JP4000987B2 - Compression ignition internal combustion engine - Google Patents

Compression ignition internal combustion engine Download PDF

Info

Publication number
JP4000987B2
JP4000987B2 JP2002314981A JP2002314981A JP4000987B2 JP 4000987 B2 JP4000987 B2 JP 4000987B2 JP 2002314981 A JP2002314981 A JP 2002314981A JP 2002314981 A JP2002314981 A JP 2002314981A JP 4000987 B2 JP4000987 B2 JP 4000987B2
Authority
JP
Japan
Prior art keywords
egr
pressure egr
low
engine
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002314981A
Other languages
Japanese (ja)
Other versions
JP2004150319A (en
Inventor
真治 森
栄一 昼間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002314981A priority Critical patent/JP4000987B2/en
Publication of JP2004150319A publication Critical patent/JP2004150319A/en
Application granted granted Critical
Publication of JP4000987B2 publication Critical patent/JP4000987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ターボチャージャを備えたディーゼル機関等の圧縮着火式内燃機関に関する。
【0002】
【従来の技術】
従来より、自動車用ディーゼル機関などにおいては、排気側から排ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排ガスで機関内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOX(窒素酸化物)の発生を低減するようにした、いわゆる排ガス再循環(EGR:Exhaust Gas Recirculation )が行われいる。
【0003】
ただし、排ガスの再循環によりNOXの低減化を図ることは、気筒内での燃焼不良により黒煙を発生してしまうこととトレードオフの関係にあるので、黒煙の発生を抑制する観点から排ガスの再循環量に制限がかかるという不具合があり、単純に排ガスの再循環を行うだけで大幅なNOXの低減化を図ることは困難である。
【0004】
このため、近年においては、通常の拡散燃焼であれば圧縮上死点付近で行われるべき燃料噴射を圧縮上死点付近より早いタイミング(例えば20〜50°前)で行い、気筒内への燃料の先行投入により燃料の予混合化を促進してから着火燃焼させて黒煙の発生を抑制するようにした予混合燃焼を併用することが検討されている。
【0005】
即ち、このような予混合燃焼を行うと、燃料が良好に分散混合して均等に薄まった状態で燃焼が行われることになるので、燃焼温度が比較的低く抑制されてNOXの発生が少なくなり、しかも、局所的に燃料の濃い部分が生じ難くなって黒煙の発生を抑制する上でも有効となるのである。
【0006】
また、前記EGR装置として、図3に示すようなターボチャージャ101 を備えたディーゼル機関100 において、ターボチャージャ101 のタービン101a上流の排気通路、即ち排気マニホールド102 から排ガスの一部を抜き出して前記ターボチャージャ101 のコンプレッサ101b下流の吸気通路、即ち吸気マニホールド103 へ再循環する高圧EGR経路104Aを用いるものと、図4に示すように、同じくターボチャージャ101 のタービン101a上流の排気通路、即ち排気管105 から排ガスの一部を抜き出して前記ターボチャージャ101 のコンプレッサ101b下流の吸気通路、即ち吸気管106 へ再循環する低圧EGR経路104Bを用いるものとがある。尚、図中107A,107BはEGRバルブ、108A,108BはEGRクーラ、109 はインタークーラ、110 はVG(バリアブルジオメトリ)ノズルである。
【0007】
ところで、予混合燃焼の成立には大量EGRが必要である。つまり、図6に示す予混合燃焼適用領域では40%を超えるEGR率が必要となる。ところが、通常用いられている高圧EGR経路ではEGR量がタービン入口圧力Ptiとブースト圧力Pb の差圧(Pti−Pb )で決定されるため、ターボチャージャの性能が向上した場合は差圧が減少(逆転)し大量EGRが不可となる。つまり、図5の高圧EGR経路でのEGR率分布で、最も多い場合でも40%のEGR率となる。そこで、VG(バリアブルジオメトリ)ターボチャージャを用いてVGノズルの開度制御により差圧を確保し、EGR可能領域を拡大することが考えられている。しかしながら動力性能を犠牲にしない範囲内で予混合燃焼を実現可能な大量EGRを確保するにはVGノズルの開度制御を用いても困難である。
【0008】
一方、低圧EGR経路はEGRバルブの位置がターボチャージャのコンプレッサ上流にあるため大量のEGRが可能であるが、EGRバルブを急速閉弁したとしても、各気筒までの経路にはインタークーラ等があり、例えば急加速時のように各気筒内の空気過剰率が急減した場合、高圧EGR経路に対して暫くの間は高EGR状態が続き黒煙が発生してしまう。
【0009】
そこで、従来、高圧EGR経路と低圧EGR経路を併用したEGR装置がある(例えば、特許文献1参照。)。
【0010】
これは、機関の高負荷を除く運転状態にて排ガスを再循環しながら予混合燃焼を併用するに際し、機関の高負荷から中負荷までの運転状態では低圧EGR経路を選択して、インタークーラなどを介し冷却された低温低圧の排ガスを再循環し、機関の低負荷から零負荷までの運転状態では高圧EGR経路に切り換えて排気マニホールドから吸気マニホールドへ高温高圧の排ガスを直接再循環することで、機関の低負荷領域で失火が起こり易くなる問題を吸気温度の上昇による着火支援で解消することができ、予混合燃焼の併用によるNOXと黒煙の良好な同時低減化を実現するものである。
【0011】
【特許文献1】
特開2002−21625公報
【0012】
【発明が解決しようとする課題】
ところが、前述したような特許文献1に開示されたEGR装置にあっては、高圧EGR経路と低圧EGR経路を併用するのにあたって、大量EGRを必要とする機関の低負荷から零負荷までの運転状態では高圧EGR経路のみを用いると共に、その不足分はVGノズルの開度制御により補うようになっているため、動力性能の犠牲を余儀なくされるという問題点があった。また、機関の高負荷から中負荷までの運転状態では低圧EGR経路を用いるため、経路長の増大とインタークーラの介在により急加速時等における制御性及び応答性が悪いという問題点もあった。
【0013】
そこで、本発明の目的は、高圧EGR経路と低圧EGR経路を効果的に併用して動力性能やEGR制御の制御性及び応答性を損なうことなく広い運転領域で排気エミッションの低減が図れる圧縮着火式内燃機関を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するための、本発明の請求項1に係る圧縮着火式内燃機関は、ターボチャージャを備えた圧縮着火式内燃機関において、ターボチャージャのタービン下流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ上流の吸気通路へ再循環する低圧EGR経路と、ターボチャージャのタービン上流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ下流の吸気通路へ再循環する高圧EGR経路とを備えると共に、機関の運転状態を検出する運転状態検出手段と、該運転状態検出手段からの検出信号に基づいて、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたことを特徴し、高圧EGR経路と低圧EGR経路を効果的に使い分けて広い運転領域で排気エミッションの低減が図れるようにした。
【0015】
【発明の実施の形態】
以下、本発明に係る圧縮着火式内燃機関を実施例により図面を用いて詳細に説明する。
【0016】
[実施例]
図1は本発明の一実施例を示すディーゼル機関の概略構成図、図2はEGR方式の棲み分けを示すグラフである。
【0017】
図1において、1はディーゼル機関の機関本体で、該機関本体1は、通常の機関より圧縮比を低めに設定され、しかも、VG(バリアブルジオメトリ)ターボチャージャをターボチャージャ2として備えており、図示しないエアクリーナから導かれた吸気が吸気管(吸気通路)5を通り前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド(吸気通路)7へと吸気が導かれて機関本体1の直列6気筒からなる各々の気筒8に分配されるようになっている。
【0018】
更に、機関本体1の各気筒8から排出された排ガスは、排気マニホールド(排気通路)10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排ガスが排気管(排気通路)11を介し車外へ排出されるようにしてある。
【0019】
そして、ターボチャージャ2のタービン2bより下流の排気管11と、ターボチャージャ2のコンプレッサ2aより上流の吸気管5との間が低圧EGRパイプ(低圧EGR経路)12により接続されており、該低圧EGRパイプ12には、排ガスの再循環を適宜に停止し得ると共に開度調整可能なEGRバルブ13と、再循環される排ガスを冷却するためのEGRクーラ14が装備される。また、前記排気管11における低圧EGRパイプ12の分岐箇所の上流には排ガス中からパティキュレートを低減するための排ガス浄化装置15が装備される。
【0020】
更に、排気管11における低圧EGRパイプ12の分岐箇所の下流と吸気管5における低圧EGRパイプ12の分岐箇所の上流に開度調節可能なバルブ16a,16bが装備され、これらバルブ16a,16bの開度を調節して前記分岐箇所における圧力を増減することで低圧EGRパイプ12によるEGR率を調節し得るようにしてある。
【0021】
また、排気マニホールド10と吸気マニホールド7との間が高圧EGRパイプ(高圧EGR経路)17により接続され、該高圧EGRパイプ17には、排ガスの再循環を適宜に停止し得るよう開閉自在なEGRバルブ18と再循環される排ガスを冷却するためのEGRクーラ25が装備されている。更に、吸気管5における高圧EGRパイプ17の分岐箇所の上流に開度調節可能なバルブ19が装備され、このバルブ19の開度を調節して前記分岐箇所における圧力を増減することで高圧EGRパイプ17によるEGR率を調節し得るようにしてある。
【0022】
更に、運転席のアクセルペダル20には、アクセル開度を機関本体1の負荷として検出する負荷センサ21が備えられていると共に、機関本体1の図示しないクランクシャフトにはその回転を機関の回転数として検出するクランク角センサ22が備えられ、これら両センサからの検出信号が、吸気管5に設けた吸気温センサ27からの検出信号とともに、後述する制御手段としての電子制御ユニット(ECU)23に入力されるようになっている。
【0023】
前記電子制御ユニット23は、デジタルコンピュータからなり、図示しないROM、RAM、CPU、入,出力ポート等を具備する。そして、各気筒8に燃料を噴射する燃料噴射装置(例えば蓄圧式噴射装置)24に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号が出力されるようになっていると共に、EGRバルブ13,18とバルブ16a,16b,19とVGノズル3と排気ブレーキバルブ26とに対し夫々の開度を指令する開度指令信号が出力されるようになっている。
【0024】
そして、図2に示すように、前記電子制御ユニット23内の運転状態検出部(運転状態検出手段)と燃料噴射制御部とEGR制御部とにより、機関低中速・低中負荷域では高圧EGRパイプ17を主にまた低圧EGRパイプ12を補助的に用いてEGRを行うと共に圧縮上死点付近より早期に(例えば20〜50°BTDC)燃料を噴射して予混合燃焼を行い、機関低中速・高負荷域では低圧EGRパイプ12を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGRパイプ17を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようになっている。
【0025】
即ち、大量EGRが必要な予混合燃焼領域である機関低中速・低中負荷域では、動力性能を犠牲にしない程度にVGノズル3の開度を絞ると共に、EGRバルブ18を全開し、かつバルブ19を閉じ気味に制御して、高圧EGRパイプ17で可能な限りのEGRガスを還流させる一方、EGRバルブ13を全開し、かつバルブ16a,16bを閉じ方向に制御して、低圧EGRパイプ12でその不足分のEGRガスを還流させる。
【0026】
これにより、当該運転域では、動力性能を犠牲にすることなく十分な量のEGR量を確保でき、予混合燃焼の成立と相俟って、NOXと黒煙の発生を低減することができる。
【0027】
また、元々高圧EGRパイプ17ではEGR導入が厳しい通常燃焼領域である機関低中速・高負荷域では、EGRバルブ18を全閉し、かつバルブ19を全開に制御する一方、EGRバルブ13を全開し、かつバルブ16a,16bを閉じ方向に制御して、低圧EGRパイプ12を用いてEGRを行う。尚、この時のVGノズル3の開度は動力性能を重視した開度で制御される。
【0028】
これにより、当該運転域では、動力性能を犠牲にすることなく十分な量のEGR量を確保でき、NOXの発生を低減することができる。
【0029】
また、EGR率の少ない通常の拡散燃焼領域である機関高速・低〜高負荷域では、EGRバルブ13を全閉し、かつバルブ16a,16bを全開に制御する一方、EGRバルブ18,バルブ19及び、VGノズル3を既知のλ制御(EGRの空気過剰率による制御)して、高圧EGRパイプ17を用いてEGRを行う。
【0030】
これにより、当該運転域では、EGRバルブ18と吸気通路7との距離が短い高圧EGR経路17を使用するため、EGR制御の制御性及び応答性を良好に維持しつつNOX(窒素酸化物)の発生を低減することができる。
【0031】
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種変更が可能であることはいうまでもない。
【0032】
【発明の効果】
以上説明したように請求項1の発明によれば、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたので、高圧EGR経路と低圧EGR経路を効果的に併用して動力性能やEGR制御の制御性及び応答性を損なうことなく広い運転領域で排気エミッションの低減が図れる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すディーゼル機関の概略構成図である。
【図2】同じくEGR方式の棲み分けを示すグラフである。
【図3】高圧EGR経路を備えたディーゼル機関の概略構成図である。
【図4】低圧EGR経路を備えたディーゼル機関の概略構成図である。
【図5】高圧EGR経路のEGR率分布を示すグラフである。
【図6】予混合燃焼適用領域を示すグラフである。
【符号の説明】
1 機関本体
2 ターボチャージャ
3 VGノズル
5 吸気管(吸気通路)
7 吸気マニホールド(吸気通路)
10 排気マニホールド(排気通路)
11 排気管(排気通路)
12 低圧EGRパイプ(低圧EGR経路)
13 EGRバルブ
14 EGRクーラ
15 排ガス浄化装置
17 高圧EGRパイプ
18 EGRバルブ
21 負荷センサ
22 クランク角センサ
23 電子制御ユニット(ECU)
24 燃料噴射装置
25 EGRクーラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression ignition type internal combustion engine such as a diesel engine equipped with a turbocharger.
[0002]
[Prior art]
Conventionally, in a diesel engine for automobiles, a part of exhaust gas is extracted from the exhaust side and returned to the intake side, and the combustion temperature of the engine is suppressed by suppressing the combustion of fuel in the engine with the exhaust gas returned to the intake side. and so as to reduce the generation of NO X (nitrogen oxides), a so-called exhaust gas recirculation by lowering (EGR: exhaust gas recirculation) is performed.
[0003]
However, possible to reduce of the NO X by the recirculation of the exhaust gases, since a relation that a trade-off that occurs black smoke by incomplete combustion in the cylinder, from the viewpoint of suppressing the generation of black smoke There is a problem in that the amount of exhaust gas recirculated is limited, and it is difficult to achieve a significant reduction in NO x by simply recirculating exhaust gas.
[0004]
For this reason, in recent years, fuel injection to be performed near the compression top dead center is performed at an earlier timing (for example, 20 to 50 degrees before) near the compression top dead center in the case of normal diffusion combustion, and the fuel into the cylinder It has been studied to use premixed combustion in which the premixing of the fuel is promoted by pre-injection of the fuel and then the ignition combustion is performed to suppress the generation of black smoke.
[0005]
That is, when such premixed combustion is performed, combustion is performed in a state where the fuel is well dispersed and mixed and evenly diluted, so that the combustion temperature is suppressed to a relatively low level and the generation of NO x is reduced. In addition, it is difficult to produce a fuel-rich portion locally, which is effective in suppressing the generation of black smoke.
[0006]
Further, in the diesel engine 100 provided with the turbocharger 101 as shown in FIG. 3 as the EGR device, a part of the exhaust gas is extracted from the exhaust passage upstream of the turbine 101a of the turbocharger 101, that is, the exhaust manifold 102. 101 using an intake passage downstream of the compressor 101b, that is, a high-pressure EGR passage 104A recirculating to the intake manifold 103, and an exhaust passage upstream of the turbine 101a of the turbocharger 101, ie, an exhaust pipe 105, as shown in FIG. Some use a low pressure EGR path 104B that extracts a part of the exhaust gas and recirculates it to the intake passage downstream of the compressor 101b of the turbocharger 101, that is, the intake pipe 106. In the figure, 107A and 107B are EGR valves, 108A and 108B are EGR coolers, 109 is an intercooler, and 110 is a VG (variable geometry) nozzle.
[0007]
By the way, a large amount of EGR is required to establish premixed combustion. That is, an EGR rate exceeding 40% is required in the premixed combustion application region shown in FIG. However, since the EGR amount is determined by the differential pressure (Pti−Pb) between the turbine inlet pressure Pti and the boost pressure Pb in the normally used high pressure EGR path, the differential pressure decreases when the performance of the turbocharger is improved ( Reversing), and mass EGR becomes impossible. That is, the EGR rate distribution in the high-pressure EGR path in FIG. 5 is 40% even at the highest. In view of this, it has been considered that a differential pressure is secured by controlling the opening degree of the VG nozzle by using a VG (variable geometry) turbocharger to expand the EGR possible region. However, in order to secure a large amount of EGR capable of realizing premixed combustion within a range where the power performance is not sacrificed, it is difficult to use the opening control of the VG nozzle.
[0008]
On the other hand, the low-pressure EGR path allows a large amount of EGR because the position of the EGR valve is upstream of the compressor of the turbocharger. However, even if the EGR valve is quickly closed, there is an intercooler in the path to each cylinder. For example, when the excess air ratio in each cylinder suddenly decreases as in rapid acceleration, for example, the high EGR state continues for a while with respect to the high pressure EGR path, and black smoke is generated.
[0009]
Therefore, there is a conventional EGR device that uses both a high pressure EGR path and a low pressure EGR path (see, for example, Patent Document 1).
[0010]
This is because when using premixed combustion while recirculating exhaust gas in the operating state excluding the high load of the engine, the low pressure EGR path is selected in the operating state from the high load to the medium load of the engine, etc. By recirculating the low-temperature and low-pressure exhaust gas cooled through the engine, switching to the high-pressure EGR path in the operating state from the low load to the zero load of the engine, and directly recirculating the high-temperature and high-pressure exhaust gas from the exhaust manifold to the intake manifold, The problem that misfires are likely to occur in the low load region of the engine can be solved with the ignition support by the rise of the intake air temperature, and the simultaneous reduction of NO x and black smoke by the combined use of premixed combustion is realized. .
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-21625
[Problems to be solved by the invention]
However, in the EGR device disclosed in Patent Document 1 as described above, when the high pressure EGR path and the low pressure EGR path are used together, the operating state from a low load to a zero load of an engine that requires a large amount of EGR is used. However, since only the high-pressure EGR path is used and the shortage is compensated by the opening degree control of the VG nozzle, there is a problem in that the power performance is sacrificed. Further, since the low pressure EGR route is used in the engine operating state from high load to medium load, there is a problem that controllability and responsiveness at the time of sudden acceleration and the like are poor due to the increase in the route length and the intercooler.
[0013]
Therefore, an object of the present invention is a compression ignition type that can effectively reduce the exhaust emission in a wide operation range without impairing the power performance and the controllability and responsiveness of the EGR control by effectively using the high pressure EGR route and the low pressure EGR route. It is to provide an internal combustion engine.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a compression ignition type internal combustion engine according to claim 1 of the present invention is a compression ignition type internal combustion engine having a turbocharger, wherein a part of exhaust gas is extracted from an exhaust passage downstream of the turbine of the turbocharger. A low-pressure EGR path that recirculates to the intake passage upstream of the compressor of the turbocharger, and a high-pressure EGR that extracts a part of the exhaust gas from the exhaust passage upstream of the turbine of the turbocharger and recirculates to the intake passage downstream of the compressor of the turbocharger And an operating state detecting means for detecting the operating state of the engine, and based on a detection signal from the operating state detecting means, the high pressure EGR path is mainly mainly used in the engine low / medium speed / low / medium load range. EGR is performed supplementarily using the EGR path and premixed combustion is performed. Low pressure EGR is used in the engine low, medium speed and high load range. EGR is performed using the road and fuel is injected near the compression top dead center to perform normal combustion. In the engine high speed / low to high load range, EGR is performed using the high pressure EGR route and fuel is compressed near the compression top dead center. And a control means for performing normal combustion by effectively injecting the high pressure EGR path and the low pressure EGR path to effectively reduce the exhaust emission in a wide operating range.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a compression ignition type internal combustion engine according to the present invention will be described in detail with reference to the drawings.
[0016]
[Example]
FIG. 1 is a schematic configuration diagram of a diesel engine showing an embodiment of the present invention, and FIG. 2 is a graph showing segregation of EGR systems.
[0017]
In FIG. 1, reference numeral 1 denotes an engine body of a diesel engine. The engine body 1 is set to have a lower compression ratio than a normal engine, and further includes a VG (variable geometry) turbocharger as a turbocharger 2. The intake air introduced from the air cleaner that does not pass through the intake pipe (intake passage) 5 is sent to the compressor 2a of the turbocharger 2, and the intake air pressurized by the compressor 2a is sent to the intercooler 6 to be cooled, Intake air is further guided from the intercooler 6 to an intake manifold (intake passage) 7 and is distributed to each cylinder 8 of the engine body 1 including in-line 6 cylinders.
[0018]
Further, the exhaust gas discharged from each cylinder 8 of the engine body 1 is sent to the turbine 2b of the turbocharger 2 via an exhaust manifold (exhaust passage) 10, and the exhaust gas that has driven the turbine 2b is exhaust pipe (exhaust passage). 11 is discharged outside the vehicle.
[0019]
The exhaust pipe 11 downstream of the turbine 2b of the turbocharger 2 and the intake pipe 5 upstream of the compressor 2a of the turbocharger 2 are connected by a low pressure EGR pipe (low pressure EGR path) 12, and the low pressure EGR The pipe 12 is equipped with an EGR valve 13 capable of appropriately stopping the recirculation of the exhaust gas and adjusting the opening degree, and an EGR cooler 14 for cooling the exhaust gas to be recirculated. Further, an exhaust gas purifying device 15 for reducing particulates from the exhaust gas is provided upstream of the branch point of the low pressure EGR pipe 12 in the exhaust pipe 11.
[0020]
Further, valves 16a and 16b whose opening degree can be adjusted are provided downstream of the branch point of the low-pressure EGR pipe 12 in the exhaust pipe 11 and upstream of the branch point of the low-pressure EGR pipe 12 in the intake pipe 5, and the valves 16a and 16b are opened. The EGR rate by the low pressure EGR pipe 12 can be adjusted by adjusting the degree to increase or decrease the pressure at the branch point.
[0021]
The exhaust manifold 10 and the intake manifold 7 are connected by a high-pressure EGR pipe (high-pressure EGR path) 17, and the high-pressure EGR pipe 17 has an openable and closable EGR valve that can appropriately stop the recirculation of exhaust gas. 18 and an EGR cooler 25 for cooling the recirculated exhaust gas. Further, a valve 19 capable of adjusting the opening degree is provided upstream of the branching point of the high pressure EGR pipe 17 in the intake pipe 5, and the pressure at the branching part is adjusted by adjusting the opening degree of the valve 19 to increase or decrease the pressure of the high pressure EGR pipe. The EGR rate by 17 can be adjusted.
[0022]
Further, the accelerator pedal 20 in the driver's seat is provided with a load sensor 21 for detecting the accelerator opening as a load of the engine body 1, and the crankshaft (not shown) of the engine body 1 is rotated at the rotational speed of the engine. The detected crank angle sensor 22 is detected by the electronic control unit (ECU) 23 as a control means to be described later together with the detection signal from the intake air temperature sensor 27 provided in the intake pipe 5. It is designed to be entered.
[0023]
The electronic control unit 23 is composed of a digital computer, and includes a ROM, a RAM, a CPU, input / output ports and the like (not shown). A fuel injection signal for instructing the fuel injection timing and injection amount is output to a fuel injection device (for example, a pressure-accumulation type injection device) 24 for injecting fuel into each cylinder 8, and the EGR valve 13. , 18, valves 16 a, 16 b, 19, VG nozzle 3, and exhaust brake valve 26, opening degree command signals for commanding the respective opening degrees are output.
[0024]
Then, as shown in FIG. 2, the operation state detection unit (operation state detection means), the fuel injection control unit, and the EGR control unit in the electronic control unit 23 cause high pressure EGR in the engine low / medium speed / low / medium load range. EGR is performed mainly using the pipe 17 and also the low-pressure EGR pipe 12 as auxiliary, and fuel is injected earlier than the vicinity of the compression top dead center (for example, 20 to 50 ° BTDC) to perform premixed combustion, thereby reducing the engine low EGR is performed using the low pressure EGR pipe 12 in the high speed / high load range and fuel is injected near the compression top dead center to perform normal combustion. In the high speed / low to high load range, EGR is performed using the high pressure EGR pipe 17. And the normal combustion is performed by injecting fuel near the compression top dead center.
[0025]
That is, in the engine low / medium speed / low / medium load range where a large amount of EGR is required, the opening of the VG nozzle 3 is narrowed to the extent that the power performance is not sacrificed, the EGR valve 18 is fully opened, and The valve 19 is controlled to be closed to recirculate as much EGR gas as possible through the high pressure EGR pipe 17, while the EGR valve 13 is fully opened and the valves 16a and 16b are controlled in the closing direction to control the low pressure EGR pipe 12. And reflux the insufficient EGR gas.
[0026]
Thus, in this operation range, can be secured EGR amount sufficient amount without sacrificing engine performance, I met coupled with the premixed combustion, it is possible to reduce the generation of the NO X and black smoke .
[0027]
Further, in the high-pressure EGR pipe 17, in the engine low, medium speed, and high load range, which is a normal combustion region where EGR introduction is severe, the EGR valve 18 is fully closed and the valve 19 is fully opened, while the EGR valve 13 is fully opened. In addition, the EGR is performed using the low pressure EGR pipe 12 by controlling the valves 16a and 16b in the closing direction. Note that the opening degree of the VG nozzle 3 at this time is controlled by an opening degree that emphasizes power performance.
[0028]
Thus, in this operation range, can be secured EGR amount sufficient quantity without sacrificing power performance, it is possible to reduce the generation of NO X.
[0029]
Further, in the engine high speed / low to high load region, which is a normal diffusion combustion region with a low EGR rate, the EGR valve 13 is fully closed and the valves 16a and 16b are fully opened, while the EGR valve 18, the valve 19 and The VG nozzle 3 is subjected to known λ control (control by the excess air ratio of EGR), and EGR is performed using the high-pressure EGR pipe 17.
[0030]
As a result, in the operating region, the high pressure EGR path 17 having a short distance between the EGR valve 18 and the intake passage 7 is used, so that NO X (nitrogen oxide) is maintained while maintaining the controllability and responsiveness of the EGR control well. Can be reduced.
[0031]
Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0032]
【The invention's effect】
As described above, according to the first aspect of the invention, in the engine low / medium speed / low / medium load range, the high pressure EGR path is mainly used and the low pressure EGR path is supplementarily used to perform EGR and premixed combustion. EGR is performed using the low pressure EGR path in the engine low, medium speed, and high load areas, and fuel is injected near the compression top dead center to perform normal combustion. In the engine high speed, low to high load areas, the high pressure EGR path is used. And a control means for performing normal combustion by injecting fuel near the compression top dead center, and effectively using the high-pressure EGR path and the low-pressure EGR path together for power performance and EGR control. Exhaust emissions can be reduced in a wide operating range without impairing controllability and responsiveness.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a diesel engine showing an embodiment of the present invention.
FIG. 2 is a graph showing segregation in the EGR method.
FIG. 3 is a schematic configuration diagram of a diesel engine having a high-pressure EGR path.
FIG. 4 is a schematic configuration diagram of a diesel engine having a low pressure EGR path.
FIG. 5 is a graph showing an EGR rate distribution of a high-pressure EGR path.
FIG. 6 is a graph showing a premixed combustion application region.
[Explanation of symbols]
1 Engine body 2 Turbocharger 3 VG nozzle 5 Intake pipe (intake passage)
7 Intake manifold (intake passage)
10 Exhaust manifold (exhaust passage)
11 Exhaust pipe (exhaust passage)
12 Low pressure EGR pipe (Low pressure EGR route)
13 EGR valve 14 EGR cooler 15 Exhaust gas purification device 17 High pressure EGR pipe 18 EGR valve 21 Load sensor 22 Crank angle sensor 23 Electronic control unit (ECU)
24 Fuel injector 25 EGR cooler

Claims (1)

ターボチャージャを備えた圧縮着火式内燃機関において、ターボチャージャのタービン下流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ上流の吸気通路へ再循環する低圧EGR経路と、ターボチャージャのタービン上流の排気通路から排ガスの一部を抜き出して前記ターボチャージャのコンプレッサ下流の吸気通路へ再循環する高圧EGR経路とを備えると共に、機関の運転状態を検出する運転状態検出手段と、該運転状態検出手段からの検出信号に基づいて、機関低中速・低中負荷域では高圧EGR経路を主にまた低圧EGR経路を補助的に用いてEGRを行うと共に予混合燃焼を行い、機関低中速・高負荷域では低圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行い、機関高速・低〜高負荷域では高圧EGR経路を用いてEGRを行うと共に圧縮上死点付近で燃料を噴射して通常燃焼を行うようにした制御手段とを備えたことを特徴とする圧縮着火式内燃機関。In a compression ignition internal combustion engine equipped with a turbocharger, a low pressure EGR path for extracting a part of exhaust gas from an exhaust passage downstream of the turbocharger turbine and recirculating it to an intake passage upstream of the compressor of the turbocharger, and a turbine of the turbocharger A high-pressure EGR path for extracting a part of the exhaust gas from the upstream exhaust passage and recirculating it to the intake passage downstream of the compressor of the turbocharger, and operating state detecting means for detecting the operating state of the engine, and the operating state detection Based on the detection signal from the means, in the engine low / medium speed / low / medium load range, the high pressure EGR path is mainly used and the low pressure EGR path is supplementarily used to perform EGR and premixed combustion. In the high load range, EGR is performed using the low pressure EGR path, and fuel is injected near the compression top dead center to perform normal combustion. And a control means for performing normal combustion by injecting fuel near the compression top dead center while performing EGR using a high pressure EGR path in the engine high speed / low to high load range. Compression ignition internal combustion engine.
JP2002314981A 2002-10-29 2002-10-29 Compression ignition internal combustion engine Expired - Fee Related JP4000987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314981A JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314981A JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004150319A JP2004150319A (en) 2004-05-27
JP4000987B2 true JP4000987B2 (en) 2007-10-31

Family

ID=32459149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314981A Expired - Fee Related JP4000987B2 (en) 2002-10-29 2002-10-29 Compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4000987B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044893A1 (en) * 2004-09-14 2006-03-30 Volkswagen Ag Exhaust gas recirculation device and method for operating an exhaust gas recirculation device
JP4525373B2 (en) * 2005-02-03 2010-08-18 トヨタ自動車株式会社 Combustion switching control system for compression ignition internal combustion engine
GB2434406A (en) * 2005-08-25 2007-07-25 Ford Global Tech Llc I.c. engine exhaust gas recirculation (EGR) system with dual high pressure and low pressure EGR loops
US7380400B2 (en) * 2005-10-06 2008-06-03 Ford Global Technologies, Llc System and method for high pressure and low pressure exhaust gas recirculation control and estimation
JP4670592B2 (en) * 2005-11-01 2011-04-13 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
JP4337809B2 (en) 2005-12-09 2009-09-30 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2007231918A (en) 2006-03-03 2007-09-13 Toyota Motor Corp Exhaust emission control device for compression ignition type internal combustion engine
JP4240045B2 (en) * 2006-03-23 2009-03-18 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4797880B2 (en) * 2006-04-25 2011-10-19 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4215069B2 (en) * 2006-04-26 2009-01-28 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4793083B2 (en) * 2006-04-28 2011-10-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP4577270B2 (en) * 2006-05-24 2010-11-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4611941B2 (en) * 2006-06-29 2011-01-12 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
US8234866B2 (en) 2006-07-14 2012-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation system of internal combustion engine having a purification apparatus breakage detection unit
JP4635986B2 (en) * 2006-08-25 2011-02-23 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP2008057449A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP4779926B2 (en) * 2006-10-25 2011-09-28 トヨタ自動車株式会社 Exhaust system for internal combustion engine
DE102006054043A1 (en) 2006-11-16 2008-05-21 Volkswagen Ag Internal combustion engine with exhaust gas recirculation
JP4735519B2 (en) * 2006-11-17 2011-07-27 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4853297B2 (en) * 2007-01-16 2012-01-11 トヨタ自動車株式会社 Exhaust system for internal combustion engine
JP4301296B2 (en) 2007-01-18 2009-07-22 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
JP4301295B2 (en) 2007-01-18 2009-07-22 トヨタ自動車株式会社 EGR system for internal combustion engine
JP4281804B2 (en) 2007-01-25 2009-06-17 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4862681B2 (en) * 2007-02-16 2012-01-25 トヨタ自動車株式会社 Control device for internal combustion engine
JP4867713B2 (en) * 2007-02-27 2012-02-01 トヨタ自動車株式会社 Control device for internal combustion engine with EGR device
JP4765966B2 (en) * 2007-03-15 2011-09-07 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
JP4799457B2 (en) * 2007-03-23 2011-10-26 本田技研工業株式会社 Control device for internal combustion engine
JP2008248729A (en) 2007-03-29 2008-10-16 Honda Motor Co Ltd Egr control device for internal combustion engine
JP4900004B2 (en) * 2007-04-11 2012-03-21 トヨタ自動車株式会社 EGR system for internal combustion engine
JP4910849B2 (en) * 2007-04-11 2012-04-04 トヨタ自動車株式会社 EGR system for internal combustion engine
JP4748124B2 (en) * 2007-07-03 2011-08-17 トヨタ自動車株式会社 Control device for internal combustion engine
KR100887968B1 (en) * 2007-11-09 2009-03-09 현대자동차주식회사 Method for controlling exhaust gas recirculation of diesel engine
JP5283898B2 (en) * 2007-12-26 2013-09-04 ヤマハ発動機株式会社 Exhaust gas recirculation device and vehicle
WO2009141917A1 (en) 2008-05-20 2009-11-26 トヨタ自動車株式会社 Exhaust reflux device for internal-combustion engine
JP5136309B2 (en) * 2008-09-10 2013-02-06 いすゞ自動車株式会社 Engine system
JP4870179B2 (en) 2009-02-06 2012-02-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5053306B2 (en) 2009-02-06 2012-10-17 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
DE112010001184T5 (en) * 2009-03-18 2012-07-12 Borgwarner, Inc. TAPPING REACTIVE ADJUSTMENT OF AN EXTERNAL EGR MIXTURE
DE102009036743A1 (en) * 2009-08-08 2011-02-10 Daimler Ag Internal combustion engine
GB2474514B (en) * 2009-10-19 2016-05-11 Gm Global Tech Operations Llc Method for operating an internal combustion engine system
JP5075229B2 (en) 2010-06-18 2012-11-21 本田技研工業株式会社 EGR control device for internal combustion engine
EP2397677B1 (en) 2010-06-16 2018-10-17 Honda Motor Co., Ltd. Egr control apparatus for internal combustion engine
JP5028509B2 (en) 2010-06-16 2012-09-19 本田技研工業株式会社 EGR control device for internal combustion engine
JP2012097604A (en) * 2010-10-29 2012-05-24 Isuzu Motors Ltd Method and device for controlling exhaust brake of internal combustion engine
JP5774300B2 (en) * 2010-12-15 2015-09-09 日野自動車株式会社 Exhaust purification equipment
US20130276443A1 (en) * 2012-04-19 2013-10-24 GM Global Technology Operations LLC System and method for controlling an exhaust-braking engine maneuver
JP5998901B2 (en) * 2012-12-12 2016-09-28 マツダ株式会社 Turbocharged engine
CN106762294B (en) * 2016-11-22 2019-03-05 天津大学 A kind of method of flexible control engine combustion mode
FR3069022B1 (en) * 2017-07-11 2021-05-21 Renault Sas CONTROL PROCESS OF A SUPERCHARGED INTERNAL COMBUSTION ENGINE.

Also Published As

Publication number Publication date
JP2004150319A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4000987B2 (en) Compression ignition internal combustion engine
US6338245B1 (en) Internal combustion engine
US7047742B2 (en) Turbocharged engine and method for preventing surging in compressor
KR101886090B1 (en) Engine system
JP3796102B2 (en) EGR device
JP3997477B2 (en) Control device for internal combustion engine
US6973786B1 (en) Emission reduction in a diesel engine by selective use of high-and low-pressure EGR loops
US8596252B2 (en) Emission control system for an engine having a two-stage turbocharger
US20070089400A1 (en) Fast warm-up of diesel aftertreatment system during cold start
US20160265485A1 (en) Dual path cooled exhaust gas recirculation for turbocharged gasoline engines
JP2006233898A (en) Egr device
CN110234860B (en) Method for controlling an internal combustion engine
JP4736969B2 (en) Diesel engine control device
JP2007023920A (en) Engine
JP4258388B2 (en) Internal combustion engine and operation control device for internal combustion engine
JP4924280B2 (en) Diesel engine control device.
JP4803056B2 (en) Premixed compression ignition internal combustion engine
JP2002188522A (en) Egr control device for engine with turbocharger
JP3315416B2 (en) Diesel engine intake system
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP3371324B2 (en) Exhaust gas recirculation device
JP2010168954A (en) Control device for internal combustion engine
JP3426417B2 (en) Exhaust gas recirculation system
KR20190043388A (en) Engine system
JPH0791326A (en) Exhaust gas refluxing device for engine having supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees