JP2011241746A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011241746A
JP2011241746A JP2010114106A JP2010114106A JP2011241746A JP 2011241746 A JP2011241746 A JP 2011241746A JP 2010114106 A JP2010114106 A JP 2010114106A JP 2010114106 A JP2010114106 A JP 2010114106A JP 2011241746 A JP2011241746 A JP 2011241746A
Authority
JP
Japan
Prior art keywords
exhaust gas
pressure loop
exhaust
fuel ratio
way catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114106A
Other languages
Japanese (ja)
Other versions
JP5620715B2 (en
Inventor
Hiroshi Funahashi
博 舟橋
Munechika Tsutsumi
宗近 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010114106A priority Critical patent/JP5620715B2/en
Publication of JP2011241746A publication Critical patent/JP2011241746A/en
Application granted granted Critical
Publication of JP5620715B2 publication Critical patent/JP5620715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To omit a labor such as replenishing urea water by eliminating the need of incidental facilities such as a urea water tank and a urea water feeding pipe by making it possible to apply a three way catalyst even in a diesel engine.SOLUTION: An exhaust emission control device has a low pressure loop 21, a high pressure loop 22, EGR valves 23, 24 (recirculation quantity controller) with which respective loops are equipped, the three-way catalyst 20 with which an exhaust pipe 4 is equipped, and a controller 27 for controlling the respective EGR valve 23, 24 so as to perform exhaust gas recirculation which is a base at an EGR rate suppressed to a degree in which black smoke is no generated when accelerating by the low pressure loop 21 and perform an additional exhaust gas recirculation to supplement of an insufficient EGR ratio by the high pressure loop 22, and suppress an air fuel ratio near a theoretical air fuel ratio, and is constituted such that the combustion can be established even near the theoretical air fuel ratio by raising the injection pressure of the fuel to the respective cylinders 19 to a predetermined height or more and by adjusting the injection hole diameter for injecting fuel such that the particles of the fuel injection can diffuse to the whole area of combustion chambers.

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

排気系に装着されて排気ガス中のHC,CO,NOxを同時に低減させる触媒として三元触媒が従来から知られており、該三元触媒における反応では、HC及びCOの酸化にNOxのO2が使われ、該NOxがN2に還元されると共に、前記HC及びCOが酸化されてCO2と水(H2O)になるので、有害三成分が同時に無害化されることになる。 Conventionally, a three-way catalyst is known as a catalyst that is mounted on an exhaust system and simultaneously reduces HC, CO, and NOx in exhaust gas. In the reaction in the three-way catalyst, NOx O 2 is used to oxidize HC and CO. NOx is reduced to N 2 , and the HC and CO are oxidized to CO 2 and water (H 2 O), so that harmful three components are simultaneously rendered harmless.

ただし、三元触媒には、O2が過不足なく燃料を燃焼させる空燃比、即ち、理論空燃比(ストイキオメトリ)でないと十分な効果が発揮されないという短所があり、排気ガスの残存酸素量が多いディーゼルエンジンで三元触媒は使用されておらず、主としてガソリンエンジンに適用されているのが実情である。 However, the three-way catalyst has a disadvantage that a sufficient effect cannot be exerted unless the air / fuel ratio at which O 2 burns the fuel without excess or deficiency, that is, the stoichiometric air / fuel ratio (stoichiometry). The three-way catalyst is not used in many diesel engines, and it is actually applied to gasoline engines.

因みに、ディーゼルエンジンでは、単純に燃料の噴射量を増やして空気過剰率(λ)を1程度(理論空燃比)にしても気筒内での燃焼が失火してしまうという不具合があり、また、失火直前の状態にあってもCO,HCがそれほど増えないという不具合もあるため、三元触媒を用いてHC,CO,NOxの同時低減を図ることは不可能と考えられている。   Incidentally, in the diesel engine, even if the fuel injection amount is simply increased and the excess air ratio (λ) is about 1 (theoretical air-fuel ratio), there is a problem that the combustion in the cylinder misfires, and there is a misfire. Since there is a problem that CO and HC do not increase so much even in the previous state, it is considered impossible to simultaneously reduce HC, CO and NOx using a three-way catalyst.

図3は従来におけるディーゼルエンジンに適用した排気浄化装置の一例を示すもので、ここに図示している例では、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒5が装備されている。   FIG. 3 shows an example of a conventional exhaust gas purification device applied to a diesel engine. In the example shown here, an exhaust pipe through which exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows. 4 is equipped with a selective catalytic reduction catalyst 5 having the property of selectively reacting NOx with ammonia even in the presence of oxygen.

そして、この選択還元型触媒5より上流側の排気管4に、尿素水6を還元剤として噴射する尿素水添加用インジェクタ7(尿素水添加手段)が設置されていると共に、前記選択還元型触媒5の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒8が装備されている。 A urea water addition injector 7 (urea water addition means) for injecting urea water 6 as a reducing agent is installed in the exhaust pipe 4 upstream of the selective reduction catalyst 5 and the selective reduction catalyst. Immediately after 5, an NH 3 slip catalyst 8 that oxidizes excess ammonia as a countermeasure against leaked ammonia is provided.

また、前記尿素水添加用インジェクタ7による尿素水6の添加位置より上流側の排気管4に、排気ガス3中の未燃燃料分を酸化処理する機能を高めた酸化触媒9が装備されていると共に、該酸化触媒9の直後には、自身にも酸化触媒を一体的に担持したパティキュレートフィルタ10が装備されている。   Further, an oxidation catalyst 9 having an enhanced function of oxidizing unburned fuel in the exhaust gas 3 is provided in the exhaust pipe 4 upstream of the urea water 6 addition position by the urea water addition injector 7. In addition, immediately after the oxidation catalyst 9, the particulate filter 10 that integrally carries the oxidation catalyst is also provided.

斯かる排気浄化装置によれば、尿素水添加用インジェクタ7から尿素水6が噴射されて排気ガス3中でアンモニアと炭酸ガスに熱分解され、活性下限温度以上の温度条件下で活性状態となっている選択還元型触媒5上で排気ガス3中のNOxがアンモニアと効果的に反応して良好に還元浄化されることになる。   According to such an exhaust gas purification apparatus, urea water 6 is injected from the urea water addition injector 7 and is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas 3 and becomes active under temperature conditions equal to or higher than the activation lower limit temperature. On the selective catalytic reduction catalyst 5, the NOx in the exhaust gas 3 effectively reacts with ammonia and is favorably reduced and purified.

また、ここに図示している例では、選択還元型触媒5の上流側にパティキュレートフィルタ10が装備されているので、該パティキュレートフィルタ10により排気ガス3中のパティキュレートが捕集されて除去され、パティキュレートの堆積量が所定量に達した際に、ディーゼルエンジン1側でメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実施すると、このポスト噴射により排気ガス3中に未燃の燃料(主としてHC:炭化水素)が添加され、この未燃の燃料が酸化触媒9を通過する間に酸化反応し、その反応熱で昇温した排気ガス3の流入により後段のパティキュレートフィルタ10の触媒床温度が上げられてパティキュレートが強制的に燃焼除去される。   Further, in the example shown here, since the particulate filter 10 is provided upstream of the selective catalytic reduction catalyst 5, the particulate filter 10 collects and removes the particulates in the exhaust gas 3. When the accumulated amount of particulates reaches a predetermined amount, if post-injection is performed at the non-ignition timing later than the compression top dead center on the diesel engine 1 side after the main injection, the exhaust gas 3 is discharged by this post-injection. An unburned fuel (mainly HC: hydrocarbon) is added to the inside, and the unburned fuel undergoes an oxidation reaction while passing through the oxidation catalyst 9, and an inflow of exhaust gas 3 heated by the reaction heat causes the downstream stage to flow. The catalyst bed temperature of the particulate filter 10 is raised, and the particulates are forcibly burned off.

尚、この種の尿素水を還元剤として排気ガス中のNOxを還元浄化する選択還元型触媒を備えた排気浄化装置に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to an exhaust purification device provided with a selective reduction catalyst that reduces and purifies NOx in exhaust gas using this type of urea water as a reducing agent, there is Patent Document 1 below.

特開2004−239109号公報JP 2004-239109 A

しかしながら、斯かる従来の排気浄化装置においては、NOxの還元浄化を行うために尿素水6の添加が必要であるため、この尿素水6を貯留しておくための尿素水タンク11や尿素水供給管12、供給ポンプ13といった付帯設備が必要となり、設備コストが高くつくという問題があり、また、尿素水タンク11が空にならないように尿素水6を随時補給しなければならないという手間もかかった。   However, in such a conventional exhaust purification device, it is necessary to add urea water 6 in order to perform reduction purification of NOx. Therefore, a urea water tank 11 for storing the urea water 6 and a urea water supply are provided. Ancillary facilities such as the pipe 12 and the supply pump 13 are required, and there is a problem that the equipment cost is high, and it takes time and effort to replenish the urea water 6 as needed so that the urea water tank 11 does not become empty. .

本発明は上述の実情に鑑みてなしたもので、ディーゼルエンジンでも三元触媒を適用し得るようにして尿素水タンクや尿素水供給管、供給ポンプといった付帯設備を不要とし、尿素水の補給といった手間も省けるようにした排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, so that a three-way catalyst can be applied even in a diesel engine, and an auxiliary facility such as a urea water tank, a urea water supply pipe, and a supply pump is not required, and urea water is replenished. An object of the present invention is to provide an exhaust emission control device that can save labor.

本発明は、ディーゼルエンジンで排気ガス中のHC,CO,NOxの同時低減を図るための排気浄化装置であって、ターボチャージャのタービンより下流の排気通路から排気ガスの一部を抜き出して前記ターボチャージャのコンプレッサより上流の吸気通路へ再循環する低圧ループと、排気マニホールドから排気ガスの一部を抜き出して吸気マニホールドの入口付近に再循環する高圧ループと、これら低圧ループ及び高圧ループの夫々に備えられて排気ガスの再循環量を調整する再循環量調整手段と、前記排気通路の途中に備えられた三元触媒と、低圧ループにより加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施し且つ高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施して空燃比を理論空燃比近傍に抑制し得るように前記各再循環量調整手段を制御する制御装置とを備え、ディーゼルエンジンの各気筒への燃料の噴射圧を所定以上に上げ且つその燃料噴射の噴孔径を燃料噴霧の粒が燃焼室の全域に拡散し得るよう調整することで理論空燃比近傍でも燃焼成立し得るように構成したことを特徴とするものである。   The present invention is an exhaust emission control device for simultaneously reducing HC, CO, and NOx in exhaust gas in a diesel engine, wherein a part of the exhaust gas is extracted from an exhaust passage downstream from a turbine of a turbocharger and the turbo A low-pressure loop that recirculates to the intake passage upstream from the compressor of the charger, a high-pressure loop that extracts a part of the exhaust gas from the exhaust manifold and recirculates it near the inlet of the intake manifold, and each of these low-pressure loop and high-pressure loop The recirculation amount adjusting means for adjusting the recirculation amount of exhaust gas, the three-way catalyst provided in the middle of the exhaust passage, and the EGR rate suppressed to the extent that black smoke is not generated during acceleration by the low pressure loop The exhaust gas recirculation is performed and additional exhaust gas recirculation is performed to supplement the insufficient EGR rate in the high pressure loop. And a control device that controls each of the recirculation amount adjusting means so that the fuel injection pressure to each cylinder of the diesel engine is increased to a predetermined value or more, and the injection hole diameter of the fuel injection By adjusting the fuel spray particles so that they can diffuse throughout the combustion chamber, the combustion can be established even in the vicinity of the theoretical air-fuel ratio.

而して、このようにすれば、低圧ループ側でベースとなる排気ガス再循環が実施され、高圧ループ側では不足EGR率分を補足するべく追加の排気ガス再循環が実施されるので、低圧ループと高圧ループの併用により高いEGR率が実現され、空燃比を理論空燃比に抑制することが可能となる。   Thus, the exhaust gas recirculation as a base is performed on the low pressure loop side in this way, and the additional exhaust gas recirculation is performed on the high pressure loop side to supplement the shortage EGR rate. A high EGR rate is realized by the combined use of the loop and the high-pressure loop, and the air-fuel ratio can be suppressed to the stoichiometric air-fuel ratio.

即ち、高圧ループ側で分担しなければならない排気ガスの再循環量が高圧ループの単独使用の場合よりも少なくて済み、可変ノズル式のターボチャージャ等で無理な排気ガスの絞り込みを行わなくても、高圧ループ側で分担すべき量の排気ガス再循環が比較的容易に実現されることになる。   In other words, the amount of exhaust gas recirculation that must be shared on the high-pressure loop side is smaller than in the case of using the high-pressure loop alone, and there is no need to forcibly limit the exhaust gas with a variable nozzle type turbocharger. The amount of exhaust gas recirculation that should be shared on the high-pressure loop side can be realized relatively easily.

これまで高いEGR率で排気ガスを再循環するのに低圧ループが採用されてこなかったのは、走行中に運転者によりアクセルが踏み込まれて加速状態に入った場合に、空気過剰率が急激に低下して黒煙が発生し易かったからであるが、本発明では、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループによりベースとなる排気ガス再循環を実施しているにすぎないので、加速時に高圧ループ側の排気ガスの再循環量を即時低減することで黒煙の発生を未然に回避することが可能である。   The low-pressure loop has not been used to recirculate exhaust gas at a high EGR rate until now, when the driver depresses the accelerator and enters an acceleration state while driving. This is because black smoke is likely to be generated due to a drop, but in the present invention, exhaust gas recirculation as a base is only performed by a low-pressure loop with an EGR rate suppressed to such a level that black smoke is not generated during acceleration. Therefore, it is possible to avoid the occurrence of black smoke by immediately reducing the amount of exhaust gas recirculated on the high-pressure loop side during acceleration.

即ち、低圧ループにおいては、ターボチャージャのコンプレッサより上流の吸気通路へ排気ガスが戻されるが、ここからコンプレッサ、インタークーラ、吸気マニホールドを経てエンジンに到るまでの経路が長く、この長い経路に排気ガスの混合した吸気が存在することになるため、加速時にアクセルの踏み込みに即応して燃料噴射量が増加した場合に、低圧ループの再循環量調整手段を直ちに閉じても、前記長い経路中の排気ガス混じりの吸気が全て使い切られるまで空気過剰率の低い状態が持続して黒煙が発生し易いという欠点がある。   That is, in the low-pressure loop, exhaust gas is returned to the intake passage upstream of the turbocharger compressor, but the route from here to the engine via the compressor, intercooler, and intake manifold is long, and the exhaust gas is exhausted to this long route. Since the intake air mixed with gas exists, when the fuel injection amount increases in response to accelerator depression during acceleration, even if the recirculation amount adjusting means of the low pressure loop is immediately closed, There is a disadvantage that black smoke tends to be generated because the state of low excess air rate continues until all the intake air mixed with exhaust gas is used up.

これに対し、高圧ループにおいては、吸気マニホールドの入口付近に排気ガスが戻されるので、排気ガスの混合した吸気は吸気マニホールド内にしか存在せず、加速時に燃料噴射量が増加しても、高圧ループの再循環量調整手段を閉じれば、吸気マニホールド内の排気ガス混じりの吸気が程無く使い切られて空気過剰率が早期に回復するので、加速時における黒煙の発生を回避し易いという利点がある。   On the other hand, in the high-pressure loop, exhaust gas is returned near the inlet of the intake manifold, so the intake air mixed with the exhaust gas exists only in the intake manifold, and even if the fuel injection amount increases during acceleration, the high-pressure loop If the loop recirculation amount adjustment means is closed, the intake air mixed with the exhaust gas in the intake manifold will be used up soon and the excess air ratio will recover quickly, so it is easy to avoid the occurrence of black smoke during acceleration. is there.

そして、このように低圧ループと高圧ループとにより多量の排気ガスを再循環して空燃比を理論空燃比近傍に抑制し、斯かる状態でディーゼルエンジンの各気筒への燃料噴射を実行すると、その燃料噴射の噴射圧と噴孔径の適切な調整により燃料噴霧の粒が燃焼室の全域に拡散し、燃料が良好に分散混合して均等に薄まった状態で燃焼が行われることで燃焼が失火せずに成立することになる。   Then, in this way, a large amount of exhaust gas is recirculated by the low pressure loop and the high pressure loop to suppress the air-fuel ratio to near the stoichiometric air-fuel ratio, and when fuel injection to each cylinder of the diesel engine is executed in such a state, By properly adjusting the injection pressure and nozzle diameter of the fuel injection, fuel spray particles diffuse throughout the combustion chamber, and the fuel is well dispersed and mixed, and combustion is performed in a state of evenly thinning. It will be established without.

即ち、燃料噴射の噴射圧を既存のディーゼルエンジンにおける噴射圧よりも大幅に高い圧力に設定することで燃料噴霧をより遠くまで送り込む力を高めると共に、燃料噴射の噴射径を一般的な噴射径より若干大きめにしておくことで噴射圧の上昇に伴う燃料噴霧の過剰な微細化を抑制して噴射の力を受け易い粒の粗さが保たれるようにすれば、燃料噴霧の粒を燃焼室の全域に拡散させて良好に分散混合させることが可能となる。   That is, by setting the injection pressure of fuel injection to a pressure that is significantly higher than the injection pressure in existing diesel engines, the power to send fuel spray farther is increased, and the injection diameter of fuel injection is made larger than the general injection diameter. By slightly increasing the size of the fuel spray, it is possible to prevent excessive atomization of the fuel spray accompanying an increase in the injection pressure and to maintain the roughness of the particles that are susceptible to injection force. It is possible to diffuse and mix well throughout the entire area.

尚、このように多量の排気ガスを再循環して空燃比を理論空燃比近傍に抑制しても、ディーゼルエンジンの各気筒への燃料噴射の噴射圧と噴孔径の適切な調整により燃焼を成立させ得る事実は、本発明者の鋭意研究の末に見いだされた事実であり、一般的には、単純に燃料の噴射量を増やして空気過剰率を下げることしか提案されていないため、理論空燃比近傍でのディーゼルエンジンの燃焼成立は不可能と考えられている。   Even if a large amount of exhaust gas is recirculated to suppress the air-fuel ratio to near the stoichiometric air-fuel ratio, combustion can be established by appropriately adjusting the injection pressure and injection hole diameter of the fuel injection to each cylinder of the diesel engine. The facts that can be made are the facts found at the end of the inventor's earnest research, and in general, it has been proposed to simply increase the fuel injection amount and lower the excess air ratio. It is considered impossible to establish combustion in a diesel engine near the fuel ratio.

しかも、多量の排気ガスを再循環して空燃比を理論空燃比近傍に抑制し、ディーゼルエンジンの各気筒への燃料噴射の噴射圧と噴孔径の適切な調整により燃焼を成立させた場合、排気ガス中にCOとHCが多量に生成されるという事実も本発明者は確認しており、ディーゼルエンジンでも三元触媒を機能させてHC,CO,NOxの同時低減を図り得ることが判明している。   In addition, when a large amount of exhaust gas is recirculated to suppress the air-fuel ratio to near the stoichiometric air-fuel ratio and combustion is established by appropriately adjusting the injection pressure and injection hole diameter of fuel injection to each cylinder of the diesel engine, The present inventor has also confirmed the fact that a large amount of CO and HC is produced in the gas, and it has been found that a three-way catalyst can function in a diesel engine to simultaneously reduce HC, CO, and NOx. Yes.

即ち、多量の排気ガスを再循環して空燃比を理論空燃比近傍に抑制した条件下では、所定以上の噴射圧で噴射された燃料がO2と出会う確率が低いために気筒内の壁面まで到達し易く、ここで燃料が熱分解してHCのガスが多量に発生することになるが、この際、O2より大きく且つ高質量で高引力のCO2が燃焼室内に多く存在することで、該CO2がHCとO2との反応を阻害する役割を果たしてHCの酸化反応が停滞し、該HCが排気ガス中に多量に残留することになる。 That is, under the condition that a large amount of exhaust gas is recirculated and the air-fuel ratio is suppressed to near the stoichiometric air-fuel ratio, the fuel injected at a predetermined injection pressure or higher is less likely to meet O 2 , so The fuel is pyrolyzed and a large amount of HC gas is generated here. At this time, a large amount of CO 2 having a larger mass and higher attractive force than O 2 exists in the combustion chamber. The CO 2 plays a role of inhibiting the reaction between HC and O 2 , so that the oxidation reaction of HC is stagnated, and the HC remains in a large amount in the exhaust gas.

また、HCとO2の最初に起こる反応ではCOが生成されるだけであり、通常のディーゼルエンジンのように残存酸素量が多く且つ排気ガス再循環によるCO2の量もそれほど多くない条件下では、前記最初の反応で生じたCOが次々とO2と結びついてCO2まで反応が進むことになるが、多量の排気ガスを再循環して空燃比を理論空燃比近傍に抑制した条件下では、O2と出会う確率が低く且つ多量のCO2も反応の邪魔になるので、COの状態のまま排気ガス中に多量に残留することになる。 In the first reaction of HC and O 2 , only CO is generated. Under the condition that the amount of residual oxygen is large and the amount of CO 2 due to exhaust gas recirculation is not so large as in a normal diesel engine. The CO produced in the first reaction is connected to O 2 one after another, and the reaction proceeds to CO 2. Under conditions where a large amount of exhaust gas is recirculated and the air-fuel ratio is suppressed to the vicinity of the stoichiometric air-fuel ratio. , The probability of encountering O 2 is low and a large amount of CO 2 also interferes with the reaction, so that a large amount remains in the exhaust gas in the state of CO.

また、本発明においては、三元触媒がNH3を吸着し得るようゼオライトを触媒原料として含んでいることが好ましく、このようにすれば、過渡運転時等に空燃比が理論空燃比より小さくなって三元触媒上でNOxからNH3が生成されてしまう事態となっても、このNH3を三元触媒上に保持し且つこれをNOxを還元浄化するための還元剤として消費することが可能となる。 Further, in the present invention, it is preferable that the three-way catalyst contains zeolite as a catalyst raw material so that NH 3 can be adsorbed. By doing so, the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio during transient operation or the like. Te be a situation in which the NH 3 from NOx will be generated on the three-way catalyst, can be consumed this NH 3 it and held in the three-way catalyst as a reducing agent to reduce and purify NOx It becomes.

更に、本発明においては、三元触媒の後段にパティキュレートフィルタが備えられていることが好ましく、このようにすれば、パティキュレートフィルタにより排気ガス中のパティキュレートが捕集されて除去されることになり、しかも、そのパティキュレートの堆積量が所定量に達した際に、ディーゼルエンジン側でポスト噴射を実施する等して燃料を添加すれば、この未燃の燃料が三元触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により後段のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが強制的に燃焼除去されることになる。   Furthermore, in the present invention, it is preferable that a particulate filter is provided in the subsequent stage of the three-way catalyst, and in this way, particulates in the exhaust gas are collected and removed by the particulate filter. Moreover, when the accumulated amount of the particulates reaches a predetermined amount, if the fuel is added by performing post injection on the diesel engine side, the unburned fuel passes through the three-way catalyst. In the meantime, an oxidation reaction occurs, and the exhaust gas heated by the reaction heat inflows raises the catalyst bed temperature of the subsequent particulate filter, forcibly removing the particulates.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、ディーゼルエンジンでも三元触媒を適用し得るようにすることができるので、尿素水タンクや尿素水供給管、供給ポンプといった付帯設備を不要とすることができて設備コストの大幅な削減を図ることができ、しかも、尿素水の補給といった手間も省くことができて運転者の負担を著しく軽減することができる。   (I) According to the invention described in claim 1 of the present invention, since the three-way catalyst can be applied even to a diesel engine, ancillary facilities such as a urea water tank, a urea water supply pipe, and a supply pump are provided. This eliminates the need for a significant reduction in the equipment cost, and also eliminates the trouble of supplying urea water, thereby significantly reducing the burden on the driver.

(II)本発明の請求項2に記載の発明によれば、過渡運転時等に空燃比が理論空燃比より小さくなって三元触媒上でNOxからNH3が生成されてしまう事態となっても、このNH3を三元触媒上に保持し且つこれをNOxを還元浄化するための還元剤として消費することができるので、NH3が車外へ排出されてしまうことを防止することができる。 (II) According to the invention described in claim 2 of the present invention, the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio during transient operation or the like, and NH 3 is generated from NOx on the three-way catalyst. However, since this NH 3 can be held on the three-way catalyst and consumed as a reducing agent for reducing and purifying NOx, it is possible to prevent NH 3 from being discharged outside the vehicle.

(III)本発明の請求項3に記載の発明によれば、排気ガス中のパティキュレートをパティキュレートフィルタにより捕集して除去することができ、しかも、三元触媒をパティキュレートフィルタの強制再生のための酸化触媒の替わりに使うことで従来通りの燃料添加によるパティキュレートフィルタの再生を行うことができ、パティキュレートフィルタの強制再生のための酸化触媒を新たに設けなくて済むことで全体構成のコンパクト化を図ることができる。   (III) According to the invention described in claim 3 of the present invention, particulates in the exhaust gas can be collected and removed by the particulate filter, and the three-way catalyst is forcibly regenerated by the particulate filter. The particulate filter can be regenerated by adding fuel as usual, instead of using an oxidation catalyst for the catalyst, and there is no need to provide a new oxidation catalyst for forced regeneration of the particulate filter. Can be made compact.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 理論空燃比近傍での燃焼成立を確認した実験結果を示すグラフである。It is a graph which shows the experimental result which confirmed combustion establishment in the theoretical air fuel ratio vicinity. 従来例を示す概略図である。It is the schematic which shows a prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図3と同一の符号を付した部分は同一物を表わしている。   FIG. 1 shows an example of an embodiment for carrying out the present invention, and the parts denoted by the same reference numerals as those in FIG. 3 represent the same items.

ここに図示している例では、ディーゼルエンジン1がターボチャージャ14を備えており、図示しないエアクリーナから導かれた吸気15が吸気管16を通し前記ターボチャージャ14のコンプレッサ14aへと送られ、該コンプレッサ14aで加圧された吸気15がインタークーラ17へと送られて冷却され、該インタークーラ17から更に吸気マニホールド18へと吸気15が導かれてディーゼルエンジン1の各気筒19に分配されるようになっている。   In the example shown here, the diesel engine 1 includes a turbocharger 14, and intake air 15 guided from an air cleaner (not shown) is sent to the compressor 14 a of the turbocharger 14 through an intake pipe 16. The intake air 15 pressurized at 14 a is sent to the intercooler 17 to be cooled, and the intake air 15 is further guided from the intercooler 17 to the intake manifold 18 to be distributed to each cylinder 19 of the diesel engine 1. It has become.

更に、このディーゼルエンジン1の各気筒19から排出された排気ガス3は、排気マニホールド2を介しターボチャージャ14のタービン14bへと送られ、該タービン14bを駆動した排気ガス3が排気管4を介し車外へ排出されるようにしてあり、該排気管4の途中には、理論空燃比(ストイキオメトリ)近傍でHC,CO,NOxの同時低減化を図り得る三元触媒20と、該三元触媒20の直後に配置されたパティキュレートフィルタ10とが装備されている。   Further, the exhaust gas 3 discharged from each cylinder 19 of the diesel engine 1 is sent to the turbine 14 b of the turbocharger 14 through the exhaust manifold 2, and the exhaust gas 3 that has driven the turbine 14 b passes through the exhaust pipe 4. A three-way catalyst 20 capable of simultaneously reducing HC, CO, and NOx near the stoichiometric air-fuel ratio (stoichiometry) is disposed in the middle of the exhaust pipe 4 and the three-way catalyst. A particulate filter 10 disposed immediately after the catalyst 20 is provided.

ここで、前記三元触媒20は、NH3を吸着し得るようゼオライトを触媒原料として含んでおり、過渡運転時等に空燃比が理論空燃比より小さくなって三元触媒20上でNOxからNH3が生成されてしまう事態となっても、このNH3を三元触媒20上に保持し得るようにしてある。 Here, the three-way catalyst 20 contains zeolite as a catalyst raw material so that NH 3 can be adsorbed, and the air-fuel ratio becomes smaller than the theoretical air-fuel ratio at the time of transient operation or the like, so that NOx is converted to NH on the three-way catalyst 20. This NH 3 can be held on the three-way catalyst 20 even if 3 is generated.

そして、このディーゼルエンジン1にあっては、前記パティキュレートフィルタ10の下流側から排気ガス3の一部を抜き出して前記ターボチャージャ14のコンプレッサ14aより上流の吸気管16へ再循環する低圧ループ21と、排気マニホールド2から排気ガス3の一部を抜き出して吸気マニホールド18の入口付近に再循環する高圧ループ22とが装備されている。   In the diesel engine 1, a low-pressure loop 21 that extracts a part of the exhaust gas 3 from the downstream side of the particulate filter 10 and recirculates it to the intake pipe 16 upstream of the compressor 14 a of the turbocharger 14. And a high-pressure loop 22 that extracts a part of the exhaust gas 3 from the exhaust manifold 2 and recirculates it in the vicinity of the inlet of the intake manifold 18.

前記低圧ループ21及び高圧ループ22の夫々には、排気ガス3の再循環量を調整するためのEGRバルブ23,24(再循環量調整手段)と、再循環される排気ガス3を冷却するためのEGRクーラ25,26が装備されており、該EGRクーラ25,26で冷却水と排気ガス3とを熱交換させることにより排気ガス3の温度を低下し且つその容積を小さくすることで、ディーゼルエンジン1の出力をあまり低下させずに燃焼温度を下げて効果的にNOxの発生を低減し得るようにしてある。   In each of the low pressure loop 21 and the high pressure loop 22, EGR valves 23 and 24 (recirculation amount adjusting means) for adjusting the recirculation amount of the exhaust gas 3 and the recirculated exhaust gas 3 are cooled. EGR coolers 25 and 26 are installed, and the EGR coolers 25 and 26 exchange heat between the cooling water and the exhaust gas 3 to reduce the temperature of the exhaust gas 3 and reduce its volume, thereby reducing the diesel Generation of NOx can be effectively reduced by lowering the combustion temperature without significantly reducing the output of the engine 1.

そして、前記各EGRバルブ23,24の開度が、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置27からの開度指令信号23a,24aとにより制御されるようになっており、これらの制御については、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ28(負荷センサ)からのアクセル開度信号28aと、ディーゼルエンジン1の機関回転数を検出する回転センサ29からの回転数信号29aとに基づいて以下の如く実行されるようになっている。   The opening degrees of the EGR valves 23 and 24 are controlled by opening command signals 23a and 24a from a control device 27 constituting an engine control computer (ECU: Electronic Control Unit). , The accelerator opening signal 28a from the accelerator sensor 28 (load sensor) that detects the accelerator opening as a load of the diesel engine 1, and the rotation speed from the rotation sensor 29 that detects the engine speed of the diesel engine 1 are controlled. Based on the signal 29a, it is executed as follows.

即ち、制御装置27では、低圧ループ21により加速時に黒煙を生じない程度に抑えた
EGR率(例えば10〜15%程度)でベースとなる排気ガス再循環を実施し且つ高圧ループ22では不足EGR率分(10〜20%程度分)を補足するべく追加の排気ガス再循環を実施して空燃比を理論空燃比近傍に抑制し得るよう現在の運転状態に応じた各EGRバルブ23,24の開度が指示されるようになっている。
That is, the control device 27 performs exhaust gas recirculation as a base at an EGR rate (for example, about 10 to 15%) that is suppressed to a level that does not generate black smoke during acceleration by the low pressure loop 21 and is insufficient in the high pressure loop 22. Each of the EGR valves 23 and 24 according to the current operating state is controlled so that an additional exhaust gas recirculation is performed to supplement the rate (about 10 to 20%) and the air-fuel ratio can be suppressed to the vicinity of the theoretical air-fuel ratio. The opening is indicated.

この際、ディーゼルエンジン1は、各気筒19への燃料の噴射圧を所定以上に上げ且つその燃料噴射の噴孔径を燃料噴霧の粒が燃焼室の全域に拡散し得るよう調整することで理論空燃比近傍でも燃焼成立し得るように構成されている。   At this time, the diesel engine 1 increases the fuel injection pressure to each cylinder 19 to a predetermined value or more and adjusts the nozzle diameter of the fuel injection so that fuel spray particles can diffuse throughout the combustion chamber. Combustion can be established even in the vicinity of the fuel ratio.

而して、このようにすれば、低圧ループ21側でベースとなる排気ガス再循環が実施され、高圧ループ22側では不足EGR率分を補足するべく追加の排気ガス再循環が実施されるので、低圧ループ21と高圧ループ22の併用により高いEGR率が実現され、空燃比を理論空燃比に抑制することが可能となる。   Thus, the exhaust gas recirculation as a base is performed on the low pressure loop 21 side in this way, and the additional exhaust gas recirculation is performed on the high pressure loop 22 side to supplement the insufficient EGR rate. By using the low pressure loop 21 and the high pressure loop 22 in combination, a high EGR rate is realized, and the air-fuel ratio can be suppressed to the stoichiometric air-fuel ratio.

即ち、高圧ループ22側で分担しなければならない排気ガス3の再循環量が高圧ループ22の単独使用の場合よりも少なくて済み、可変ノズル式のターボチャージャ等で無理な排気ガス3の絞り込みを行わなくても、高圧ループ22側で分担すべき量の排気ガス再循環が比較的容易に実現されることになる。   That is, the amount of recirculation of the exhaust gas 3 that must be shared on the high-pressure loop 22 side is smaller than in the case of using the high-pressure loop 22 alone, and it is impossible to narrow down the exhaust gas 3 with a variable nozzle type turbocharger or the like. Even if not performed, the amount of exhaust gas recirculation that should be shared on the high-pressure loop 22 side can be realized relatively easily.

因みに、高いEGR率で排気ガス3を再循環するのに低圧ループ21が今まで採用されてこなかったのは、走行中に運転者によりアクセルが踏み込まれて加速状態に入った場合に、空気過剰率が急激に低下して黒煙が発生し易かったからであるが、本形態例では、加速時に黒煙を生じない程度に抑えたEGR率で低圧ループ21によりベースとなる排気ガス再循環を実施しているにすぎないので、加速時に高圧ループ22側の排気ガス3の再循環量を即時低減することで黒煙の発生を未然に回避することが可能である。   Incidentally, the low-pressure loop 21 has not been adopted so far to recirculate the exhaust gas 3 at a high EGR rate because when the accelerator is depressed by the driver during driving and the vehicle enters an acceleration state, the air is excessive. This is because black smoke is likely to be generated due to a sudden drop in the rate, but in this embodiment, the exhaust gas recirculation as a base is implemented by the low pressure loop 21 at an EGR rate that is suppressed to the extent that black smoke is not generated during acceleration. Therefore, it is possible to avoid the occurrence of black smoke by immediately reducing the recirculation amount of the exhaust gas 3 on the high-pressure loop 22 side during acceleration.

即ち、低圧ループ21においては、ターボチャージャ14のコンプレッサ14aより上流の吸気管16へ排気ガス3が戻されるが、ここからコンプレッサ14a、インタークーラ17、吸気マニホールド18を経てディーゼルエンジン1に到るまでの経路が長く、この長い経路に排気ガス3の混合した吸気が存在することになるため、加速時にアクセルの踏み込みに即応して燃料噴射量が増加した場合に、低圧ループ21のEGRバルブ23を直ちに閉じても、前記長い経路中の排気ガス3混じりの吸気が全て使い切られるまで空気過剰率の低い状態が持続して黒煙が発生し易いという欠点がある。   That is, in the low-pressure loop 21, the exhaust gas 3 is returned to the intake pipe 16 upstream of the compressor 14 a of the turbocharger 14, and from here to the diesel engine 1 through the compressor 14 a, the intercooler 17, and the intake manifold 18. And the intake air mixed with the exhaust gas 3 exists in this long path. Therefore, when the fuel injection amount increases in response to the depression of the accelerator during acceleration, the EGR valve 23 of the low pressure loop 21 is Even if it closes immediately, there is a drawback that a state with a low excess air ratio continues and black smoke tends to be generated until all the intake air mixed with the exhaust gas 3 in the long path is used up.

これに対し、高圧ループ22においては、吸気マニホールド18の入口付近に排気ガス3が戻されるので、排気ガス3の混合した吸気15は吸気マニホールド18内にしか存在せず、加速時に燃料噴射量が増加しても、高圧ループ22のEGRバルブ24を閉じれば、吸気マニホールド18内の排気ガス3混じりの吸気15が程無く使い切られて空気過剰率が早期に回復するので、加速時における黒煙の発生を回避し易いという利点がある。   In contrast, in the high-pressure loop 22, the exhaust gas 3 is returned near the inlet of the intake manifold 18, so the intake air 15 mixed with the exhaust gas 3 exists only in the intake manifold 18, and the fuel injection amount during acceleration is high. If the EGR valve 24 of the high-pressure loop 22 is closed, the intake air 15 mixed with the exhaust gas 3 in the intake manifold 18 will be used up soon and the excess air ratio will be recovered quickly. There is an advantage that it is easy to avoid the occurrence.

そして、このように低圧ループ21と高圧ループ22とにより多量の排気ガス3を再循環して空燃比を理論空燃比近傍に抑制し、斯かる状態でディーゼルエンジン1の各気筒19への燃料噴射を実行すると、その燃料噴射の噴射圧と噴孔径の適切な調整により燃料噴霧の粒が燃焼室の全域に拡散し、燃料が良好に分散混合して均等に薄まった状態で燃焼が行われることで燃焼が失火せずに成立することになる。   In this way, a large amount of the exhaust gas 3 is recirculated by the low pressure loop 21 and the high pressure loop 22 to suppress the air-fuel ratio in the vicinity of the theoretical air-fuel ratio, and in such a state, fuel is injected into each cylinder 19 of the diesel engine 1. Is performed, the fuel spray particles are diffused throughout the combustion chamber by appropriate adjustment of the injection pressure and the nozzle hole diameter of the fuel injection, and the fuel is well dispersed and mixed so that the combustion is performed in a thinned state. The combustion will be established without misfiring.

即ち、燃料噴射の噴射圧を既存のディーゼルエンジン1における噴射圧よりも大幅に高い圧力に設定することで燃料噴霧をより遠くまで送り込む力を高めると共に、燃料噴射の噴射径を一般的な噴射径より若干大きめにしておくことで噴射圧の上昇に伴う燃料噴霧の過剰な微細化を抑制して噴射の力を受け易い粒の粗さが保たれるようにすれば、燃料噴霧の粒を燃焼室の全域に拡散させて良好に分散混合させることが可能となる。   That is, by setting the injection pressure of fuel injection to a pressure significantly higher than the injection pressure in the existing diesel engine 1, the force for sending the fuel spray further is increased, and the injection diameter of the fuel injection is changed to a general injection diameter. By making it slightly larger, it is possible to suppress the excessive atomization of the fuel spray accompanying the increase in the injection pressure and to maintain the roughness of the particles that are susceptible to the injection force. It becomes possible to diffuse and mix well by diffusing throughout the chamber.

尚、このように多量の排気ガス3を再循環して空燃比を理論空燃比近傍に抑制しても、ディーゼルエンジン1の各気筒19への燃料噴射の噴射圧と噴孔径の適切な調整により燃焼を成立させ得る事実は、本発明者の鋭意研究の末に見いだされた事実であり、一般的には、単純に燃料の噴射量を増やして空気過剰率を下げることしか提案されていないため、理論空燃比近傍でのディーゼルエンジン1の燃焼成立は不可能と考えられているが、図2にグラフで実験結果を示している通り、噴射径を通常のディーゼルエンジンよりも若干大きめとした上で燃料噴射の噴射圧を2000kg/cm2程度まで上げれば、煙の発生を15%以下に抑えて燃焼を成立させられることを既に本発明者は確認している。 Even if a large amount of exhaust gas 3 is recirculated and the air-fuel ratio is suppressed to near the stoichiometric air-fuel ratio, the fuel injection pressure and the injection hole diameter of each cylinder 19 of the diesel engine 1 are appropriately adjusted. The fact that combustion can be established is a fact found after the inventor's earnest research, and generally, it has been proposed only to increase the fuel injection amount and lower the excess air ratio. Although it is considered impossible to establish combustion in the diesel engine 1 near the stoichiometric air-fuel ratio, as shown in the graph of FIG. 2, the injection diameter is slightly larger than that of a normal diesel engine. The present inventors have already confirmed that if the injection pressure of fuel injection is increased to about 2000 kg / cm 2 , the combustion can be established with the generation of smoke suppressed to 15% or less.

しかも、多量の排気ガス3を再循環して空燃比を理論空燃比近傍に抑制し、ディーゼルエンジン1の各気筒19への燃料噴射の噴射圧と噴孔径の適切な調整により燃焼を成立させた場合、排気ガス3中にCOとHCが多量に生成されるという事実も本発明者は確認しており、ディーゼルエンジン1でも三元触媒20を機能させてHC,CO,NOxの同時低減を図り得ることが判明している。   In addition, a large amount of exhaust gas 3 is recirculated to suppress the air-fuel ratio to near the stoichiometric air-fuel ratio, and combustion is established by appropriately adjusting the injection pressure and injection hole diameter of fuel injection to each cylinder 19 of the diesel engine 1. In this case, the present inventor has also confirmed the fact that a large amount of CO and HC is generated in the exhaust gas 3, and even in the diesel engine 1, the three-way catalyst 20 is made to function to simultaneously reduce HC, CO, and NOx. It is known to get.

即ち、多量の排気ガス3を再循環して空燃比を理論空燃比近傍に抑制した条件下では、所定以上の噴射圧で噴射された燃料がO2と出会う確率が低いために気筒19内の壁面まで到達し易く、ここで燃料が熱分解してHCのガスが多量に発生することになるが、この際、O2より大きく且つ高質量で高引力のCO2が燃焼室内に多く存在することで、該CO2がHCとO2との反応を阻害する役割を果たしてHCの酸化反応が停滞し、該HCが排気ガス3中に多量に残留することになる。 That is, under a condition where a large amount of exhaust gas 3 is recirculated and the air-fuel ratio is suppressed to near the stoichiometric air-fuel ratio, there is a low probability that fuel injected at an injection pressure higher than a predetermined value will meet O 2 . It is easy to reach the wall surface, and the fuel is thermally decomposed to generate a large amount of HC gas. At this time, a large amount of CO 2 having a larger mass and higher attractive force than O 2 exists in the combustion chamber. As a result, the CO 2 plays a role of inhibiting the reaction between HC and O 2 , so that the oxidation reaction of HC stagnates and a large amount of the HC remains in the exhaust gas 3.

また、HCとO2の最初に起こる反応ではCOが生成されるだけであり、通常のディーゼルエンジン1のように残存酸素量が多く且つ排気ガス再循環によるCO2の量もそれほど多くない条件下では、前記最初の反応で生じたCOが次々とO2と結びついてCO2まで反応が進むことになるが、多量の排気ガス3を再循環して空燃比を理論空燃比近傍に抑制した条件下では、O2と出会う確率が低く且つ多量のCO2も反応の邪魔になるので、COの状態のまま排気ガス3中に多量に残留することになる。 In the first reaction of HC and O 2 , only CO is generated, and the amount of residual oxygen is large and the amount of CO 2 due to exhaust gas recirculation is not so large as in a normal diesel engine 1. Then, the CO generated in the first reaction is successively combined with O 2 and the reaction proceeds to CO 2 , but the condition that the air-fuel ratio is suppressed to the vicinity of the theoretical air-fuel ratio by recirculating a large amount of exhaust gas 3. Below, the probability of encountering O 2 is low and a large amount of CO 2 also interferes with the reaction, so that it remains in the exhaust gas 3 in a large amount in the state of CO.

また、本形態例においては、三元触媒20がNH3を吸着し得るようゼオライトを触媒原料として含んでいるので、過渡運転時等に空燃比が理論空燃比より小さくなって三元触媒20上でNOxからNH3が生成されてしまう事態となっても、このNH3を三元触媒20上に保持し且つこれをNOxを還元浄化するための還元剤として消費することが可能となる。 In the present embodiment, since the three-way catalyst 20 contains zeolite as a catalyst raw material so that NH 3 can be adsorbed, the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio during the transient operation or the like. Even if NH 3 is generated from NOx, it is possible to hold the NH 3 on the three-way catalyst 20 and consume it as a reducing agent for reducing and purifying NOx.

更に、三元触媒20の後段にパティキュレートフィルタ10が備えられているので、パティキュレートフィルタ10により排気ガス3中のパティキュレートが捕集されて除去されることになり、しかも、そのパティキュレートの堆積量が所定量に達した際に、ディーゼルエンジン1側でポスト噴射を実施する等して燃料を添加すれば、この未燃の燃料が三元触媒20を通過する間に酸化反応し、その反応熱で昇温した排気ガス3の流入により後段のパティキュレートフィルタ10の触媒床温度が上げられてパティキュレートが強制的に燃焼除去されることになる。   Further, since the particulate filter 10 is provided in the subsequent stage of the three-way catalyst 20, the particulate filter 10 collects and removes the particulates in the exhaust gas 3, and the particulates of the particulates are collected. If fuel is added, for example, by performing post injection on the diesel engine 1 side when the accumulation amount reaches a predetermined amount, the unburned fuel undergoes an oxidation reaction while passing through the three-way catalyst 20, The inflow of the exhaust gas 3 heated by the reaction heat raises the catalyst bed temperature of the particulate filter 10 at the subsequent stage, and the particulates are forcibly burned off.

従って、上記形態例によれば、ディーゼルエンジン1でも三元触媒20を適用し得るようにすることができるので、尿素水タンク11(図3参照)や尿素水供給管12(図3参照)、供給ポンプ13(図3参照)といった付帯設備を不要とすることができて設備コストの大幅な削減を図ることができ、しかも、尿素水6の補給といった手間も省くことができて運転者の負担を著しく軽減することができる。   Therefore, according to the above-described embodiment, the three-way catalyst 20 can be applied even in the diesel engine 1, so that the urea water tank 11 (see FIG. 3), the urea water supply pipe 12 (see FIG. 3), Ancillary equipment such as the supply pump 13 (see FIG. 3) can be dispensed with, so that the equipment cost can be greatly reduced. Can be significantly reduced.

また、過渡運転時等に空燃比が理論空燃比より小さくなって三元触媒20上でNOxからNH3が生成されてしまう事態となっても、このNH3を三元触媒20上に保持し且つこれをNOxを還元浄化するための還元剤として消費することができるので、NH3が車外へ排出されてしまうことを防止することができる。 Even when the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio during transient operation or the like and NH 3 is generated from NOx on the three-way catalyst 20, this NH 3 is held on the three-way catalyst 20. And since it can be consumed as a reducing agent for reducing and purifying NOx, it is possible to prevent NH 3 from being discharged outside the vehicle.

更に、排気ガス3中のパティキュレートをパティキュレートフィルタ10により捕集して除去することができ、しかも、三元触媒20をパティキュレートフィルタ10の強制再生のための酸化触媒の替わりに使うことで従来通りの燃料添加によるパティキュレートフィルタ10の再生を行うことができ、パティキュレートフィルタ10の強制再生のための酸化触媒を新たに設けなくて済むことで全体構成のコンパクト化を図ることができる。   Further, particulates in the exhaust gas 3 can be collected and removed by the particulate filter 10, and the three-way catalyst 20 can be used in place of the oxidation catalyst for forced regeneration of the particulate filter 10. The particulate filter 10 can be regenerated by adding fuel as usual, and the entire configuration can be made compact by eliminating the need to provide a new oxidation catalyst for forced regeneration of the particulate filter 10.

また、特に図1に示している如きパティキュレートフィルタ10の下流側から排気ガス3の一部を抜き出して再循環させるようにすれば、再循環する排気ガス3に含まれるパティキュレート(煤分)による吸気系(コンプレッサ14aや吸気管16、インタークーラ17等)の汚損を回避することもできる。   In particular, if a part of the exhaust gas 3 is extracted from the downstream side of the particulate filter 10 as shown in FIG. 1 and recirculated, the particulates contained in the recirculated exhaust gas 3 (proportional distribution). It is also possible to avoid contamination of the intake system (the compressor 14a, the intake pipe 16, the intercooler 17, etc.) due to.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

1 ディーゼルエンジン
2 排気マニホールド
3 排気ガス
4 排気管
10 パティキュレートフィルタ
14 ターボチャージャ
14a コンプレッサ
14b タービン
15 吸気
16 吸気管
18 吸気マニホールド
19 気筒
20 三元触媒
21 低圧ループ
22 高圧ループ
23 EGRバルブ(再循環量調整手段)
24 EGRバルブ(再循環量調整手段)
27 制御装置
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Exhaust manifold 3 Exhaust gas 4 Exhaust pipe 10 Particulate filter 14 Turbocharger 14a Compressor 14b Turbine 15 Intake 16 Intake pipe 18 Intake manifold 19 Cylinder 20 Three-way catalyst 21 Low pressure loop 22 High pressure loop 23 EGR valve (recirculation amount) Adjustment means)
24 EGR valve (recirculation amount adjusting means)
27 Control device

Claims (3)

ディーゼルエンジンで排気ガス中のHC,CO,NOxの同時低減を図るための排気浄化装置であって、ターボチャージャのタービンより下流の排気通路から排気ガスの一部を抜き出して前記ターボチャージャのコンプレッサより上流の吸気通路へ再循環する低圧ループと、排気マニホールドから排気ガスの一部を抜き出して吸気マニホールドの入口付近に再循環する高圧ループと、これら低圧ループ及び高圧ループの夫々に備えられて排気ガスの再循環量を調整する再循環量調整手段と、前記排気通路の途中に備えられた三元触媒と、低圧ループにより加速時に黒煙を生じない程度に抑えたEGR率でベースとなる排気ガス再循環を実施し且つ高圧ループでは不足EGR率分を補足するべく追加の排気ガス再循環を実施して空燃比を理論空燃比近傍に抑制し得るように前記各再循環量調整手段を制御する制御装置とを備え、ディーゼルエンジンの各気筒への燃料の噴射圧を所定以上に上げ且つその燃料噴射の噴孔径を燃料噴霧の粒が燃焼室の全域に拡散し得るよう調整することで理論空燃比近傍でも燃焼成立し得るように構成したことを特徴とする排気浄化装置。   An exhaust emission control device for simultaneously reducing HC, CO, NOx in exhaust gas in a diesel engine, extracting a part of exhaust gas from an exhaust passage downstream from a turbine of a turbocharger and using a compressor of the turbocharger A low-pressure loop that recirculates to the upstream intake passage, a high-pressure loop that extracts a portion of the exhaust gas from the exhaust manifold and recirculates it near the inlet of the intake manifold, and an exhaust gas provided in each of the low-pressure loop and the high-pressure loop. The recirculation amount adjusting means for adjusting the recirculation amount of the exhaust gas, the three-way catalyst provided in the middle of the exhaust passage, and the exhaust gas serving as a base at the EGR rate that is suppressed to the extent that black smoke is not generated during acceleration by the low pressure loop Carry out recirculation and perform additional exhaust gas recirculation to supplement the shortage EGR rate in the high-pressure loop to achieve the stoichiometric air-fuel ratio And a control device that controls each of the recirculation amount adjusting means so that the ratio can be suppressed in the vicinity of the ratio. An exhaust emission control device characterized in that combustion can be established even in the vicinity of the stoichiometric air-fuel ratio by adjusting so that the particles of the particles can diffuse throughout the combustion chamber. 三元触媒がNH3を吸着し得るようゼオライトを触媒原料として含んでいることを特徴とする請求項1に記載の排気浄化装置。 The exhaust purification apparatus according to claim 1, wherein the three-way catalyst contains zeolite as a catalyst raw material so that NH 3 can be adsorbed. 三元触媒の後段にパティキュレートフィルタが備えられていることを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein a particulate filter is provided downstream of the three-way catalyst.
JP2010114106A 2010-05-18 2010-05-18 Exhaust purification device Active JP5620715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114106A JP5620715B2 (en) 2010-05-18 2010-05-18 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114106A JP5620715B2 (en) 2010-05-18 2010-05-18 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2011241746A true JP2011241746A (en) 2011-12-01
JP5620715B2 JP5620715B2 (en) 2014-11-05

Family

ID=45408662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114106A Active JP5620715B2 (en) 2010-05-18 2010-05-18 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5620715B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
WO2013111273A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451781B2 (en) * 2017-05-31 2019-01-16 マツダ株式会社 Compression ignition engine and control method of compression ignition engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073065A (en) * 1996-08-30 1998-03-17 Isuzu Motors Ltd Direct injection type diesel engine
JPH1172039A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine
JP2002081313A (en) * 2000-06-29 2002-03-22 Hino Motors Ltd Exhaust emission controlling method for diesel engine
JP2006336547A (en) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr device
JP2009041453A (en) * 2007-08-09 2009-02-26 Toyota Motor Corp Exhaust emission purifier for internal combustion engine
JP2009203961A (en) * 2008-02-29 2009-09-10 Hino Motors Ltd Exhaust emission control device
JP2009216021A (en) * 2008-03-12 2009-09-24 Hino Motors Ltd Exhaust emission control device
JP2009215977A (en) * 2008-03-11 2009-09-24 Hino Motors Ltd Exhaust emission control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073065A (en) * 1996-08-30 1998-03-17 Isuzu Motors Ltd Direct injection type diesel engine
JPH1172039A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine
JP2002081313A (en) * 2000-06-29 2002-03-22 Hino Motors Ltd Exhaust emission controlling method for diesel engine
JP2006336547A (en) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr device
JP2009041453A (en) * 2007-08-09 2009-02-26 Toyota Motor Corp Exhaust emission purifier for internal combustion engine
JP2009203961A (en) * 2008-02-29 2009-09-10 Hino Motors Ltd Exhaust emission control device
JP2009215977A (en) * 2008-03-11 2009-09-24 Hino Motors Ltd Exhaust emission control device
JP2009216021A (en) * 2008-03-12 2009-09-24 Hino Motors Ltd Exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
WO2013111273A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine
US9567945B2 (en) 2012-01-24 2017-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust circulation apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP5620715B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
EP2256311B1 (en) Exhaust gas purifier for internal-combustion engine
US7409823B2 (en) Method and apparatus for delivery of supplemental material to an exhaust gas feedstream with supplemental air assistance
CN104603414B (en) Gas extraction system for spark-ignition type gaseous propellant engine
CN103423002A (en) Exhaust air injection
WO2007066835A1 (en) Exhaust gas purification system for internal combustion engine
CN103422950A (en) Exhaust air injection
JP2007113434A (en) Exhaust gas purification device of diesel engine
CN102465741B (en) There is the exhaust system of internal combustion engine of particulate filter
US9212585B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP5620715B2 (en) Exhaust purification device
JP5332816B2 (en) Control device for diesel engine
JP6061078B2 (en) Exhaust gas purification device for internal combustion engine
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
US20130160429A1 (en) Limiting nox emissions
JP6112297B2 (en) Engine exhaust purification system
JP2009041447A (en) Fuel supply apparatus of diesel engine
JP5774300B2 (en) Exhaust purification equipment
JP2008121555A (en) Exhaust emission control device for internal combustion engine
US20090308056A1 (en) Procedure and device for the purification of exhaust gas
US9488083B2 (en) Internal combustion engine
JP5029841B2 (en) Exhaust purification device
JP2010138783A (en) Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same
JP2010053813A (en) Hydrogen internal combustion engine
EP3246548A1 (en) Exhaust emission control method for an internal combustion engine
JP2013160127A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250