JP2008138598A - Egr system for internal combustion engine - Google Patents

Egr system for internal combustion engine Download PDF

Info

Publication number
JP2008138598A
JP2008138598A JP2006325796A JP2006325796A JP2008138598A JP 2008138598 A JP2008138598 A JP 2008138598A JP 2006325796 A JP2006325796 A JP 2006325796A JP 2006325796 A JP2006325796 A JP 2006325796A JP 2008138598 A JP2008138598 A JP 2008138598A
Authority
JP
Japan
Prior art keywords
internal combustion
egr
combustion engine
pressure egr
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325796A
Other languages
Japanese (ja)
Inventor
Takeshi Hashizume
剛 橋詰
Hiroyuki Haga
宏行 芳賀
Isao Matsumoto
功 松本
Masahiro Nagae
正浩 長江
Tomoyuki Ono
智幸 小野
Hiroki Murata
宏樹 村田
Akira Yamashita
晃 山下
Teruhiko Miyake
照彦 三宅
Hajime Shimizu
肇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006325796A priority Critical patent/JP2008138598A/en
Priority to PCT/IB2007/003696 priority patent/WO2008068574A1/en
Publication of JP2008138598A publication Critical patent/JP2008138598A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of performing exhaust gas recirculation while poor combustion and worsened exhaust emission are restrained at a low open air temperature and a low water temperature, in an internal combustion engine having an EGR system for performing EGR by using commonly a low pressure EGR device and a high pressure EGR device or switching them. <P>SOLUTION: The EGR system has the high pressure EGR device which returns a part of an exhaust gas flowing through an exhaust gas passage at the upstream side of a turbine of a turbocharger into the internal combustion engine by making it flow into an intake passage at the downstream side of a compressor, and a low pressure EGR device which returns a part of the exhaust gas flowing through the exhaust gas passage at the downstream side of the turbine into the internal combustion engine by making it flow into the intake passage at the upstream side of the compressor. When the temperature of a coolant for the internal combustion engine is lower than a standard temperature of the coolant, a ratio of the exhaust gas which occupies in the whole exhaust gas returned to the internal combustion engine and returned to the internal combustion engine by the high pressure EGR device is raised compared with the case of the temperature of the coolant with a normal temperature of the coolant higher than the standard temperature of the coolant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関のEGRシステムに関する。   The present invention relates to an EGR system for an internal combustion engine.

内燃機関において燃料の燃焼過程で発生する窒素酸化物(NOx)の量を低減する技術として、排気の一部を内燃機関に流入させるEGRが知られている。   As a technique for reducing the amount of nitrogen oxides (NOx) generated in the combustion process of fuel in an internal combustion engine, EGR in which a part of exhaust gas flows into the internal combustion engine is known.

このEGRの技術に関しては、ターボチャージャのタービンより上流の排気通路とコンプレッサより下流の吸気通路とを接続する高圧EGR通路を介して排気の一部を内燃機関に流入させる高圧EGR装置と、タービンより下流の排気通路とコンプレッサより上流の吸気通路とを接続する低圧EGR通路を介して排気の一部を内燃機関に流入させる低圧EGR装置と、を備え、内燃機関の運転状態に応じて高圧EGR装置と低圧EGR装置とを併用又は切り替えてしてEGRを行うことによって、内燃機関のより広い運転状態の領域においてEGRを実施可能にすることを図る技術も提案されている。   With regard to this EGR technology, a high-pressure EGR device that allows a part of exhaust gas to flow into an internal combustion engine via a high-pressure EGR passage that connects an exhaust passage upstream of a turbine of a turbocharger and an intake passage downstream of a compressor, A low pressure EGR device that causes a part of the exhaust gas to flow into the internal combustion engine via a low pressure EGR passage that connects the downstream exhaust passage and the intake passage upstream of the compressor, and the high pressure EGR device according to the operating state of the internal combustion engine In addition, a technique has been proposed in which EGR can be carried out in a wider range of operating states of an internal combustion engine by performing EGR by using or switching between and a low pressure EGR device.

例えば、低負荷運転時などの排気温度が低い時には高圧EGR装置を用いてEGRを行い、高負荷運転時などの排気温度が高い時には低圧EGR装置を用いてEGRを行うことによって、EGR実施中に吸気温が過剰に高温になることを抑制する技術が提案されている(特許文献1を参照)。
特開平07−233761号公報 特開2004−162674号公報 特開2004−197634号公報
For example, EGR is performed using a high pressure EGR device when the exhaust temperature is low such as during low load operation, and EGR is performed using a low pressure EGR device when the exhaust temperature is high such as during high load operation. A technique for suppressing the intake air temperature from becoming excessively high has been proposed (see Patent Document 1).
Japanese Patent Application Laid-Open No. 07-233761 Japanese Patent Laid-Open No. 2004-162675 JP 2004-197634 A

ところで、高圧EGR通路はその経路長が比較的短いため、高圧EGR装置を介して内燃機関に流入する排気(以下、高圧EGRガス)の温度は比較的高温となる傾向がある。一方、低圧EGR装置を介して内燃機関に流入する排気(以下、低圧EGRガス)については、低圧EGR通路の経路長が長く、また低圧EGR通路に設けられるEGRクーラや吸気通路に設けられるインタークーラにおいて低圧EGRガスが冷却されるため、低圧EGRガスの温度は比較的低温となる傾向がある。   By the way, since the path length of the high pressure EGR passage is relatively short, the temperature of the exhaust gas (hereinafter referred to as high pressure EGR gas) flowing into the internal combustion engine via the high pressure EGR device tends to be relatively high. On the other hand, for the exhaust gas flowing into the internal combustion engine via the low pressure EGR device (hereinafter referred to as low pressure EGR gas), the path length of the low pressure EGR passage is long, and the EGR cooler provided in the low pressure EGR passage or the intercooler provided in the intake passage. Since the low pressure EGR gas is cooled at, the temperature of the low pressure EGR gas tends to be relatively low.

低温の低圧EGRガスを内燃機関に流入させることによってNOx低減効果や燃費性能の点で有利となるが、内燃機関の周囲環境温度が低い時(例えば気温の低い冬季)や内燃機関自体の温度が低い時(例えば始動直後)等、吸気温が低下し易い状況において低温の低圧EGRガスを内燃機関に流入させると、吸気温が過剰に低下して失火等の燃焼不良を招く虞がある。   The flow of low-temperature low-pressure EGR gas into the internal combustion engine is advantageous in terms of NOx reduction effect and fuel efficiency. However, when the ambient environment temperature of the internal combustion engine is low (for example, in winter when the temperature is low) or when the temperature of the internal combustion engine itself is If the low-temperature low-pressure EGR gas is allowed to flow into the internal combustion engine in a situation where the intake air temperature is likely to decrease, such as when it is low (for example, immediately after start-up), the intake air temperature may decrease excessively, leading to poor combustion such as misfire.

本発明はこのような問題点に鑑みてなされたものであり、低圧EGR装置と高圧EGR装置とを併用してEGRを行うEGRシステムを備えた内燃機関において、特に低外気温時や低水温時における燃焼の不安定化や排気エミッションの悪化を抑制する技術を提供することを目的とする。   The present invention has been made in view of such problems, and particularly in an internal combustion engine having an EGR system that performs EGR by using both a low pressure EGR device and a high pressure EGR device, particularly at low outside air temperature and low water temperature. An object of the present invention is to provide a technique for suppressing instability of combustion and deterioration of exhaust emission.

上記目的を達成するため、本発明の内燃機関のEGRシステムは、内燃機関の吸気通路にコンプレッサを有し且つ排気通路にタービンを有するターボチャージャと、前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続する高圧EGR通
路を介して排気の一部を内燃機関に流入させる高圧EGR手段と、前記タービンより下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路を介して排気の一部を内燃機関に流入させる低圧EGR手段と、内燃機関の運転状態に応じて前記高圧EGR手段及び前記低圧EGR手段を併用又は切り替えてEGRを行うEGR制御手段と、内燃機関において燃焼不良が発生する可能性があるか否かを判定する判定手段と、を備え、前記EGR制御手段は、内燃機関の運転状態が少なくとも前記低圧EGR手段を用いてEGRが行われる所定の運転領域に属する時に、前記判定手段によって燃焼不良が発生する可能性があると判定される場合、前記判定手段によって燃焼不良が発生する可能性があると判定されない場合と比較して、内燃機関に流入させる全排気(以下、全EGRガス)に占める高圧EGRガスの比率を高くすることを特徴とする。
To achieve the above object, an EGR system for an internal combustion engine according to the present invention includes a turbocharger having a compressor in an intake passage of the internal combustion engine and a turbine in an exhaust passage, an exhaust passage upstream of the turbine, and downstream of the compressor. High pressure EGR means for allowing a part of exhaust gas to flow into the internal combustion engine through a high pressure EGR passage connecting the intake passage of the engine, and a low pressure EGR passage connecting the exhaust passage downstream of the turbine and the intake passage upstream of the compressor Low pressure EGR means for causing a part of the exhaust gas to flow into the internal combustion engine via the internal combustion engine, EGR control means for performing EGR by using or switching the high pressure EGR means and the low pressure EGR means according to the operating state of the internal combustion engine, Determining means for determining whether or not there is a possibility of occurrence of combustion failure in the EGR control means, the EGR control means When it is determined by the determination means that there is a possibility of poor combustion when the operating state of the internal combustion engine belongs to at least a predetermined operation region where EGR is performed using the low-pressure EGR means, Compared to a case where it is not determined that there is a possibility of a failure, the ratio of high-pressure EGR gas to all exhaust gas (hereinafter referred to as all EGR gas) flowing into the internal combustion engine is increased.

ここで、「少なくとも低圧EGR手段を用いてEGRが行われる所定の運転領域」とは、EGR制御手段によって低圧EGR手段のみを用いてEGRが行われる運転状態の範囲(以下、LPL領域)及び低圧EGR手段及び高圧EGR手段を併用してEGRが行われる運転状態の範囲(以下、MIX領域)を含む運転領域であり、予め定められる。   Here, the “predetermined operating region where EGR is performed using at least the low pressure EGR means” means the range of operating states where the EGR is performed using only the low pressure EGR means by the EGR control means (hereinafter referred to as LPL region) and the low pressure. This is an operation region including an operation state range (hereinafter, MIX region) in which EGR is performed by using both the EGR unit and the high pressure EGR unit, and is determined in advance.

また、「内燃機関において燃焼不良が発生する可能性がある」と判定手段によって判定される場合としては、例えば内燃機関の周囲環境の温度が低い場合(例えば外気温が低下する冬季等)や内燃機関自体の温度が低い場合(例えば暖機が十分行われていない機関始動直後等)のように、吸気温が低下し易い状況にある場合を例示できる。   Further, as a case where the determination means determines that “combustion failure may occur in the internal combustion engine”, for example, when the temperature of the ambient environment of the internal combustion engine is low (for example, in winter when the outside air temperature decreases), A case where the temperature of the intake air is likely to decrease can be exemplified as in the case where the temperature of the engine itself is low (for example, immediately after the engine is not sufficiently warmed up).

上記構成によれば、内燃機関の運転状態がLPL領域に属している場合に、判定手段によって燃焼不良が発生する可能性があると判定されると、全EGRガス中の高圧EGRガスの比率が0%から0%より大きい値に変更されてEGRが行われる。換言すると、判定手段によって燃焼不良が発生する可能性があると判定されない常温時においてLPL領域として規定される運転状態の範囲の一部又は全部が、一時的にMIX領域として規定し直されてEGRが行われる。   According to the above configuration, when the operation state of the internal combustion engine belongs to the LPL region and the determination unit determines that there is a possibility that combustion failure may occur, the ratio of the high-pressure EGR gas in the total EGR gas is The EGR is performed by changing the value from 0% to a value larger than 0%. In other words, part or all of the range of the operating state defined as the LPL region at room temperature when it is not determined that there is a possibility of occurrence of combustion failure by the determining means is temporarily redefined as the MIX region and EGR. Is done.

この場合の高圧EGRガスの比率の変更は、高圧EGRガスの比率を0%から100%に増加させる場合を含んでもよい。換言すると、判定手段によって燃焼不良が発生する可能性があると判定されない常温時においてLPL領域として規定される運転状態の範囲の一部又は全部が、一時的にHPL領域として規定し直されてEGRが行われる場合を含んでも良い。ここで、「HPL領域」とは、高圧EGR手段のみを用いてEGRが行われる運転状態の範囲を意味する。   The change in the ratio of the high pressure EGR gas in this case may include a case where the ratio of the high pressure EGR gas is increased from 0% to 100%. In other words, a part or all of the range of the operating state defined as the LPL region at room temperature when it is not determined that there is a possibility of occurrence of a combustion failure by the determination means is temporarily redefined as the HPL region and EGR. May be included. Here, the “HPL region” means a range of operating states in which EGR is performed using only the high pressure EGR means.

また、内燃機関の運転状態がMIX領域に属している場合に、判定手段によって燃焼不良が発生する可能性があると判定されると、全EGRガス中の高圧EGRガスの比率が、判定手段によって燃焼不良が発生する可能性があると判定されない常温時の高圧EGRガスの比率より高い比率に変更されてEGRが行われる。   Further, when the operation state of the internal combustion engine belongs to the MIX region, if the determination unit determines that there is a possibility that combustion failure may occur, the ratio of the high-pressure EGR gas in the total EGR gas is determined by the determination unit. EGR is performed by changing to a ratio higher than the ratio of high-pressure EGR gas at normal temperature at which it is not determined that there is a possibility of occurrence of poor combustion.

この場合の高圧EGRガスの比率の変更は、高圧EGRガスの比率を常温時におけるある比率から100%に増加させる場合を含んでもよい。換言すると、判定手段によって燃焼不良が発生する可能性があると判定されない常温時においてMIX領域として規定される運転状態の範囲の一部又は全部が、一時的にHPL領域として規定し直されてEGRが行われる場合を含んでも良い。   The change in the ratio of the high pressure EGR gas in this case may include a case where the ratio of the high pressure EGR gas is increased from a certain ratio at normal temperature to 100%. In other words, part or all of the range of the operating state defined as the MIX region at room temperature when it is not determined that there is a possibility of occurrence of a combustion failure by the determination means is temporarily redefined as the HPL region and EGR. May be included.

このように、本発明によれば、低外気温時や低水温時等の吸気温が低下し易い状況においては、高温の高圧EGRガスが常温時よりも多く内燃機関に流入することになるので、吸気温が過剰に低下することが抑制される。その結果、低外気温時や低水温時においても、失火等の燃焼不良が発生したり大量の未燃燃料成分が排出されたりすることを好適に抑
制できる。
As described above, according to the present invention, in a situation where the intake air temperature tends to decrease such as at low outside air temperature or low water temperature, the high-temperature high-pressure EGR gas flows into the internal combustion engine more than at normal temperature. In addition, an excessive decrease in the intake air temperature is suppressed. As a result, even when the outside air temperature or the water temperature is low, it is possible to suitably suppress the occurrence of a combustion failure such as misfire or the discharge of a large amount of unburned fuel components.

なお、本発明において、判定手段によって燃焼不良が発生する可能性があると判定される場合であっても、内燃機関の運転状態が、上述した少なくとも低圧EGR手段を用いてEGRが行われる所定の運転領域のうち所定の高負荷領域に属している場合には、全EGRガス中の高圧EGRガスの比率を変更せず常温時の高圧EGRガスの比率のままEGRを行うようにしても良い。   In the present invention, even if it is determined by the determination means that there is a possibility that a combustion failure may occur, the operation state of the internal combustion engine is a predetermined value in which EGR is performed using at least the low-pressure EGR means described above. When belonging to a predetermined high load region in the operation region, the EGR may be performed without changing the ratio of the high pressure EGR gas in all the EGR gases while maintaining the ratio of the high pressure EGR gas at normal temperature.

ここで、「所定の高負荷領域」とは、高圧EGRガスの比率を高くしてEGRを行うと燃費が増大したり排気エミッションが悪化したりする可能性のある運転状態の範囲であって、予め定められる。   Here, the “predetermined high load region” refers to a range of operating states in which fuel consumption may increase or exhaust emission may deteriorate if EGR is performed with a high pressure EGR gas ratio being increased. Predetermined.

本発明において、内燃機関の周囲環境温度を代表するパラメータとして、外気温を採用することができる。また、内燃機関自体の温度を代表するパラメータとして、内燃機関の冷却水温を採用することができる。すなわち、判定手段は、外気温や冷却水温に基づいて燃焼不良が発生する可能性があるか否かを判定することができる。   In the present invention, the outside air temperature can be adopted as a parameter representing the ambient environment temperature of the internal combustion engine. Further, the cooling water temperature of the internal combustion engine can be adopted as a parameter representative of the temperature of the internal combustion engine itself. That is, the determination means can determine whether or not there is a possibility of poor combustion based on the outside air temperature or the cooling water temperature.

例えば、外気温が所定の基準外気温より低い場合や、冷却水温が所定の基準冷却水温より低い場合に、燃焼不良が発生する可能性があると判定することができる。ここで、所定の基準外気温は、常温時のEGR制御を行っても吸気温が過剰に低下する虞がない外気温の下限値である。また、所定の基準冷却水温は、常温時のEGR制御を行っても吸気温が過剰に低下する虞がない冷却水温の下限値である。   For example, when the outside air temperature is lower than a predetermined reference outside air temperature, or when the cooling water temperature is lower than a predetermined reference cooling water temperature, it can be determined that there is a possibility that combustion failure may occur. Here, the predetermined reference outside air temperature is a lower limit value of the outside air temperature at which there is no possibility that the intake air temperature is excessively lowered even when the EGR control at normal temperature is performed. The predetermined reference cooling water temperature is a lower limit value of the cooling water temperature at which there is no possibility that the intake air temperature is excessively lowered even when the EGR control at normal temperature is performed.

上述した課題を解決するために、本発明は、内燃機関の吸気通路にコンプレッサを有し且つ排気通路にタービンを有するターボチャージャと、前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続する高圧EGR通路を介して排気の一部を前記内燃機関に流入させる高圧EGR手段と、前記タービンより下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路を介して排気の一部を前記内燃機関に流入させる低圧EGR手段と、前記内燃機関の運転状態に応じて前記高圧EGR手段及び前記低圧EGR手段を併用又は切り替えてEGRを行うEGR制御手段と、内燃機関の冷却水温を測定する水温測定手段と、を備え、前記EGR制御手段は、内燃機関に流入させる排気に占める前記低圧EGR手段によって内燃機関に流入させる排気の比率を、前記水温測定手段によって測定される冷却水温に応じて可変制御することを特徴とする内燃機関のEGRシステムであってもよい。   In order to solve the above-described problems, the present invention provides a turbocharger having a compressor in an intake passage of an internal combustion engine and having a turbine in an exhaust passage, an exhaust passage upstream from the turbine, and an intake passage downstream from the compressor. A high pressure EGR means for allowing a part of the exhaust gas to flow into the internal combustion engine via a high pressure EGR passage connecting the engine, and a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor. Low-pressure EGR means for causing a part of exhaust gas to flow into the internal combustion engine, EGR control means for performing EGR by using or switching the high-pressure EGR means and the low-pressure EGR means in accordance with the operating state of the internal combustion engine, and an internal combustion engine Water temperature measuring means for measuring the cooling water temperature, and the EGR control means occupies the exhaust gas flowing into the internal combustion engine. The ratio of the exhaust gas to flow into the internal combustion engine by pressure EGR means may be an internal combustion engine EGR system, characterized by variably controlled in accordance with the coolant temperature measured by the temperature measuring means.

上述のように、高圧EGRガスの温度は比較的高く、低圧EGRガスの温度は比較的低い。従って、全EGRガス中の低圧EGRガスの比率が高くなるほど(高圧EGRガスの比率が低くなるほど)、EGRを行った場合の吸気温は低くなる。逆に、全EGRガス中の低圧EGRガスの比率が低くなるほど(高圧EGRガスの比率が高くなるほど)、EGRを行った場合の吸気温は高くなる。   As described above, the temperature of the high pressure EGR gas is relatively high and the temperature of the low pressure EGR gas is relatively low. Therefore, the higher the ratio of low-pressure EGR gas in all EGR gases (the lower the ratio of high-pressure EGR gas), the lower the intake air temperature when EGR is performed. Conversely, the lower the ratio of low-pressure EGR gas in all EGR gases (the higher the ratio of high-pressure EGR gas), the higher the intake air temperature when EGR is performed.

上記構成によれば、内燃機関の冷却水温に応じて全EGRガス中の低圧EGRガスの比率が可変制御されるので、EGRを行った場合の吸気温を内燃機関の温度によらず最適にすることができ、また、燃費特性や排気エミッションを向上させることができる。   According to the above configuration, since the ratio of the low-pressure EGR gas in the total EGR gas is variably controlled according to the cooling water temperature of the internal combustion engine, the intake air temperature when EGR is performed is optimized regardless of the temperature of the internal combustion engine. In addition, fuel consumption characteristics and exhaust emission can be improved.

例えば、冷却水温が低い場合は、内燃機関の温度が低く、内燃機関に低温の低圧EGRガスを流入させると吸気温が過剰に低下してしまう可能性がある。そこで、全EGRガス中の低圧EGRガスの比率を低くし、全EGRガスの大部分又は全部を高圧EGRガスとすることによって、EGRを行った場合の吸気温の低下を抑制することができ、失火等の燃焼不良が発生したり大量の未燃炭化水素が排出されたりする不具合を抑制できる。   For example, when the cooling water temperature is low, the temperature of the internal combustion engine is low, and if low-temperature low-pressure EGR gas is allowed to flow into the internal combustion engine, the intake air temperature may excessively decrease. Therefore, by reducing the ratio of low-pressure EGR gas in all EGR gas and making most or all of the total EGR gas high-pressure EGR gas, it is possible to suppress a decrease in intake air temperature when performing EGR, It is possible to suppress problems such as misfiring and other combustion failures or a large amount of unburned hydrocarbons being discharged.

一方、冷却水温が高い場合は、内燃機関に低圧EGRガスを流入させても吸気温が過剰に低下する虞はないので、全EGRガス中の低圧EGRガスの比率を高くし、高圧EGR手段及び低圧EGR手段の両方を用いてEGRを行うことが好ましい。これにより、低圧EGR手段を用いてEGRが行われるためターボチャージャの過給効率が高くなる。また、全EGRガスを高圧EGR手段を用いて内燃機関に流入させる場合と比較してポンプ損失が低減する。従って、EGRの実施に起因する燃料特性を向上させることができる。   On the other hand, when the cooling water temperature is high, there is no possibility that the intake air temperature will decrease excessively even if low-pressure EGR gas is introduced into the internal combustion engine. Therefore, the ratio of low-pressure EGR gas in all EGR gases is increased, and high-pressure EGR means and It is preferred to perform EGR using both low pressure EGR means. Thereby, since EGR is performed using the low pressure EGR means, the turbocharging efficiency of the turbocharger is increased. Further, the pump loss is reduced as compared with the case where all the EGR gas is caused to flow into the internal combustion engine using the high pressure EGR means. Therefore, the fuel characteristics resulting from the implementation of EGR can be improved.

このように、冷却水温が低くなるほど、全EGRガス中の低圧EGRガスの比率が低くなる(高圧EGRガスの比率が高くなる)ようにすれば、内燃機関の温度に応じて最適な燃焼状態や燃費特性、排気エミッションを実現できる。全EGRガス中の低圧EGRガスの比率は、冷却水温に応じて連続的に可変制御しても良いし、段階的に変化させても良い。上述した本発明の第1の形態において、判定手段が、冷却水温に基づいて、内燃機関において燃焼不良が発生する可能性があるか否かを判定するような構成とした場合は、上記本発明の第2の形態において、冷却水温に応じて全EGRガス中の低圧EGRガスの比率を2段階に変化させるような構成とした場合に相当するとも言える。   As described above, the lower the coolant temperature, the lower the ratio of the low pressure EGR gas in the total EGR gas (the higher the ratio of the high pressure EGR gas). Realizes fuel efficiency and exhaust emissions. The ratio of the low-pressure EGR gas in the total EGR gas may be continuously variably controlled according to the cooling water temperature, or may be changed in stages. In the first aspect of the present invention described above, when the determination means is configured to determine whether or not there is a possibility of combustion failure in the internal combustion engine based on the coolant temperature, the present invention described above. In the second embodiment, it can be said that this corresponds to a configuration in which the ratio of the low-pressure EGR gas in the total EGR gas is changed in two stages according to the cooling water temperature.

なお、内燃機関の温度は、冷却水温の他に、吸気通路壁面温度、エンジンオイル温度等に基づいて推定することもできる。   The temperature of the internal combustion engine can also be estimated based on the intake passage wall surface temperature, the engine oil temperature, and the like in addition to the coolant temperature.

なお、上記各構成は、可能な限り組み合わせて採用し得る。   In addition, said each structure can be employ | adopted combining as much as possible.

本発明により、低圧EGR装置と高圧EGR装置とを併用してEGRを行うEGRシステムを備えた内燃機関において、低外気温時や低水温時においても燃焼不良や排気エミッションの悪化を抑制しつつEGRを行うことが可能になる。   According to the present invention, in an internal combustion engine equipped with an EGR system that performs EGR using both a low pressure EGR device and a high pressure EGR device, EGR while suppressing poor combustion and deterioration of exhaust emission even at low outside air temperature and low water temperature. It becomes possible to do.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本実施例に係る内燃機関のEGRシステムを適用する内燃機関の吸気系、排気系、及び制御系の概略構成を模式的に示す図である。図1に示す内燃機関1は4つの気筒2を有する水冷式4サイクルディーゼルエンジンである。   FIG. 1 is a diagram schematically illustrating a schematic configuration of an intake system, an exhaust system, and a control system of an internal combustion engine to which an EGR system for an internal combustion engine according to the present embodiment is applied. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

内燃機関1の気筒2には、図示しない吸気ポートを介して吸気マニホールド17が接続されている。吸気マニホールド17には吸気管3が接続されている。吸気マニホールド17の上流の吸気管3には、吸気管3を流れる吸気の量を調節可能な第2スロットル9が配置されている。第2スロットル9より上流の吸気管3には吸気を冷却するインタークーラ8が設けられている。インタークーラ8より上流の吸気管3には、排気のエネルギーを駆動源として作動するターボチャージャ13のコンプレッサ11が配置されている。コンプレッサ11より上流の吸気管3には、吸気管3に流入する新気の量を調節可能な第1スロットル6が配置されている。   An intake manifold 17 is connected to the cylinder 2 of the internal combustion engine 1 via an intake port (not shown). An intake pipe 3 is connected to the intake manifold 17. A second throttle 9 capable of adjusting the amount of intake air flowing through the intake pipe 3 is disposed in the intake pipe 3 upstream of the intake manifold 17. The intake pipe 3 upstream of the second throttle 9 is provided with an intercooler 8 for cooling the intake air. A compressor 11 of a turbocharger 13 that operates using exhaust energy as a drive source is disposed in the intake pipe 3 upstream of the intercooler 8. A first throttle 6 capable of adjusting the amount of fresh air flowing into the intake pipe 3 is disposed in the intake pipe 3 upstream of the compressor 11.

内燃機関1の気筒2には、図示しない排気ポートを介して排気マニホールド18が接続されている。排気マニホールド18には排気管4が接続されている。排気管4にはターボチャージャ13のタービン12が配置されている。このターボチャージャ13はタービン
12の排気流量特性を変更可能なノズルベーン5を備えた可変容量型のターボチャージャである。タービン12より下流の排気管4には、排気浄化装置10が設けられている。排気浄化装置10は、排気中の粒子状物質を捕集するパティキュレートフィルタ(以下、フィルタ)と、該フィルタ上に担持され、排気が酸化雰囲気の時には排気中のNOxを吸蔵し、排気が還元雰囲気の時には吸蔵していたNOxを放出・還元することによって排気中のNOxを浄化する吸蔵還元型NOx触媒と、を有して構成される。排気浄化装置10より下流の排気管4には、排気管4を流れる排気の量を調節可能な排気絞り弁19が配置されている。なお、排気絞り弁19は後述する低圧EGR通路31の接続部より下流の排気管4に配置しても良い。
An exhaust manifold 18 is connected to the cylinder 2 of the internal combustion engine 1 via an exhaust port (not shown). The exhaust pipe 4 is connected to the exhaust manifold 18. A turbine 12 of a turbocharger 13 is disposed in the exhaust pipe 4. The turbocharger 13 is a variable capacity turbocharger including a nozzle vane 5 that can change the exhaust flow rate characteristic of the turbine 12. An exhaust purification device 10 is provided in the exhaust pipe 4 downstream of the turbine 12. The exhaust purification device 10 is a particulate filter (hereinafter referred to as a filter) that collects particulate matter in the exhaust, and is supported on the filter. When the exhaust is in an oxidizing atmosphere, the exhaust purifier 10 stores NOx in the exhaust, and the exhaust is reduced. And an NOx storage reduction catalyst that purifies NOx in the exhaust gas by releasing / reducing NOx stored in the atmosphere. An exhaust throttle valve 19 capable of adjusting the amount of exhaust flowing through the exhaust pipe 4 is disposed in the exhaust pipe 4 downstream of the exhaust purification device 10. Note that the exhaust throttle valve 19 may be disposed in the exhaust pipe 4 downstream of the connecting portion of the low pressure EGR passage 31 described later.

内燃機関1には、排気管4を流れる排気の一部を高圧で吸気管3へ導き、気筒2に流入させる高圧EGR装置40が備えられている。高圧EGR装置40は、高圧EGR通路41及び高圧EGR弁42を有して構成される。高圧EGR通路41は、タービン12より上流の排気管4と第2スロットル9より下流の吸気管3とを接続する。高圧EGR通路41を通過して排気の一部が吸気管3に導かれる。本実施例では、高圧EGR通路41を経由して気筒2に流入する排気を高圧EGRガスと称する。   The internal combustion engine 1 is provided with a high-pressure EGR device 40 that guides a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3 at a high pressure and flows into the cylinder 2. The high pressure EGR device 40 includes a high pressure EGR passage 41 and a high pressure EGR valve 42. The high pressure EGR passage 41 connects the exhaust pipe 4 upstream of the turbine 12 and the intake pipe 3 downstream of the second throttle 9. A part of the exhaust gas is guided to the intake pipe 3 through the high-pressure EGR passage 41. In this embodiment, the exhaust gas flowing into the cylinder 2 via the high pressure EGR passage 41 is referred to as high pressure EGR gas.

高圧EGR弁42は、高圧EGR通路41を流れる排気の量を調節可能な流量調節弁である。高圧EGRガスの調量は高圧EGR弁42の開度を変更することによって行われる。なお、高圧EGRガスの調量は、第2スロットル9の開度を変更して高圧EGR通路41の上流と下流との差圧を変化させることによっても行うことができる。また、ノズルベーン5の開度を変更することによっても高圧EGRガスを調量することができる。   The high pressure EGR valve 42 is a flow rate adjustment valve capable of adjusting the amount of exhaust gas flowing through the high pressure EGR passage 41. The high-pressure EGR gas is metered by changing the opening degree of the high-pressure EGR valve 42. The metering of the high pressure EGR gas can also be performed by changing the differential pressure between the upstream and downstream of the high pressure EGR passage 41 by changing the opening of the second throttle 9. Further, the high pressure EGR gas can be metered by changing the opening degree of the nozzle vane 5.

内燃機関1には、排気管4を流れる排気の一部を低圧で吸気管3へ導き、気筒2に流入させる低圧EGR装置30が備えられている。低圧EGR装置30は、低圧EGR通路31、低圧EGR弁32、及び低圧EGRクーラ33を有して構成される。低圧EGR通路31は、排気絞り弁19より下流の排気管4と、コンプレッサ11より上流且つ第1スロットル6より下流の吸気管3とを接続する。低圧EGR通路31を通過して排気の一部が吸気管3に導かれる。本実施例では、低圧EGR通路31を経由して気筒2に流入する排気を低圧EGRガスと称する。   The internal combustion engine 1 is provided with a low pressure EGR device 30 that guides a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3 at a low pressure and flows into the cylinder 2. The low pressure EGR device 30 includes a low pressure EGR passage 31, a low pressure EGR valve 32, and a low pressure EGR cooler 33. The low pressure EGR passage 31 connects the exhaust pipe 4 downstream of the exhaust throttle valve 19 and the intake pipe 3 upstream of the compressor 11 and downstream of the first throttle 6. A part of the exhaust gas is guided to the intake pipe 3 through the low-pressure EGR passage 31. In this embodiment, the exhaust gas flowing into the cylinder 2 via the low pressure EGR passage 31 is referred to as low pressure EGR gas.

低圧EGR弁32は、低圧EGR通路31を流れる排気の量を調節可能な流量調節弁である。低圧EGRガスの調量は低圧EGR弁32の開度を変更することによって行われる。なお、低圧EGRガスの調量は、第1スロットル6の開度を変更して低圧EGR通路31の上流と下流との差圧を変化させることによっても行うことができる。低圧EGRクーラ33は、低圧EGR通路31を通過する低圧EGRガスを冷却する。   The low pressure EGR valve 32 is a flow rate adjustment valve capable of adjusting the amount of exhaust gas flowing through the low pressure EGR passage 31. Metering of the low pressure EGR gas is performed by changing the opening of the low pressure EGR valve 32. The low-pressure EGR gas can be regulated by changing the opening of the first throttle 6 to change the differential pressure between the upstream and downstream of the low-pressure EGR passage 31. The low pressure EGR cooler 33 cools the low pressure EGR gas passing through the low pressure EGR passage 31.

内燃機関1には、機関の制御を行う電子制御装置(ECU)20が併設されている。ECU20は、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、中央演算装置(CPU)、入出力ポート、デジタルアナログコンバータ(DAコンバータ)、アナログデジタルコンバータ(ADコンバータ)等を双方向バスで接続した公知の構成を有するマイクロコンピュータとして構成されている。   The internal combustion engine 1 is provided with an electronic control unit (ECU) 20 that controls the engine. The ECU 20 connects a read-only memory (ROM), a random access memory (RAM), a central processing unit (CPU), an input / output port, a digital analog converter (DA converter), an analog digital converter (AD converter), etc. with a bidirectional bus. The microcomputer has a known configuration as described above.

ECU20は、内燃機関1の運転状態や運転者による要求に応じて燃料噴射制御等のディーゼルエンジンにおいて既知の諸基本制御を行う。そのために、本実施例における内燃機関1には、吸気管3に流入する新気の流量を検出するエアフローメータ7、内燃機関1の冷却水温を測定する水温センサ14、運転者によるアクセルペダル(図示省略)の踏み込み量(アクセル開度)を検出するアクセル開度センサ15、内燃機関1のクランクシャフト(図示省略)の回転位相(クランク角度)を検出するクランクポジションセンサ16、ディーゼルエンジンが一般的に備えているセンサ類(図示省略)が設けられている。   The ECU 20 performs various basic controls known in the diesel engine such as fuel injection control in accordance with the operation state of the internal combustion engine 1 or a request from the driver. For this purpose, the internal combustion engine 1 in this embodiment includes an air flow meter 7 that detects the flow rate of fresh air flowing into the intake pipe 3, a water temperature sensor 14 that measures the cooling water temperature of the internal combustion engine 1, and an accelerator pedal (not shown). An accelerator opening sensor 15 for detecting a stepping amount (accelerator opening) of the (omitted), a crank position sensor 16 for detecting a rotation phase (crank angle) of a crankshaft (not shown) of the internal combustion engine 1, and a diesel engine are generally used. Provided sensors (not shown) are provided.

これらのセンサは電気配線を介してECU20に接続され、各センサからの出力信号がECU20に入力されるようになっている。また、ECU20には、第1スロットル6、第2スロットル9、排気絞り弁19、低圧EGR弁32、高圧EGR弁42を駆動するための駆動装置等の機器が電気配線を介して接続され、ECU20から出力される制御信号に従ってこれらの機器が制御される。   These sensors are connected to the ECU 20 via electric wiring, and output signals from the sensors are input to the ECU 20. The ECU 20 is connected to devices such as a drive device for driving the first throttle 6, the second throttle 9, the exhaust throttle valve 19, the low pressure EGR valve 32, and the high pressure EGR valve 42 through electric wiring. These devices are controlled in accordance with a control signal output from.

ECU20は、各センサによる検出値に基づいて内燃機関1の運転状態や運転者の要求を把握する。例えば、ECU20はクランクポジションセンサ16から入力されるクランク角度から算出する機関回転数と、アクセル開度センサ15から入力されるアクセル開度から算出する機関負荷とに基づいて内燃機関1の運転状態を検出する。そして、検出した機関運転状態や運転者の要求に基づいて低圧EGR弁32や高圧EGR弁42等を制御し、EGRガス量や吸入空気量の制御を行う。   ECU20 grasps | ascertains the driving | running state of the internal combustion engine 1, and a driver | operator's request | requirement based on the detection value by each sensor. For example, the ECU 20 determines the operating state of the internal combustion engine 1 based on the engine speed calculated from the crank angle input from the crank position sensor 16 and the engine load calculated from the accelerator opening input from the accelerator opening sensor 15. To detect. Then, the low pressure EGR valve 32, the high pressure EGR valve 42, and the like are controlled based on the detected engine operating state and the driver's request to control the EGR gas amount and the intake air amount.

次に、ECU20によって行われるEGR制御について説明する。   Next, EGR control performed by the ECU 20 will be described.

図2は、内燃機関1の運転状態の領域毎に定められた、EGR実施時に使用される高圧EGR装置40及び低圧EGR装置30の組み合わせを表すEGR制御マップの概念図である。図2の横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の機関負荷を表している。   FIG. 2 is a conceptual diagram of an EGR control map representing combinations of the high-pressure EGR device 40 and the low-pressure EGR device 30 that are used for EGR execution and are determined for each operating state region of the internal combustion engine 1. 2 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1.

図2に示すように、本実施例のEGRシステムでは、内燃機関1の運転状態が低負荷の時には、高圧EGR装置40のみを用いてEGRが行われる。高圧EGR装置40のみを用いてEGRが行われる運転状態の範囲を、以下「HPL領域」と称する。また、内燃機関1の運転状態が中負荷の時には、高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われる。高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われる運転状態の範囲を、以下「MIX領域」と称する。また、内燃機関1の運転状態が高負荷の時には、低圧EGR装置30のみを用いてEGRが行われる。低圧EGR装置30のみを用いてEGRが行われる運転状態の範囲を、以下「LPL領域」と称する。   As shown in FIG. 2, in the EGR system of the present embodiment, when the operating state of the internal combustion engine 1 is a low load, EGR is performed using only the high-pressure EGR device 40. The range of operating states in which EGR is performed using only the high-pressure EGR device 40 is hereinafter referred to as “HPL region”. When the operating state of the internal combustion engine 1 is a medium load, EGR is performed using both the high pressure EGR device 40 and the low pressure EGR device 30. The range of operating states in which EGR is performed using the high pressure EGR device 40 and the low pressure EGR device 30 together is hereinafter referred to as a “MIX region”. Further, when the operating state of the internal combustion engine 1 is a high load, EGR is performed using only the low pressure EGR device 30. The range of the operating state in which EGR is performed using only the low pressure EGR device 30 is hereinafter referred to as “LPL region”.

なお、図2に示したEGR制御マップでは、内燃機関の運転状態をHPL領域、MIX領域、及びLPL領域の3つの領域に分割した場合を例示したが、内燃機関の運転状態の分割の仕方はこれに限られない。例えば、図3に示すように、低負荷領域をHPL領域として規定し、それ以外の高負荷側の領域をLPL領域として規定するEGR制御マップも考えられる。或いは、図4に示すように、低負荷領域をMIX領域として規定し、それ以外の高負荷側の領域をLPL領域として規定するEGR制御マップも考えられる。   In the EGR control map shown in FIG. 2, the operation state of the internal combustion engine is illustrated as being divided into three regions of the HPL region, the MIX region, and the LPL region. However, the method of dividing the operation state of the internal combustion engine is as follows. It is not limited to this. For example, as shown in FIG. 3, an EGR control map in which the low load region is defined as the HPL region and the other high load side region is defined as the LPL region is also conceivable. Alternatively, as shown in FIG. 4, an EGR control map may be considered in which the low load region is defined as a MIX region and the other high load side region is defined as an LPL region.

LPL領域、MIX領域、及びHPL領域を規定する具体的な運転状態の範囲や、各領域における高圧EGRガス量、低圧EGRガス量、EGRシステムによって内燃機関に流入する全排気(以下、全EGRガス)に対する排気高圧EGRガスや低圧EGRガスの比率等の、EGR制御に係る諸パラメータの目標値は、各運転状態において吸気のEGR率が所定の目標EGR率に一致し、且つ、内燃機関における燃焼特性、排気エミッション、EGRの実施に伴う燃費特性等が所望の要求性能を満たすように、予め実験等により定められる。このようにして定められる高圧EGRガス量の目標値を以下「基本高圧EGRガス量」、低圧EGRガス量の目標値を以下「基本低圧EGRガス量」、基本高圧EGRガス量及び基本低圧EGRガス量によって定まる、全EGRガス中の高圧EGRガスの比率を以下「基本高圧EGR比率」、全EGRガス中の低圧EGRガスの比率を以下「基本低圧EGR比率」と称する。また、運転状態毎に定まる基本高圧EGRガス量及び基本低圧EGRガス量によって規定されるEGR制御マップを以下「基本EGR制御マップ」と称する。   Specific operating state ranges defining the LPL region, the MIX region, and the HPL region, the high pressure EGR gas amount in each region, the low pressure EGR gas amount, and the total exhaust gas flowing into the internal combustion engine by the EGR system (hereinafter referred to as the total EGR gas). The target values of various parameters related to EGR control, such as the ratio of the exhaust high-pressure EGR gas and low-pressure EGR gas to the exhaust gas), the intake EGR rate matches the predetermined target EGR rate in each operating state, and combustion in the internal combustion engine The characteristics, exhaust emissions, fuel consumption characteristics associated with the implementation of EGR, and the like are determined in advance by experiments or the like so as to satisfy desired performance requirements. The target value of the high pressure EGR gas amount thus determined is hereinafter referred to as “basic high pressure EGR gas amount”, and the target value of the low pressure EGR gas amount is referred to as “basic low pressure EGR gas amount”, the basic high pressure EGR gas amount and the basic low pressure EGR gas. The ratio of the high pressure EGR gas in the total EGR gas determined by the amount is hereinafter referred to as “basic high pressure EGR ratio”, and the ratio of the low pressure EGR gas in the total EGR gas is hereinafter referred to as “basic low pressure EGR ratio”. The EGR control map defined by the basic high pressure EGR gas amount and the basic low pressure EGR gas amount determined for each operation state is hereinafter referred to as a “basic EGR control map”.

内燃機関1の定常運転時において低圧EGRガス量を基本低圧EGRガス量とするような低圧EGR弁32の開度として基本低圧EGR弁開度が求められ、また、高圧EGRガス量を基本高圧EGRガス量とするような高圧EGR弁42の開度として基本高圧EGR弁開度が求められ、それぞれECU20のROMに記憶される。   The basic low pressure EGR valve opening is determined as the opening of the low pressure EGR valve 32 so that the low pressure EGR gas amount is the basic low pressure EGR gas amount during steady operation of the internal combustion engine 1, and the high pressure EGR gas amount is determined as the basic high pressure EGR amount. The basic high pressure EGR valve opening degree is obtained as the opening degree of the high pressure EGR valve 42 to be the gas amount, and is stored in the ROM of the ECU 20 respectively.

ECU20は、内燃機関1の運転状態に応じてROMから基本低圧EGR弁開度及び基本高圧EGR弁開度を読み込み、低圧EGR弁32の開度が基本低圧EGR弁開度となるように低圧EGR弁32を制御するとともに、高圧EGR弁42の開度が基本高圧EGR弁開度となるように高圧EGR弁42を制御する。   The ECU 20 reads the basic low pressure EGR valve opening and the basic high pressure EGR valve opening from the ROM in accordance with the operating state of the internal combustion engine 1, and the low pressure EGR so that the opening of the low pressure EGR valve 32 becomes the basic low pressure EGR valve opening. While controlling the valve 32, the high pressure EGR valve 42 is controlled so that the opening degree of the high pressure EGR valve 42 becomes the basic high pressure EGR valve opening degree.

ところで、高圧EGR通路41はその経路長が比較的短く、流通過程で高圧EGRガスは冷却されにくいため、高圧EGR装置40を用いてEGRを行うことによって、比較的高温の排気が内燃機関1に流入する。一方、低圧EGR通路31はその経路長が比較的長く、さらに低圧EGRガスの流通経路上には低圧EGRクーラ33やインタークーラ8等が配置されているので、流通過程で低圧EGRガスは冷却される。そのため、低圧EGR装置30を用いてEGRを行うことによって、比較的低温の排気が内燃機関1に流入する。   By the way, the high-pressure EGR passage 41 has a relatively short path length, and the high-pressure EGR gas is difficult to be cooled in the flow process. Therefore, by performing EGR using the high-pressure EGR device 40, relatively high-temperature exhaust gas is sent to the internal combustion engine 1. Inflow. On the other hand, the path length of the low pressure EGR passage 31 is relatively long, and the low pressure EGR cooler 33, the intercooler 8 and the like are disposed on the flow path of the low pressure EGR gas, so that the low pressure EGR gas is cooled in the flow process. The Therefore, by performing EGR using the low pressure EGR device 30, relatively low temperature exhaust gas flows into the internal combustion engine 1.

低圧EGR装置30を用いてEGRを行った場合、ターボチャージャ13によって低温の低圧EGRガスが内燃機関1に過給されるため、NOx低減効果や燃費性能の点で有利となるが、内燃機関1の周囲環境温度が低い時(例えば外気温の低い冬季)や内燃機関自体の温度が低い時(例えば機関始動直後)等、吸気温が低下し易い状況において低温の低圧EGRガスが内燃機関1に流入すると、吸気温が過剰に低下して失火等の燃焼不良を招く虞があった。   When EGR is performed using the low-pressure EGR device 30, low-temperature low-pressure EGR gas is supercharged to the internal combustion engine 1 by the turbocharger 13, which is advantageous in terms of NOx reduction effect and fuel consumption performance. When the ambient temperature is low (for example, in the winter when the outside air temperature is low) or when the temperature of the internal combustion engine itself is low (for example, immediately after the engine is started), low-temperature low-pressure EGR gas enters the internal combustion engine 1 in situations where the intake air temperature tends to decrease. When it flows in, there is a possibility that the intake air temperature is excessively lowered to cause a combustion failure such as misfire.

そこで、本実施例では、吸気温が過剰に低下して燃焼不良が発生する可能性がある状況の時には、低圧EGR装置30を用いてEGRが行われる運転状態の領域、すなわちMIX領域又はLPL領域の一部又は全部の領域において、全EGRガス中の高圧EGRガスの比率を高めるようにEGR制御マップを補正してEGRを行うようにした。   Therefore, in this embodiment, when there is a possibility that the intake air temperature is excessively lowered and combustion failure may occur, an operation state region where EGR is performed using the low pressure EGR device 30, that is, a MIX region or an LPL region. The EGR control map is corrected so that EGR is performed so that the ratio of the high-pressure EGR gas in all the EGR gases is increased in a part or all of the region.

これにより、吸気温が低下し易い場合であっても、高温の高圧EGRガスが常温時の基本高圧EGRガス量より多く内燃機関1に流入することになるため、EGRを行った場合に吸気温が過剰に低下して失火等の燃焼不良が発生することを好適に抑制できる。   As a result, even if the intake air temperature is likely to decrease, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1 more than the basic high-pressure EGR gas amount at normal temperature. It is possible to suitably suppress the occurrence of poor combustion such as misfire due to excessive decrease in the amount of fuel.

本実施例では、水温センサ14によって測定される冷却水温及び/又は外気温に基づいて、上記の「吸気温が過剰に低下して燃焼不良が発生する可能性がある状況」であるか否かを判定する。具体的には、冷却水温Twが所定の基準冷却水温Twth未満である場合、及び/又は、外気温Taが所定の基準外気温Tath未満である場合に、燃焼不良が発生する可能性がある状況であると判定する。以下、燃焼不良が発生する可能性があると判定される状況であることを「低水温時」であると称する。逆に、冷却水温が基準冷却水温以上且つ外気温が基準外気温以上である場合は、燃焼不良が発生する可能性があると判定しない。燃焼不良が発生する可能性があると判定されない状況であることを「常温時」であると称する。   In the present embodiment, based on the cooling water temperature and / or the outside air temperature measured by the water temperature sensor 14, whether or not “the situation where there is a possibility that the intake air temperature is excessively lowered and combustion failure occurs” is determined. Determine. Specifically, when the cooling water temperature Tw is lower than a predetermined reference cooling water temperature Twth and / or when the outside air temperature Ta is lower than the predetermined reference outside air temperature Tath, a combustion failure may occur. It is determined that Hereinafter, the situation in which it is determined that there is a possibility that a combustion failure may occur is referred to as “at the time of low water temperature”. Conversely, when the cooling water temperature is equal to or higher than the reference cooling water temperature and the outside air temperature is equal to or higher than the reference outside air temperature, it is not determined that there is a possibility that a combustion failure may occur. A situation in which it is not determined that there is a possibility that a combustion failure may occur is referred to as “at room temperature”.

以下、EGR制御マップの補正のいくつかの具体例を説明する。   Hereinafter, some specific examples of correction of the EGR control map will be described.

図5は、図2のように内燃機関の運転状態をHPL領域、MIX領域、及びLPL領域に分割した基本EGR制御マップに対する補正例を示す図である。この例では、LPL領域における低負荷側(すなわちMIX領域側)の一部の領域において、低水温時には、高
圧EGRガスの比率を0%から0%より大きい所定の比率に増大させる。さらに、MIX領域における高圧EGR比率を、低水温時には、基本高圧EGR比率と比較して増大させ、特に低負荷側(すなわちHPL領域側)の一部の領域において、高圧EGR比率を100%より小さい所定の比率から100%に増大させる。
FIG. 5 is a diagram showing a correction example for the basic EGR control map in which the operating state of the internal combustion engine is divided into the HPL region, the MIX region, and the LPL region as shown in FIG. In this example, the ratio of the high-pressure EGR gas is increased from 0% to a predetermined ratio greater than 0% at a low water temperature in a part of the low load side (that is, the MIX region side) in the LPL region. Further, the high pressure EGR ratio in the MIX region is increased compared with the basic high pressure EGR ratio at the time of low water temperature, and the high pressure EGR ratio is smaller than 100% particularly in a part of the low load side (that is, the HPL region side). Increase from a predetermined ratio to 100%.

すなわち、常温時においてはLPL領域に属する運転状態として規定されていた斜線部Aに属する運転状態をMIX領域に属する運転状態として規定し直し、LPL領域を縮小する。さらに、常温時においてはMIX領域に属する運転状態として規定されていた斜線部Bに属する運転状態をHPL領域に属する運転状態として規定し直し、HPL領域を拡大する。   That is, the operating state belonging to the shaded portion A, which was defined as the operating state belonging to the LPL region at normal temperature, is redefined as the operating state belonging to the MIX region, and the LPL region is reduced. Further, the operating state belonging to the hatched portion B, which was defined as the operating state belonging to the MIX region at normal temperature, is redefined as the operating state belonging to the HPL region, and the HPL region is expanded.

このように基本EGR制御マップを補正することによって、常温時には低圧EGR装置30のみを用いてEGRが行われる斜線部Aに属する運転状態においても、低水温時には高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われるため、高温の高圧EGRガスが内燃機関1に流入することになり、吸気温が過剰に低下することを抑制できる。また、MIX領域に属する運転状態においても、常温時と比較してより多くの高圧EGRガスが内燃機関1に流入することになるので、同様に吸気温の過剰な低下を抑制できる。   By correcting the basic EGR control map in this way, the high-pressure EGR device 40 and the low-pressure EGR device 30 can be operated at the low water temperature even in the operation state belonging to the shaded portion A where the EGR is performed using only the low-pressure EGR device 30 at the normal temperature. Since the EGR is performed in combination, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1, and it is possible to suppress the intake air temperature from excessively decreasing. Further, even in the operating state belonging to the MIX region, more high-pressure EGR gas flows into the internal combustion engine 1 than at normal temperature, so that an excessive decrease in the intake air temperature can be similarly suppressed.

図6は、図3のように内燃機関の運転状態をHPL領域及びLPL領域に分割した基本EGR制御マップに対する補正例を示す図である。この例では、LPL領域における低負荷側(すなわちHPL領域側)の一部の領域において、低水温時には、高圧EGRガスの比率を0%から100%に増大させる。すなわち、常温時においてはLPL領域に属する運転状態として規定されていた斜線部Cに属する運転状態をHPL領域に属する運転状態として規定し直し、LPL領域を縮小する。   FIG. 6 is a diagram showing a correction example for the basic EGR control map in which the operating state of the internal combustion engine is divided into the HPL region and the LPL region as shown in FIG. 3. In this example, the ratio of the high-pressure EGR gas is increased from 0% to 100% at a low water temperature in a part of the LPL region on the low load side (that is, the HPL region side). That is, the operating state belonging to the shaded portion C, which was defined as the operating state belonging to the LPL region at normal temperature, is redefined as the operating state belonging to the HPL region, and the LPL region is reduced.

このように基本EGR制御マップを補正することによって、常温時には低圧EGR装置30のみを用いてEGRが行われる斜線部Cに属する運転状態においても、低水温時には高圧EGR装置40のみを用いてEGRが行われるため、高温の高圧EGRガスが内燃機関1に流入することになり、吸気温が過剰に低下することを抑制できる。   By correcting the basic EGR control map in this way, even in an operating state belonging to the shaded portion C where EGR is performed using only the low pressure EGR device 30 at normal temperature, EGR is performed using only the high pressure EGR device 40 at low water temperature. Therefore, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1, and the intake air temperature can be prevented from excessively decreasing.

図7は、図3に示す基本EGR制御マップに対する異なる補正例を示す図である。この例では、LPL領域における低負荷側(すなわちHPL領域側)の一部の領域において、低水温時には、高圧EGRガスの比率を0%から0%より大きい所定の比率に増大させる。すなわち、常温時においてはLPL領域に属する運転状態として規定されていた斜線部Dに属する運転状態をMIX領域に属する運転状態として規定し直し、LPL領域を縮小する。   FIG. 7 is a diagram showing different correction examples for the basic EGR control map shown in FIG. In this example, the ratio of the high pressure EGR gas is increased from 0% to a predetermined ratio larger than 0% at a low water temperature in a part of the low load side (that is, the HPL region side) in the LPL region. That is, the operating state belonging to the hatched portion D, which was defined as the operating state belonging to the LPL region at normal temperature, is redefined as the operating state belonging to the MIX region, and the LPL region is reduced.

このように基本EGR制御マップを補正することによって、常温時には低圧EGR装置30のみを用いてEGRが行われる斜線部Dに属する運転状態においても、低水温時には高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われるため、高温の高圧EGRガスが内燃機関1に流入することになり、吸気温が過剰に低下することを抑制できる。   By correcting the basic EGR control map in this way, the high-pressure EGR device 40 and the low-pressure EGR device 30 can be operated at the low water temperature even in the operation state belonging to the shaded portion D where the EGR is performed using only the low-pressure EGR device 30 at the normal temperature. Since the EGR is performed in combination, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1, and it is possible to suppress the intake air temperature from excessively decreasing.

図8は、図4のように内燃機関の運転状態をMIX領域及びLPL領域に分割した基本EGR制御マップに対する補正例を示す図である。この例では、LPL領域における低負荷側(すなわちMIX領域側)の一部の領域において、低水温時には、高圧EGRガスの比率を0%から0%より大きい所定の比率に増大させる。すなわち、常温時においてはLPL領域に属する運転状態として規定されていた斜線部Eに属する運転状態をMIX領域に属する運転状態として規定し直し、LPL領域を縮小する。   FIG. 8 is a diagram showing a correction example for the basic EGR control map in which the operating state of the internal combustion engine is divided into the MIX region and the LPL region as shown in FIG. In this example, the ratio of the high-pressure EGR gas is increased from 0% to a predetermined ratio greater than 0% at a low water temperature in a part of the low load side (that is, the MIX region side) in the LPL region. That is, the operating state belonging to the shaded portion E, which was defined as the operating state belonging to the LPL region at normal temperature, is redefined as the operating state belonging to the MIX region, and the LPL region is reduced.

このように基本EGR制御マップを補正することによって、常温時には低圧EGR装置30のみを用いてEGRが行われる斜線部Eに属する運転状態においても、低水温時には高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われるため、高温の高圧EGRガスが内燃機関1に流入することになり、吸気温が過剰に低下することを抑制できる。   By correcting the basic EGR control map in this manner, the high-pressure EGR device 40 and the low-pressure EGR device 30 can be operated at the low water temperature even in the operating state belonging to the shaded portion E where the EGR is performed using only the low-pressure EGR device 30 at the normal temperature. Since the EGR is performed in combination, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1, and it is possible to suppress the intake air temperature from excessively decreasing.

図9は、図4に示す基本EGR制御マップに対する異なる補正例を示す図である。この例では、MIX領域における高圧EGR比率を、低水温時には、基本高圧EGR比率と比較して増大させる。このように基本EGR制御マップを補正することによって、MIX領域に属する運転状態において、常温時と比較して多くの高圧EGRガスが内燃機関1に流入することになるので、吸気温が過剰に低下することを抑制できる。   FIG. 9 is a diagram showing different correction examples for the basic EGR control map shown in FIG. In this example, the high pressure EGR ratio in the MIX region is increased compared to the basic high pressure EGR ratio at the time of low water temperature. By correcting the basic EGR control map in this manner, in the operating state belonging to the MIX region, a larger amount of high-pressure EGR gas flows into the internal combustion engine 1 than at normal temperature, so the intake air temperature decreases excessively. Can be suppressed.

図10は、図9に示した補正例において、特にMIX領域における低負荷側の一部の領域において、高圧EGR比率を100%より小さい所定の比率から100%に増大させる例を示した図である。この例では、常温時においてはMIX領域に属する運転状態として規定されていた斜線部Fに属する運転状態をHPL領域に属する運転状態として規定し直し、HPL領域を拡大する。   FIG. 10 is a diagram showing an example of increasing the high-pressure EGR ratio from a predetermined ratio smaller than 100% to 100% in the correction example shown in FIG. 9, particularly in a partial region on the low load side in the MIX region. is there. In this example, the operating state belonging to the shaded portion F, which was defined as the operating state belonging to the MIX region at normal temperature, is redefined as the operating state belonging to the HPL region, and the HPL region is expanded.

このように基本EGR制御マップを補正することによって、常温時には高圧EGR装置40及び低圧EGR装置30を併用してEGRが行われる斜線部Fに属する運転状態において、低水温時には高圧EGR装置40のみを用いてEGRが行われるため、高温の高圧EGRガスが内燃機関1に流入することになり、吸気温が過剰に低下することを抑制できる。   By correcting the basic EGR control map in this way, only the high pressure EGR device 40 is operated at the low water temperature in the operation state belonging to the shaded portion F where the high pressure EGR device 40 and the low pressure EGR device 30 are used in combination at the normal temperature. Since the EGR is performed using the high-temperature EGR gas, the high-temperature high-pressure EGR gas flows into the internal combustion engine 1, and the intake air temperature can be prevented from excessively decreasing.

以下、低水温時に行われる本実施例のEGR制御マップ補正制御の具体的な実行手順について、図11に基づいて説明する。図11は、EGR制御マップ補正制御ルーチンを示すフローチャートである。このルーチンは内燃機関1の稼働中所定時間毎に繰り返し実行される。   Hereinafter, a specific execution procedure of the EGR control map correction control of this embodiment performed at the time of low water temperature will be described with reference to FIG. FIG. 11 is a flowchart showing an EGR control map correction control routine. This routine is repeatedly executed every predetermined time while the internal combustion engine 1 is operating.

ステップS101において、ECU20は、内燃機関1の運転状態を取得する。具体的には、アクセル開度センサ15によって測定されるアクセル開度に基づいて機関負荷を計算するとともに、クランクポジションセンサ16によって測定されるクランク角度に基づいて機関回転数を計算する。   In step S101, the ECU 20 acquires the operating state of the internal combustion engine 1. Specifically, the engine load is calculated based on the accelerator opening measured by the accelerator opening sensor 15 and the engine speed is calculated based on the crank angle measured by the crank position sensor 16.

ステップS102において、ECU20は、内燃機関1の冷却水温Twを取得する。具体的には、水温センサ14によって冷却水温を直接測定する。   In step S102, the ECU 20 acquires the coolant temperature Tw of the internal combustion engine 1. Specifically, the cooling water temperature is directly measured by the water temperature sensor 14.

ステップS103において、ECU20は、内燃機関1において燃焼不良が発生する可能性があるか否か、すなわち吸気温が低下し易い状況であるか否かを判定する。具体的には、ステップS102で取得した冷却水温Twが基準冷却水温Twth未満であるか否かを判定する。ステップS103において肯定判定された場合、ECU20はステップS104に進む。一方、ステップS103において否定判定された場合、ECU20はステップS106に進む。   In step S103, the ECU 20 determines whether there is a possibility that a combustion failure may occur in the internal combustion engine 1, that is, whether the intake air temperature is likely to decrease. Specifically, it is determined whether or not the cooling water temperature Tw acquired in step S102 is lower than the reference cooling water temperature Twth. If an affirmative determination is made in step S103, the ECU 20 proceeds to step S104. On the other hand, if a negative determination is made in step S103, the ECU 20 proceeds to step S106.

ステップS104において、ECU20は、上述したように基本EGR制御マップを補正する。   In step S104, the ECU 20 corrects the basic EGR control map as described above.

ステップS105において、ECU20は、ステップS104で補正したEGR制御マップに従ってEGRを行う。   In step S105, the ECU 20 performs EGR according to the EGR control map corrected in step S104.

ステップS106では、ECU20は、基本EGR制御マップに従ってEGRを行う。   In step S106, the ECU 20 performs EGR according to the basic EGR control map.

ステップS105又はステップS106を実行後、ECU20は、本ルーチンの実行を一旦終了する。   After executing step S105 or step S106, the ECU 20 once ends the execution of this routine.

なお、以上述べた実施の形態は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施形態には種々の変更を加え得る。例えば、上記実施例では低水温時に用いられる補正EGR制御マップと常温時に用いられる基本EGR制御マップとの2つの異なるEGR制御マップを、冷却水温に応じて切り替えてEGRを行っているが、低圧EGR比率を冷却水温の関数として連続値又は複数の段階的な値に可変制御するようにしてもよい。この場合、図12に示すように、冷却水温が低くなるほど、低圧EGR比率が小さくなるように低圧EGR比率を可変制御することが好適である。こうすることで、冷却水温が低い場合には主に高圧EGR装置40を用いてEGRが行われるので、高温の高圧EGRガスが内燃機関1により多く流入することになり、吸気温の過剰な低下を抑制して燃焼不良や未燃燃料成分の大量発生を抑制できる。また、冷却水温が高い場合には低圧EGR装置30及び高圧EGR装置40を併用してEGRが行われるので、低圧EGR装置30使用によってターボチャージャ13の過給効率が高まり、また、高圧EGR比率が低くなることによってポンプ損失が低減され、燃費を向上させることができる。   The embodiment described above is an example for explaining the present invention, and various modifications can be made to the above-described embodiment without departing from the gist of the present invention. For example, in the above embodiment, EGR is performed by switching two different EGR control maps, that is, a correction EGR control map used at low water temperature and a basic EGR control map used at normal temperature, according to the cooling water temperature. The ratio may be variably controlled to a continuous value or a plurality of step values as a function of the cooling water temperature. In this case, as shown in FIG. 12, it is preferable to variably control the low pressure EGR ratio so that the lower the cooling water temperature is, the smaller the low pressure EGR ratio is. By doing this, when the cooling water temperature is low, EGR is mainly performed using the high pressure EGR device 40, so that a large amount of high temperature high pressure EGR gas flows into the internal combustion engine 1, and the intake air temperature decreases excessively. It is possible to suppress combustion failure and generation of a large amount of unburned fuel components. Further, when the cooling water temperature is high, EGR is performed by using both the low pressure EGR device 30 and the high pressure EGR device 40, so that the supercharging efficiency of the turbocharger 13 is increased by using the low pressure EGR device 30, and the high pressure EGR ratio is increased. By lowering the pump loss, the pump loss can be reduced and the fuel consumption can be improved.

また、内燃機関の温度は、冷却水温の他に、吸気通路壁面温度、エンジンオイル温度等に基づいて推定することもできる。   Further, the temperature of the internal combustion engine can be estimated based on the intake passage wall surface temperature, the engine oil temperature, and the like in addition to the coolant temperature.

実施例1のEGRシステムを適用する内燃機関の吸気系、排気系、及び制御系の概略構成を示す図である。It is a figure which shows schematic structure of the intake system of the internal combustion engine to which the EGR system of Example 1 is applied, an exhaust system, and a control system. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をHPL領域、MIX領域、及びLPL領域に分割する基本EGR制御マップの一例を示す図である。It is a figure which shows an example of the basic EGR control map which divides | segments the area | region of the operating state of an internal combustion engine into a HPL area | region, a MIX area | region, and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をHPL領域及びLPL領域に分割する基本EGR制御マップの一例を示す図である。It is a figure which shows an example of the basic EGR control map which divides | segments the area | region of the driving | running state of an internal combustion engine into a HPL area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をMIX領域及びLPL領域に分割する基本EGR制御マップの一例を示す図である。It is a figure which shows an example of the basic EGR control map which divides | segments the area | region of the operating state of an internal combustion engine into a MIX area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をHPL領域、MIX領域、及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the driving | running state of an internal combustion engine into a HPL area | region, a MIX area | region, and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をHPL領域及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the operating state of an internal combustion engine into a HPL area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をHPL領域及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the operating state of an internal combustion engine into a HPL area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をMIX領域及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the driving | running state of an internal combustion engine into a MIX area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をMIX領域及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the driving | running state of an internal combustion engine into a MIX area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおいて内燃機関の運転状態の領域をMIX領域及びLPL領域に分割する基本EGR制御マップに対して低水温時になされる補正の一例を示す図である。It is a figure which shows an example of the correction | amendment made at the time of low water temperature with respect to the basic EGR control map which divides | segments the area | region of the driving | running state of an internal combustion engine into a MIX area | region and a LPL area | region in the EGR system of Example 1. FIG. 実施例1のEGRシステムにおけるEGR制御マップ補正制御ルーチンを示すフローチャートである。3 is a flowchart illustrating an EGR control map correction control routine in the EGR system of the first embodiment. 実施例1のEGRシステムにおいて冷却水温に応じて低圧EGR比率を変化させる場合の冷却水温と低圧EGR比率との関係を示す図である。It is a figure which shows the relationship between the cooling water temperature in the case of changing a low pressure EGR ratio according to a cooling water temperature in the EGR system of Example 1, and a low pressure EGR ratio.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ノズルベーン
6 第1スロットル
7 エアフローメータ
8 インタークーラ
9 第2スロットル
10 排気浄化装置
11 コンプレッサ
12 タービン
13 ターボチャージャ
14 水温センサ
15 アクセル開度センサ
16 クランクポジションセンサ
17 吸気マニホールド
18 排気マニホールド
19 排気絞り弁
20 ECU
30 低圧EGR装置
31 低圧EGR通路
32 低圧EGR弁
33 低圧EGRクーラ
40 高圧EGR装置
41 高圧EGR通路
42 高圧EGR弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Intake pipe 4 Exhaust pipe 5 Nozzle vane 6 1st throttle 7 Air flow meter 8 Intercooler 9 2nd throttle 10 Exhaust purification device 11 Compressor 12 Turbine 13 Turbocharger 14 Water temperature sensor 15 Accelerator opening sensor 16 Crank position sensor 17 Intake manifold 18 Exhaust manifold 19 Exhaust throttle valve 20 ECU
30 Low pressure EGR device 31 Low pressure EGR passage 32 Low pressure EGR valve 33 Low pressure EGR cooler 40 High pressure EGR device 41 High pressure EGR passage 42 High pressure EGR valve

Claims (7)

内燃機関の吸気通路にコンプレッサを有し且つ排気通路にタービンを有するターボチャージャと、
前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続する高圧EGR通路を介して排気の一部を内燃機関に流入させる高圧EGR手段と、
前記タービンより下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路を介して排気の一部を内燃機関に流入させる低圧EGR手段と、
内燃機関の運転状態に応じて前記高圧EGR手段及び前記低圧EGR手段を併用又は切り替えてEGRを行うEGR制御手段と、
内燃機関において燃焼不良が発生する可能性があるか否かを判定する判定手段と、
を備え、
前記EGR制御手段は、内燃機関の運転状態が少なくとも前記低圧EGR手段を用いてEGRが行われる所定の運転領域に属する時に、前記判定手段によって燃焼不良が発生する可能性があると判定される場合には、燃焼不良が発生する可能性があると判定されない通常時と比較して、内燃機関に流入させる全排気に占める前記高圧EGR手段を用いて内燃機関に流入させる排気の比率を高くすることを特徴とする内燃機関のEGRシステム。
A turbocharger having a compressor in the intake passage of the internal combustion engine and a turbine in the exhaust passage;
High-pressure EGR means for allowing a part of the exhaust gas to flow into the internal combustion engine via a high-pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor;
Low pressure EGR means for allowing a part of the exhaust gas to flow into the internal combustion engine via a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor;
EGR control means for performing EGR by using or switching the high pressure EGR means and the low pressure EGR means in accordance with the operating state of the internal combustion engine;
Determination means for determining whether or not there is a possibility of occurrence of poor combustion in the internal combustion engine;
With
When the EGR control means determines that there is a possibility that a combustion failure may occur when the operating state of the internal combustion engine belongs to a predetermined operating region where EGR is performed using at least the low pressure EGR means. The ratio of the exhaust gas flowing into the internal combustion engine using the high-pressure EGR means occupying the total exhaust gas flowing into the internal combustion engine is increased compared with the normal time when it is not determined that there is a possibility that a combustion failure may occur. An EGR system for an internal combustion engine.
請求項1において、
前記EGR制御手段は、前記通常時には前記低圧EGR手段のみを用いてEGRが行われる運転領域の一部を、前記判定手段によって燃焼不良が発生する可能性があると判定される場合には、前記高圧EGR手段及び前記低圧EGR手段を併用してEGRを行う運転領域又は前記高圧EGR手段のみを用いてEGRを行う運転領域に変更することを特徴とする内燃機関のEGRシステム。
In claim 1,
The EGR control means, when it is determined by the determination means that a combustion failure may occur in a part of the operation region where EGR is performed using only the low pressure EGR means at the normal time, An EGR system for an internal combustion engine, wherein the operation region is changed to an operation region in which EGR is performed using both the high pressure EGR means and the low pressure EGR means, or an operation region in which EGR is performed using only the high pressure EGR means.
請求項1又は2において、
前記EGR制御手段は、前記通常時には前記高圧EGR手段及び前記低圧EGR手段を併用してEGRを行う運転領域の一部を、前記判定手段によって燃焼不良が発生する可能性があると判定される場合には、前記高圧EGR手段のみを用いてEGRを行う運転領域に変更することを特徴とする内燃機関のEGRシステム。
In claim 1 or 2,
When the EGR control means determines that there is a possibility that combustion failure may occur in a part of an operation region where EGR is performed by using the high pressure EGR means and the low pressure EGR means in the normal time. In the EGR system for an internal combustion engine, the operation region is changed to an operation region in which EGR is performed using only the high pressure EGR means.
請求項1〜3のいずれか1項において、
前記EGR制御手段は、内燃機関の運転状態が前記所定の運転領域内の所定の高負荷領域に属している場合には、前記判定手段によって燃焼不良が発生する可能性があると判定されても、内燃機関に流入させる全排気に占める前記高圧EGR手段を用いて内燃機関に流入させる排気の比率を高くしないことを特徴とする内燃機関のEGRシステム。
In any one of Claims 1-3,
The EGR control means may determine that there is a possibility that a combustion failure may occur when the operation state of the internal combustion engine belongs to a predetermined high load area within the predetermined operation area. An EGR system for an internal combustion engine, wherein the ratio of exhaust gas flowing into the internal combustion engine is not increased by using the high pressure EGR means occupying in all exhaust gas flowing into the internal combustion engine.
請求項1〜4のいずれか1項において、
前記判定手段は、外気温及び/又は内燃機関の冷却水温に基づいて燃焼不良が発生する可能性があるか否かを判定することを特徴とする内燃機関のEGRシステム。
In any one of Claims 1-4,
The EGR system for an internal combustion engine, wherein the determination means determines whether or not there is a possibility of poor combustion based on an outside air temperature and / or a cooling water temperature of the internal combustion engine.
内燃機関の吸気通路にコンプレッサを有し且つ排気通路にタービンを有するターボチャージャと、
前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続する高圧EGR通路を介して排気の一部を前記内燃機関に流入させる高圧EGR手段と、
前記タービンより下流の排気通路と前記コンプレッサより上流の吸気通路とを接続する低圧EGR通路を介して排気の一部を前記内燃機関に流入させる低圧EGR手段と、
前記内燃機関の運転状態に応じて前記高圧EGR手段及び前記低圧EGR手段を併用又は切り替えてEGRを行うEGR制御手段と、
内燃機関の冷却水温を測定する水温測定手段と、
を備え、
前記EGR制御手段は、内燃機関に流入させる排気に占める前記低圧EGR手段によって内燃機関に流入させる排気の比率を、前記水温測定手段によって測定される冷却水温に応じて可変にすることを特徴とする内燃機関のEGRシステム。
A turbocharger having a compressor in the intake passage of the internal combustion engine and a turbine in the exhaust passage;
High-pressure EGR means for allowing a part of exhaust gas to flow into the internal combustion engine via a high-pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor;
Low pressure EGR means for allowing a part of exhaust gas to flow into the internal combustion engine via a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor;
EGR control means for performing EGR by using or switching the high pressure EGR means and the low pressure EGR means in accordance with the operating state of the internal combustion engine;
Water temperature measuring means for measuring the cooling water temperature of the internal combustion engine;
With
The EGR control means makes the ratio of the exhaust gas flowing into the internal combustion engine by the low pressure EGR means occupying the exhaust gas flowing into the internal combustion engine variable according to the cooling water temperature measured by the water temperature measuring means. EGR system for internal combustion engines.
請求項6において、
前記EGR制御手段は、前記冷却水温が低くなるほど、内燃機関に流入させる排気に占める前記低圧EGR手段によって内燃機関に流入させる排気の比率を小さくすることを特徴とする内燃機関のEGRシステム。
In claim 6,
The EGR system for an internal combustion engine, wherein the EGR control means reduces the ratio of exhaust gas flowing into the internal combustion engine by the low pressure EGR means that occupies the exhaust gas flowing into the internal combustion engine as the cooling water temperature decreases.
JP2006325796A 2006-12-01 2006-12-01 Egr system for internal combustion engine Pending JP2008138598A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006325796A JP2008138598A (en) 2006-12-01 2006-12-01 Egr system for internal combustion engine
PCT/IB2007/003696 WO2008068574A1 (en) 2006-12-01 2007-11-30 Egr system for internal combustion engine and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325796A JP2008138598A (en) 2006-12-01 2006-12-01 Egr system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008138598A true JP2008138598A (en) 2008-06-19

Family

ID=39273836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325796A Pending JP2008138598A (en) 2006-12-01 2006-12-01 Egr system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008138598A (en)
WO (1) WO2008068574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060497A1 (en) * 2009-03-18 2012-03-15 Borgwamer Inc. Knock-responsive adjustment of an external egr mixture
JP2016061152A (en) * 2014-09-12 2016-04-25 マツダ株式会社 Exhaust gas recirculation control device of engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930596B1 (en) * 2008-04-25 2015-07-31 Inst Francais Du Petrole METHOD FOR CONTROLLING THE RECIRCULATION OF EXHAUST GASES FOR AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR OF THE SELF-LIGHTING TYPE
FR2948978A3 (en) * 2009-08-07 2011-02-11 Renault Sa Air intake system operating method for diesel engine of motor vehicle, involves activating low pressure exhaust gas recirculation device in second operating mode, and high pressure exhaust gas recirculation device in third operating mode
US8001779B2 (en) * 2010-03-24 2011-08-23 Ford Global Technologies, Llc Hybrid high-pressure low-pressure EGR system
JP6210153B2 (en) * 2014-04-25 2017-10-11 日産自動車株式会社 Exhaust gas recirculation control device and exhaust gas recirculation control method
CN115075966A (en) * 2022-06-17 2022-09-20 中国第一汽车股份有限公司 Control method of high EGR (exhaust gas Recirculation) rate exhaust gas Recirculation System and power system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935310B2 (en) * 2002-11-01 2005-08-30 Woodward Governor Company Method and apparatus for detecting abnormal combustion conditions in reciprocating engines having high exhaust gas recirculation
JP4089396B2 (en) * 2002-11-15 2008-05-28 いすゞ自動車株式会社 EGR system for internal combustion engine with turbocharger
FR2876416B1 (en) * 2004-10-11 2007-01-26 Renault Sas SUPERCHARGED INTERNAL COMBUSTION ENGINE HAVING A RECIRCULATION CIRCUIT FOR BURNED GASES
US6973786B1 (en) * 2004-10-12 2005-12-13 International Engine Intellectual Property Company, Llc Emission reduction in a diesel engine by selective use of high-and low-pressure EGR loops

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060497A1 (en) * 2009-03-18 2012-03-15 Borgwamer Inc. Knock-responsive adjustment of an external egr mixture
US8950182B2 (en) * 2009-03-18 2015-02-10 Borgwarner Inc. Knock-responsive adjustment of an external EGR mixture
JP2016061152A (en) * 2014-09-12 2016-04-25 マツダ株式会社 Exhaust gas recirculation control device of engine

Also Published As

Publication number Publication date
WO2008068574A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4281804B2 (en) Exhaust gas purification system for internal combustion engine
JP4285528B2 (en) Exhaust gas recirculation system for internal combustion engines
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4924229B2 (en) EGR system for internal combustion engine
JP4240101B2 (en) EGR system for internal combustion engine
JP4124143B2 (en) Control device for supercharger with electric motor
JP2007198277A (en) Exhaust gas recirculation device for internal combustion engine
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2010096049A (en) Control device of internal combustion engine
JP2008138598A (en) Egr system for internal combustion engine
JP2009046996A (en) Egr system of internal combustion engine
JP2007239493A (en) Internal combustion engine with supercharger
JP2008150978A (en) Exhaust gas recirculating device of internal combustion engine
JP4911432B2 (en) Control device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP4910849B2 (en) EGR system for internal combustion engine
KR102452681B1 (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP2009191678A (en) Control device of internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JP2007291975A (en) Exhaust recirculation device of internal combustion engine
JP2008019730A (en) Exhaust gas recirculating device of internal combustion engine
JP2010013963A (en) Multi-stage supercharging system for internal combustion engine
JP2008267256A (en) Control device for internal combustion engine with variable nozzle mechanism turbocharger
JP2010151101A (en) Internal combustion engine with supercharger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331