JP2004150319A - Compression ignition type internal combustion engine - Google Patents

Compression ignition type internal combustion engine Download PDF

Info

Publication number
JP2004150319A
JP2004150319A JP2002314981A JP2002314981A JP2004150319A JP 2004150319 A JP2004150319 A JP 2004150319A JP 2002314981 A JP2002314981 A JP 2002314981A JP 2002314981 A JP2002314981 A JP 2002314981A JP 2004150319 A JP2004150319 A JP 2004150319A
Authority
JP
Japan
Prior art keywords
egr
low
pressure egr
turbocharger
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002314981A
Other languages
Japanese (ja)
Other versions
JP4000987B2 (en
Inventor
Shinji Mori
真治 森
Eiichi Hiruma
栄一 昼間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002314981A priority Critical patent/JP4000987B2/en
Publication of JP2004150319A publication Critical patent/JP2004150319A/en
Application granted granted Critical
Publication of JP4000987B2 publication Critical patent/JP4000987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce exhaust emission in a wide operation region without deteriorating engine performance and controllability and responsiveness of EGR control by effectively using both a high pressure EGR passage and a low pressure EGR passage. <P>SOLUTION: A diesel engine provided with a turbocharger 2 comprises: a low pressure EGR pipe 12 for recirculating a part of exhaust gas from an exhaust pipe 11 at a downstream side of a turbine 2b of the turbocharger 2 to an intake pipe 5 on an upstream side of a compressor 2a of the turbocharger 2; and a high pressure EGR pipe 17 for recirculating a part of the exhaust gas from an exhaust manifold 10 to an intake manifold 7. Based on a detection signal from an operating condition detection means, EGR and pre-mixed combustion are performed by mainly using high pressure EGR and subsidiarily using low pressure EGR in a low and medium engine speed/low and medium load region, EGR is performed using the low pressure EGR and normal combustion is performed by injecting fuel in the vicinity of compression top dead center in low and medium engine speed/high load region, and EGR is performed using the high pressure EGR and the normal combustion is performed by injecting the fuel in the vicinity of the compression top dead center in a high engine speed/low to high load region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ターボチャージャを備えたディーゼル機関等の圧縮着火式内燃機関に関する。
【0002】
【従来の技術】
従来より、自動車用ディーゼル機関などにおいては、排気側から排ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排ガスで機関内での燃料の燃焼を抑制させて燃焼温度を下げることによりNO(窒素酸化物)の発生を低減するようにした、いわゆる排ガス再循環(EGR:Exhaust Gas Recirculation )が行われいる。
【0003】
ただし、排ガスの再循環によりNOの低減化を図ることは、気筒内での燃焼不良により黒煙を発生してしまうこととトレードオフの関係にあるので、黒煙の発生を抑制する観点から排ガスの再循環量に制限がかかるという不具合があり、単純に排ガスの再循環を行うだけで大幅なNOの低減化を図ることは困難である。
【0004】
このため、近年においては、通常の拡散燃焼であれば圧縮上死点付近で行われるべき燃料噴射を圧縮上死点付近より早いタイミング(例えば20〜50°前)で行い、気筒内への燃料の先行投入により燃料の予混合化を促進してから着火燃焼させて黒煙の発生を抑制するようにした予混合燃焼を併用することが検討されている。
【0005】
即ち、このような予混合燃焼を行うと、燃料が良好に分散混合して均等に薄まった状態で燃焼が行われることになるので、燃焼温度が比較的低く抑制されてNOの発生が少なくなり、しかも、局所的に燃料の濃い部分が生じ難くなって黒煙の発生を抑制する上でも有効となるのである。
【0006】
また、前記EGR装置として、図3に示すようなターボチャージャ101 を備えたディーゼル機関100 において、ターボチャージャ101 のタービン101a上流の排気通路、即ち排気マニホールド102 から排ガスの一部を抜き出して前記ターボチャージャ101 のコンプレッサ101b下流の吸気通路、即ち吸気マニホールド103 へ再循環する高圧EGR経路104Aを用いるものと、図4に示すように、同じくターボチャージャ101 のタービン101a上流の排気通路、即ち排気管105 から排ガスの一部を抜き出して前記ターボチャージャ101 のコンプレッサ101b下流の吸気通路、即ち吸気管106 へ再循環する低圧EGR経路104Bを用いるものとがある。尚、図中107A,107BはEGRバルブ、108A,108BはEGRクーラ、109 はインタークーラ、110 はVG(バリアブルジオメトリ)ノズルである。
【0007】
ところで、予混合燃焼の成立には大量EGRが必要である。つまり、図6に示す予混合燃焼適用領域では40%を超えるEGR率が必要となる。ところが、通常用いられている高圧EGR経路ではEGR量がタービン入口圧力Ptiとブースト圧力Pb の差圧(Pti−Pb )で決定されるため、ターボチャージャの性能が向上した場合は差圧が減少(逆転)し大量EGRが不可となる。つまり、図5の高圧EGR経路でのEGR率分布で、最も多い場合でも40%のEGR率となる。そこで、VG(バリアブルジオメトリ)ターボチャージャを用いてVGノズルの開度制御により差圧を確保し、EGR可能領域を拡大することが考えられている。しかしながら動力性能を犠牲にしない範囲内で予混合燃焼を実現可能な大量EGRを確保するにはVGノズルの開度制御を用いても困難である。
【0008】一方、低圧EGR経路はEGRバルブの位置がターボチャージャのコンプレッサ上流にあるため大量のEGRが可能であるが、EGRバルブを急速閉弁したとしても、各気筒までの経路にはインタークーラ等があり、例えば急加速時のように各気筒内の空気過剰率が急減した場合、高圧EGR経路に対して暫くの間は高EGR状態が続き黒煙が発生してしまう。
【0009】そこで、従来、高圧EGR経路と低圧EGR経路を併用したEGR装置がある(例えば、特許文献1参照。)。
【0010】これは、機関の高負荷を除く運転状態にて排ガスを再循環しながら予混合燃焼を併用するに際し、機関の高負荷から中負荷までの運転状態では低圧EGR経路を選択して、インタークーラなどを介し冷却された低温低圧の排ガスを再循環し、機関の低負荷から零負荷までの運転状態では高圧EGR経路に切り換えて排気マニホールドから吸気マニホールドへ高温高圧の排ガスを直接再循環することで、機関の低負荷領域で失火が起こり易くなる問題を吸気温度の上昇による着火支援で解消することができ、予混合燃焼の併用によるNOと黒煙の良好な同時低減化を実現するものである。
【0011】
【特許文献1】
特開2002−21625公報
【0012】
【発明が解決しようとする課題】
ところが、前述したような特許文献1に開示されたEGR装置にあっては、高圧EGR経路と低圧EGR経路を併用するのにあたって、大量EGRを必要とする機関の低負荷から零負荷までの運転状態では高圧EGR経路のみを用いると共に、その不足分はVGノズルの開度制御により補うようになっているため、動力性能の犠牲を余儀なくされるという問題点があった。また、機関の高負荷から中負荷までの運転状態では低圧EGR経路を用いるため、経路長の増大とインタークーラの介在により急加速時等における制御性及び応答性が悪いという問題点もあった。
【0013】
そこで、本発明の目的は、高圧EGR経路と低圧EGR経路を効果的に併用して動力性能やEGR制御の制御性及び応答性を損なうことなく広い運転領域で排気エミッションの低減が図れる圧縮着火式内燃機関を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するための、本発明の請求項1に係る圧縮着火式内燃機関は、ターボチャージャを備えた圧縮着火式内燃機関において、ターボチャージャのタービン下流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ上流の吸気通路へ再循環する低圧EGR経路と、ターボチャージャのタービン上流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ下流の吸気通路へ再循環する高圧EGR経路とを備えると共に、機関の運転状態を検出する運転状態検出手段と、該運転状態検出手段からの検出信号に基づいて、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたことを特徴し、高圧EGR経路と低圧EGR経路を効果的に使い分けて広い運転領域で排気エミッションの低減が図れるようにした。
【0015】
【発明の実施の形態】
以下、本発明に係る圧縮着火式内燃機関を実施例により図面を用いて詳細に説明する。
【0016】
[実施例]
図1は本発明の一実施例を示すディーゼル機関の概略構成図、図2はEGR方式の棲み分けを示すグラフである。
【0017】
図1において、1はディーゼル機関の機関本体で、該機関本体1は、通常の機関より圧縮比を低めに設定され、しかも、VG(バリアブルジオメトリ)ターボチャージャをターボチャージャ2として備えており、図示しないエアクリーナから導かれた吸気が吸気管(吸気通路)5を通り前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド(吸気通路)7へと吸気が導かれて機関本体1の直列6気筒からなる各々の気筒8に分配されるようになっている。
【0018】
更に、機関本体1の各気筒8から排出された排ガスは、排気マニホールド(排気通路)10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排ガスが排気管(排気通路)11を介し車外へ排出されるようにしてある。
【0019】
そして、ターボチャージャ2のタービン2bより下流の排気管11と、ターボチャージャ2のコンプレッサ2aより上流の吸気管5との間が低圧EGRパイプ(低圧EGR経路)12により接続されており、該低圧EGRパイプ12には、排ガスの再循環を適宜に停止し得ると共に開度調整可能なEGRバルブ13と、再循環される排ガスを冷却するためのEGRクーラ14が装備される。また、前記排気管11における低圧EGRパイプ12の分岐箇所の上流には排ガス中からパティキュレートを低減するための排ガス浄化装置15が装備される。
【0020】
更に、排気管11における低圧EGRパイプ12の分岐箇所の下流と吸気管5における低圧EGRパイプ12の分岐箇所の上流に開度調節可能なバルブ16a,16bが装備され、これらバルブ16a,16bの開度を調節して前記分岐箇所における圧力を増減することで低圧EGRパイプ12によるEGR率を調節し得るようにしてある。
【0021】
また、排気マニホールド10と吸気マニホールド7との間が高圧EGRパイプ(高圧EGR経路)17により接続され、該高圧EGRパイプ17には、排ガスの再循環を適宜に停止し得るよう開閉自在なEGRバルブ18と再循環される排ガスを冷却するためのEGRクーラ25が装備されている。更に、吸気管5における高圧EGRパイプ17の分岐箇所の上流に開度調節可能なバルブ19が装備され、このバルブ19の開度を調節して前記分岐箇所における圧力を増減することで高圧EGRパイプ17によるEGR率を調節し得るようにしてある。
【0022】
更に、運転席のアクセルペダル20には、アクセル開度を機関本体1の負荷として検出する負荷センサ21が備えられていると共に、機関本体1の図示しないクランクシャフトにはその回転を機関の回転数として検出するクランク角センサ22が備えられ、これら両センサからの検出信号が、吸気管5に設けた吸気温センサ27からの検出信号とともに、後述する制御手段としての電子制御ユニット(ECU)23に入力されるようになっている。
【0023】
前記電子制御ユニット23は、デジタルコンピュータからなり、図示しないROM、RAM、CPU、入,出力ポート等を具備する。そして、各気筒8に燃料を噴射する燃料噴射装置(例えば蓄圧式噴射装置)24に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号が出力されるようになっていると共に、EGRバルブ13,18とバルブ16a,16b,19とVGノズル3と排気ブレーキバルブ26とに対し夫々の開度を指令する開度指令信号が出力されるようになっている。
【0024】
そして、図2に示すように、前記電子制御ユニット23内の運転状態検出部(運転状態検出手段)と燃料噴射制御部とEGR制御部とにより、機関低中速・低中負荷域では高圧EGRパイプ17を主にまた低圧EGRパイプ12を補助的に用いてEGRを行うと共に圧縮上死点付近より早期に(例えば20〜50°BTDC)燃料を噴射して予混合燃焼を行い、機関低中速・高負荷域では低圧EGRパイプ12を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGRパイプ17を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようになっている。
【0025】
即ち、大量EGRが必要な予混合燃焼領域である機関低中速・低中負荷域では、動力性能を犠牲にしない程度にVGノズル3の開度を絞ると共に、EGRバルブ18を全開し、かつバルブ19を閉じ気味に制御して、高圧EGRパイプ17で可能な限りのEGRガスを還流させる一方、EGRバルブ13を全開し、かつバルブ16a,16bを閉じ方向に制御して、低圧EGRパイプ12でその不足分のEGRガスを還流させる。
【0026】
これにより、当該運転域では、動力性能を犠牲にすることなく十分な量のEGR量を確保でき、予混合燃焼の成立と相俟って、NOと黒煙の発生を低減することができる。
【0027】
また、元々高圧EGRパイプ17ではEGR導入が厳しい通常燃焼領域である機関低中速・高負荷域では、EGRバルブ18を全閉し、かつバルブ19を全開に制御する一方、EGRバルブ13を全開し、かつバルブ16a,16bを閉じ方向に制御して、低圧EGRパイプ12を用いてEGRを行う。尚、この時のVGノズル3の開度は動力性能を重視した開度で制御される。
【0028】
これにより、当該運転域では、動力性能を犠牲にすることなく十分な量のEGR量を確保でき、NOの発生を低減することができる。
【0029】
また、EGR率の少ない通常の拡散燃焼領域である機関高速・低〜高負荷域では、EGRバルブ13を全閉し、かつバルブ16a,16bを全開に制御する一方、EGRバルブ18,バルブ19及び、VGノズル3を既知のλ制御(EGRの空気過剰率による制御)して、高圧EGRパイプ17を用いてEGRを行う。
【0030】
これにより、当該運転域では、EGRバルブ18と吸気通路7との距離が短い高圧EGR経路17を使用するため、EGR制御の制御性及び応答性を良好に維持しつつNO(窒素酸化物)の発生を低減することができる。
【0031】
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種変更が可能であることはいうまでもない。
【0032】
【発明の効果】
以上説明したように請求項1の発明によれば、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたので、高圧EGR経路と低圧EGR経路を効果的に併用して動力性能やEGR制御の制御性及び応答性を損なうことなく広い運転領域で排気エミッションの低減が図れる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すディーゼル機関の概略構成図である。
【図2】同じくEGR方式の棲み分けを示すグラフである。
【図3】高圧EGR経路を備えたディーゼル機関の概略構成図である。
【図4】低圧EGR経路を備えたディーゼル機関の概略構成図である。
【図5】高圧EGR経路のEGR率分布を示すグラフである。
【図6】予混合燃焼適用領域を示すグラフである。
【符号の説明】
1 機関本体
2 ターボチャージャ
3 VGノズル
5 吸気管(吸気通路)
7 吸気マニホールド(吸気通路)
10 排気マニホールド(排気通路)
11 排気管(排気通路)
12 低圧EGRパイプ(低圧EGR経路)
13 EGRバルブ
14 EGRクーラ
15 排ガス浄化装置
17 高圧EGRパイプ
18 EGRバルブ
21 負荷センサ
22 クランク角センサ
23 電子制御ユニット(ECU)
24 燃料噴射装置
25 EGRクーラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compression ignition type internal combustion engine such as a diesel engine provided with a turbocharger.
[0002]
[Prior art]
Conventionally, in a diesel engine for an automobile, a part of exhaust gas is extracted from an exhaust side and returned to an intake side, and combustion of fuel in the engine is suppressed by the exhaust gas returned to the intake side to reduce a combustion temperature. and so as to reduce the generation of NO X (nitrogen oxides), a so-called exhaust gas recirculation by lowering (EGR: exhaust gas recirculation) is performed.
[0003]
However, possible to reduce of the NO X by the recirculation of the exhaust gases, since a relation that a trade-off that occurs black smoke by incomplete combustion in the cylinder, from the viewpoint of suppressing the generation of black smoke There is a disadvantage that the amount of exhaust gas recirculation is limited, and it is difficult to significantly reduce NO X by simply recirculating exhaust gas.
[0004]
For this reason, in recent years, in the case of normal diffusion combustion, the fuel injection to be performed near the compression top dead center is performed earlier (for example, 20 to 50 degrees before the compression top dead center), and the fuel is injected into the cylinder. The use of premixed combustion, which promotes premixing of the fuel by prior injection of the fuel and suppresses the generation of black smoke by igniting and burning, has been studied.
[0005]
That is, when such premixed combustion is performed, the combustion is performed in a state where the fuel is dispersed and mixed well and the fuel is evenly diluted. Therefore, the combustion temperature is suppressed to a relatively low level, and the generation of NO X is reduced. In addition, it is difficult to locally generate a fuel-rich portion, which is effective in suppressing the generation of black smoke.
[0006]
Further, in the diesel engine 100 having a turbocharger 101 as shown in FIG. 3 as the EGR device, a part of the exhaust gas is extracted from an exhaust passage upstream of the turbine 101a of the turbocharger 101, that is, an exhaust manifold 102, and the turbocharger is extracted. The intake passage 101 downstream of the compressor 101b of the turbocharger 101, that is, the high pressure EGR passage 104A that recirculates to the intake manifold 103, and the exhaust passage upstream of the turbine 101a of the turbocharger 101, that is, the exhaust pipe 105, as shown in FIG. Some use a low-pressure EGR passage 104B that extracts a part of the exhaust gas and recirculates the intake passage downstream of the compressor 101b of the turbocharger 101, that is, to the intake pipe 106. In the drawings, 107A and 107B are EGR valves, 108A and 108B are EGR coolers, 109 is an intercooler, and 110 is a VG (variable geometry) nozzle.
[0007]
By the way, a large amount of EGR is required to achieve premix combustion. That is, an EGR rate exceeding 40% is required in the premix combustion application region shown in FIG. However, in a normally used high-pressure EGR path, the EGR amount is determined by the differential pressure (Pti-Pb) between the turbine inlet pressure Pti and the boost pressure Pb, so that when the performance of the turbocharger is improved, the differential pressure decreases ( (Reverse rotation), and a large amount of EGR becomes impossible. That is, in the EGR rate distribution in the high-pressure EGR path in FIG. 5, the EGR rate is 40% even at the maximum. Therefore, it has been considered that a differential pressure is secured by controlling the opening degree of a VG nozzle using a VG (variable geometry) turbocharger to expand the EGR-enabled area. However, it is difficult to secure a large amount of EGR capable of realizing premixed combustion within a range that does not sacrifice power performance even by using the opening control of the VG nozzle.
On the other hand, the low pressure EGR path allows a large amount of EGR because the position of the EGR valve is located upstream of the compressor of the turbocharger. However, even if the EGR valve is rapidly closed, the path to each cylinder is intercooled. For example, when the excess air ratio in each cylinder suddenly decreases as in the case of rapid acceleration, the high EGR state continues for a while in the high pressure EGR path, and black smoke is generated.
Therefore, there is a conventional EGR device using both a high-pressure EGR route and a low-pressure EGR route (for example, see Patent Document 1).
[0010] When the premix combustion is used while recirculating the exhaust gas in the operating state except the high load of the engine, the low pressure EGR path is selected in the operating state of the engine from the high load to the medium load. The low-temperature and low-pressure exhaust gas cooled via an intercooler is recirculated, and when the engine is operating from low load to zero load, the high-pressure EGR path is switched to directly recirculate the high-temperature and high-pressure exhaust gas from the exhaust manifold to the intake manifold. As a result, the problem that misfiring easily occurs in the low-load region of the engine can be solved by the ignition support by increasing the intake air temperature, and good simultaneous reduction of NO X and black smoke can be realized by using premixed combustion. Things.
[0011]
[Patent Document 1]
JP 2002-21625 A
[Problems to be solved by the invention]
However, in the EGR device disclosed in Patent Literature 1 described above, when the high-pressure EGR path and the low-pressure EGR path are used together, the operating state of the engine requiring a large amount of EGR from low load to zero load. In this case, only the high-pressure EGR path is used, and the shortage is compensated for by controlling the opening of the VG nozzle, so that there is a problem that power performance must be sacrificed. In addition, since the low-pressure EGR path is used in the operating state of the engine from a high load to a medium load, there is also a problem that controllability and responsiveness at the time of rapid acceleration or the like are poor due to an increase in the path length and the intercooler.
[0013]
Accordingly, an object of the present invention is to provide a compression ignition type in which high-pressure EGR paths and low-pressure EGR paths are effectively used to reduce exhaust emissions in a wide operating range without impairing power performance or controllability and responsiveness of EGR control. An internal combustion engine is provided.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a compression ignition type internal combustion engine according to claim 1 of the present invention is a compression ignition type internal combustion engine equipped with a turbocharger, wherein a part of exhaust gas is extracted from an exhaust passage downstream of a turbine of the turbocharger. A low-pressure EGR path that recirculates to the intake passage upstream of the compressor of the turbocharger, and a high-pressure EGR that extracts a part of the exhaust gas from the exhaust passage upstream of the turbine of the turbocharger and recirculates it to the intake passage downstream of the compressor of the turbocharger. A driving state detection means for detecting an operation state of the engine; and a high-pressure EGR path mainly in the low-medium-speed / low-medium load region based on a detection signal from the operation state detection means. EGR is performed using the EGR path in an auxiliary manner and premix combustion is performed. In addition to performing EGR using the road and injecting fuel near the compression top dead center to perform normal combustion, performing EGR using the high pressure EGR path and fuel near the compression top dead center in the engine high speed / low to high load range. And a control means for performing normal combustion by injecting the EGR gas, thereby effectively using the high-pressure EGR path and the low-pressure EGR path so as to reduce the exhaust emission in a wide operating region.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a compression ignition type internal combustion engine according to the present invention will be described in detail using embodiments with reference to the drawings.
[0016]
[Example]
FIG. 1 is a schematic configuration diagram of a diesel engine showing one embodiment of the present invention, and FIG. 2 is a graph showing segregation of an EGR system.
[0017]
In FIG. 1, reference numeral 1 denotes an engine body of a diesel engine. The engine body 1 has a compression ratio set lower than that of a normal engine, and further includes a VG (variable geometry) turbocharger as a turbocharger 2. The intake air guided from an air cleaner which does not pass through an intake pipe (intake passage) 5 is sent to a compressor 2a of the turbocharger 2, and the intake air pressurized by the compressor 2a is sent to an intercooler 6 where it is cooled. The intake air is further guided from the intercooler 6 to an intake manifold (intake passage) 7 and distributed to each of the cylinders 8 of the engine body 1, which are composed of six in-line cylinders.
[0018]
Further, the exhaust gas discharged from each cylinder 8 of the engine body 1 is sent to a turbine 2b of the turbocharger 2 through an exhaust manifold (exhaust passage) 10, and the exhaust gas driving the turbine 2b is exhausted (exhaust passage). The air is discharged to the outside of the vehicle through the motor 11.
[0019]
An exhaust pipe 11 downstream of the turbine 2b of the turbocharger 2 and an intake pipe 5 upstream of the compressor 2a of the turbocharger 2 are connected by a low-pressure EGR pipe (low-pressure EGR path) 12, and the low-pressure EGR The pipe 12 is equipped with an EGR valve 13 capable of appropriately stopping the recirculation of exhaust gas and adjusting the opening, and an EGR cooler 14 for cooling the recirculated exhaust gas. An exhaust gas purifying device 15 for reducing particulates in exhaust gas is provided upstream of the branch point of the low pressure EGR pipe 12 in the exhaust pipe 11.
[0020]
Further, valves 16a and 16b whose opening degree can be adjusted are provided downstream of the branch of the low-pressure EGR pipe 12 in the exhaust pipe 11 and upstream of the branch of the low-pressure EGR pipe 12 in the intake pipe 5. The valves 16a and 16b are opened. The EGR rate by the low-pressure EGR pipe 12 can be adjusted by adjusting the degree to increase or decrease the pressure at the branch point.
[0021]
The exhaust manifold 10 and the intake manifold 7 are connected by a high-pressure EGR pipe (high-pressure EGR path) 17. The high-pressure EGR pipe 17 has an openable and closable EGR valve so that recirculation of exhaust gas can be stopped appropriately. 18 and an EGR cooler 25 for cooling the exhaust gas to be recirculated. Further, a valve 19 whose opening can be adjusted is provided upstream of the branch point of the high-pressure EGR pipe 17 in the intake pipe 5, and by adjusting the opening degree of the valve 19 to increase or decrease the pressure at the branch point, a high-pressure EGR pipe is provided. 17 so that the EGR rate can be adjusted.
[0022]
Further, the accelerator pedal 20 in the driver's seat is provided with a load sensor 21 for detecting the accelerator opening as a load on the engine body 1, and a crankshaft (not shown) of the engine body 1 uses the rotation of the engine as the engine speed. And a detection signal from both of these sensors, together with a detection signal from an intake air temperature sensor 27 provided in the intake pipe 5, is sent to an electronic control unit (ECU) 23 as control means to be described later. Is to be entered.
[0023]
The electronic control unit 23 is formed of a digital computer, and includes a ROM, a RAM, a CPU (not shown), input / output ports, and the like. A fuel injection signal for commanding a fuel injection timing and an injection amount is output to a fuel injection device (for example, a pressure-accumulation type injection device) 24 for injecting fuel into each cylinder 8, and the EGR valve 13 is provided. , 18, valves 16 a, 16 b, 19, VG nozzle 3, and exhaust brake valve 26 are output with respective opening degree command signals.
[0024]
As shown in FIG. 2, an operating state detecting section (operating state detecting means), a fuel injection control section, and an EGR control section in the electronic control unit 23 provide a high-pressure EGR in an engine low-medium-speed / low-medium load region. EGR is performed using the pipe 17 mainly and the low-pressure EGR pipe 12 as an auxiliary, and the fuel is injected earlier (for example, 20 to 50 ° BTDC) near the top dead center of the compression to perform premixed combustion, and the In the high speed / high load range, the EGR is performed using the low pressure EGR pipe 12 and the fuel is injected near the compression top dead center to perform normal combustion. In the high speed / low to high load range of the engine, the EGR is performed using the high pressure EGR pipe 17. Is performed and fuel is injected near the compression top dead center to perform normal combustion.
[0025]
That is, in the low-medium-speed / low-medium load region of the engine, which is a premixed combustion region requiring a large amount of EGR, the opening of the VG nozzle 3 is reduced to the extent that power performance is not sacrificed, and the EGR valve 18 is fully opened. The valve 19 is controlled to be closed to recirculate as much EGR gas as possible in the high-pressure EGR pipe 17, while the EGR valve 13 is fully opened and the valves 16 a and 16 b are controlled to close so that the low-pressure EGR pipe 12 is closed. To recirculate the shortage of EGR gas.
[0026]
As a result, a sufficient amount of EGR can be ensured without sacrificing power performance in the operating range, and the generation of NO X and black smoke can be reduced together with the establishment of premixed combustion. .
[0027]
Also, in the low-medium-speed / high-load region of the engine, which is a normal combustion region where the introduction of EGR is severe in the high-pressure EGR pipe 17, the EGR valve 18 is fully closed and the valve 19 is fully opened, while the EGR valve 13 is fully opened. The EGR is performed using the low-pressure EGR pipe 12 by controlling the valves 16a and 16b in the closing direction. At this time, the opening of the VG nozzle 3 is controlled by an opening that emphasizes power performance.
[0028]
As a result, a sufficient amount of EGR can be secured without sacrificing power performance in the operating range, and the generation of NO X can be reduced.
[0029]
Further, in the high speed, low to high load region of the engine, which is a normal diffusion combustion region having a small EGR rate, the EGR valve 13 is fully closed and the valves 16a and 16b are fully opened, while the EGR valve 18, the valve 19 and the , The VG nozzle 3 is subjected to known λ control (control based on the excess air ratio of EGR) to perform EGR using the high-pressure EGR pipe 17.
[0030]
As a result, in the operating range, since the high-pressure EGR passage 17 in which the distance between the EGR valve 18 and the intake passage 7 is short is used, NO X (nitrogen oxide) is maintained while maintaining good controllability and responsiveness of the EGR control. Can be reduced.
[0031]
It is needless to say that the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
[0032]
【The invention's effect】
As described above, according to the first aspect of the invention, in the low-medium-speed / low-medium load region of the engine, the EGR is performed using the high-pressure EGR path mainly and the low-pressure EGR path as an auxiliary, and the premix combustion is performed. EGR is performed using a low-pressure EGR route in a low-medium-speed, high-load region of the engine, and fuel is injected near the compression top dead center to perform normal combustion. In a high-speed, low-high load region of the engine, a high-pressure EGR route is used. Since control means for performing EGR and injecting fuel near the compression top dead center to perform normal combustion is provided, power performance and EGR control of EGR control are effectively performed by effectively using the high-pressure EGR path and the low-pressure EGR path. Exhaust emission can be reduced in a wide operating range without impairing controllability and responsiveness.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a diesel engine showing one embodiment of the present invention.
FIG. 2 is a graph showing segregation in the EGR system.
FIG. 3 is a schematic configuration diagram of a diesel engine provided with a high-pressure EGR path.
FIG. 4 is a schematic configuration diagram of a diesel engine provided with a low-pressure EGR path.
FIG. 5 is a graph showing an EGR rate distribution of a high-pressure EGR route.
FIG. 6 is a graph showing a premixed combustion application area.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine main body 2 Turbocharger 3 VG nozzle 5 Intake pipe (intake passage)
7 Intake manifold (intake passage)
10 Exhaust manifold (exhaust passage)
11 Exhaust pipe (exhaust passage)
12 Low pressure EGR pipe (Low pressure EGR path)
13 EGR valve 14 EGR cooler 15 Exhaust gas purification device 17 High pressure EGR pipe 18 EGR valve 21 Load sensor 22 Crank angle sensor 23 Electronic control unit (ECU)
24 fuel injection device 25 EGR cooler

Claims (1)

ターボチャージャを備えた圧縮着火式内燃機関において、ターボチャージャのタービン下流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ上流の吸気通路へ再循環する低圧EGR経路と、ターボチャージャのタービン上流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ下流の吸気通路へ再循環する高圧EGR経路とを備えると共に、機関の運転状態を検出する運転状態検出手段と、該運転状態検出手段からの検出信号に基づいて、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたことを特徴とする圧縮着火式内燃機関。In a compression ignition type internal combustion engine equipped with a turbocharger, a low pressure EGR path for extracting a part of exhaust gas from an exhaust passage downstream of a turbine of the turbocharger and recirculating the exhaust gas to an intake passage upstream of a compressor of the turbocharger; A high-pressure EGR path for extracting a part of the exhaust gas from an upstream exhaust passage and recirculating the exhaust gas to an intake passage downstream of the compressor of the turbocharger, and operating state detecting means for detecting an operating state of the engine; On the basis of the detection signal from the means, in the low-medium-speed / low-medium-load region of the engine, EGR is performed using the high-pressure EGR path mainly and the low-pressure EGR path is used as an auxiliary, and premix combustion is performed. In the high load range, EGR is performed using the low pressure EGR path, and fuel is injected near the compression top dead center to perform normal combustion. And control means for performing EGR using a high-pressure EGR path in a high-speed, low to high load region of the engine and injecting fuel near a compression top dead center to perform normal combustion. Compression ignition type internal combustion engine.
JP2002314981A 2002-10-29 2002-10-29 Compression ignition internal combustion engine Expired - Fee Related JP4000987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314981A JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314981A JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004150319A true JP2004150319A (en) 2004-05-27
JP4000987B2 JP4000987B2 (en) 2007-10-31

Family

ID=32459149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314981A Expired - Fee Related JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4000987B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029583A1 (en) * 2004-09-14 2006-03-23 Volkswagen Ag Exhaust-gas recirculation device and method for operating an exhaust-gas recirculation device
JP2006214347A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Combustion switching control system for compression ignition internal combustion engine
JP2007126995A (en) * 2005-11-01 2007-05-24 Toyota Motor Corp Exhaust gas recirculation system of internal combustion engine
WO2007066835A1 (en) 2005-12-09 2007-06-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2007100147A1 (en) 2006-03-03 2007-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier of compression ignition internal combustion engine
WO2007107865A2 (en) * 2006-03-23 2007-09-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
WO2007129160A1 (en) * 2006-04-26 2007-11-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for internal combustion engine and method of controlling exhaust gas recirculation apparatus
JP2007297948A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP2007315231A (en) * 2006-05-24 2007-12-06 Toyota Motor Corp Exhaust emission control system of internal combustion engine
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
WO2008007808A1 (en) 2006-07-14 2008-01-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
JP2008051022A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2008057449A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2008106657A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Exhaust system for internal combustion engine
WO2008058596A1 (en) * 2006-11-16 2008-05-22 Volkswagen Aktiengesellschaft Internal combustion engine with exhaust-gas recirculation
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
JP2008128043A (en) * 2006-11-17 2008-06-05 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
WO2008087513A1 (en) 2007-01-18 2008-07-24 Toyota Jidosha Kabushiki Kaisha Egr system for internal combustion engine and method for controlling the same
JP2008175079A (en) * 2007-01-16 2008-07-31 Toyota Motor Corp Exhaust system of internal combustion engine
JP2008202423A (en) * 2007-02-16 2008-09-04 Toyota Motor Corp Control device of internal combustion engine
JP2008208801A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Control device for internal combustion engine with exhaust gas recirculation system
JP2008223710A (en) * 2007-03-15 2008-09-25 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
JP2008232093A (en) * 2007-03-23 2008-10-02 Honda Motor Co Ltd Control device for internal combustion engine
WO2008120553A1 (en) 2007-03-29 2008-10-09 Honda Motor Co., Ltd. Egr controller for internal combustion engine
JP2008261257A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2009013839A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
US7493762B2 (en) * 2005-08-25 2009-02-24 Ford Global Technologies, Llc System and method for diagnostic of low pressure exhaust gas recirculation system and adapting of measurement devices
JP2009156146A (en) * 2007-12-26 2009-07-16 Yamaha Motor Co Ltd Exhaust gas recirculation device and vehicle
WO2009141917A1 (en) 2008-05-20 2009-11-26 トヨタ自動車株式会社 Exhaust reflux device for internal-combustion engine
JP2010065592A (en) * 2008-09-10 2010-03-25 Isuzu Motors Ltd Engine system
WO2010090036A1 (en) 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
WO2010090035A1 (en) 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust emission control device and exhaust emission control method
US7836693B2 (en) 2006-04-25 2010-11-23 Denso Corporation Exhaust recirculation apparatus for engine and method for controlling the same
WO2011018135A1 (en) * 2009-08-08 2011-02-17 Daimler Ag Internal combustion engine
CN102042131A (en) * 2009-10-19 2011-05-04 通用汽车环球科技运作公司 Method for operating an internal combustion engine system
US8001953B2 (en) 2007-01-18 2011-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for controlling the same
EP2397676A1 (en) 2010-06-16 2011-12-21 Honda Motor Co., Ltd. EGR control apparatus for internal combustion engine
EP2397677A1 (en) 2010-06-16 2011-12-21 Honda Motor Co., Ltd. EGR Control apparatus for internal combustion engine
US20120060497A1 (en) * 2009-03-18 2012-03-15 Borgwamer Inc. Knock-responsive adjustment of an external egr mixture
WO2012057189A1 (en) * 2010-10-29 2012-05-03 いすゞ自動車株式会社 Internal combustion engine exhaust brake control method and device
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
CN101429905B (en) * 2007-11-09 2012-07-11 现代自动车株式会社 Method and apparatus for controlling low pressure EGR valve of a turbocharged diesel engine
US8453446B2 (en) 2007-01-25 2013-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and method for controlling the same
US20130276443A1 (en) * 2012-04-19 2013-10-24 GM Global Technology Operations LLC System and method for controlling an exhaust-braking engine maneuver
JP2014114788A (en) * 2012-12-12 2014-06-26 Mazda Motor Corp Turbocharged engine
US8794219B2 (en) 2010-06-18 2014-08-05 Honda Motor Co., Ltd. EGR control apparatus for internal combustion engine
CN106762294A (en) * 2016-11-22 2017-05-31 天津大学 A kind of method of flexible control engine combustion mode
JP2020526700A (en) * 2017-07-11 2020-08-31 ルノー エス.ア.エス.Renault S.A.S. How to control a supercharged internal combustion engine

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520273B2 (en) 2004-09-14 2009-04-21 Volkswagen Ag Exhaust-gas recirculation device and method for operating an exhaust-gas recirculation device
WO2006029583A1 (en) * 2004-09-14 2006-03-23 Volkswagen Ag Exhaust-gas recirculation device and method for operating an exhaust-gas recirculation device
JP2006214347A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Combustion switching control system for compression ignition internal combustion engine
JP4525373B2 (en) * 2005-02-03 2010-08-18 トヨタ自動車株式会社 Combustion switching control system for compression ignition internal combustion engine
US7493762B2 (en) * 2005-08-25 2009-02-24 Ford Global Technologies, Llc System and method for diagnostic of low pressure exhaust gas recirculation system and adapting of measurement devices
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
JP2007126995A (en) * 2005-11-01 2007-05-24 Toyota Motor Corp Exhaust gas recirculation system of internal combustion engine
JP4670592B2 (en) * 2005-11-01 2011-04-13 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
US7937207B2 (en) 2005-12-09 2011-05-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP3051105A1 (en) 2005-12-09 2016-08-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2007066835A1 (en) 2005-12-09 2007-06-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2007100147A1 (en) 2006-03-03 2007-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier of compression ignition internal combustion engine
WO2007107865A2 (en) * 2006-03-23 2007-09-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
WO2007107865A3 (en) * 2006-03-23 2008-04-24 Toyota Motor Co Ltd Exhaust gas control system for internal combustion engine
CN101405501B (en) * 2006-03-23 2011-05-11 丰田自动车株式会社 Exhaust gas control system for internal combustion engine
US7801669B2 (en) 2006-03-23 2010-09-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine
US7836693B2 (en) 2006-04-25 2010-11-23 Denso Corporation Exhaust recirculation apparatus for engine and method for controlling the same
DE102007000236B4 (en) * 2006-04-25 2015-02-19 Denso Corporation Exhaust gas recirculation device for an internal combustion engine and method for controlling the same
WO2007129160A1 (en) * 2006-04-26 2007-11-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for internal combustion engine and method of controlling exhaust gas recirculation apparatus
US8006494B2 (en) 2006-04-26 2011-08-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for internal combustion engine and method of controlling exhaust gas recirculation apparatus
JP2007297948A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP2007315231A (en) * 2006-05-24 2007-12-06 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP4577270B2 (en) * 2006-05-24 2010-11-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US7717099B2 (en) 2006-06-29 2010-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
CN101484684B (en) * 2006-06-29 2012-05-23 丰田自动车株式会社 Exhaust gas recirculation device of internal combustion engine, and control method thereof
WO2008001194A1 (en) * 2006-06-29 2008-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation device of internal combustion engine, and control method thereof
US8234866B2 (en) 2006-07-14 2012-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine having a purification apparatus breakage detection unit
WO2008007808A1 (en) 2006-07-14 2008-01-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine
JP2008051022A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP4635986B2 (en) * 2006-08-25 2011-02-23 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP2008057449A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2008106657A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Exhaust system for internal combustion engine
WO2008058596A1 (en) * 2006-11-16 2008-05-22 Volkswagen Aktiengesellschaft Internal combustion engine with exhaust-gas recirculation
US8091535B2 (en) 2006-11-16 2012-01-10 Volkswagen Aktiengesellschaft Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
US8555864B2 (en) 2006-11-16 2013-10-15 Volkswagen Aktiengesellschaft Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
JP2008128043A (en) * 2006-11-17 2008-06-05 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
JP2008175079A (en) * 2007-01-16 2008-07-31 Toyota Motor Corp Exhaust system of internal combustion engine
US8001953B2 (en) 2007-01-18 2011-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US8220443B2 (en) 2007-01-18 2012-07-17 Toyota Jidosha Kabushiki Kaisha EGR system for internal combustion engine and method for controlling the same
WO2008087513A1 (en) 2007-01-18 2008-07-24 Toyota Jidosha Kabushiki Kaisha Egr system for internal combustion engine and method for controlling the same
US8453446B2 (en) 2007-01-25 2013-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and method for controlling the same
JP2008202423A (en) * 2007-02-16 2008-09-04 Toyota Motor Corp Control device of internal combustion engine
JP2008208801A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Control device for internal combustion engine with exhaust gas recirculation system
JP2008223710A (en) * 2007-03-15 2008-09-25 Toyota Motor Corp Exhaust recirculation device of internal combustion engine
JP2008232093A (en) * 2007-03-23 2008-10-02 Honda Motor Co Ltd Control device for internal combustion engine
WO2008120553A1 (en) 2007-03-29 2008-10-09 Honda Motor Co., Ltd. Egr controller for internal combustion engine
JP2008261256A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2008261257A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp Egr system of internal combustion engine
JP2009013839A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
CN101429905B (en) * 2007-11-09 2012-07-11 现代自动车株式会社 Method and apparatus for controlling low pressure EGR valve of a turbocharged diesel engine
JP2009156146A (en) * 2007-12-26 2009-07-16 Yamaha Motor Co Ltd Exhaust gas recirculation device and vehicle
US8108129B2 (en) 2008-05-20 2012-01-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation apparatus for an internal combustion engine
WO2009141917A1 (en) 2008-05-20 2009-11-26 トヨタ自動車株式会社 Exhaust reflux device for internal-combustion engine
JP2010065592A (en) * 2008-09-10 2010-03-25 Isuzu Motors Ltd Engine system
US8813490B2 (en) 2009-02-06 2014-08-26 Honda Motor Co., Ltd. Internal combustion engine exhaust emission control device and exhaust emission control method
WO2010090035A1 (en) 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust emission control device and exhaust emission control method
WO2010090036A1 (en) 2009-02-06 2010-08-12 本田技研工業株式会社 Internal combustion engine exhaust purifying device and exhaust purifying method
US20120060497A1 (en) * 2009-03-18 2012-03-15 Borgwamer Inc. Knock-responsive adjustment of an external egr mixture
US8950182B2 (en) * 2009-03-18 2015-02-10 Borgwarner Inc. Knock-responsive adjustment of an external EGR mixture
CN102472206A (en) * 2009-08-08 2012-05-23 戴姆勒股份公司 Internal combustion engine
US8793997B2 (en) 2009-08-08 2014-08-05 Daimler, Ag Internal combustion engine
WO2011018135A1 (en) * 2009-08-08 2011-02-17 Daimler Ag Internal combustion engine
JP2013501869A (en) * 2009-08-08 2013-01-17 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine
CN102042131A (en) * 2009-10-19 2011-05-04 通用汽车环球科技运作公司 Method for operating an internal combustion engine system
EP2397676A1 (en) 2010-06-16 2011-12-21 Honda Motor Co., Ltd. EGR control apparatus for internal combustion engine
US8646271B2 (en) 2010-06-16 2014-02-11 Honda Motor Co., Ltd. EGR control apparatus for internal combustion engine
EP2397677A1 (en) 2010-06-16 2011-12-21 Honda Motor Co., Ltd. EGR Control apparatus for internal combustion engine
US8794219B2 (en) 2010-06-18 2014-08-05 Honda Motor Co., Ltd. EGR control apparatus for internal combustion engine
WO2012057189A1 (en) * 2010-10-29 2012-05-03 いすゞ自動車株式会社 Internal combustion engine exhaust brake control method and device
JP2012127249A (en) * 2010-12-15 2012-07-05 Hino Motors Ltd Exhaust emission control method and device
US20130276443A1 (en) * 2012-04-19 2013-10-24 GM Global Technology Operations LLC System and method for controlling an exhaust-braking engine maneuver
JP2014114788A (en) * 2012-12-12 2014-06-26 Mazda Motor Corp Turbocharged engine
CN106762294A (en) * 2016-11-22 2017-05-31 天津大学 A kind of method of flexible control engine combustion mode
CN106762294B (en) * 2016-11-22 2019-03-05 天津大学 A kind of method of flexible control engine combustion mode
JP2020526700A (en) * 2017-07-11 2020-08-31 ルノー エス.ア.エス.Renault S.A.S. How to control a supercharged internal combustion engine

Also Published As

Publication number Publication date
JP4000987B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4000987B2 (en) Compression ignition internal combustion engine
KR101886090B1 (en) Engine system
JP3796102B2 (en) EGR device
JP3997477B2 (en) Control device for internal combustion engine
JP5904290B2 (en) Turbocharged engine
US10094337B2 (en) Dual path cooled exhaust gas recirculation for turbocharged gasoline engines
JP4780059B2 (en) Control device for internal combustion engine
US20110100343A1 (en) Emission control system for an engine having a two-stage turbocharger
JP2002508472A (en) Equipment for combustion engines
JP2006233898A (en) Egr device
KR20170139926A (en) Engine systme having exahust gas recirculation apparatus and control mehtod using the same
KR20110112287A (en) Internal combustion heat engine, control system, method for dimensioning the engine, and automobile with said engine
JP4736969B2 (en) Diesel engine control device
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP2007023920A (en) Engine
JP4258388B2 (en) Internal combustion engine and operation control device for internal combustion engine
JP4803056B2 (en) Premixed compression ignition internal combustion engine
JP4924280B2 (en) Diesel engine control device.
JP2002188522A (en) Egr control device for engine with turbocharger
JP4031227B2 (en) Exhaust gas recirculation device for in-cylinder injection engine with supercharger
JP2002317640A (en) Supercharged gas engine
JP3315416B2 (en) Diesel engine intake system
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP4206934B2 (en) Supercharging system for internal combustion engines
JP3371324B2 (en) Exhaust gas recirculation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees