーナを通過して塵や埃等が除去された空気が吸気通路3に流入する。吸気通路3に流入した空気は、コンプレッサ11を通過して加圧された後インタークーラ8を通過して冷却されるとともに、後述するLPL装置30及びHPL装置40によって吸気通路3に導かれたEGRガスと混合しつつ吸気マニホールド17に流入し、吸気マニホールド17の各枝管を介して各気筒2の吸気ポートへ分配される。吸気ポートへ分配された吸気は、吸気バルブ(不図示)が開弁した際に各気筒2の燃焼室内へ吸入される。   In the intake system configured as described above, the air from which dust or dust has been removed through the air cleaner flows into the intake passage 3. The air flowing into the intake passage 3 is pressurized after passing through the compressor 11 and then cooled through the intercooler 8 and is also introduced into the intake passage 3 by the LPL device 30 and the HPL device 40 described later. The gas flows into the intake manifold 17 while being mixed with gas, and is distributed to the intake port of each cylinder 2 through each branch pipe of the intake manifold 17. The intake air distributed to the intake port is drawn into the combustion chamber of each cylinder 2 when an intake valve (not shown) is opened.

各気筒2の排気ポート(不図示)は排気マニホールド18において集合し、排気通路4と連通している。排気マニホールド18には排気中に還元剤としての燃料を添加する燃料添加弁21が設けられている。排気マニホールド18と排気通路4との接続部近傍には、HPL通路41が接続されている。HPL通路41の接続箇所より下流の排気通路4には、ターボチャージャ13のタービン12が配置されている。ターボチャージャ13はタービン12を通過する排気の流路面積を可変にするノズルベーン5を備えた可変容量型のターボチャージャである。タービン12より下流の排気通路4には、排気浄化装置10が配置されている。排気浄化装置10は、酸化触媒と、当該酸化触媒の後段に配置され排気中のPMを捕集し内部に堆積させるたパティキュレートフィルタ(以下、フィルタという)とを有して構成される。排気浄化装置10の構成はこの例に限られず、例えば更に吸蔵還元型NOx触媒等を備えていても良い。排気浄化装置10より下流の排気通路4には、排気通路4を流通する排気の量を調節する排気絞り弁19が配置されている。排気絞り弁19より下流の排気通路4には、LPL通路31が接続されている。以下、排気通路4、排気マニホールド18、及びこれらに配置されたタービン12や排気浄化装置10等を総称して「排気系」と呼ぶことがある。   The exhaust ports (not shown) of the respective cylinders 2 are gathered in the exhaust manifold 18 and communicate with the exhaust passage 4. The exhaust manifold 18 is provided with a fuel addition valve 21 for adding fuel as a reducing agent to the exhaust. An HPL passage 41 is connected in the vicinity of the connection portion between the exhaust manifold 18 and the exhaust passage 4. A turbine 12 of the turbocharger 13 is disposed in the exhaust passage 4 downstream from the connection location of the HPL passage 41. The turbocharger 13 is a variable capacity turbocharger including a nozzle vane 5 that makes the flow area of exhaust gas passing through the turbine 12 variable. An exhaust purification device 10 is disposed in the exhaust passage 4 downstream from the turbine 12. The exhaust purification device 10 is configured to include an oxidation catalyst and a particulate filter (hereinafter referred to as a filter) that is disposed downstream of the oxidation catalyst and collects PM in the exhaust and deposits it inside. The configuration of the exhaust purification device 10 is not limited to this example, and for example, an NOx storage reduction catalyst may be further provided. An exhaust throttle valve 19 that adjusts the amount of exhaust gas flowing through the exhaust passage 4 is disposed in the exhaust passage 4 downstream of the exhaust purification device 10. An LPL passage 31 is connected to the exhaust passage 4 downstream from the exhaust throttle valve 19. Hereinafter, the exhaust passage 4, the exhaust manifold 18, and the turbine 12, the exhaust purification device 10, and the like arranged in these may be collectively referred to as “exhaust system”.

このように構成された排気系では、内燃機関1の各気筒2で燃焼した既燃ガスが排気ポートを介して排気マニホールド18に排出され、排気通路4に流入する。排気通路4に流入した排気はタービン13を回転駆動した後排気浄化装置10において含有するPM等の有害物質が浄化されるとともに、その一部が後述するLPL装置30及びHPL装置40によってEGRガスとして吸気通路3に導かれる。排気浄化装置10において浄化された後に排気は大気中に放出される。   In the exhaust system configured as described above, the burned gas burned in each cylinder 2 of the internal combustion engine 1 is discharged to the exhaust manifold 18 through the exhaust port and flows into the exhaust passage 4. Exhaust gas flowing into the exhaust passage 4 is driven to rotate the turbine 13 to remove harmful substances such as PM contained in the exhaust gas purification device 10, and a part thereof is converted into EGR gas by the LPL device 30 and the HPL device 40 described later. It is guided to the intake passage 3. After being purified by the exhaust purification device 10, the exhaust is released into the atmosphere.

内燃機関1には、タービン12より上流の排気通路4を流れる排気の一部をコンプレッサ11より下流の吸気通路3に導き、該排気を内燃機関1の燃焼室に戻すHPL装置40が備えられている。HPL装置40は、タービン12より上流の排気通路4と第2スロットル弁9より下流の吸気通路3とを接続するHPL通路41を有し、該HPL通路41を介して前記排気の一部を吸気通路3に流入させる。HPL装置40によって燃焼室に戻される排気を以下「HPLガス」という。HPL通路41には、HPL通路41の流路面積を変更するHPL弁42が配置されている。HPL弁42の開度を調節することによってHPL通路41を流れるHPLガスの量が調節される。   The internal combustion engine 1 includes an HPL device 40 that guides a part of the exhaust gas flowing through the exhaust passage 4 upstream from the turbine 12 to the intake passage 3 downstream from the compressor 11 and returns the exhaust gas to the combustion chamber of the internal combustion engine 1. Yes. The HPL device 40 includes an HPL passage 41 that connects the exhaust passage 4 upstream of the turbine 12 and the intake passage 3 downstream of the second throttle valve 9, and intakes a part of the exhaust through the HPL passage 41. It flows into the passage 3. The exhaust gas returned to the combustion chamber by the HPL device 40 is hereinafter referred to as “HPL gas”. An HPL valve 42 that changes the flow area of the HPL passage 41 is disposed in the HPL passage 41. The amount of HPL gas flowing through the HPL passage 41 is adjusted by adjusting the opening degree of the HPL valve 42.

内燃機関1には、タービン12より下流の排気通路4を流れる排気の一部をコンプレッサ11より上流の吸気通路3に導き、該排気を内燃機関1の燃焼室に戻すLPL装置30が備えられている。LPL装置30は、排気絞り弁19より下流の排気通路4とコンプレ
ッサ11より上流の吸気通路3とを接続するLPL通路31を有し、該LPL通路31を介して前記排気の一部を吸気通路3に流入させる。LPL装置30によって燃焼室に戻される排気を以下「LPLガス」という。LPL通路31の途中にはLPLガスを冷却するLPLクーラ33が配置されている。LPLクーラ33より下流側(吸気通路3側)のLPL通路31には、LPL通路31の流路面積を変更するLPL弁32が配置されている。LPL弁32の開度を調節することによってLPL通路31を流れるLPLガスの量が調節される。
The internal combustion engine 1 is provided with an LPL device 30 that guides part of the exhaust gas flowing through the exhaust passage 4 downstream of the turbine 12 to the intake passage 3 upstream of the compressor 11 and returns the exhaust gas to the combustion chamber of the internal combustion engine 1. Yes. The LPL device 30 has an LPL passage 31 that connects the exhaust passage 4 downstream from the exhaust throttle valve 19 and the intake passage 3 upstream from the compressor 11, and a part of the exhaust is taken into the intake passage via the LPL passage 31. 3 is allowed to flow. The exhaust returned to the combustion chamber by the LPL device 30 is hereinafter referred to as “LPL gas”. An LPL cooler 33 for cooling the LPL gas is disposed in the middle of the LPL passage 31. An LPL valve 32 that changes the flow area of the LPL passage 31 is disposed in the LPL passage 31 on the downstream side (the intake passage 3 side) of the LPL cooler 33. By adjusting the opening degree of the LPL valve 32, the amount of LPL gas flowing through the LPL passage 31 is adjusted.

このように構成されたHPL装置40及びLPL装置30によってEGRが行われると、水や二酸化炭素等の不燃性且つ吸熱性を有する不活性ガス成分が吸気中に混入されるので、燃焼室における燃料の燃焼温度が低下し、NOxの発生量が減少する。   When EGR is performed by the HPL device 40 and the LPL device 30 configured as described above, incombustible and endothermic inert gas components such as water and carbon dioxide are mixed in the intake air. As a result, the NOx generation amount decreases.

内燃機関1には、内燃機関1を制御する電子制御装置(ECU)20が併設されている。ECU20は、CPU、ROM、RAM、入出力ポート等を備えたマイクロコンピュータである。ECU20には、上述したエアフローメータ7、吸気圧センサ22の他、内燃機関1のウォータージャケットを循環する冷却水の温度に対応した電気信号を出力する水温センサ14、アクセルペダルの操作量に対応した電気信号を出力するアクセル開度センサ15、内燃機関1のクランクシャフトが所定角度(例えば10°)回転する度にパルス信号を出力するクランクポジションセンサ16等のセンサが電気的に接続され、各センサからの出力信号がECU20に入力される。また、ECU20には、第1スロットル弁6、第2スロットル弁9、ノズルベーン5、排気絞り弁19、LPL弁32、HPL弁42、燃料添加弁21等の機器が電気的に接続され、ECU20から出力される制御信号によってこれらの機器が制御される。   The internal combustion engine 1 is provided with an electronic control unit (ECU) 20 that controls the internal combustion engine 1. The ECU 20 is a microcomputer provided with a CPU, a ROM, a RAM, an input / output port, and the like. In addition to the air flow meter 7 and the intake pressure sensor 22 described above, the ECU 20 corresponds to the water temperature sensor 14 that outputs an electrical signal corresponding to the temperature of the cooling water circulating in the water jacket of the internal combustion engine 1 and the operation amount of the accelerator pedal. An accelerator opening sensor 15 that outputs an electrical signal and a crank position sensor 16 that outputs a pulse signal each time the crankshaft of the internal combustion engine 1 rotates by a predetermined angle (for example, 10 °) are electrically connected. Is output to the ECU 20. In addition, the ECU 20 is electrically connected to devices such as the first throttle valve 6, the second throttle valve 9, the nozzle vane 5, the exhaust throttle valve 19, the LPL valve 32, the HPL valve 42, and the fuel addition valve 21. These devices are controlled by the output control signal.

ECU20は、上記各センサから入力される信号に基づいて内燃機関1の運転状態や運転者の要求を取得する。例えば、ECU20は、クランクポジションセンサ16から入力される信号に基づいて機関回転数を算出し、アクセル開度センサ15から入力される信号に基づいて要求されている機関負荷を算出する。そして、算出した機関負荷や機関回転数に応じて上記各機器を制御することで、燃料噴射やEGRの制御を行う。   ECU20 acquires the driving | running state of the internal combustion engine 1, and a driver | operator's request | requirement based on the signal input from each said sensor. For example, the ECU 20 calculates the engine speed based on the signal input from the crank position sensor 16 and calculates the requested engine load based on the signal input from the accelerator opening sensor 15. Then, fuel injection and EGR are controlled by controlling each of the above devices in accordance with the calculated engine load and engine speed.

ここで、本実施例のEGRシステムにおいて行われるEGR制御について説明する。   Here, the EGR control performed in the EGR system of the present embodiment will be described.

図2に示すように、本実施例のEGRシステムでは、内燃機関1の運転状態に応じてHPL装置40及びLPL装置30を併用又は切り替えてEGRを行う。図2において、横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の機関負荷を表す。図2に示すように、本実施例のEGR制御では、内燃機関1の運転状態が低負荷且つ低回転の時には主にHPL装置40によってEGRを行い、機関負荷又は機関回転数が高くなるほどHPL装置40によって行われるEGR量(HPLガス量)を減少させるとともにLPL装置30によって行われるEGR量(LPLガス量)を増加させ、内燃機関1の運転状態が高負荷乃至高回転側の時には主にLPL装置30によってEGRを行う。   As shown in FIG. 2, in the EGR system of the present embodiment, EGR is performed by using or switching the HPL device 40 and the LPL device 30 in accordance with the operating state of the internal combustion engine 1. In FIG. 2, the horizontal axis represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1. As shown in FIG. 2, in the EGR control of this embodiment, when the operating state of the internal combustion engine 1 is low load and low rotation, EGR is performed mainly by the HPL device 40, and the HPL device increases as the engine load or the engine speed increases. The EGR amount (HPL gas amount) performed by the engine 40 is decreased and the EGR amount (LPL gas amount) performed by the LPL device 30 is increased. When the operating state of the internal combustion engine 1 is at a high load or high rotation side, the LPL is mainly performed. EGR is performed by the device 30.

図2において、「HPL」で示された領域が、主にHPL装置40によってEGRが行われる運転状態の領域を表す。この領域を以下HPL領域と呼ぶ。また、「LPL」で示された領域が、主にLPL装置30によってEGRが行われる運転状態の領域を表す。この領域を以下LPL領域と呼ぶ。HPL領域とLPL領域との間の「MIX」で表された中負荷乃至中回転の領域が、HPL装置40及びLPL装置30が併用されてEGRが行われる領域を表す。この領域を以下MIX領域と呼ぶ。上述のように、MIX領域では高負荷乃至高回転側の運転状態になるほどHPLガス量を減少させるとともにLPLガス量を増加させる制御が行われる。換言すれば、高負荷乃至高回転側になるほど全EGRガス中のHPLガスの比率を低くするとともに、LPLガスの比率を高くする。   In FIG. 2, an area indicated by “HPL” represents an operating state area where EGR is mainly performed by the HPL device 40. This region is hereinafter referred to as an HPL region. An area indicated by “LPL” represents an operating state area where EGR is performed mainly by the LPL device 30. This region is hereinafter referred to as an LPL region. A medium load or medium rotation region represented by “MIX” between the HPL region and the LPL region represents a region where EGR is performed by using the HPL device 40 and the LPL device 30 together. This area is hereinafter referred to as a MIX area. As described above, in the MIX region, the control is performed to decrease the amount of HPL gas and increase the amount of LPL gas as the operation state becomes higher or higher. In other words, the higher the load or the higher rotation side, the lower the ratio of HPL gas in all EGR gases and the higher the ratio of LPL gas.

各運転状態に対応するHPLガス量やLPLガス量の制御目標値は、内燃機関1が当該運転状態で定常運転している時のNOx発生量、スモーク発生量、HC発生量、燃料消費率等の機関性能や排気性能に関する諸特性が所定の規制値や所望の目標値を達成するように適合作業によって予め定められ、ECU20のROMに記憶される。ECU20は取得した機関運転状態に基づいて、当該運転状態に対応するHPLガス量やLPLガス量の制御目標値をROMから読み込み、HPL装置40やLPL装置30によって燃焼室に戻される排気の量がそれぞれ当該制御目標値になるように、HPL弁42、LPL弁32、第1スロットル弁6、第2スロットル弁9、排気絞り弁19、ノズルベーン5等の開度を制御する。   The control target values of the HPL gas amount and the LPL gas amount corresponding to each operation state are the NOx generation amount, smoke generation amount, HC generation amount, fuel consumption rate, etc. when the internal combustion engine 1 is in steady operation in the operation state. Various characteristics relating to the engine performance and the exhaust performance are determined in advance by an adaptation operation so as to achieve a predetermined regulation value and a desired target value, and are stored in the ROM of the ECU 20. Based on the acquired engine operating state, the ECU 20 reads the control target value of the HPL gas amount and the LPL gas amount corresponding to the operating state from the ROM, and the amount of exhaust gas returned to the combustion chamber by the HPL device 40 and the LPL device 30 is determined. The opening degree of the HPL valve 42, the LPL valve 32, the first throttle valve 6, the second throttle valve 9, the exhaust throttle valve 19, the nozzle vane 5, etc. is controlled so that the respective control target values are obtained.

ECU20は、フィルタに堆積したPMの量が所定の許容値を超えたと判定すると、排気絞り弁19を絞るとともに燃料添加弁21から排気中に燃料を添加させる。燃料添加弁21から排気中に燃料が添加されると、添加された燃料はフィルタ前段の酸化触媒において酸化反応し、その際の反応熱によって後段のフィルタに堆積したPMの酸化反応が促進され、フィルタに堆積したPMが除去される。また、排気絞り弁19を絞ることで、排気絞り弁19より上流の排気通路4における背圧が上昇し、内燃機関1から排出される排気の温度が上昇し、酸化触媒やフィルタが昇温されるので、フィルタに堆積したPMの酸化反応が促進される。   When the ECU 20 determines that the amount of PM accumulated on the filter exceeds a predetermined allowable value, the ECU 20 throttles the exhaust throttle valve 19 and adds fuel to the exhaust from the fuel addition valve 21. When fuel is added to the exhaust gas from the fuel addition valve 21, the added fuel undergoes an oxidation reaction in the oxidation catalyst in the upstream stage of the filter, and the oxidation reaction of PM deposited on the downstream filter is promoted by the reaction heat at that time, PM accumulated on the filter is removed. Further, by restricting the exhaust throttle valve 19, the back pressure in the exhaust passage 4 upstream from the exhaust throttle valve 19 increases, the temperature of the exhaust discharged from the internal combustion engine 1 increases, and the oxidation catalyst and the filter are heated. Therefore, the oxidation reaction of PM deposited on the filter is promoted.

このように、適宜フィルタに堆積したPMを酸化除去することで、フィルタのPM捕集能力が維持される。排気絞り弁19を絞るとともに燃料添加弁21から排気中に燃料を添加することによってフィルタに堆積したPMを酸化し除去する処理を、以下PM再生処理という。本実施例においては、PM再生処理を行うECU20が、本発明におけるPM再生手段に相当する。   In this way, the PM collecting ability of the filter is maintained by appropriately removing the PM deposited on the filter by oxidation. The process of oxidizing and removing PM deposited on the filter by adding the fuel into the exhaust gas from the fuel addition valve 21 while restricting the exhaust throttle valve 19 is hereinafter referred to as PM regeneration process. In this embodiment, the ECU 20 that performs PM regeneration processing corresponds to the PM regeneration means in the present invention.

フィルタに堆積したPMの量を推定する方法としては、既知のPM堆積量推定方法を採用できる。例えば、前回PM再生処理が実行されてからの吸入空気量及び燃料消費量や、車両の走行距離、フィルタの前後差圧等に基づいて推定することができる。また、「所定の許容量」とは、フィルタにおける圧損が内燃機関の正常な運転に支障を来さない大きさになるようなPM堆積量の上限値又は当該上限値に所定のマージンを見込んで定められる量である。   As a method for estimating the amount of PM deposited on the filter, a known PM accumulation amount estimation method can be employed. For example, it can be estimated on the basis of the intake air amount and fuel consumption since the previous PM regeneration process, the travel distance of the vehicle, the differential pressure across the filter, and the like. In addition, the “predetermined allowable amount” is an upper limit value of the PM accumulation amount such that the pressure loss in the filter does not hinder normal operation of the internal combustion engine, or a predetermined margin is expected for the upper limit value. It is a fixed amount.

ところで、本実施例のように排気絞り弁19より上流の排気通路4にHPL通路41が接続されているEGRシステムにおいて、PM再生処理を実行する際に排気絞り弁19を絞った場合、背圧が上昇することによってHPL通路41の上流側(すなわち排気通路4との接続部近傍)の圧力と、HPL通路41の下流側(すなわち吸気通路3との接続箇所近傍)の圧力との差が大きくなる。HPL通路41の上流と下流との圧力差が過剰に大きくなると、HPL弁42を精度良く制御することが困難になり、HPLガス量の制御精度が十分に得られなくなる虞があった。   By the way, in the EGR system in which the HPL passage 41 is connected to the exhaust passage 4 upstream from the exhaust throttle valve 19 as in the present embodiment, when the exhaust throttle valve 19 is throttled when executing the PM regeneration process, the back pressure Increases the difference between the pressure on the upstream side of the HPL passage 41 (that is, in the vicinity of the connection portion with the exhaust passage 4) and the pressure on the downstream side of the HPL passage 41 (that is, in the vicinity of the connection portion with the intake passage 3). Become. If the pressure difference between the upstream and downstream of the HPL passage 41 becomes excessively large, it becomes difficult to control the HPL valve 42 with high accuracy, and there is a possibility that the control accuracy of the HPL gas amount cannot be obtained sufficiently.

また、背圧が上昇すると、排気行程において気筒2から排気通路4に排出される既燃ガスの量が減少し、排気行程から吸気行程にかけて気筒内に残留する既燃ガス(内部EGRガス)の量が増加する傾向がある。そのため、HPL装置40及びLPL装置30によって内燃機関1に戻される排気(外部EGRガス)の量を、排気絞り弁19を絞らない通常時と同じ量にすると、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が内燃機関1の運転状態に対応する規定値より多くなる可能性がある。その場合、失火等の燃焼不良を招く虞がある。   Further, when the back pressure increases, the amount of burned gas discharged from the cylinder 2 to the exhaust passage 4 in the exhaust stroke decreases, and the burnt gas (internal EGR gas) remaining in the cylinder from the exhaust stroke to the intake stroke is reduced. The amount tends to increase. Therefore, if the amount of exhaust gas (external EGR gas) returned to the internal combustion engine 1 by the HPL device 40 and the LPL device 30 is set to the same amount as normal time when the exhaust throttle valve 19 is not throttled, the internal EGR gas amount and the external EGR gas amount There is a possibility that the total EGR gas amount obtained by summing the above becomes larger than a prescribed value corresponding to the operating state of the internal combustion engine 1. In that case, there is a risk of causing a combustion failure such as misfire.

それに対し、本実施例のEGRシステムでは、PM再生処理に伴って排気絞り弁19が
絞られる場合には、外部EGRガス量の制御をLPL弁32の制御のみによって行うようにした。つまり、PM再生処理を行っていない通常時には上述のように内燃機関1の運転状態に応じてHPL装置40及びLPL装置30を適宜併用又は切り替えて外部EGRガスを内燃機関1に供給するのに対し、排気絞り弁19を絞ってPM再生処理を行っている時には、一時的にHPL弁42を全閉にするとともにLPL装置30のみを用いて外部EGRガスを内燃機関1に供給する。
On the other hand, in the EGR system of this embodiment, when the exhaust throttle valve 19 is throttled along with the PM regeneration process, the external EGR gas amount is controlled only by the control of the LPL valve 32. In other words, during normal times when PM regeneration processing is not performed, the external EGR gas is supplied to the internal combustion engine 1 by appropriately using or switching the HPL device 40 and the LPL device 30 according to the operating state of the internal combustion engine 1 as described above. When the PM regeneration process is performed by restricting the exhaust throttle valve 19, the HPL valve 42 is temporarily fully closed and the external EGR gas is supplied to the internal combustion engine 1 using only the LPL device 30.

LPL通路31は排気絞り弁19より下流の排気通路4から排気を取り出すように接続されているため、排気絞り弁19が絞られている場合においても、LPL通路31の上流と下流との圧力差は過剰に大きくはならない。よって、PM再生処理中であって排気絞り弁19が絞られている場合においても、LPL弁32の開度制御によるLPLガス量の制御精度を十分に確保することができ、内燃機関1に供給される外部EGRガスの量を精度良く制御することができる。   Since the LPL passage 31 is connected so as to extract exhaust from the exhaust passage 4 downstream of the exhaust throttle valve 19, even when the exhaust throttle valve 19 is throttled, the pressure difference between the upstream and downstream of the LPL passage 31. Don't get too big. Therefore, even when the PM regeneration process is being performed and the exhaust throttle valve 19 is throttled, the control accuracy of the LPL gas amount by the opening degree control of the LPL valve 32 can be sufficiently secured and supplied to the internal combustion engine 1. The amount of external EGR gas to be performed can be accurately controlled.

この時、LPLガス量が、排気絞り弁19が絞られていない通常時における外部EGRガス量の規定値(内燃機関1の運転状態に応じたHPLガス量の規定値とLPLガス量の規定値との合計)と比較して少なくなるように、LPL弁32を制御するようにした。これにより、排気絞り弁19が絞られて内部EGRガス量が通常時よりも増加している場合においても、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が規定値より多くなることが抑制される。よって、PM再生処理中において排気絞り弁19が絞られている場合であっても、失火等の燃焼不良が発生することを抑制できる。   At this time, the LPL gas amount is a specified value of the external EGR gas amount at the normal time when the exhaust throttle valve 19 is not throttled (the specified value of the HPL gas amount according to the operating state of the internal combustion engine 1 and the specified value of the LPL gas amount). The LPL valve 32 is controlled so as to be smaller than the total. As a result, even when the exhaust throttle valve 19 is throttled and the internal EGR gas amount is increased from the normal time, the total EGR gas amount, which is the sum of the internal EGR gas amount and the external EGR gas amount, is larger than the specified value. It is suppressed. Therefore, even when the exhaust throttle valve 19 is throttled during the PM regeneration process, it is possible to suppress the occurrence of combustion failure such as misfire.

さらに、本実施例では、この時、内部EGRガス量と外部EGRガス量(本実施例の場合LPLガス量と等しい)とを合計した全EGRガス量が、排気絞り弁19が絞られていない通常時における全EGRガス量の規定値(内燃機関1の運転状態に応じたHPLガス量の規定値、LPLガス量の規定値、及び内部EGRガス量の規定値の合計)と比較して少なくなるように、LPL弁32を制御するようにした。   Furthermore, in this embodiment, at this time, the exhaust Elevator valve 19 is not throttled by the total EGR gas amount that is the sum of the internal EGR gas amount and the external EGR gas amount (equal to the LPL gas amount in this embodiment). Less than the specified value of the total EGR gas amount at the normal time (the sum of the specified value of the HPL gas amount, the specified value of the LPL gas amount, and the specified value of the internal EGR gas amount according to the operating state of the internal combustion engine 1) Thus, the LPL valve 32 is controlled.

PM再生処理中は還元剤として供給される燃料やPMの酸化反応によって排気中の酸素が消費されるため、排気中の酸素濃度が低下するとともに、当該酸化反応によって二酸化炭素が生成されるため、排気中の二酸化炭素濃度が増加する。すなわち、PM再生処理中は、PM再生処理が行われていない通常時よりも不活性成分濃度の濃い排気がEGRガスとして内燃機関1に供給される。従って、PM再生処理中の全EGRガス量を通常時における全EGRガス量の規定値と等しい値に制御してしまうと、想定よりも過剰な量の不活性成分が内燃機関1に供給されることになり、失火等の燃焼不良を招く虞がある。   During the PM regeneration process, oxygen in exhaust gas is consumed by the oxidation reaction of fuel and PM supplied as a reducing agent, so that the oxygen concentration in the exhaust gas is reduced and carbon dioxide is generated by the oxidation reaction. The carbon dioxide concentration in the exhaust increases. That is, during the PM regeneration process, the exhaust gas having a higher inert component concentration than the normal time during which the PM regeneration process is not performed is supplied to the internal combustion engine 1 as EGR gas. Therefore, if the total EGR gas amount during the PM regeneration process is controlled to a value equal to the specified value of the total EGR gas amount at the normal time, an excessive amount of inert components than expected is supplied to the internal combustion engine 1. As a result, there is a risk of causing a combustion failure such as misfire.

これに対し、上記のように構成された本実施例によれば、PM再生処理中の全EGRガス量が通常時の全EGRガス量より少なくなるようにLPL弁32が制御されるので、内燃機関1に供給される不活性成分の量が過剰に多くなることが抑制され、失火等の燃焼不良を抑制できる。   On the other hand, according to the present embodiment configured as described above, the LPL valve 32 is controlled so that the total amount of EGR gas during the PM regeneration process becomes smaller than the total amount of EGR gas at the normal time. An excessive increase in the amount of inactive components supplied to the engine 1 is suppressed, and poor combustion such as misfire can be suppressed.

ここで、全EGRガス量は、外部EGRガス量と内部EGRガス量とを別々に算出してそれらを合計して求めることができる。外部EGRガス量(すなわちLPLガス量)は、例えば、LPL通路31の上流と下流との差圧と、LPL弁32の開度と、に基づいて算出することができる。また、内部EGRガス量は、例えば、背圧と内部EGRガス量との関係を予め実験等により求めてマップ化又は関数化し、それに基づいて背圧の測定値から内部EGRガス量を求めることができる。   Here, the total EGR gas amount can be obtained by separately calculating the external EGR gas amount and the internal EGR gas amount and summing them. The external EGR gas amount (that is, the LPL gas amount) can be calculated based on, for example, the differential pressure between the upstream and downstream of the LPL passage 31 and the opening degree of the LPL valve 32. Further, the internal EGR gas amount can be obtained by mapping or functioning the relationship between the back pressure and the internal EGR gas amount through experiments or the like in advance, and determining the internal EGR gas amount from the measured value of the back pressure based on the relationship. it can.

また、全EGRガス量は、排気絞り弁19が絞られておらず且つEGRが行われていない場合の吸入空気量と吸気圧力との関係に基づいて算出することもできる。図3は、吸気
圧力と吸入空気量との関係を示す図である。図3の実線は排気絞り弁19が絞られておらず且つEGRが行われていない場合の吸気圧力と吸入空気量との関係を示している。この関係は予め実験等により求めておくことができる。また、図3の一点鎖線はEGRが行われている場合の吸気圧力と吸入空気量との関係を示している。
The total EGR gas amount can also be calculated based on the relationship between the intake air amount and the intake pressure when the exhaust throttle valve 19 is not throttled and EGR is not performed. FIG. 3 is a diagram showing the relationship between the intake pressure and the intake air amount. The solid line in FIG. 3 shows the relationship between the intake pressure and the intake air amount when the exhaust throttle valve 19 is not throttled and EGR is not performed. This relationship can be obtained in advance by experiments or the like. Also, the alternate long and short dash line in FIG. 3 shows the relationship between the intake pressure and the intake air amount when EGR is performed.

EGRが行われている場合、吸気圧力が等しくても、EGRが行われていない場合と比較して、導入されているEGRガス量の分だけ吸入空気量が少なくなる。よって、吸気圧センサ22で測定して得られた吸気圧力に対応するEGR無しの場合の吸入空気量Gbと、エアフローメータ7で測定して得られた実際の吸入空気量Gaと、の差を算出すれば、それが内燃機関1に導入されている全EGRガス量と略等しいと考えることができる。   When the EGR is performed, the intake air amount is reduced by the amount of the introduced EGR gas as compared with the case where the EGR is not performed even when the intake pressure is equal. Therefore, the difference between the intake air amount Gb without EGR corresponding to the intake pressure measured by the intake pressure sensor 22 and the actual intake air amount Ga obtained by measuring with the air flow meter 7 is calculated. If calculated, it can be considered that it is substantially equal to the total amount of EGR gas introduced into the internal combustion engine 1.

以下、ECU20によって行われる排気絞り弁19が絞られている時のEGR制御について、図4に基づいて説明する。図4は、排気絞り弁19が絞られている時のEGR制御を行うためのルーチンを示すフローチャートである。このルーチンはECU20によって内燃機関1の稼働中所定時間毎に繰り返し実行される。   Hereinafter, the EGR control performed by the ECU 20 when the exhaust throttle valve 19 is throttled will be described with reference to FIG. FIG. 4 is a flowchart showing a routine for performing EGR control when the exhaust throttle valve 19 is throttled. This routine is repeatedly executed by the ECU 20 every predetermined time while the internal combustion engine 1 is operating.

まず、ステップ101において、ECU20は排気絞り弁19が絞られているか否かを判定する。具体的には、排気絞り弁19の開度が所定開度Sより閉じ側の開度であるか否かを判定する。ここで所定開度Sとは、排気絞り弁19を絞った場合の排気通路4の背圧が、HPL弁42によるHPLガス量の制御に関して十分な制御精度を確保することが可能な圧力より低くなるような排気絞り弁19の開度の下限値である。つまり、排気絞り弁19の開度が所定開度S以上の開度(開き側の開度)であれば、排気絞り弁19より上流の排気通路4の背圧が過剰に高くなることはなく、従って、HPL通路41の上流と下流との圧力差が過剰に大きくなることはなく、HPL弁42の開度制御によって十分精度良くHPLガス量を制御することが可能である。逆に、排気絞り弁19の開度が所定開度Sより小さい開度(閉じ側の開度)になると、排気絞り弁19より上流の排気通路4における背圧が過剰に高くなり、HPL通路41の上流及び下流の圧力差が過剰に大きくなり、HPL弁42の開度制御によってHPLガス量を精度良く制御することが困難になる。本実施例の場合、PM再生処理中は排気絞り弁19が絞られるので、ステップS101ではPM再生処理中であるか否かを判定するようにしても良い。ステップS101で肯定判定された場合、ECU20はステップS102に進む。ステップS101で否定判定された場合、ECU20はステップS110に進む。   First, in step 101, the ECU 20 determines whether or not the exhaust throttle valve 19 is throttled. Specifically, it is determined whether or not the opening degree of the exhaust throttle valve 19 is closer to the closing side than the predetermined opening degree S. Here, the predetermined opening degree S means that the back pressure of the exhaust passage 4 when the exhaust throttle valve 19 is throttled is lower than a pressure at which sufficient control accuracy can be secured with respect to the control of the HPL gas amount by the HPL valve 42. This is the lower limit value of the opening of the exhaust throttle valve 19. That is, if the opening of the exhaust throttle valve 19 is an opening greater than the predetermined opening S (opening side opening), the back pressure in the exhaust passage 4 upstream from the exhaust throttle valve 19 will not be excessively high. Therefore, the pressure difference between the upstream and downstream of the HPL passage 41 does not become excessively large, and the amount of HPL gas can be controlled with sufficient accuracy by controlling the opening of the HPL valve 42. Conversely, when the opening of the exhaust throttle valve 19 is smaller than the predetermined opening S (opening on the closing side), the back pressure in the exhaust passage 4 upstream of the exhaust throttle valve 19 becomes excessively high, and the HPL passage The pressure difference between the upstream and downstream of 41 becomes excessively large, and it becomes difficult to accurately control the amount of HPL gas by controlling the opening degree of the HPL valve 42. In the present embodiment, the exhaust throttle valve 19 is throttled during the PM regeneration process, so it may be determined in step S101 whether the PM regeneration process is being performed. If an affirmative determination is made in step S101, the ECU 20 proceeds to step S102. If a negative determination is made in step S101, the ECU 20 proceeds to step S110.

ステップS102において、ECU20はエアフローメータ7によって実吸入空気量Gaを取得する。   In step S <b> 102, the ECU 20 acquires the actual intake air amount Ga by the air flow meter 7.

ステップS103において、ECU20は吸気圧センサ22によって吸気圧力Pimを取得する。   In step S <b> 103, the ECU 20 acquires the intake pressure Pim by the intake pressure sensor 22.

ステップS104において、ECU20は排気絞り弁19を絞っておらず且つEGRを行っていない状態で吸気圧力がPimである場合に想定される吸入空気量Gbを、図3に示した吸気圧力と吸入空気量との関係(実線で表示)に基づいて算出する。   In step S104, the ECU 20 determines the intake air amount Gb assumed when the intake pressure is Pim when the exhaust throttle valve 19 is not throttled and EGR is not being performed. It is calculated based on the relationship with the quantity (displayed with a solid line).

ステップS105において、ECU20は実EGR率EGRaを算出する。具体的には、ステップS104で算出したEGR無し時の吸入空気量GbとステップS102で取得した実吸入空気量との差(Gb−Ga)によって実EGRガス量を算出し、算出した実EGRガス量に基づいて実EGR率を(Gb−Ga)/Gaによって算出する。   In step S105, the ECU 20 calculates an actual EGR rate EGRa. Specifically, the actual EGR gas amount is calculated from the difference (Gb−Ga) between the intake air amount Gb without EGR calculated in step S104 and the actual intake air amount acquired in step S102, and the calculated actual EGR gas Based on the quantity, the actual EGR rate is calculated by (Gb-Ga) / Ga.

ステップS106において、ECU20は目標EGR率EGRtrgを算出する。目標EGR率EGRtrgは、上述したように、排気絞り弁19が絞られていない場合に内燃
機関1の運転状態に応じて定められるEGR率の目標値と比較して小さい値に設定される。
In step S106, the ECU 20 calculates a target EGR rate EGRtrg. As described above, the target EGR rate EGRtrg is set to a smaller value than the target value of the EGR rate determined according to the operating state of the internal combustion engine 1 when the exhaust throttle valve 19 is not throttled.

ステップS107において、ECU20は実EGR率EGRaと目標EGR率EGRtrgとの大小関係を判定する。実EGR率EGRaが目標EGR率EGRtrgと一致した場合、ECU20は本ルーチンの実行を一旦終了する。実EGR率EGRa>目標EGR率EGRtrgの場合、ECU20はステップS108に進み、LPL弁32の開度を閉じ側に補正する。一方、実EGR率EGRa<目標EGR率EGRtrgの場合、ECU20はステップS109に進み、LPL弁32の開度を開き側に補正する。   In step S107, the ECU 20 determines the magnitude relationship between the actual EGR rate EGRa and the target EGR rate EGRtrg. When the actual EGR rate EGRa matches the target EGR rate EGRtrg, the ECU 20 once ends the execution of this routine. When the actual EGR rate EGRa> the target EGR rate EGRtrg, the ECU 20 proceeds to step S108 and corrects the opening degree of the LPL valve 32 to the closed side. On the other hand, if the actual EGR rate EGRa <the target EGR rate EGRtrg, the ECU 20 proceeds to step S109 and corrects the opening of the LPL valve 32 to the open side.

ステップS110では、ECU20は排気絞り弁19が絞られていない場合の通常時のEGR制御(すなわち、図2に示したEGR制御マップに従った制御)を行う。   In step S110, the ECU 20 performs normal EGR control when the exhaust throttle valve 19 is not throttled (that is, control according to the EGR control map shown in FIG. 2).

なお、以上述べた実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施例には種々の変更を加え得る。例えば、本実施例では、排気絞り弁19が所定開度Sより閉じ側の開度に絞られる場合としてPM再生処理が実行される場合を例示したが、冷間時に内燃機関1を暖機する場合にも排気絞り弁19の開度が絞られる場合がある。この場合にも、排気絞り弁19が所定開度Sより閉じ側の開度に絞られる時に本実施例と同様にHPL弁42を閉弁してLPL弁32のみを制御して外部EGRガス量を制御することによって、精度良くEGRを制御することが可能になる。   The above-described embodiment is an example for explaining the present invention, and various modifications can be made to the above-described embodiment without departing from the gist of the present invention. For example, in the present embodiment, the case where the PM regeneration process is executed as a case where the exhaust throttle valve 19 is throttled to the opening side closer to the closing degree than the predetermined opening degree S is exemplified, but the internal combustion engine 1 is warmed up in the cold state. In some cases, the opening of the exhaust throttle valve 19 may be throttled. Also in this case, when the exhaust throttle valve 19 is throttled to the opening side closer to the closing degree than the predetermined opening degree S, the HPL valve 42 is closed and only the LPL valve 32 is controlled to control the amount of external EGR gas. By controlling, it becomes possible to control EGR with high accuracy.

また、本実施例では排気絞り弁19が所定開度Sより閉じ側の開度に絞られる場合、HPL弁42を全閉する構成について説明したが、HPL弁42の開度をある一定の開度に固定するようにしても良い。この場合、開度が固定されたHPL弁42を通過して内燃機関1に一定量のHPLガスが供給されることになるが、HPLガス量は一定となるので、やはり外部EGRガス量の制御はLPL弁32の開度制御によってなされることになる。従って、排気絞り弁19が絞られている場合においても精度良くEGR制御を行うことができる。   Further, in the present embodiment, the configuration in which the HPL valve 42 is fully closed when the exhaust throttle valve 19 is throttled to the opening on the closing side from the predetermined opening S has been described. You may make it fix at a time. In this case, a constant amount of HPL gas is supplied to the internal combustion engine 1 through the HPL valve 42 having a fixed opening degree. However, since the amount of HPL gas is constant, the control of the external EGR gas amount is also performed. Is performed by controlling the opening of the LPL valve 32. Therefore, even when the exhaust throttle valve 19 is throttled, EGR control can be performed with high accuracy.

実施例1におけるEGRシステムを適用する内燃機関とその吸気系及び排気系の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine to which an EGR system according to a first embodiment is applied, and an intake system and an exhaust system thereof. 実施例1におけるEGR制御マップを示す図である。It is a figure which shows the EGR control map in Example 1. FIG. 実施例1における吸気圧力と吸入空気量との関係を示す図である。It is a figure which shows the relationship between the intake pressure in Example 1, and intake air amount. 実施例1における排気絞り弁が絞られている時のEGR制御ルーチンを示すフローチャートである。7 is a flowchart showing an EGR control routine when the exhaust throttle valve in the first embodiment is throttled.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気通路
4 排気通路
5 ノズルベーン
6 第1スロットル弁
7 エアフローメータ
8 インタークーラ
9 第2スロットル弁
10 排気浄化装置
11 コンプレッサ
12 タービン
13 ターボチャージャ
14 水温センサ
15 アクセル開度センサ
16 クランクポジションセンサ
17 吸気マニホールド
18 排気マニホールド
19 排気絞り弁
20 ECU
21 燃料添加弁
22 吸気圧センサ
30 LPL装置
31 LPL通路
32 LPL弁
33 LPLクーラ
40 HPL装置
41 HPL通路
42 HPL弁
1 Internal combustion engine 2 Cylinder 3 Intake passage 4 Exhaust passage 5 Nozzle vane 6 First throttle valve 7 Air flow meter 8 Intercooler 9 Second throttle valve 10 Exhaust purification device 11 Compressor 12 Turbine 13 Turbocharger 14 Water temperature sensor 15 Accelerator opening sensor 16 Crank Position sensor 17 Intake manifold 18 Exhaust manifold 19 Exhaust throttle valve 20 ECU
21 Fuel addition valve 22 Intake pressure sensor 30 LPL device 31 LPL passage 32 LPL valve 33 LPL cooler 40 HPL device 41 HPL passage 42 HPL valve

Claims (7)

内燃機関の排気通路に設けられたタービンと内燃機関の吸気通路に設けられたコンプレッサとを有するターボチャージャと、
前記タービンより下流の排気通路に設けられ排気通路の流路面積を変更する排気絞り弁と、
前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続するHPL通路及び該HPL通路に設けられ該HPL通路の流路面積を変更するHPL弁を有し該HPL通路を介して排気の一部を内燃機関に導くHPL手段と、
前記排気絞り弁より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続するLPL通路及び該LPL通路に設けられ該LPL通路の流路面積を変更するLPL弁を有し該LPL通路を介して排気の一部を内燃機関に導くLPL手段と、
前記HPL弁及び前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御するEGR制御手段と、
を備え、
前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL弁を所定開度(H)に略固定するとともに、前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御することを特徴とする内燃機関のEGRシステム。
A turbocharger having a turbine provided in an exhaust passage of the internal combustion engine and a compressor provided in an intake passage of the internal combustion engine;
An exhaust throttle valve that is provided in an exhaust passage downstream from the turbine and changes a flow passage area of the exhaust passage;
An HPL passage that connects an exhaust passage upstream from the turbine and an intake passage downstream from the compressor, and an HPL valve that is provided in the HPL passage and changes the flow passage area of the HPL passage, are exhausted through the HPL passage. HPL means for guiding a part of the engine to the internal combustion engine;
An LPL passage that connects an exhaust passage downstream of the exhaust throttle valve and an intake passage upstream of the compressor, and an LPL valve that is provided in the LPL passage and changes the flow passage area of the LPL passage, via the LPL passage LPL means for guiding part of the exhaust to the internal combustion engine,
EGR control means for controlling the amount of exhaust gas returned to the internal combustion engine by controlling the opening degree of the HPL valve and the LPL valve;
With
The EGR control means substantially fixes the HPL valve at a predetermined opening (H) and opens the LPL when the opening of the exhaust throttle valve is throttled to an opening closer to the closing side than the predetermined opening (S). An EGR system for an internal combustion engine that controls the amount of exhaust gas returned to the internal combustion engine by controlling the opening of a valve.
請求項1において、
前記所定開度(H)は、全閉である内燃機関のEGRシステム。
In claim 1,
The EGR system for an internal combustion engine, wherein the predetermined opening (H) is fully closed.
請求項1又は2において、
前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL手段及び前記LPL手段によって前記内燃機関に戻される排気である外部EGRガスの量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の外部EGRガスの量より少なくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
In claim 1 or 2,
The EGR control means is an external exhaust that is returned to the internal combustion engine by the HPL means and the LPL means when the opening degree of the exhaust throttle valve is reduced to an opening degree that is closer to the closing side than the predetermined opening degree (S). The opening degree of the LPL valve is such that the amount of EGR gas is smaller than the normal amount of external EGR gas in which the opening degree of the exhaust throttle valve is not restricted to the opening degree closer to the closing side than the predetermined opening degree (S). System for controlling internal combustion engine.
請求項1〜3のいずれかにおいて、
前記タービンより下流且つ前記排気絞り弁より上流の排気通路に設けられ排気中のPMを捕集するフィルタと、
前記フィルタに堆積したPMを酸化させるPM再生手段と、
を更に備え、
前記排気絞り弁の開度が前記所定開度(S)より閉じ側の開度に絞られる場合とは、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が絞られる場合である内燃機関のEGRシステム。
In any one of Claims 1-3,
A filter provided in an exhaust passage downstream of the turbine and upstream of the exhaust throttle valve for collecting PM in the exhaust;
PM regeneration means for oxidizing PM deposited on the filter;
Further comprising
The case where the opening of the exhaust throttle valve is throttled to the opening closer to the closing side than the predetermined opening (S) is the case where the exhaust throttle valve is throttled to promote the oxidation of PM by the PM regeneration means. Institution EGR system.
請求項4において、
前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が前記所定開度(S)より閉じ側の開度に絞られる場合、前記内燃機関の排気行程から吸気行程にかけて気筒内に残留する既燃ガスである内部EGRガスの量と前記外部EGRガスの量とを合計した全EGRガス量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の全EGRガス量より少なくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
In claim 4,
When the exhaust throttle valve is throttled to an opening closer to the closing position than the predetermined opening (S) in order to promote the oxidation of PM by the PM regeneration means, the existing exhaust gas remaining in the cylinder from the exhaust stroke to the intake stroke of the internal combustion engine. The total amount of EGR gas, which is the sum of the amount of internal EGR gas that is fuel gas and the amount of external EGR gas, is not throttled to the opening on the closing side of the exhaust throttle valve from the predetermined opening (S). An EGR system for an internal combustion engine that controls the opening of the LPL valve so as to be smaller than the total amount of EGR gas in a normal state.
請求項4において、
前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が前記所定開度(S)より閉じ側の開度に絞られる場合、前記内燃機関の排気行程から吸気行程にかけて気筒内
に残留する既燃ガスである内部EGRガスの量と前記外部EGRガスの量とを合計した全EGRガス量から算出されるEGR率が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時のEGR率より小さくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
In claim 4,
When the exhaust throttle valve is throttled to an opening closer to the closing position than the predetermined opening (S) in order to promote the oxidation of PM by the PM regeneration means, the existing exhaust gas remaining in the cylinder from the exhaust stroke to the intake stroke of the internal combustion engine. The EGR rate calculated from the total amount of EGR gas, which is the sum of the amount of internal EGR gas that is the fuel gas and the amount of external EGR gas, indicates that the opening of the exhaust throttle valve is closer to the closing side than the predetermined opening (S). An EGR system for an internal combustion engine that controls the opening of the LPL valve so as to be smaller than a normal EGR rate that is not restricted by the opening.
請求項5又は6において、
前記排気絞り弁の開度が全開とされ且つ前記HPL手段及び前記LPL手段によってEGRが行われない場合の吸入空気量と実際の吸入空気量との差に基づいて前記全EGRガス量を算出する内燃機関のEGRシステム。
In claim 5 or 6,
The total EGR gas amount is calculated based on the difference between the intake air amount and the actual intake air amount when the opening degree of the exhaust throttle valve is fully opened and EGR is not performed by the HPL unit and the LPL unit. EGR system for internal combustion engines.
JP2007103562A 2007-04-11 2007-04-11 EGR system for internal combustion engine Expired - Fee Related JP4910849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103562A JP4910849B2 (en) 2007-04-11 2007-04-11 EGR system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103562A JP4910849B2 (en) 2007-04-11 2007-04-11 EGR system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008261256A true JP2008261256A (en) 2008-10-30
JP4910849B2 JP4910849B2 (en) 2012-04-04

Family

ID=39983918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103562A Expired - Fee Related JP4910849B2 (en) 2007-04-11 2007-04-11 EGR system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4910849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216449A (en) * 2009-03-19 2010-09-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2011074302A1 (en) * 2009-12-18 2011-06-23 本田技研工業株式会社 Control device for internal-combustion engine
WO2012093515A1 (en) * 2011-01-07 2012-07-12 本田技研工業株式会社 Device for controlling internal combustion engine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207917A (en) * 2000-01-21 2001-08-03 Toyota Motor Corp Abnormality detection device of exhaust throttle valve
JP2002155724A (en) * 2000-09-07 2002-05-31 Toyota Motor Corp Exhaust emission control device
JP2002276405A (en) * 2001-03-19 2002-09-25 Isuzu Motors Ltd Exhaust emission control device of diesel engine
JP2003083034A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device
JP2003343287A (en) * 2002-05-27 2003-12-03 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2004150319A (en) * 2002-10-29 2004-05-27 Mitsubishi Fuso Truck & Bus Corp Compression ignition type internal combustion engine
JP2004278348A (en) * 2003-03-13 2004-10-07 Toyota Motor Corp Control system of internal combustion engine
WO2005003536A1 (en) * 2003-07-01 2005-01-13 Tokudaiji Institute Of Automotive Culture Inc. Diesel engine exhaust gas purifier and control means
JP2005036663A (en) * 2003-07-16 2005-02-10 Toyota Motor Corp Exhaust gas control device and exhaust gas flow rate estimating method for internal combustion engine
JP2005315189A (en) * 2004-04-30 2005-11-10 Isuzu Motors Ltd Exhaust gas aftertreatment device for diesel engine
JP2006336547A (en) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207917A (en) * 2000-01-21 2001-08-03 Toyota Motor Corp Abnormality detection device of exhaust throttle valve
JP2002155724A (en) * 2000-09-07 2002-05-31 Toyota Motor Corp Exhaust emission control device
JP2002276405A (en) * 2001-03-19 2002-09-25 Isuzu Motors Ltd Exhaust emission control device of diesel engine
JP2003083034A (en) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp Exhaust emission control device
JP2003343287A (en) * 2002-05-27 2003-12-03 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP2004150319A (en) * 2002-10-29 2004-05-27 Mitsubishi Fuso Truck & Bus Corp Compression ignition type internal combustion engine
JP2004278348A (en) * 2003-03-13 2004-10-07 Toyota Motor Corp Control system of internal combustion engine
WO2005003536A1 (en) * 2003-07-01 2005-01-13 Tokudaiji Institute Of Automotive Culture Inc. Diesel engine exhaust gas purifier and control means
JP2005036663A (en) * 2003-07-16 2005-02-10 Toyota Motor Corp Exhaust gas control device and exhaust gas flow rate estimating method for internal combustion engine
JP2005315189A (en) * 2004-04-30 2005-11-10 Isuzu Motors Ltd Exhaust gas aftertreatment device for diesel engine
JP2006336547A (en) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216449A (en) * 2009-03-19 2010-09-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2011074302A1 (en) * 2009-12-18 2011-06-23 本田技研工業株式会社 Control device for internal-combustion engine
CN102597466A (en) * 2009-12-18 2012-07-18 本田技研工业株式会社 Control device for internal-combustion engine
EP2514952A1 (en) * 2009-12-18 2012-10-24 Honda Motor Co., Ltd. Control device for internal-combustion engine
JP2013148100A (en) * 2009-12-18 2013-08-01 Honda Motor Co Ltd Control system for internal combustion engine
JP5270008B2 (en) * 2009-12-18 2013-08-21 本田技研工業株式会社 Control device for internal combustion engine
EP2514952A4 (en) * 2009-12-18 2014-02-19 Honda Motor Co Ltd Control device for internal-combustion engine
WO2012093515A1 (en) * 2011-01-07 2012-07-12 本田技研工業株式会社 Device for controlling internal combustion engine
CN103168158A (en) * 2011-01-07 2013-06-19 本田技研工业株式会社 Device for controlling internal combustion engine
JP5511989B2 (en) * 2011-01-07 2014-06-04 本田技研工業株式会社 Control device for internal combustion engine
US9181894B2 (en) 2011-01-07 2015-11-10 Honda Motor Co., Ltd. Control system for internal combustion engine
CN103168158B (en) * 2011-01-07 2015-11-25 本田技研工业株式会社 The control gear of internal-combustion engine

Also Published As

Publication number Publication date
JP4910849B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4281804B2 (en) Exhaust gas purification system for internal combustion engine
JP4285528B2 (en) Exhaust gas recirculation system for internal combustion engines
US8091535B2 (en) Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
JP4225322B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4611941B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4924229B2 (en) EGR system for internal combustion engine
US10072590B2 (en) Control device and control method for diesel engine
JP2008128028A (en) Exhaust gas recirculation system for internal combustion engine
JP2001164999A (en) Clogging sensing device of exhaust gas recirculation device
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP4736931B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2009046996A (en) Egr system of internal combustion engine
JP2008138598A (en) Egr system for internal combustion engine
JP2011001893A (en) Exhaust gas purification system
JP4900004B2 (en) EGR system for internal combustion engine
JP4910849B2 (en) EGR system for internal combustion engine
JP4957343B2 (en) EGR system for internal combustion engine
JP4760684B2 (en) Exhaust gas purification system for internal combustion engine
JP4735519B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4946904B2 (en) Internal combustion engine control system
JP2014101812A (en) Exhaust recirculation device of engine
JP2013068210A (en) Engine control device
JP7225571B2 (en) Control device for vehicle internal combustion engine
JP2006112273A (en) Internal combustion engine
JP2007291975A (en) Exhaust recirculation device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees