JP2006336547A - Egr device - Google Patents

Egr device Download PDF

Info

Publication number
JP2006336547A
JP2006336547A JP2005162414A JP2005162414A JP2006336547A JP 2006336547 A JP2006336547 A JP 2006336547A JP 2005162414 A JP2005162414 A JP 2005162414A JP 2005162414 A JP2005162414 A JP 2005162414A JP 2006336547 A JP2006336547 A JP 2006336547A
Authority
JP
Japan
Prior art keywords
exhaust gas
pressure loop
exhaust
egr
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162414A
Other languages
Japanese (ja)
Inventor
Hiroshi Funahashi
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005162414A priority Critical patent/JP2006336547A/en
Publication of JP2006336547A publication Critical patent/JP2006336547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize high EGR rate without causing great deterioration of fuel economy. <P>SOLUTION: This device is provided with a low pressure loop 14 drawing part of exhaust gas 9 out from an exhaust passage in a downstream of a turbine 2b and re-circulating the same to an intake pipe 5 in an upstream of a compressor 2a, and a high pressure loop 15 drawing part of exhaust gas 9 out from an exhaust manifold 10 and re-circulating the same to a part in a neighborhood of an inlet of an intake manifold 10, EGR valves 19, 21 provided in the low pressure loop 14 and the high pressure loop 15 and adjusting recirculation quantity of exhaust gas 9, and a control device 23 controlling each EGR valves 19, 21 performing base exhaust gas recirculation at EGR rate which is in a level not generating black smoke at a time of acceleration by the low pressure loop 14 and performing additional exhaust gas recirculation to compensate insufficient EGR rate part by the high pressure loop and coping with avoidance of black smoke at a time of acceleration mainly by immediately reducing recirculation quantity of exhaust gas 9 in the high pressure loop 15 side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ターボチャージャを搭載したエンジンのEGR装置に関するものである。   The present invention relates to an EGR device for an engine equipped with a turbocharger.

従来より、自動車のエンジン等では、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOx(窒素酸化物)の発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われている。   2. Description of the Related Art Conventionally, in an automobile engine or the like, a part of exhaust gas is extracted from the exhaust side and returned to the intake side, and combustion of fuel in the engine is suppressed by the exhaust gas returned to the intake side so that the combustion temperature is increased. So-called exhaust gas recirculation (EGR) is performed in which the generation of NOx (nitrogen oxide) is reduced by lowering.

一般的に、この種の排気ガス再循環を行う場合には、排気マニホールドから排気管に亘る排気通路の適宜位置と、吸気管から吸気マニホールドに亘る吸気通路の適宜位置との間をEGRパイプにより接続し、該EGRパイプを介し吸気側と排気側の差圧を利用して排気ガスを再循環するようにしている。   In general, when this type of exhaust gas recirculation is performed, an EGR pipe is used between an appropriate position of the exhaust passage extending from the exhaust manifold to the exhaust pipe and an appropriate position of the intake passage extending from the intake pipe to the intake manifold. The exhaust gas is recirculated using the differential pressure between the intake side and the exhaust side through the EGR pipe.

また、エンジンに再循環する排気ガスをEGRパイプの途中で冷却すると、排気ガスの温度が下がり且つその容積が小さくなることにより、エンジンの出力をあまり低下させずに燃焼温度を低下して効果的にNOxの発生を低減させることができるため、エンジンに排気ガスを再循環するEGRパイプの途中に水冷式のEGRクーラを装備したものもある。   In addition, if the exhaust gas recirculated to the engine is cooled in the middle of the EGR pipe, the temperature of the exhaust gas is reduced and the volume of the exhaust gas is reduced, which effectively reduces the combustion temperature without significantly reducing the output of the engine. Since the generation of NOx can be reduced, a water-cooled EGR cooler is provided in the middle of an EGR pipe for recirculating exhaust gas to the engine.

尚、この種の排気ガス再循環に関する技術を開示する先行技術文献情報としては下記の特許文献1等がある。
特開2004−270565号公報
Incidentally, as prior art document information disclosing a technology related to this type of exhaust gas recirculation, there is the following Patent Document 1 or the like.
JP 2004-270565 A

しかしながら、エンジンにターボチャージャが搭載されている場合には、吸気側が過給されていることから排気側との圧力差が少なくなってしまい、高いEGR率を実現することが難しいため、可変ノズル式のターボチャージャを採用したり、排気管途中に絞り弁を設けたりして排気ガスの絞り込みを行い、これにより排気側の圧力を高めて吸気側との圧力差を確保できるようにしなければならないが、このようにターボチャージャの過給圧に打ち勝つほどの高い圧力まで排気側を昇圧してしまうと、エンジン側でのポンピングロスの増加により大幅な燃費の悪化(可変ノズル式のターボチャージャで排気ガスを絞り込んだ場合にはタービン効率の低下による燃費悪化も生じる)を招いてしまうという問題があった。   However, if the engine is equipped with a turbocharger, the pressure difference from the exhaust side is reduced because the intake side is supercharged, making it difficult to achieve a high EGR rate. However, it is necessary to reduce the exhaust gas by using a turbocharger or by installing a throttle valve in the middle of the exhaust pipe, thereby increasing the pressure on the exhaust side and ensuring a pressure difference from the intake side. If the exhaust side is boosted to such a high pressure that it can overcome the turbocharger supercharging pressure in this way, the pumping loss on the engine side will increase, resulting in a significant deterioration in fuel consumption (exhaust gas with a variable nozzle turbocharger). If the engine is narrowed down, there is a problem that the fuel efficiency is deteriorated due to a decrease in turbine efficiency.

本発明は上述の実情に鑑みてなしたもので、大幅な燃費の悪化を招くことなく高いEGR率を実現して良好なNOx低減効果を得られるようにすることを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to achieve a high NOGR reduction effect by realizing a high EGR rate without causing a significant deterioration in fuel consumption.

本発明は、ターボチャージャのタービンより下流の排気通路から排気ガスの一部を抜き出して前記ターボチャージャのコンプレッサより上流の吸気通路へ再循環する低圧ループと、排気マニホールドから排気ガスの一部を抜き出して吸気マニホールドの入口付近に再循環する高圧ループと、これら低圧ループ及び高圧ループの夫々に備えられて排気ガスの再循環量を調整する再循環量調整手段と、低圧ループにより加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施して高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施し且つ加速時の黒煙回避については主として高圧ループ側の排気ガスの再循環量を即時低減させることで対応し得るように前記各再循環量調整手段を制御する制御装置とを備えたことを特徴とするEGR装置、に係るものである。   The present invention extracts a part of the exhaust gas from the exhaust passage downstream of the turbine of the turbocharger and recirculates it to the intake passage upstream of the compressor of the turbocharger, and extracts a part of the exhaust gas from the exhaust manifold. A high pressure loop that recirculates near the inlet of the intake manifold, a recirculation amount adjusting means that adjusts the recirculation amount of exhaust gas provided in each of the low pressure loop and the high pressure loop, and black smoke during acceleration by the low pressure loop. The exhaust gas recirculation that is the base at the EGR rate that is suppressed to an extent that does not occur is performed, the additional exhaust gas recirculation is performed to supplement the insufficient EGR rate in the high-pressure loop, and black smoke avoidance during acceleration is mainly Control for controlling each of the recirculation amount adjusting means so as to cope with the problem by immediately reducing the recirculation amount of the exhaust gas on the high pressure loop side EGR apparatus being characterized in that a location, in which according to the.

而して、このようにすれば、低圧ループ側でベースとなる排気ガス再循環が実施され、高圧ループ側では不足EGR率分を補足するべく追加の排気ガス再循環が実施されることになるので、低圧ループと高圧ループの併用により高いEGR率が実現される一方、高圧ループ側で分担しなければならない排気ガスの再循環量が高圧ループの単独使用の場合よりも少なくて済み、可変ノズル式のターボチャージャ等で無理な排気ガスの絞り込みを行わなくても、高圧ループ側で分担すべき量の排気ガス再循環が比較的容易に実現されることになり、この結果、ポンピングロスの増加による大幅な燃費の悪化が未然に回避されることになる。   Thus, the exhaust gas recirculation as a base is performed on the low pressure loop side in this way, and the additional exhaust gas recirculation is performed on the high pressure loop side to supplement the insufficient EGR rate. Therefore, while using a low pressure loop and a high pressure loop in combination, a high EGR rate is achieved, while the amount of exhaust gas recirculation that must be shared on the high pressure loop side is less than in the case of using a high pressure loop alone. The exhaust gas recirculation of the amount that should be shared on the high-pressure loop side can be realized relatively easily without excessive exhaust gas reduction with a turbocharger of the type, resulting in an increase in pumping loss. The drastic deterioration of fuel consumption due to the above will be avoided in advance.

ここで、高いEGR率で排気ガスを再循環するのに低圧ループが今まで採用されてこなかったのは、走行中に運転者によりアクセルが踏み込まれて加速状態に入った場合に、λ(空気過剰率)が急激に低下して黒煙が発生し易かったからであるが、本発明のEGR装置では、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループによりベースとなる排気ガス再循環を実施しているにすぎないので、加速時に高圧ループ側の排気ガスの再循環量を即時低減することで黒煙の発生が未然に回避されることになる。   Here, the low-pressure loop has not been used to recirculate the exhaust gas at a high EGR rate until λ (air) However, the EGR device according to the present invention regenerates the exhaust gas based on the low-pressure loop with the EGR rate suppressed to such a level that black smoke is not generated during acceleration. Since only the circulation is performed, the generation of black smoke is avoided by immediately reducing the recirculation amount of the exhaust gas on the high-pressure loop side during acceleration.

即ち、低圧ループにおいては、ターボチャージャのコンプレッサより上流の吸気通路へ排気ガスが戻されるが、ここからコンプレッサ、インタークーラ、吸気マニホールドを経てエンジンに到るまでの経路が長く、この長い経路に排気ガスの混合した吸気が存在することになるため、加速時にアクセルの踏み込みに即応して燃料噴射量が増加した場合に、低圧ループの再循環量調整手段を直ちに閉じても、前記長い経路中の排気ガス混じりの吸気が全て使い切られるまでλ低下状態が持続して黒煙が発生し易いという欠点がある。   That is, in the low-pressure loop, exhaust gas is returned to the intake passage upstream of the turbocharger compressor, but the route from here to the engine via the compressor, intercooler, and intake manifold is long, and the exhaust gas is exhausted to this long route. Since the intake air mixed with gas exists, when the fuel injection amount increases in response to accelerator depression during acceleration, even if the recirculation amount adjusting means of the low pressure loop is immediately closed, There is a drawback that the λ lowering state continues and black smoke is likely to be generated until all the intake air mixed with exhaust gas is used up.

これに対し、高圧ループにおいては、吸気マニホールドの入口付近に排気ガスが戻されるので、排気ガスの混合した吸気は吸気マニホールド内にしか存在せず、加速時に燃料噴射量が増加しても、高圧ループの再循環量調整手段を閉じれば、吸気マニホールド内の排気ガス混じりの吸気が程無く使い切られてλが早期に回復するので、加速時における黒煙の発生を回避し易いという利点がある。   On the other hand, in the high-pressure loop, exhaust gas is returned near the inlet of the intake manifold, so the intake air mixed with the exhaust gas exists only in the intake manifold, and even if the fuel injection amount increases during acceleration, the high-pressure loop If the loop recirculation amount adjusting means is closed, the intake air mixed with the exhaust gas in the intake manifold will be used up soon and λ will be recovered early, so that it is easy to avoid the generation of black smoke during acceleration.

依って、本発明のEGR装置のように、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループによりベースとなる排気ガス再循環を実施し、高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施するようにすれば、加速時に高圧ループ側の排気ガスの再循環量を即時低減することでλを早期に回復させることが可能となり、黒煙の発生を未然に回避することが可能となる。   Therefore, as in the EGR device of the present invention, the exhaust gas recirculation that is the base is performed by the low pressure loop at the EGR rate that is suppressed to the extent that black smoke is not generated during acceleration, and the insufficient EGR rate is supplemented by the high pressure loop. By implementing additional exhaust gas recirculation as much as possible, it is possible to recover λ early by immediately reducing the amount of exhaust gas recirculation on the high-pressure loop side during acceleration, thereby preventing the occurrence of black smoke. It is possible to avoid it.

また、本発明においては、排気管の途中に介装されてパティキュレートフィルタを収容するフィルタケースを二重殻構造とし且つ該フィルタケースからターボチャージャのタービンに到る排気管を二重管構造として、これらフィルタケース及び排気管の外層部分に、パティキュレートフィルタを経た排気ガスの一部を上流側へ戻すリターン流路を形成し、該リターン流路のタービンに近い最上流部と前記ターボチャージャのコンプレッサの入口との間をEGRパイプにより接続し、これらリターン流路とEGRパイプとにより低圧ループを構成することが好ましい。   Further, in the present invention, the filter case interposed in the middle of the exhaust pipe and containing the particulate filter has a double shell structure, and the exhaust pipe from the filter case to the turbine of the turbocharger has a double pipe structure. A return flow path for returning a part of the exhaust gas that has passed through the particulate filter to the upstream side is formed in the outer layer portion of the filter case and the exhaust pipe, and the most upstream portion near the turbine of the return flow path and the turbocharger It is preferable that an EGR pipe is connected to the inlet of the compressor, and a low pressure loop is constituted by these return flow path and the EGR pipe.

このようにすれば、パティキュレートフィルタを経た排気ガスの一部がリターン流路に折り返され、フィルタケース及び排気管の外層部分を流れてリターン流路の最上流部からEGRパイプを介しコンプレッサの入口に再循環されることになるが、ここに再循環される排気ガスは、もともと排気管途中のパティキュレートフィルタを経た時点で低温低圧化しており、しかも、大きな表面積で外気に晒されたフィルタケース及び排気管の外層部分を流れる間に放熱により冷却されているので、ここから更にインタークーラに送られて空冷されることで排気ガスの温度が十分に下がり、EGRクーラ等を用いて排気ガスを水冷する必要がなくなって、水冷系統の複雑化やラジエータ及びファンの大型化が未然に回避されることになる。   In this way, part of the exhaust gas that has passed through the particulate filter is folded back to the return flow path, flows through the filter case and the outer layer portion of the exhaust pipe, and enters the compressor inlet from the most upstream part of the return flow path through the EGR pipe. However, the exhaust gas that is recirculated here is at a low temperature and low pressure when it passes through the particulate filter in the middle of the exhaust pipe, and it is exposed to the outside air with a large surface area. Since it is cooled by heat dissipation while flowing through the outer layer portion of the exhaust pipe, it is further sent from here to the intercooler and air-cooled to sufficiently lower the temperature of the exhaust gas, and the exhaust gas is reduced using an EGR cooler or the like. The need for water cooling is eliminated, and the complexity of the water cooling system and the enlargement of the radiator and fan are avoided.

更に、コンプレッサの入口に再循環される排気ガスは、パティキュレートフィルタを経て除塵された大気よりクリーンなものとなっているので、排気ガス中の煤等によりコンプレッサ下流のインタークーラ内が汚れてしまう心配がなく、しかも、吸気系の中で最も低圧となるコンプレッサの入口に排気ガスを再循環するようにしているので、排気側と吸気側との差圧が十分に確保されて良好に排気ガスが再循環されることになる。   Furthermore, since the exhaust gas recirculated to the compressor inlet is cleaner than the atmosphere that has been dust-removed through the particulate filter, the interior of the intercooler downstream of the compressor is contaminated by soot or the like in the exhaust gas. There is no worry, and exhaust gas is recirculated to the inlet of the compressor, which is the lowest pressure in the intake system, so that a sufficient differential pressure between the exhaust side and the intake side is ensured and exhaust gas is satisfactorily Will be recycled.

この際、パティキュレートフィルタの後方からコンプレッサの入口まで戻される排気ガスは、その大半の行程をフィルタケース及び排気管の外層部分を成すリターン流路により戻されるので、該リターン流路のタービンに近い最上流部とターボチャージャのコンプレッサの入口との間を短いEGRパイプで接続するだけで済み、全体構造がコンパクトなものとなってEGRパイプのレイアウトにも苦慮しなくて済む。   At this time, most of the exhaust gas returned from the rear of the particulate filter to the compressor inlet is returned by the return flow path that forms the outer layer portion of the filter case and the exhaust pipe, so that it is close to the turbine of the return flow path. It is only necessary to connect a short EGR pipe between the most upstream part and the inlet of the compressor of the turbocharger, and the overall structure is compact, so that the layout of the EGR pipe is not troublesome.

他方、パティキュレートフィルタ側からすれば、リターン流路を流れる排気ガスにより外周部が断熱保温されて外気に熱を奪われ難くなり、寧ろ排気ガス側から熱を受けて温度の上がり難い外周部が昇温されることになるので、パティキュレートフィルタ全体が効率良く高温化して捕集済みパティキュレートの燃焼が促進され、パティキュレートの燃え残りが少ない確実な再生が行われることになる。   On the other hand, from the particulate filter side, the outer periphery is insulated and insulated by the exhaust gas flowing through the return flow path, making it difficult for heat to be taken away by the outside air. Since the temperature is raised, the temperature of the entire particulate filter is efficiently increased, the combustion of the collected particulates is promoted, and the reliable regeneration with little remaining particulates is performed.

更に、本発明においては、低圧ループと高圧ループの夫々に、再循環量調整手段を絞りとして挟んだ二点間の圧力差を検出する圧力センサと、前記二点間で排気温度を検出する温度センサとを装備し、これら圧力センサ及び温度センサからの検出信号に基づき間接測定方式で排気ガスの再循環量を算出し、その算出された排気ガスの再循環量に基づき前記各再循環量調整手段にフィードバック制御がかかるように制御装置を構成することが好ましい。   Further, in the present invention, a pressure sensor for detecting a pressure difference between two points sandwiched by the recirculation amount adjusting means as a throttle in each of the low pressure loop and the high pressure loop, and a temperature for detecting the exhaust temperature between the two points. Sensor, calculate the recirculation amount of exhaust gas by an indirect measurement method based on detection signals from these pressure sensors and temperature sensors, and adjust each recirculation amount based on the calculated recirculation amount of exhaust gas It is preferable to configure the control device so that the feedback control is applied to the means.

このようにすれば、応答性の高い圧力センサや温度センサにより排気ガスの再循環量を検出するようにしているので、その再循環量の特定が瞬時に行われて良好なフィードバック制御が実現されることになり、しかも、エアフローメータを用いた場合のように渦の影響で検出が不正確になる心配がないので、排気流量の急変により渦が生じ易い加速時であっても正確な排気ガスの再循環量が検出されることになる。   In this way, since the exhaust gas recirculation amount is detected by a highly responsive pressure sensor or temperature sensor, the recirculation amount is instantly identified and good feedback control is realized. In addition, there is no risk of detection being inaccurate due to the influence of vortices as in the case of using an air flow meter, so accurate exhaust gas even during acceleration when vortices are likely to occur due to sudden changes in the exhaust flow rate. The amount of recirculation is detected.

また、本発明においては、低圧ループの排気ガスの取り込み口の直後に、排気ガスの流れを堰き止める排気絞り手段を付設することが好ましく、このようにすれば、アイドリング時や極軽負荷時等における吸気側と排気側との圧力差が不足している条件下において、排気絞り手段で排気ガスの流れを堰き止めることにより吸気側と排気側との圧力差を確保して低圧ループへの円滑な排気ガスの再循環を促すことが可能となる。   Further, in the present invention, it is preferable to provide an exhaust throttle means for blocking the flow of the exhaust gas immediately after the exhaust gas intake port of the low-pressure loop, and in this way, when idling or extremely light load, etc. In the condition where the pressure difference between the intake side and the exhaust side is insufficient, the exhaust gas flow is blocked by the exhaust throttle means to secure the pressure difference between the intake side and the exhaust side, and smoothly into the low-pressure loop. It is possible to facilitate the recirculation of exhaust gas.

上記した本発明のEGR装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the EGR device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、低圧ループにより加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施し、高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施するようにしたことにより、大幅な燃費の悪化を招くことなく高いEGR率を実現して良好なNOx低減効果を得ることができ、しかも、加速時にアクセルの踏み込みに即応して燃料噴射量が増加しても、主として高圧ループ側の排気ガスの再循環量を即時低減することでλを早期に回復させて黒煙の発生を未然に回避することができる。   (I) According to the invention described in claim 1 of the present invention, the exhaust gas recirculation that serves as a base is performed at an EGR rate that is suppressed to the extent that black smoke is not generated at the time of acceleration by the low pressure loop, and the EGR is insufficient in the high pressure loop. By implementing additional exhaust gas recirculation to supplement the rate, it is possible to achieve a high EGR rate without causing a significant deterioration in fuel consumption, and to obtain a good NOx reduction effect, Even if the fuel injection amount increases in response to accelerator depression during acceleration, λ can be recovered quickly by immediately reducing the amount of exhaust gas recirculation on the high-pressure loop side, thereby avoiding the occurrence of black smoke. can do.

(II)本発明の請求項2に記載の発明によれば、低圧ループを構成するにあたり、EGRクーラ等を用いて排気ガスを水冷しなくても済むので、水冷系統の複雑化やラジエータ及びファンの大型化を未然に回避することができ、しかも、長尺なEGRパイプも不要としてコンパクトな低圧ループを実現することができる。   (II) According to the invention described in claim 2 of the present invention, it is not necessary to cool the exhaust gas by using an EGR cooler or the like when configuring the low pressure loop, so that the water cooling system is complicated, the radiator and the fan. Can be avoided, and a long low-pressure loop can be realized without requiring a long EGR pipe.

(III)本発明の請求項2に記載の発明によれば、パティキュレートフィルタを経た排気ガスをリターン流路に流すことにより、パティキュレートフィルタの外周部を断熱保温し且つ積極的に昇温することができるので、パティキュレートフィルタ全体を効率良く高温化して捕集済みパティキュレートの燃焼を促進することができ、より迅速で燃え残りの少ないパティキュレートフィルタの確実な再生を図ることができる。   (III) According to the invention described in claim 2 of the present invention, the exhaust gas having passed through the particulate filter is allowed to flow through the return flow path, whereby the outer peripheral portion of the particulate filter is insulated and kept warm. Therefore, it is possible to efficiently raise the temperature of the entire particulate filter and promote the combustion of the collected particulate filter, and it is possible to more surely regenerate the particulate filter with less unburned residue.

(IV)本発明の請求項3に記載の発明によれば、応答性の高い圧力センサや温度センサにより排気ガスの再循環量を瞬時に検出して良好なフィードバック制御を実現することができ、しかも、排気流量の急変により渦が生じ易い加速時であっても正確な排気ガスの再循環量を検出することができる。   (IV) According to the invention described in claim 3 of the present invention, it is possible to instantaneously detect the recirculation amount of the exhaust gas with a highly responsive pressure sensor or temperature sensor, and to realize good feedback control, In addition, an accurate exhaust gas recirculation amount can be detected even during acceleration when vortices are likely to occur due to sudden changes in the exhaust flow rate.

(V)本発明の請求項4に記載の発明によれば、アイドリング時や極軽負荷時等における吸気側と排気側との圧力差が不足している条件下にあっても、排気絞り手段で排気ガスの流れを堰き止めて吸気側と排気側との圧力差を確実に確保することができるので、低圧ループへの円滑な排気ガスの再循環を促すことができる。   (V) According to the invention described in claim 4 of the present invention, the exhaust throttling means can be used even under conditions where the pressure difference between the intake side and the exhaust side is insufficient during idling or extremely light load. Thus, the flow of the exhaust gas is blocked and the pressure difference between the intake side and the exhaust side can be surely ensured, so that smooth exhaust gas recirculation to the low pressure loop can be promoted.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図1及び図2は本発明を実施する形態の一例を示すもので、図1中における1は可変ノズル式のターボチャージャ2(バリアブルジオメトリーターボチャージャ)を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では直列6気筒の場合を例示している)に分配されるようになっている。   1 and 2 show an example of an embodiment for carrying out the present invention. FIGS. 1 and 2 show an example of an embodiment for carrying out the present invention. In FIG. 1, 1 is a variable nozzle type turbocharger. 2 shows a diesel engine equipped with 2 (variable geometry turbocharger), and intake air 4 guided from an air cleaner 3 is sent to the compressor 2a of the turbocharger 2 through an intake pipe 5 and pressurized by the compressor 2a. The intake air 4 is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7 so that each cylinder 8 of the diesel engine 1 (in the case of inline 6 cylinders in FIG. 1). It is distributed in the example).

更に、このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてあり、該排気管11の途中には、酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ12がフィルタケース13に抱持されて装備されている。   Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b passes through the exhaust pipe 11. In the middle of the exhaust pipe 11, a catalyst regeneration type particulate filter 12 that integrally carries an oxidation catalyst is held by a filter case 13 and is provided. .

そして、このディーゼルエンジン1にあっては、ターボチャージャ2のタービン2bより下流の排気通路から排気ガス9の一部を抜き出して前記ターボチャージャ2のコンプレッサ2aより上流の吸気管5へ再循環する低圧ループ14と、排気マニホールド10から排気ガス9の一部を抜き出して吸気マニホールド7の入口付近に再循環する高圧ループ15とが装備されている。   In the diesel engine 1, a part of the exhaust gas 9 is extracted from the exhaust passage downstream of the turbine 2b of the turbocharger 2 and recirculated to the intake pipe 5 upstream of the compressor 2a of the turbocharger 2. A loop 14 and a high-pressure loop 15 that extracts a part of the exhaust gas 9 from the exhaust manifold 10 and recirculates in the vicinity of the inlet of the intake manifold 7 are provided.

ここで、図1に示す例においては、前記フィルタケース13がインナシェル13aとアウタシェル13bとから成る二重殻構造とされ、該フィルタケース13からターボチャージャ2のタービン2bに到る排気管11が内管11aと外管11bとから成る二重管構造aとアウタシェル13bとの間、及び内管11aと外管11bとの間)に、パティキュレートフィルタ12を経た排気ガス9を上流側へ戻すリターン流路16,17が形成されていると共に、前記リターン流路17のタービン2bに近い最上流部と前記ターボチャージャ2のコンプレッサ2aの入口との間が、排気ガス9の再循環量を調整するためのEGRバルブ19(再循環量調整手段)を備えた比較的短いEGRパイプ18により接続されており、これらリターン流路16,17とEGRパイプ18とにより前記低圧ループ14が構成されるようになっている。   Here, in the example shown in FIG. 1, the filter case 13 has a double shell structure composed of an inner shell 13a and an outer shell 13b, and an exhaust pipe 11 extending from the filter case 13 to the turbine 2b of the turbocharger 2 is provided. The exhaust gas 9 having passed through the particulate filter 12 is returned to the upstream side between the double pipe structure a composed of the inner pipe 11a and the outer pipe 11b and the outer shell 13b and between the inner pipe 11a and the outer pipe 11b. The return passages 16 and 17 are formed, and the recirculation amount of the exhaust gas 9 is adjusted between the most upstream portion of the return passage 17 near the turbine 2b and the inlet of the compressor 2a of the turbocharger 2. Are connected by a relatively short EGR pipe 18 provided with an EGR valve 19 (recirculation amount adjusting means). The low-pressure loop 14 is adapted to be constituted by the 17 and EGR pipe 18.

他方、排気マニホールド10における各気筒の並び方向の一端部と、吸気マニホールド7の入口付近との間が、排気ガス9の再循環量を調整するためのEGRバルブ21(再循環量調整手段)を備えたEGRパイプ20により接続されており、このEGRパイプ20により排気マニホールド10から排気ガス9の一部を抜き出して吸気マニホールド7の入口付近に導き得るようにした前記高圧ループ15が構成されるようになっている。   On the other hand, an EGR valve 21 (recirculation amount adjusting means) for adjusting the recirculation amount of the exhaust gas 9 is provided between one end portion of the exhaust manifold 10 in the arrangement direction of each cylinder and the vicinity of the inlet of the intake manifold 7. The high-pressure loop 15 is configured to be connected by an EGR pipe 20 provided so that a part of the exhaust gas 9 can be extracted from the exhaust manifold 10 by the EGR pipe 20 and guided to the vicinity of the inlet of the intake manifold 7. It has become.

尚、この高圧ループ15のEGRパイプ20には、再循環される排気ガス9を冷却するためのEGRクーラ22が装備されており、該EGRクーラ22で冷却水と排気ガス9とを熱交換させることにより排気ガス9の温度を低下し且つその容積を小さくすることで、ディーゼルエンジン1の出力をあまり低下させずに燃焼温度を下げて効果的にNOxの発生を低減し得るようにしてある。   The EGR pipe 20 of the high-pressure loop 15 is equipped with an EGR cooler 22 for cooling the recirculated exhaust gas 9, and the EGR cooler 22 exchanges heat between the cooling water and the exhaust gas 9. Thus, by reducing the temperature of the exhaust gas 9 and reducing its volume, the combustion temperature can be lowered without reducing the output of the diesel engine 1 so much that the generation of NOx can be effectively reduced.

そして、前記各EGRバルブ19,21の開度が、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置23からの開度指令信号19a,21aとにより制御されるようになっており、これらの制御については、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ24(負荷センサ)からのアクセル開度信号24aと、ディーゼルエンジン1の機関回転数を検出する回転センサ25からの回転数信号25aとに基づいて以下の如く実行されるようになっている。   The opening degree of each of the EGR valves 19 and 21 is controlled by opening degree command signals 19a and 21a from a control device 23 constituting an engine control computer (ECU: Electronic Control Unit). As for the control, the accelerator opening signal 24a from the accelerator sensor 24 (load sensor) that detects the accelerator opening as the load of the diesel engine 1 and the rotation speed from the rotation sensor 25 that detects the engine speed of the diesel engine 1 are controlled. Based on the signal 25a, it is executed as follows.

即ち、制御装置23では、低圧ループ14と高圧ループ15の両方でトータルとして高いEGR率が実現されるように現在の運転状態に応じた各EGRバルブ19,21の開度が指示されるようになっているが、この際に、低圧ループ14により加速時に黒煙を生じない程度に抑えたEGR率(例えば10〜15%程度)でベースとなる排気ガス再循環が実施されると共に、高圧ループ15では不足EGR率分(10〜20%程度分)を補足するべく追加の排気ガス再循環が実施されるようになっており、しかも、加速時の黒煙回避については、アクセルセンサ24からのアクセル開度信号24aに基づき、主として高圧ループ15側の排気ガス9の再循環量を即時低減させることで対応し得るようにしてある。   That is, in the control device 23, the opening degree of each EGR valve 19, 21 corresponding to the current operation state is instructed so that a high EGR rate is realized as a total in both the low pressure loop 14 and the high pressure loop 15. However, at this time, the exhaust gas recirculation as a base is performed by the low pressure loop 14 at an EGR rate (for example, about 10 to 15%) suppressed to a level that does not generate black smoke during acceleration, and the high pressure loop 14 15, additional exhaust gas recirculation is carried out to supplement the shortage EGR rate (about 10 to 20%). Moreover, for avoiding black smoke during acceleration, the acceleration sensor 24 Based on the accelerator opening signal 24a, the amount of recirculation of the exhaust gas 9 on the high-pressure loop 15 side can be mainly reduced by immediate reduction.

更に、低圧ループ14のEGRパイプ18と高圧ループ15のEGRパイプ20の夫々には、各EGRバルブ19,21を絞りとして挟んだ二点間の圧力差を検出する圧力センサ26,27と、前記二点間で排気温度を検出する温度センサ28,29とが装備されており、これら圧力センサ26,27及び温度センサ28,29からの検出信号26a,27a,28a,29aに基づき間接測定方式で排気ガス9の再循環量を算出し、その算出された排気ガス9の再循環量に基づき各EGRバルブ19,21にフィードバック制御がかかるようになっている。   Further, the EGR pipe 18 of the low-pressure loop 14 and the EGR pipe 20 of the high-pressure loop 15 are respectively provided with pressure sensors 26 and 27 for detecting a pressure difference between two points sandwiching the EGR valves 19 and 21 as throttles, Temperature sensors 28 and 29 for detecting the exhaust temperature between two points are provided, and an indirect measurement method is used based on the detection signals 26a, 27a, 28a and 29a from the pressure sensors 26 and 27 and the temperature sensors 28 and 29. The recirculation amount of the exhaust gas 9 is calculated, and feedback control is applied to the EGR valves 19 and 21 based on the calculated recirculation amount of the exhaust gas 9.

即ち、各EGRパイプ18,20における排気ガス9の再循環量の実測値が、制御装置23による制御予定値に対し所定以上の大きな偏差を生じていた場合に、排気ガス9の再循環量の実測値が制御予定値に近づくように各EGRバルブ19,21への開度指令信号19a,21aの指示値が補正されるようにしてある。   That is, when the measured value of the recirculation amount of the exhaust gas 9 in each of the EGR pipes 18 and 20 has a large deviation more than a predetermined value with respect to the scheduled control value by the control device 23, the recirculation amount of the exhaust gas 9 is increased. The indicated values of the opening command signals 19a and 21a to the EGR valves 19 and 21 are corrected so that the actually measured values approach the control planned values.

尚、ここに例示している如き差圧式の流量計測手段自体は既に周知であり、流路途中に設けた絞りの前後の圧力差の平方根が流速に比例することに基づき流路の平均流速を求め、これに既知の流路断面積を乗じて流量を算出するようにしたものであり、排気温度は測定時の温度を標準温度とするための温度補正に用いられるようになっている。   Incidentally, the differential pressure type flow rate measuring means as illustrated here is already well known, and the average flow velocity of the flow path is determined based on the fact that the square root of the pressure difference before and after the restriction provided in the middle of the flow path is proportional to the flow speed. The flow rate is calculated by multiplying this by a known channel cross-sectional area, and the exhaust temperature is used for temperature correction for setting the temperature at the time of measurement to the standard temperature.

また、ここに図示している例においては、フィルタケース13の出口部(低圧ループの排気ガス9の取り込み口の直後)に、排気ガス9の流れを堰き止める排気絞り手段として絞り弁30を付設しており、アイドリング時や極軽負荷時等における吸気側と排気側との圧力差が不足している条件下で前記制御装置23からの閉作動指令信号30aにより排気ガス9の流れを堰き止め得るようにしてある。   In the example shown here, a throttle valve 30 is provided at the outlet of the filter case 13 (immediately after the intake port for the exhaust gas 9 in the low-pressure loop) as an exhaust throttle means for blocking the flow of the exhaust gas 9. The flow of the exhaust gas 9 is blocked by the closing operation command signal 30a from the control device 23 under the condition that the pressure difference between the intake side and the exhaust side is insufficient during idling or extremely light load. To get.

尚、図中における31は排気ブレーキであり、低圧ループ14におけるEGRパイプ18の一端部とリターン流路17のタービン2bに近い最上流部との接続箇所は、この排気ブレーキ31の直後に設定されるようになっており、該排気ブレーキ31の効きに低圧ループ14が影響を及ぼさないようにしてある。   In the figure, reference numeral 31 denotes an exhaust brake, and the connection point between one end of the EGR pipe 18 in the low-pressure loop 14 and the most upstream part near the turbine 2b of the return flow path 17 is set immediately after the exhaust brake 31. The low-pressure loop 14 does not affect the effectiveness of the exhaust brake 31.

而して、このようにEGR装置を構成すれば、低圧ループ14側でベースとなる排気ガス再循環が実施され、高圧ループ15側では不足EGR率分を補足するべく追加の排気ガス再循環が実施されることになるので、低圧ループ14と高圧ループ15の併用により高いEGR率が実現される一方、高圧ループ15側で分担しなければならない排気ガス9の再循環量が高圧ループ15の単独使用の場合よりも少なくて済み、可変ノズル式のターボチャージャ2で無理な排気ガス9の絞り込みを行わなくても、高圧ループ15側で分担すべき量の排気ガス再循環が比較的容易に実現される結果、ポンピングロスの増加による大幅な燃費の悪化が未然に回避されることになる。   Thus, if the EGR device is configured in this way, the exhaust gas recirculation as a base is performed on the low pressure loop 14 side, and an additional exhaust gas recirculation is performed on the high pressure loop 15 side to supplement the insufficient EGR rate. Since the low pressure loop 14 and the high pressure loop 15 are used together, a high EGR rate is realized. On the other hand, the recirculation amount of the exhaust gas 9 that must be shared on the high pressure loop 15 side is independent of the high pressure loop 15. The amount of exhaust gas that should be shared by the high-pressure loop 15 side can be realized relatively easily without using the variable nozzle type turbocharger 2 to restrict the exhaust gas 9 excessively. As a result, a significant deterioration in fuel consumption due to an increase in pumping loss is avoided.

ここで、高いEGR率で排気ガス9を再循環するのに低圧ループ14が今まで採用されてこなかったのは、走行中に運転者によりアクセルが踏み込まれて加速状態に入った場合に、λ(空気過剰率)が急激に低下して黒煙が発生し易かったからであるが、本形態例においては、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループ14によりベースとなる排気ガス再循環を実施しているにすぎないので、加速時に高圧ループ15側の排気ガス9の再循環量を即時低減することで黒煙の発生が未然に回避されることになる。   Here, the low-pressure loop 14 has not been employed so far to recirculate the exhaust gas 9 at a high EGR rate because when the accelerator is depressed by the driver during driving and the vehicle enters an acceleration state, λ This is because (the excess air ratio) suddenly decreased and black smoke was likely to be generated. In this embodiment, the exhaust gas that becomes the base by the low-pressure loop 14 at an EGR rate that is suppressed to the extent that black smoke is not generated during acceleration. Since only gas recirculation is performed, the generation of black smoke is avoided by immediately reducing the recirculation amount of the exhaust gas 9 on the high-pressure loop 15 side during acceleration.

即ち、低圧ループ14においては、ターボチャージャ2のコンプレッサ2aの入口へ排気ガス9が戻されるが、ここからコンプレッサ2a、インタークーラ6、吸気マニホールド7を経てディーゼルエンジン1に到るまでの経路が長く、この長い経路に排気ガス9の混合した吸気4が存在することになるため、加速時にアクセルの踏み込みに即応して燃料噴射量が増加した場合に、低圧ループ14のEGRバルブ19を直ちに閉じても、前記長い経路中の排気ガス9混じりの吸気4が全て使い切られるまでλ低下状態が持続して黒煙が発生し易いという欠点がある。   That is, in the low-pressure loop 14, the exhaust gas 9 is returned to the inlet of the compressor 2 a of the turbocharger 2, but the path from here to the diesel engine 1 through the compressor 2 a, the intercooler 6, and the intake manifold 7 is long. Since the intake air 4 mixed with the exhaust gas 9 is present in this long path, the EGR valve 19 of the low-pressure loop 14 is immediately closed when the fuel injection amount increases in response to the depression of the accelerator during acceleration. However, there is a drawback that the λ-decreasing state continues and black smoke is likely to be generated until all the intake air 4 mixed with the exhaust gas 9 in the long path is used up.

これに対し、高圧ループ15においては、吸気マニホールド7の入口付近に排気ガス9が戻されるので、排気ガス9の混合した吸気4は吸気マニホールド7内にしか存在せず、加速時に燃料噴射量が増加しても、高圧ループ15のEGRバルブ21を閉じれば、吸気マニホールド7内の排気ガス9混じりの吸気4が程無く使い切られてλが早期に回復するので、加速時における黒煙の発生を回避し易いという利点がある。   In contrast, in the high-pressure loop 15, the exhaust gas 9 is returned near the inlet of the intake manifold 7, so that the intake air 4 mixed with the exhaust gas 9 exists only in the intake manifold 7, and the fuel injection amount during acceleration is high. If the EGR valve 21 of the high-pressure loop 15 is closed, the intake 4 mixed with the exhaust gas 9 in the intake manifold 7 will be used up soon and λ will recover quickly. There is an advantage that it is easy to avoid.

依って、本形態例のEGR装置のように、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループ14によりベースとなる排気ガス再循環を実施し、高圧ループ15では不足EGR率分を補足するべく追加の排気ガス再循環を実施するようにすれば、加速時に高圧ループ15側の排気ガス9の再循環量を即時低減することでλを早期に回復させることが可能となり、黒煙の発生を未然に回避することが可能となる。   Therefore, as in the EGR device of the present embodiment, the exhaust gas recirculation as a base is performed by the low-pressure loop 14 at an EGR rate that is suppressed to the extent that black smoke is not generated at the time of acceleration, and the high-pressure loop 15 corresponds to the insufficient EGR rate. If additional exhaust gas recirculation is carried out to supplement λ, it is possible to recover λ early by immediately reducing the recirculation amount of the exhaust gas 9 on the high-pressure loop 15 side during acceleration, so that black It is possible to avoid the generation of smoke.

図2は前記制御装置23による加速時の制御の一例を示したタイムチャートであり、上段から順に、アクセル開度、エンジン回転数(Ne)、EGR率(低圧ループ,高圧ループ,両ループのトータル)、エンジンへの燃料噴射量(q)、λ(空気過剰率)を夫々示しており、ここで例示しているケースでは、アクセルを急激に深く踏み込んだ急加速のケースを示している。   FIG. 2 is a time chart showing an example of control during acceleration by the control device 23. From the top, the accelerator opening, the engine speed (Ne), and the EGR rate (low pressure loop, high pressure loop, total of both loops) ) And fuel injection amount (q) and λ (excess air ratio) to the engine, respectively, and in the case illustrated here, a case of rapid acceleration in which the accelerator is stepped on deeply is shown.

即ち、運転者によりT0の時点からアクセルが急激に深く踏み込まれると、その踏み込みに追従して燃料噴射量が上昇し、程無くエンジン回転数も急速に上昇してくるが、この際に、制御装置23において、単位時間当りのアクセル開度の大幅な変化量から急加速が認識され、高圧ループ15のEGRバルブ21が一気に全閉とされて高圧ループ15側による排気ガス再循環が一時的にカットされ、その後に徐々にEGRバルブ21が開けられて排気ガス再循環が少しずつ再開されるように制御が成され、低圧ループ14側のEGRバルブ19は必要に応じて開度が多少絞り込まれるように制御が成される。 That is, when the accelerator is stepped on deeply from the time point T 0 by the driver, the fuel injection amount increases following the stepping, and the engine speed also increases rapidly. In the control device 23, sudden acceleration is recognized from a large change amount of the accelerator opening per unit time, the EGR valve 21 of the high pressure loop 15 is fully closed at once, and the exhaust gas recirculation by the high pressure loop 15 side is temporarily suspended. After that, the EGR valve 21 is gradually opened and the exhaust gas recirculation is gradually resumed, and the EGR valve 19 on the low-pressure loop 14 side is slightly narrowed as necessary. Control is performed as follows.

この結果、仮に高圧ループ15のEGRバルブ21を閉じなければ、図中の最下段におけるλの変化が鎖線の曲線で示す如く大きく落ち込むはずであるが、その加速に必要な燃料噴射量の増加分が、主として高圧ループ15の排気ガス再循環のカット分によるトータルのEGR率の急速低下により相殺されるので、λをそれほど落ち込ませずに早期に回復させることが可能となり、しかも、その落ち込みは黒煙を生じない範囲にとどまることになる(低圧ループ14側が加速時に黒煙を生じない程度に抑えたEGR率となっているため)。   As a result, if the EGR valve 21 of the high-pressure loop 15 is not closed, the change in λ at the lowermost stage in the figure should be greatly reduced as shown by the chain line curve, but the increase in the fuel injection amount necessary for the acceleration is increased. Is offset by the rapid decrease in the total EGR rate mainly due to the cut off of the exhaust gas recirculation of the high-pressure loop 15, so that it is possible to recover λ without reducing so much, and the drop is black. It will remain in the range where no smoke is generated (because the low pressure loop 14 side has an EGR rate which is suppressed to the extent that black smoke is not generated during acceleration).

尚、この図2に例示しているタイムチャートは急加速の場合であるが、もう少し浅くアクセルが踏み込まれた緩加速の場合にあっては、高圧ループ15のEGRバルブ21を全閉にまで絞り込まずに適当な中間開度まで絞り込むだけにとどめるケースも有り得ることは勿論である。   The time chart illustrated in FIG. 2 is a case of sudden acceleration, but in the case of slow acceleration where the accelerator is stepped a little shallower, the EGR valve 21 of the high-pressure loop 15 is narrowed to a fully closed state. Of course, there may be cases in which only the intermediate opening is narrowed down to an appropriate intermediate opening.

また、特に本形態例においては、排気管11の途中に介装されてパティキュレートフィルタ12を収容するフィルタケース13を二重殻構造とし且つ該フィルタケース13からターボチャージャ2のタービンに到る排気管11を二重管構造として、これらフィルタケース13及び排気管11の外層部分に形成したリターン流路16,17と、該リターン流路16,17のタービン2bに近い最上流部とコンプレッサ2aの入口との間を接続する比較的短いEGRパイプ18とにより低圧ループ14を構成するようにしているので、パティキュレートフィルタ12を経た排気ガス9の一部がリターン流路16に折り返され、フィルタケース13及び排気管11の外層部分を流れてリターン流路17の最上流部からEGRパイプ18を介しコンプレッサ2aの入口に再循環されることになる。   Particularly in this embodiment, the filter case 13 that is interposed in the exhaust pipe 11 and accommodates the particulate filter 12 has a double-shell structure, and the exhaust from the filter case 13 to the turbine of the turbocharger 2. The pipe 11 has a double-pipe structure, the return passages 16 and 17 formed in the outer layers of the filter case 13 and the exhaust pipe 11, the most upstream portion of the return passages 16 and 17 near the turbine 2b, and the compressor 2a. Since the low-pressure loop 14 is configured by the relatively short EGR pipe 18 connected to the inlet, a part of the exhaust gas 9 that has passed through the particulate filter 12 is folded back to the return flow path 16, and the filter case 13 and the outer layer portion of the exhaust pipe 11, and the compressor from the most upstream part of the return flow path 17 through the EGR pipe 18 Tsu will be recycled to the inlet of the sub 2a.

ここに再循環される排気ガス9は、もともと排気管11途中のパティキュレートフィルタ12を経た時点で低温低圧化しており、しかも、大きな表面積で外気に晒されたフィルタケース13及び排気管11の外層部分を流れる間に放熱により冷却されているので、ここから更にインタークーラ6に送られて空冷されることで排気ガス9の温度が十分に下がり、EGRクーラ等を用いて排気ガス9を水冷する必要がなくなって、水冷系統の複雑化やラジエータ及びファンの大型化が未然に回避されることになる。   The exhaust gas 9 that is recirculated is originally at a low temperature and low pressure when it passes through the particulate filter 12 in the middle of the exhaust pipe 11, and is exposed to the outside air with a large surface area and the outer layer of the exhaust pipe 11. Since it is cooled by heat radiation while flowing through the part, it is further sent from here to the intercooler 6 and air-cooled, so that the temperature of the exhaust gas 9 is sufficiently lowered, and the exhaust gas 9 is water-cooled using an EGR cooler or the like. This eliminates the need for a complicated water cooling system and an increase in the size of the radiator and fan.

更に、コンプレッサ2aの入口に再循環される排気ガス9は、パティキュレートフィルタ12を経て除塵された大気よりクリーンなものとなっているので、排気ガス9中の煤等によりコンプレッサ2a下流のインタークーラ6内が汚れてしまう心配がなく、しかも、吸気系の中で最も低圧となるコンプレッサ2aの入口に排気ガス9を再循環するようにしているので、排気側と吸気側との差圧が十分に確保されて良好に排気ガス9が再循環されることになる。   Further, since the exhaust gas 9 recirculated to the inlet of the compressor 2a is cleaner than the air that has been dust-removed through the particulate filter 12, the intercooler downstream of the compressor 2a is caused by soot or the like in the exhaust gas 9. 6 and the exhaust gas 9 is recirculated to the inlet of the compressor 2a having the lowest pressure in the intake system, so that the differential pressure between the exhaust side and the intake side is sufficient. Therefore, the exhaust gas 9 is recirculated well.

この際、パティキュレートフィルタ12の後方からコンプレッサ2aの入口まで戻される排気ガス9は、その大半の行程をフィルタケース13及び排気管11の外層部分を成すリターン流路16,17により戻されるので、該リターン流路16,17のタービン2bに近い最上流部とターボチャージャ2のコンプレッサ2aの入口との間を短いEGRパイプ18で接続するだけで済み、全体構造がコンパクトなものとなってEGRパイプ18のレイアウトにも苦慮しなくて済む。   At this time, the exhaust gas 9 returned from the rear of the particulate filter 12 to the inlet of the compressor 2a is returned by the return flow passages 16 and 17 constituting the outer layer portion of the filter case 13 and the exhaust pipe 11 in most of the strokes. It is only necessary to connect the most upstream portion of the return flow passages 16, 17 near the turbine 2b and the inlet of the compressor 2a of the turbocharger 2 with a short EGR pipe 18, and the EGR pipe has a compact overall structure. No need to worry about 18 layouts.

他方、パティキュレートフィルタ12側からすれば、リターン流路16を流れる排気ガス9により外周部が断熱保温されて外気に熱を奪われ難くなり、寧ろ排気ガス9側から熱を受けて温度の上がり難い外周部が昇温されることになるので、パティキュレートフィルタ12全体が効率良く高温化して捕集済みパティキュレートの燃焼が促進され、パティキュレートの燃え残りが少ない確実な再生が行われることになる。   On the other hand, when viewed from the particulate filter 12 side, the outer peripheral portion is insulated and insulated by the exhaust gas 9 flowing through the return flow path 16 so that it is difficult for heat to be taken away by the outside air. Since the temperature of the difficult outer peripheral portion is increased, the entire particulate filter 12 is efficiently heated to promote the combustion of the collected particulates, and the reliable regeneration with little remaining particulates is performed. Become.

従って、上記形態例によれば、低圧ループ14により加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施し、高圧ループ15では不足EGR率分を補足するべく追加の排気ガス再循環を実施するようにしたことにより、大幅な燃費の悪化を招くことなく高いEGR率を実現して良好なNOx低減効果を得ることができ、しかも、加速時にアクセルの踏み込みに即応して燃料噴射量が増加しても、主として高圧ループ15側の排気ガス9の再循環量を即時低減することでλを早期に回復させて黒煙の発生を未然に回避することができる。   Therefore, according to the above-described embodiment, the exhaust gas recirculation that serves as a base is performed at the EGR rate that is suppressed to the extent that black smoke is not generated during acceleration by the low-pressure loop 14, and the high-pressure loop 15 is to supplement the insufficient EGR rate. By implementing the additional exhaust gas recirculation, it is possible to achieve a high EGR rate without causing a significant deterioration in fuel consumption and to obtain a good NOx reduction effect, and to step on the accelerator during acceleration Even if the fuel injection amount increases promptly, it is possible to recover λ early by mainly reducing the recirculation amount of the exhaust gas 9 on the high pressure loop 15 side, thereby avoiding the occurrence of black smoke. .

更に、低圧ループ14を構成するにあたり、EGRクーラ等を用いて排気ガス9を水冷しなくても済むので、水冷系統の複雑化やラジエータ及びファンの大型化を未然に回避することができ、しかも、長尺なEGRパイプも不要としてコンパクトな低圧ループ14を実現することができる。   Further, since it is not necessary to cool the exhaust gas 9 with an EGR cooler or the like when configuring the low-pressure loop 14, it is possible to avoid the complexity of the water-cooling system and the enlargement of the radiator and the fan. A compact low-pressure loop 14 can be realized without requiring a long EGR pipe.

また、パティキュレートフィルタ12を経た排気ガス9をリターン流路16に流すことにより、パティキュレートフィルタ12の外周部を断熱保温し且つ積極的に昇温することができるので、パティキュレートフィルタ12全体を効率良く高温化して捕集済みパティキュレートの燃焼を促進することができ、より迅速で燃え残りの少ないパティキュレートフィルタ12の確実な再生を図ることができる。   Further, by flowing the exhaust gas 9 that has passed through the particulate filter 12 to the return flow path 16, the outer peripheral portion of the particulate filter 12 can be insulated and kept warm, so that the particulate filter 12 as a whole can be heated. The temperature of the particulate filter 12 can be efficiently increased to promote the combustion of the collected particulates, and the particulate filter 12 with less unburned particles can be reliably regenerated.

更に、本形態例においては、応答性の高い圧力センサ26,27や温度センサ28,29により低圧ループ14及び高圧ループ15における排気ガス9の再循環量を検出するようにしているので、その再循環量の特定が瞬時に行われて良好なフィードバック制御が実現されることになり、しかも、エアフローメータを用いた場合のように渦の影響で検出が不正確になる心配がないので、排気流量の急変により渦が生じ易い加速時であっても正確な排気ガス9の再循環量を検出することができる。   Further, in this embodiment, the recirculation amount of the exhaust gas 9 in the low pressure loop 14 and the high pressure loop 15 is detected by the pressure sensors 26 and 27 and the temperature sensors 28 and 29 having high responsiveness. Since the circulation rate is specified instantly and good feedback control is realized, and there is no fear of inaccurate detection due to the influence of vortices as in the case of using an air flow meter, the exhaust flow rate Even during acceleration when vortices are likely to occur due to a sudden change, the accurate recirculation amount of the exhaust gas 9 can be detected.

また、低圧ループ14の排気ガス9の取り込み口の直後に、排気ガス9の流れを堰き止める排気絞り手段として絞り弁30を付設しているので、アイドリング時や極軽負荷時等における吸気側と排気側との圧力差が不足している条件下にあっても、絞り弁30で排気ガス9の流れを堰き止めて吸気側と排気側との圧力差を確実に確保することができるので、低圧ループ14への円滑な排気ガス9の再循環を促すことができる。   Further, immediately after the intake port of the exhaust gas 9 in the low-pressure loop 14, a throttle valve 30 is provided as an exhaust throttle means for blocking the flow of the exhaust gas 9, so that the intake side during idling, extremely light load, etc. Even under conditions where the pressure difference with the exhaust side is insufficient, the flow of the exhaust gas 9 can be blocked by the throttle valve 30 to ensure the pressure difference between the intake side and the exhaust side. Smooth recirculation of the exhaust gas 9 to the low-pressure loop 14 can be promoted.

尚、本発明のEGR装置は、上述の形態例にのみ限定されるものではなく、低圧ループの構成は図示例に限定されないこと、また、再循環量調整手段は排気ガスの再循環量を絞り込み得る機構であれば必ずしもバルブ形式に限定されるものではなく、排気絞り手段も同様にバルブ形式に限定されないこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The EGR device of the present invention is not limited to the above-described embodiment. The configuration of the low-pressure loop is not limited to the illustrated example, and the recirculation amount adjusting means narrows down the exhaust gas recirculation amount. The mechanism is not necessarily limited to the valve type, and the exhaust throttling means is not limited to the valve type, and various modifications can be made without departing from the scope of the present invention. is there.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の制御装置による加速時の制御の一例を示したタイムチャートである。It is the time chart which showed an example of the control at the time of acceleration by the control apparatus of FIG.

符号の説明Explanation of symbols

2 ターボチャージャ
2a コンプレッサ
2b タービン
4 吸気
5 吸気管
7 吸気マニホールド
9 排気ガス
10 排気マニホールド
11 排気管
11a 内管
11b 外管
12 パティキュレートフィルタ
13 フィルタケース
13a インナシェル
13b アウタシェル
14 低圧ループ
15 高圧ループ
16 リターン流路
17 リターン流路
18 EGRパイプ
19 EGRバルブ(再循環量調整手段)
20 EGRパイプ
21 EGRバルブ(再循環量調整手段)
23 制御装置
24 アクセルセンサ
26 圧力センサ
26a 検出信号
27 圧力センサ
27a 検出信号
28 温度センサ
28a 検出信号
29 温度センサ
29a 検出信号
30 絞り弁(排気絞り手段)
2 Turbocharger 2a Compressor 2b Turbine 4 Intake 5 Intake pipe 7 Intake manifold 9 Exhaust gas 10 Exhaust manifold 11 Exhaust pipe 11a Inner pipe 11b Outer pipe 12 Particulate filter 13 Filter case 13a Inner shell 13b Outer shell 14 Low pressure loop 15 High pressure loop 16 Return Flow path 17 Return flow path 18 EGR pipe 19 EGR valve (recirculation amount adjusting means)
20 EGR pipe 21 EGR valve (recirculation amount adjusting means)
23 control device 24 accelerator sensor 26 pressure sensor 26a detection signal 27 pressure sensor 27a detection signal 28 temperature sensor 28a detection signal 29 temperature sensor 29a detection signal 30 throttle valve (exhaust throttle means)

Claims (4)

ターボチャージャのタービンより下流の排気通路から排気ガスの一部を抜き出して前記ターボチャージャのコンプレッサより上流の吸気通路へ再循環する低圧ループと、排気マニホールドから排気ガスの一部を抜き出して吸気マニホールドの入口付近に再循環する高圧ループと、これら低圧ループ及び高圧ループの夫々に備えられて排気ガスの再循環量を調整する再循環量調整手段と、低圧ループにより加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施して高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施し且つ加速時の黒煙回避については主として高圧ループ側の排気ガスの再循環量を即時低減させることで対応し得るように前記各再循環量調整手段を制御する制御装置とを備えたことを特徴とするEGR装置。   A part of the exhaust gas is extracted from the exhaust passage downstream from the turbine of the turbocharger and recirculated to the intake passage upstream from the compressor of the turbocharger, and a part of the exhaust gas is extracted from the exhaust manifold. A high-pressure loop that recirculates in the vicinity of the inlet, a recirculation amount adjusting means that adjusts the recirculation amount of exhaust gas provided in each of the low-pressure loop and the high-pressure loop, and black smoke is not generated during acceleration by the low-pressure loop. The exhaust gas recirculation that is the base with the suppressed EGR rate is implemented, and additional exhaust gas recirculation is performed in the high-pressure loop to supplement the insufficient EGR rate, and black smoke avoidance during acceleration is mainly performed on the high-pressure loop side. And a control device for controlling each of the recirculation amount adjusting means so as to cope with it by immediately reducing the recirculation amount of the exhaust gas. EGR apparatus characterized by a. 排気管の途中に介装されてパティキュレートフィルタを収容するフィルタケースを二重殻構造とし且つ該フィルタケースからターボチャージャのタービンに到る排気管を二重管構造として、これらフィルタケース及び排気管の外層部分に、パティキュレートフィルタを経た排気ガスの一部を上流側へ戻すリターン流路を形成し、該リターン流路のタービンに近い最上流部と前記ターボチャージャのコンプレッサの入口との間をEGRパイプにより接続し、これらリターン流路とEGRパイプとにより低圧ループを構成したことを特徴とする請求項1に記載のEGR装置。   The filter case that is inserted in the middle of the exhaust pipe and accommodates the particulate filter has a double shell structure, and the exhaust pipe that reaches the turbine of the turbocharger from the filter case has a double pipe structure. A return flow path for returning a part of the exhaust gas that has passed through the particulate filter to the upstream side is formed in the outer layer portion of the return flow path, and between the most upstream portion near the turbine of the return flow path and the inlet of the compressor of the turbocharger. The EGR device according to claim 1, wherein the EGR device is connected by an EGR pipe, and a low pressure loop is configured by the return flow path and the EGR pipe. 低圧ループと高圧ループの夫々に、再循環量調整手段を絞りとして挟んだ二点間の圧力差を検出する圧力センサと、前記二点間で排気温度を検出する温度センサとを装備し、これら圧力センサ及び温度センサからの検出信号に基づき間接測定方式で排気ガスの再循環量を算出し、その算出された排気ガスの再循環量に基づき前記各再循環量調整手段にフィードバック制御がかかるように制御装置を構成したことを特徴とする請求項1又は2に記載のEGR装置。   Each of the low-pressure loop and the high-pressure loop is equipped with a pressure sensor for detecting a pressure difference between two points sandwiched by a recirculation amount adjusting means as a throttle, and a temperature sensor for detecting an exhaust temperature between the two points. An exhaust gas recirculation amount is calculated by an indirect measurement method based on detection signals from the pressure sensor and the temperature sensor, and feedback control is applied to each of the recirculation amount adjustment means based on the calculated exhaust gas recirculation amount. The EGR apparatus according to claim 1, wherein a control apparatus is configured. 低圧ループの排気ガスの取り込み口の直後に、排気ガスの流れを堰き止める排気絞り手段を付設したことを特徴とする請求項1、2又は3に記載のEGR装置。   The EGR device according to claim 1, 2 or 3, further comprising an exhaust throttle means for blocking the flow of exhaust gas immediately after the exhaust gas intake port of the low-pressure loop.
JP2005162414A 2005-06-02 2005-06-02 Egr device Pending JP2006336547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162414A JP2006336547A (en) 2005-06-02 2005-06-02 Egr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162414A JP2006336547A (en) 2005-06-02 2005-06-02 Egr device

Publications (1)

Publication Number Publication Date
JP2006336547A true JP2006336547A (en) 2006-12-14

Family

ID=37557313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162414A Pending JP2006336547A (en) 2005-06-02 2005-06-02 Egr device

Country Status (1)

Country Link
JP (1) JP2006336547A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
JP2008038627A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
WO2008058596A1 (en) * 2006-11-16 2008-05-22 Volkswagen Aktiengesellschaft Internal combustion engine with exhaust-gas recirculation
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
WO2008087515A2 (en) * 2007-01-18 2008-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2008208801A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Control device for internal combustion engine with exhaust gas recirculation system
WO2008120553A1 (en) * 2007-03-29 2008-10-09 Honda Motor Co., Ltd. Egr controller for internal combustion engine
JP2008261300A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2008267247A (en) * 2007-04-19 2008-11-06 Denso Corp Control device for internal combustion engine
JP2008542626A (en) * 2005-06-09 2008-11-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control method and control apparatus for internal combustion engine
US7493762B2 (en) * 2005-08-25 2009-02-24 Ford Global Technologies, Llc System and method for diagnostic of low pressure exhaust gas recirculation system and adapting of measurement devices
EP2112356A2 (en) * 2008-04-23 2009-10-28 Volkswagen AG Method for operating a combustion engine
JP2010515861A (en) * 2007-01-16 2010-05-13 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Internal combustion engine system
JP2010203282A (en) * 2009-03-02 2010-09-16 Mazda Motor Corp Method for controlling exhaust gas recirculation of internal combustion engine and system thereof
WO2010121852A1 (en) * 2009-04-24 2010-10-28 Pierburg Gmbh Exhaust gas recirculation system for internal combustion engine
JP2011241746A (en) * 2010-05-18 2011-12-01 Hino Motors Ltd Exhaust emission control device
US8108129B2 (en) 2008-05-20 2012-01-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
US8220443B2 (en) 2007-01-18 2012-07-17 Toyota Jidosha Kabushiki Kaisha EGR system for internal combustion engine and method for controlling the same
DE102011013481A1 (en) * 2011-03-10 2012-09-13 Volkswagen Ag Method for determining temperature of gas in combustion chamber of e.g. diesel engine, for passenger car, involves determining temperature of gas based on total mass and pressure in chamber, rotation speed of engine and volume of chamber
WO2014024928A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Control device for diesel engine
CN103835841A (en) * 2014-02-25 2014-06-04 长城汽车股份有限公司 EGR valve control device and vehicle with same
JP6451812B1 (en) * 2017-09-26 2019-01-16 マツダ株式会社 Engine exhaust gas recirculation control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091370A (en) * 1999-09-27 2001-04-06 Mitsubishi Motors Corp Fluid temperature estimating device
JP2003028008A (en) * 2001-07-13 2003-01-29 Mitsubishi Motors Corp Egr device of internal combustion engine
JP2004162674A (en) * 2002-11-15 2004-06-10 Isuzu Motors Ltd Exhaust gas recirculation system for internal combustion engine provided with turbo charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091370A (en) * 1999-09-27 2001-04-06 Mitsubishi Motors Corp Fluid temperature estimating device
JP2003028008A (en) * 2001-07-13 2003-01-29 Mitsubishi Motors Corp Egr device of internal combustion engine
JP2004162674A (en) * 2002-11-15 2004-06-10 Isuzu Motors Ltd Exhaust gas recirculation system for internal combustion engine provided with turbo charger

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542626A (en) * 2005-06-09 2008-11-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control method and control apparatus for internal combustion engine
US7493762B2 (en) * 2005-08-25 2009-02-24 Ford Global Technologies, Llc System and method for diagnostic of low pressure exhaust gas recirculation system and adapting of measurement devices
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
US7717099B2 (en) 2006-06-29 2010-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
JP2008038627A (en) * 2006-08-01 2008-02-21 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
US8091535B2 (en) 2006-11-16 2012-01-10 Volkswagen Aktiengesellschaft Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
WO2008058596A1 (en) * 2006-11-16 2008-05-22 Volkswagen Aktiengesellschaft Internal combustion engine with exhaust-gas recirculation
US8555864B2 (en) 2006-11-16 2013-10-15 Volkswagen Aktiengesellschaft Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
JP2010515861A (en) * 2007-01-16 2010-05-13 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Internal combustion engine system
US8844284B2 (en) 2007-01-16 2014-09-30 Mahle International Gmbh Internal combustion engine system
WO2008087515A2 (en) * 2007-01-18 2008-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US8001953B2 (en) 2007-01-18 2011-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for controlling the same
WO2008087515A3 (en) * 2007-01-18 2008-09-12 Toyota Motor Co Ltd Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US8220443B2 (en) 2007-01-18 2012-07-17 Toyota Jidosha Kabushiki Kaisha EGR system for internal combustion engine and method for controlling the same
JP2008208801A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Control device for internal combustion engine with exhaust gas recirculation system
EP2128407A1 (en) * 2007-03-29 2009-12-02 Honda Motor Co., Ltd. Egr controller for internal combustion engine
JP2008248729A (en) * 2007-03-29 2008-10-16 Honda Motor Co Ltd Egr control device for internal combustion engine
WO2008120553A1 (en) * 2007-03-29 2008-10-09 Honda Motor Co., Ltd. Egr controller for internal combustion engine
EP2128407A4 (en) * 2007-03-29 2011-05-04 Honda Motor Co Ltd Egr controller for internal combustion engine
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2008261300A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP4715799B2 (en) * 2007-04-13 2011-07-06 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP2008267247A (en) * 2007-04-19 2008-11-06 Denso Corp Control device for internal combustion engine
EP2112356A2 (en) * 2008-04-23 2009-10-28 Volkswagen AG Method for operating a combustion engine
EP2112356A3 (en) * 2008-04-23 2014-01-22 Volkswagen Aktiengesellschaft Method for operating a combustion engine
DE102008020477A1 (en) * 2008-04-23 2009-10-29 Volkswagen Ag Method for operating an internal combustion engine
US8108129B2 (en) 2008-05-20 2012-01-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
JP2010203282A (en) * 2009-03-02 2010-09-16 Mazda Motor Corp Method for controlling exhaust gas recirculation of internal combustion engine and system thereof
WO2010121852A1 (en) * 2009-04-24 2010-10-28 Pierburg Gmbh Exhaust gas recirculation system for internal combustion engine
JP2011241746A (en) * 2010-05-18 2011-12-01 Hino Motors Ltd Exhaust emission control device
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
DE102011013481A1 (en) * 2011-03-10 2012-09-13 Volkswagen Ag Method for determining temperature of gas in combustion chamber of e.g. diesel engine, for passenger car, involves determining temperature of gas based on total mass and pressure in chamber, rotation speed of engine and volume of chamber
WO2014024928A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Control device for diesel engine
JPWO2014024928A1 (en) * 2012-08-07 2016-07-25 日産自動車株式会社 Diesel engine control device
CN103835841A (en) * 2014-02-25 2014-06-04 长城汽车股份有限公司 EGR valve control device and vehicle with same
JP6451812B1 (en) * 2017-09-26 2019-01-16 マツダ株式会社 Engine exhaust gas recirculation control device
JP2019060269A (en) * 2017-09-26 2019-04-18 マツダ株式会社 Exhaust gas recirculation control device for engine

Similar Documents

Publication Publication Date Title
JP2006336547A (en) Egr device
JP4215069B2 (en) Exhaust gas recirculation device for internal combustion engine
US20120137680A1 (en) Turbocharger protecting method of engine provided with lp-egr
JP2010048107A (en) Exhaust gas recirculation device for diesel engine
JP2008169712A (en) Engine with egr system
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5204609B2 (en) Engine control device
JP2008196326A (en) Egr device for engine
JP2008008181A (en) Diesel engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2009185751A (en) Control device of internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP4882688B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5266039B2 (en) Intercooler abnormality detection device
JP2008064046A (en) Exhaust gas recirculating device of engine
JP4735519B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6514052B2 (en) Control device for internal combustion engine and throttle valve protection device
JP2008128115A (en) Exhaust emission control system for internal combustion engine
JP4910849B2 (en) EGR system for internal combustion engine
JP2007127037A (en) Diesel engine
JP2005351194A (en) Egr system
JP2005002975A (en) Exhaust purification device for engine
JP6252067B2 (en) EGR device and exhaust gas recirculation method
JP2006009745A (en) Method for correcting output of air flow sensor for internal combustion engine
JP4601518B2 (en) EGR device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026